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Interatomic potentials for monoatomic metals from experimental data andab initio calculations
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We demonstrate an approach to the development of many-body interatomic potentials for monoatomic
metals with improved accuracy and reliability. The functional form of the potentials is that of the embedded-
atom method, but the interesting features are as follows:~1! The database used for the development of a
potential includes both experimental data and a large set of energies of different alternative crystalline struc-
tures of the material generated byab initio calculations. We introduce a rescaling of interatomic distances in an
attempt to improve the compatibility between experimental andab initio data.~2! The optimum parametriza-
tion of the potential for the given database is obtained by alternating the fitting and testing steps. The testing
step includes a comparison between theab initio structural energies and those predicted by the potential. This
strategy allows us to achieve the best accuracy of fitting within the intrinsic limitations of the potential model.
Using this approach we develop reliable interatomic potentials for Al and Ni. The potentials accurately repro-
duce basic equilibrium properties of these metals, the elastic constants, the phonon-dispersion curves, the
vacancy formation and migration energies, the stacking fault energies, and the surface energies. They also
predict the right relative stability of different alternative structures with coordination numbers ranging from 12
to 4. The potentials are expected to be easily transferable to different local environments encountered in
atomistic simulations of lattice defects.@S0163-1829~99!05005-5#
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I. INTRODUCTION

In spite of greatly increased computer speeds, the ap
cation of ab initio methods for an atomistic simulation o
materials is still limited to relatively small ensembles of a
oms and, in molecular dynamics, relatively short simulat
times. In contrast, the use of empirical or semiempirical
teratomic potentials makes it possible to simulate mu
larger systems~up to 107– 108 atoms! for much longer times,
and thus to tackle such problems as plastic deformation, f
ture, or atomic diffusion. For this reason there is and w
probably always be a demand for realistic interatomic pot
tials, as there will always be a tendency to simulate as la
systems as possible.

In this paper we propose an approach to the developm
of reliable interatomic potentials for monoatomic meta
based on a large set of experimental andab initio data. As an
application we develop accurate many-body potentials for
and Ni, which are intended for atomistic simulations of i
ternal defects in these metals, such as point defects, pl
faults, grain boundaries, and dislocations. The potentials
also be used for fracture simulations and, with some caut
simulations of surface phenomena. The choice of Al and
is dictated by the desire to test our approach for both sim
~Al ! and transition~Ni! metals. Furthermore, this work is
part of our current effort to develop reliable interatomic p
tentials for ordered intermetallic compounds of the Ni-
system. The present potentials for Al and Ni will be inco
porated into the potentials for the compounds.

In Sec. II of the paper we introduce our general appro
to the development of interatomic potentials. We discuss
advantages and problems associated with using both ex
PRB 590163-1829/99/59~5!/3393~15!/$15.00
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mental data andab initio structural energies in one databas
We also introduce a strategy of parametrization and opti
zation of interatomic potentials based on the separation
the fitting and testing steps. Section III describes our da
base and further details of the parametrization, fitting, a
testing procedures. In Sec. IV we present the results of fit
and testing the potentials for Al and Ni. In Sec. V we su
marize our results and discuss possible applications of
potentials.

II. GENERAL APPROACH

The potentials developed in this work are based on
formalism of the embedded-atom method~EAM!.1,2 In this
method the total energy of a monoatomic system is rep
sented as

Etot5
1
2 (

i j
V~r i j !1(

i
F~ r̄ i !. ~1!

HereV(r i j ) is a pair potential as a function of the distancer i j
between atomsi and j, andF is the ‘‘embedding energy’’ as
a function of the host ‘‘density’’r̄ i induced at sitei by all
other atoms in the system. The latter is given by

r̄ i5(
j Þ i

r~r i j !, ~2!

r(r i j ) being the ‘‘atomic density’’ function. The second ter
in Eq. ~1! is volume dependent and represents, in an appr
mate manner, many-body interactions in the system. E
potentials, together with some other similar potentials,3,4 are
often referred to collectively as ‘‘glue model’’ potentials. A
3393 ©1999 The American Physical Society
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glue model potentials share the same general form given
Eqs. ~1! and ~2!, and only differ in the functional forms o
V(r ), r(r ), and F( r̄). In this work we use very genera
forms of the potential functions with no reference to th
original physical meaning. Thus, while we often use the t
minology of the EAM, our potentials could as well be cla
sified as glue model potentials.

Once the general form of the potential is chosen, the
portant issues become how to choose the database for fi
and how to parametrize and optimize the potential functio
We shall discuss these issues in order.

A. Importance of ab initio data in the development of
interatomic potentials

Empirical potentials for monoatomic metals are typica
fitted to the experimental values of the equilibrium latti
parametera0 , the cohesive energyE0 , three elastic con-
stants, and the vacancy formation energyEv

f . ~For a noncu-
bic material this data set includes additional elastic const
and the equilibriumc/a ratio.! This basic set of properties i
often complemented with planar fault energies, low-ind
surface energies, phonon frequencies, and/or other data
fortunately, reliable experimental information on metal pro
erties that can be directly linked to atomic interactions
very limited. Furthermore, most experimental properties r
resent the behavior of the material in very small regions
configuration space. For example, the elastic constants
phonon frequencies are determined by small atomic displ
ments from the equilibrium lattice configuration. In contra
in atomistic simulations the system is free to explore diff
ent atomic configurations that can be quite far away from
regions represented by the experimental data. The que
which then arises is the following: How accurately will th
potential represent the energies of such ‘‘abnormal’’ co
figurations? The accuracy of the potential over a range
configurations, i.e., itstransferability, obviously depends on
whether the data points used for fitting span a wide eno
region of configuration space.

A possible way to expand the database is to include a
of atomic configurations calculated byab initio methods. For
example, Ercolessi and Adams5 recently proposed develop
ing glue model potentials by fitting to both experimental d
andab initio atomic forces calculated for a large set of co
figurations including crystals, liquids, surfaces, and isola
clusters~force-matching method!. Another possibility of in-
corporatingab initio data is to calculate a set ofstructural
energies, i.e., energies of various crystalline structures of
same material with different lattice parameters. Such a
may include not only three-dimensional crystals but a
slabs, layers, or even atomic chains.6,7 In either case the in-
corporation ofab initio data can improve the accuracy an
transferability of the potential dramatically by sampling r
gions of configuration space that are not accessible exp
mentally.

This recently emerged approach is very promising, a
may serve to bridge the existing gap betweenab initio and
empirical methods in materials simulations. It should
mentioned, however, that the simultaneous use of exp
mental andab initio data in one database entails some pr
lems. In particular, manyab initio methods tend to underes
by

r
-

-
ng
s.

ts

x
n-

-
s
-
f
nd
e-
,
-
e
ion

-
f

h

et

a
-
d

e
et
o

ri-

d

e
ri-
-

timate the equilibrium lattice parameters of crystals
comparison with experimental data. This tendency to und
estimate interatomic distances introduces some degree o
compatibility between theab initio structural energies and
the experimental quantities, and makes one-to-one fitting
the structural energies problematic. This applies equally
the force-matching method5 where, again, theab initio forces
can be affected by the previous tendency. In the present
per we shall address this problem by introducing a resca
of interatomic distances during the fitting and testing of t
potentials.

B. Optimization of the fitting procedure

In some earlier studies the parametrization of the poten
functions was based on simple functional forms reflecting
some extent, their original physical meaning.2,8,9 For ex-
ample,V(r ) was represented by a Morse function andr(r )
by a combination of power and exponential functions. A
alternative approach, taken in the glue model3–5 and fol-
lowed in this work, is to use a basis set of cubic splin
which, although having no physical foundation, offer plen
of parameters for fitting.

For the development of an accurate potential it is imp
tant to have anoptimumnumber of fitting parameters for th
chosen database. While the lack of fitting parameters,
thus flexibility, may affect the accuracy of the potential, it
not good to have too many fitting parameters either.6,10 As
with any model potential, the general form of Eqs.~1! and
~2! has certain physical limitations which cannot be ov
come by including more parameters. Of course, havin
sufficient number of parameters, one can fit all points in
data set exactly, but the potential thus obtained will perfo
badly on configurations other than those represented by
data set. Robertson, Heine, and Payne6 recently proposed a
strategy which avoids the overfitting of the database. Th
suggested splitting the database into two parts and using
part for fitting and the other for testing the potential. If th
root-mean-square~rms! deviation between the desired an
predicted properties observed at the testing stage is con
erably larger than the rms deviation achieved at the fitt
step, the database is probably overfitted and the numbe
parameters should be reduced. Robertsonet al.6 and Payne
et al.10 demonstrated that the rms deviation obtained wh
fitting gives no indication of the accuracy of the potenti
instead, it is the rms deviation obtained at the testing st
that gives the most meaningful measure of the quality of
potential.

The separation of the fitting and testing steps suggest
algorithm for finding the optimum number of paramete
Thus one can start with a small number of fitting paramet
and increase it gradually as long as both rms deviations
crease. Eventually, however, the rms deviation observe
the testing stage will stop decreasing and reach satura
although the fitting rms deviation may continue to decrea
At this point the process can be stopped because the in
duction of new parameters will not lead to any further im
provement of the potential. The occurrence of saturation
dicates that we have approached the limit of accur
dictated by the intrinsic shortcomings of the adopted pot
tial model. Robertson, Heine, and Payne6 illustrated this
strategy by fitting different glue model potentials for Al to
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large set of structural energies generated byab initio pseudo-
potential calculations. In the present work we apply a sim
strategy to establish the optimum number of fitting para
eters for our database.

III. PARAMETRIZATION AND FITTING PROCEDURES

A. Database for fitting and testing

1. Experimental data

The experimental part of our database includes the
lowing physical properties of Al and Ni: the equilibrium la
tice parameter,11 the cohesive energy,12,13 the elastic con-
stants c11, c12, and c44,14 and the vacancy formation
energy15,16 ~see Tables I and II!. These experimental value
coincide with those employed by Voter and Chen9 in the
development of their EAM potentials for these elements. T
potentials of Voter and Chen, which we refer to hereafter
VC potentials, have been widely used in atomistic simu
tions, although other EAM potentials for Al and Ni are al
available ~see, e.g., Refs. 8 and 17–27!. We use the VC
potentials as a reference for comparison with our potent
throughout the paper. It should be mentioned that the
potentials were obtained as a part of the developmen
EAM potentials forL12 Ni3Al, and were later incorporated
in EAM potentials forB2 NiAl.28–30 We can thus conve
niently extend the comparison with VC potentials to our c
rent work on Ni-Al intermetallics.

Additionally, our database includes the experimental v
ues of the vacancy migration energyEv

m ,16,31 the intrinsic
stacking fault energygSF,32 and the experimentally mea
sured phonon-dispersion relations.33–35 The saddle-point
configuration arising during a vacancy jump represents
important region of configuration space which is not rep
sented by any other properties. The local density at the ju
ing atom in the saddle-point configuration is usually low
than that at a regular lattice atom, while the distances to
nearest neighbors are considerably smaller.36 Therefore the
energy of this configuration, and thusEv

m , measure the
strength of pairwise repulsion between atoms at short
tances. The atomic interaction in this regime is not fitt
properly in the traditional EAM scheme, with the cons
quence that EAM potentials typically underestimateEv

m .30

gSF represents the relative stability of the hcp phase,
determines the width of the dislocation dissociation on
~111! plane. Realistic values ofgSF are thus critically impor-
tant in simulations of plastic deformation and fracture. T
agreement with experimental phonon frequencies is also
sential, and, moreover, is considered as a criterion of glo
reliability of an empirical potential.37

Two more experimental properties included in the da
base were the surface energygs and the equation of stat
~EOS!, i.e., the crystal energy as a function of the latti
parametera. We did not fit the potentials exactly to the e
ergies of low-index planes~100!, ~110!, and ~111! because
their experimental values are not very reliable. Instead,
only required thatgs(110).gs(100).gs(111), and that all
three energies be close to the surface energy of an ‘‘a
age’’ orientation@980 mJ/m2 for Al and 2280 mJ/m2 for Ni
~Refs. 32 and 38!#. The EOS was taken in the form of th
universal empirical EOS of Roseet al.,39 which uses only
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a0 , E0 , and the bulk modulusB5(c1112c12)/3 as physical
parameters.

2. Ab initio data

Ab initio structural energies were generated using
first-principles linearized augmented plane-wave~LAPW!
method,40,41 including all electrons and allowing for a gen
eral potential. The electronic exchange and correlation w
specified by the Perdew-Wang parametrization42 of the local-
spin-density~LSD! approximation within the Kohn-Sham
formulation of density-functional theory.43 Brillouin-zone in-
tegrations were performed using the ‘‘special’’k-point set of
Monkhorst and Pack,44 modified45 to sample correctly the
Brillouin zone of lower-symmetry lattices. To speed conve
gence, we follow Gillan46 and smear out the electronic e
genvalues with a Fermi distribution atT52 m Ry. We use a
rather large basis set andk-point mesh, so that energies a
converged to better than 0.5 m Ry/atom. Aluminum-only c
culations were carried out in spin-restricted mode, allow
no magnetic moment. Calculations involving Ni were carri
out using the spin-polarized LSD by artificially inducing
magnetic moment on the nickel ions in the starting cha
density and iterating to self-consistency. The comparison
the ab initio structural energies with those predicted by t
EAM potential was performed as follows.

First, because the two types of calculation use differ
reference levels of energy, only energy differences betw
different structures could be compared with one another
order to make this comparison more illustrative, we simp
shifted all ab initio energies by the amount ofE02Ẽ0 ,
where E0 is the experimental cohesive energy of the f
phase andẼ0 is theab initio energy per atom of an equilib
rium fcc crystal. Due to this shift theab initio calculations
predict the right cohesive energy of the fcc phase by defi
tion. If Ẽ(R) is the ab initio energy per atom of any othe
crystalline structure with a first-neighbor distanceR, then it
is the quantityE02Ẽ01Ẽ(R) that should be compared wit
the respective structural energyE(R) predicted by the EAM
potential:

E~R!;E02Ẽ01Ẽ~R!. ~3!

Second, because of the LSD approximation our LAP
calculations tend to underestimate the interatomic distan
in the crystal energy versusR dependence. This tendenc
manifests itself, in particular, in the underestimation of t
equilibrium lattice parameter. Thus, for fcc Al and Ni ou
LAPW calculations predicta053.988 and 3.428 Å, respec
tively ~using the approximation by Birch’s47 EOS!. Both val-
ues are on the lower side of the experimental lattice par
etersa054.050 and 3.520 Å, respectively. The ratioa of the
respective lattice parameters, or the equilibrium fir
neighbor distancesR05a0 /&, equalsa50.985 for Al and
0.974 for Ni.

This difference in interatomic distances makes one-to-
comparison ofab initio and EAM-predicted structural ener
gies, as suggested by Eq.~3!, essentially inaccurate. In par
ticular, for an equilibrium fcc crystal (R5R0) we have the
true cohesive energyE0 in the left-hand side of Eq.~3! ~be-
cause the EAM potential is fit exactly toE0 ; see below! and
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TABLE I. Properties of Al predicted by EAM potentials in com
parison with experimental andab initio data. *Fitted with high
weight.† Fitted with low weight.

Experiment
or ab initio

Present
work

Voter and Chen
~Ref. 9!

Lattice properties:
a0 (Å) * 4.05a 4.05 4.05
E0 (eV/atom)* 23.36b 23.36 23.36
B (1011 Pa)* 0.79c 0.79 0.79
c11 (1011 Pa)* 1.14c 1.14 1.07
c12 (1011 Pa)* 0.619c 0.616 0.652
c44 (1011 Pa)* 0.316c 0.316 0.322
Phonon frequencies:
nL(X) (THz)† 9.69d 9.31 8.55
nT(X) (THz)† 5.80d 5.98 5.20
nL(L) (THz) 9.69d 9.64 8.86
nT(L) (THz) 4.19d 4.30 3.70
nL(K) (THz) 7.59d 7.30 6.87
nT1

(K) (THz) 5.64d 5.42 4.80
nT2

(K) (THz) 8.65d 8.28 7.76

Other structures:
E~hcp! ~eV/atom!* 23.33e 23.33 23.34
E~bcc! ~eV/atom!* 23.25e 23.24 23.28
E~diamond! ~eV/atom!† 22.36e 22.33 22.06

Vacancy:

Ev
f (eV)* 0.68f 0.68 0.63

Ev
m (eV)* 0.65g 0.64 0.30

Interstitial:

EI
f (Oh) (eV) 2.79 2.10

EI
f ~@111#-dumbbell! ~eV! 3.00 2.51

EI
f ~@110#-dumbbell! ~eV! 2.91 2.24

EI
f ~@100#-dumbbell! ~eV! 2.59 2.06

Planar defects:
gSF~mJ/m2)* 166h, 120–144i 146 76
gus~mJ/m2) 168 93
gT ~mJ/m2) 75h 76 42
ggb~210! ~mJ/m2) 495 366
ggb~310! ~mJ/m2) 467 320
Surfaces:
gs(110) (mJ/m2)† 980j 1006 959
gs(100) (mJ/m2)† 980j 943 855
gs(111) (mJ/m2)† 980j 870 823

aReference 11.
bReference 12.
cReference 14.
dReference 33. The results in tabulated form can be found
Ref. 35.

eCalculated in this work assuming the same nearest-neighbor
tance as in the equilibrium fcc phase.

fReference 15.
gReference 31.
hReference 32.
iReferences 51, 52.
jFor average orientation, Ref. 32. Other estimates give 1140 m2

~Ref. 38!.
in

is-

TABLE II. Properties of Ni predicted by EAM potentials in
comparison with experimental andab initio data.*Fitted with high
weight. †Fitted with low weight.

Experiment
or ab initio

Present
work

Voter and Chen
~Ref. 9!

Lattice properties:
a0 (Å) * 3.52a 3.52 3.52
E0 (eV/atom)* 24.45b 24.45 24.45
B (1011 Pa)* 1.81c 1.81 1.81
c11 (1011 Pa)* 2.47c 2.47 2.44
c12 (1011 Pa)* 1.47c 1.48 1.49
c44 (1011 Pa)* 1.25c 1.25 1.26
Phonon frequencies:
nL(X) (THz)† 8.55d 8.71 10.03
nT(X) (THz)† 6.27d 6.38 6.68
nL(L) (THz) 8.88d 8.53 10.04
nT(L) (THz) 4.24d 4.31 4.37
nL(K) (THz) 7.30d 6.98 8.08
nT1

(K) (THz) 5.78d 5.68 6.04
nT2

(K) (THz) 7.93d 8.04 9.23

Other structures:
E~hcp! ~eV/atom!* 24.42e 24.43 24.44
E~bcc! ~eV/atom!* 24.30e 24.30 24.35
E~diamond! ~eV/atom!† 22.51e 22.50 22.61

Vacancy:
Ev

f (eV)* 1.60f 1.60 1.56

Ev
m (eV)* 1.30f 1.29 0.98

Interstitial:
EI

f (Oh) (eV) 5.86 4.91

EI
f ~@111#-dumbbell! ~eV! 5.23 5.37

EI
f ~@110#-dumbbell! ~eV! 5.80 5.03

EI
f ~@100#-dumbbell! ~eV! 4.91 4.64

Planar defects:
gSF~mJ/m2)* 125g 125 58
gus~mJ/m2) 366 225
gT ~mJ/m2) 43g 63 30
ggb~210! ~mJ/m2) 1572 1282
ggb~310! ~mJ/m2) 1469 1222

Surfaces:
gs(110) (mJ/m2)† 2280h 2049 1977
gs(100) (mJ/m2)† 2280h 1878 1754
gs(111) (mJ/m2)† 2280h 1629 1621

aReference 11.
bReference 13.
cReference 14.
dReference 34.
eCalculated in this work assuming the same nearest-neighbor
tance as in the equilibrium fcc phase.

fReference 16.
gReference 32.
hFor average orientation, see Refs. 32 and 38.
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the energy of a uniformly expanded crystal on the right-ha
side.~For example, for Ni the excess energy associated w
this expansion is about 0.04 eV/atom, which is larger th
the energy difference between the fcc and hcp phases! In
order to remove this inconsistency in a first approximati
we modified Eq.~3! by rescaling all distances in the righ
hand side by a factor ofa:

E~R!;E02Ẽ01Ẽ~aR!. ~4!

This relation becomes an identity when applied to the eq
librium fcc phase, and is expected to be more accurate
Eq. ~3! when applied to other structures andR values. Al-
though based on heuristic arguments rather than solid ph
cal grounds, this rescaling offers a first step in improving
one-to-one comparison scheme@Eq. ~3!# used in previous
studies.5–7

It should be mentioned that the rescaling of interatom
distances can influence some properties of the material
dicted byab initio calculations, in particular the elastic con
stants. It was therefore interesting to evaluate how the
scaling changes such properties in comparison with exp
mental data. In cases where this comparison was poss
the effect of the rescaling was either insignificant or fav
able. For example, the elastic constants for Al predicted
our LAPW calculations arec11512868, c1256465, and
c4453965 GPa. These values are systematically higher t
the experimental values listed in Table I. Because the ela
constants are proportional to the second spatial derivative
energy, the rescaling according to Eq.~4! results in multiply-
ing them by factora2. This slightly reduces the elastic con
stants ~c115124, c12562, and c44538 GPa!, and makes
them closer to the experimental values. Although the eff
is not very large, it can be taken as confirmation of the r
sonable character of Eq.~4!.

In accordance with Eq.~4!, we used two type of structura
energies for fitting to or testing against each other:~1! Ab
initio energies for a set of different structures with a fix
first-neighbor distanceR, which constitutes a certain fractio
f of the ab initio value of R0 . ~2! EAM-predicted energies
for the same set of structures with a fixedR equal to the same
fraction f of the experimental value ofR0 . Our ab initio data
set included the fcc, hcp, bcc, simple hexagonal~sh!, simple
cubic ~sc!, L12 ~fcc with one vacancy per simple cubic un
cell!, and diamond structures. The hexagonal structural e
gies were taken with the idealc/a ratio. For Al we also
included theb2W ~A15! structure, and for Ni this structur
was not calculated because of computational limitations.
energy of each structure was calculated with three value
R: 0.95R0 , R0 , and 1.1R0 .

B. Parametrization of potential functions

FunctionsV(r ) andr(r ) were represented as

V~r !5Vs~r !2Vs8~r c!c~r 2r c!, ~5!

r~r !5rs~r !2rs8~r c!c~r 2r c!. ~6!

Here r c is a common cutoff radius of both functions, an
c(x)5x/(11bnxn) is a cutoff function which serves to
guarantee that both the first and second derivatives ofV(r )
d
th
n
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and r(r ) tend to zero asr→r c . In this work we choseb
52 Å21 andn54, while r c was treated as a fitting param
eter. FunctionsVs(r ) andrs(r ) in Eqs.~5! and~6! are cubic
splines through given sets of points$r i ,Vi% ( i 51,...,N1) and
$r i ,r i% ( i 51, . . . ,N2) with natural boundary conditions
The last point in each set is, of course, (r c,0). The two
functionsV(r ) andr(r ) are thus parametrized by a total o
N11N221 parameters, namely,$Vi% ( i 51, . . . ,N121),
$r i% ( i 51, . . . ,N221), andr c .

Likewise, the embedding functionF( r̄) was represented
by a cubic spline through a set of points$r̄ i ,Fi% ( i
51, . . . ,N3). This set includes the points~0,0! and (r̄0 ,F0),
wherer̄0 is the density corresponding to the equilibrium f
crystal andF0[F( r̄0) is the equilibrium embedding energy
Given the functionsV(r ) andr(r ), the values ofr̄0 andF0 ,
as well as the derivativesF08 andF09 at equilibrium, can be
determined uniquely from the experimental values ofa0 ,
E0 , andB. Indeed, considering the crystal energy per ato
E, and introducing the summation over coordination she
within the cutoff sphere, Eqs.~1! and ~2! give

r̄05(
m

Nmrm , ~7!

F05E02 1
2 (

m
NmVm . ~8!

HereVm[V(Rm), rm[r(Rm), Rm is the radius of themth
coordination shell at equilibrium, andNm is the number of
atoms at themth coordination shell. Furthermore, by calc
lating the first and second derivatives ofE with respect to the
first-neighbor distance, we obtain, respectively,

1
2 (

m
NmVm8 Rm1F08(

m
Nmrm8 Rm50, ~9!

1
2 (

m
NmVm9 Rm

2 1F08(
m

Nmrm9 Rm
2

1F09S (
m

Nmrm8 RmD 2

59BV0 , ~10!

V0 being the equilibrium atomic volume,Vm8 , Vm9 , rm8 , and
rm9 the respective derivatives of the functions at coordinat
shells. Equation~9! expresses the condition of mechanic
equilibrium of the crystal, while Eq.~10! relates the second
derivative ofE to the bulk modulusB. We can thus deter-
mine F0 , F08 , andF09 from Eqs.~8!, ~9!, and ~10!, respec-
tively. Given these values, point (r̄0 ,F0) of the spline turns
out to be fixed, whileF08 and F09 uniquely determine the
boundary conditions of the spline. The number of fitting p
rameters associated with the embedding function is there
N322. Note that this scheme of parametrization provides
exact fit of the potential toa0 , E0 , andB.

The basic equations~1! and~2! are known to be invarian
under the transformations

r~r !→sr~r !, F~ r̄ !→F~ r̄/s! ~11!

and
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F~ r̄ !→F~ r̄ !2gr̄, V~r !→V~r !12gr~r !, ~12!

wheres and g are arbitrary constants. Of special interest
the choice ofg5F08 , called the effective pair scheme;48 in
this caseF( r̄) has a minimum atr̄0 , which greatly simpli-
fies all expressions for the elastic moduli and lattice fo
constants. In any case the invariance of the EAM mod
expressed by Eqs.~11! and~12!, reduces the number of fre
fitting parameters by two. This reduction can be imp
mented by fixing one node point in each of the spline fu
tionsVs(r ) andrs(r ) at some arbitrary values. Thus the tot
number of free fitting parameters in our parametrizat
scheme equalsNp5N11N21N325.

C. Fitting procedure

We used a computer code designed for fitting the pot
tial functions toa0 , E0 , B, c11, andc12; phonon frequencies
at the zone edge pointX; unrelaxed values ofEv

f , Ev
m , gSF,

gs(100), gs(110), andgs(111); an empirical EOS for any
given set of lattice parameters; and the energies of sev
alternative structures with the same first-neighbor distanc
that in the equilibrium fcc phase (R0). In this work the po-
tentials were fitted to theab initio energies of the hcp, bcc
and diamond structures using Eq.~4! for comparison; all
other structural energies were left for the testing stage.

As mentioned above, our parametrization scheme gua
tees an exact fit toa0 , E0 , andB. For all other properties we
minimized the sum of relative squared deviations from
desired values with a certain weight assigned to each p
erty. The minimization was performed using the simplex
gorithm of Nelder and Mead49 with many different starting
conditions. The weights were used as a tool to control
priority of certain properties over others according to t
reliability of the data points, the intended application of t
potential, and the intrinsic shortcomings of the EAM mod
Thus the highest priority was given to the elastic consta
Ev

f , Ev
m , andgSF and the energies of the hcp and bcc stru

tures. The phonon frequencies, the energy of the diam
structure and especially the surface energies were inclu
with the lowest weights. The diamond structure has the lo
est coordination number (z54) and shows the largest devia
tion from the ground-state fcc structure in comparison w
all other structures considered in this work. Although we d
find it necessary to sample this region of configuration spa
the diamond structure was assigned a low weight for t
reasons:~1! Equation~4! is unlikely to be reliable at such
extreme deviations from the fcc structure.~2! The occurrence
of such low coordinations is less probable in simulations
internal defects in metals.

The empirical EOS of Roseet al.39 was fitted at 24 lattice
parameters in the range from 0.8a0 to 1.4a0 , but again with
a relatively small weight. We did not expect this univers
EOS to be very accurate when applied to the specific me
in study, particularly far from equilibrium. However, the e
clusion of the empirical EOS from the data set resulted
drastic overfitting of the database, and the EOS predicted
the potential attained additional inflection points or even
cal minima. It was therefore helpful to keep the empiric
EOS in the database, even though with a small weight, s
to avoid the overfitting and suppress the unphysical featu
in the predicted EOS.
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Because the program operated only with unrelaxed qu
tities, the fitting to the relaxed values ofEv

f , Ev
m , andgSF

was performed by trial and error. In this procedure one ga
a good feeling for the relaxation energies after just a f
trials, and can achieve fairly good accuracy of fitting in
reasonable number of iterations.

The optimum number of fitting parameters for our da
base was established by alternating fitting and testing as
cussed in Sec. II. To implement this strategy we had to g
erate a large set of potentials with different numbers (Np) of
fitting parameters. Each potential was tested for the rms
viation between EAM-predicted andab initio values of the
structural energies other than those included in the fitt
database. While the rms deviation of fitting decreased w
Np , the rms deviation observed at the testing stage first
creased, then reached a saturation, and finally increased
potential corresponding approximately to the onset of
saturation was identified as the optimum potential.

IV. INTERATOMIC POTENTIALS FOR Al AND Ni

The optimum potentials were found to be those withN1
59, N257, andN356 ~thus Np517! for Al, and N159,
N257, andN355 ~thusNp516! for Ni. They are shown in
the effective pair format in Fig. 1. In this format both pote
tials have two local minima and are, in this respect, similar
the Al potential of Ercolessi and Adams.5 The cutoff radii are

FIG. 1. EAM potentials for Al~a! and Ni ~b! in the effective
pair format.
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TABLE III. Tabulated potential functions for Al and Ni. See Eq.~1! in the text for notation.

Al Ni Al Ni
r ~Å! V ~eV! r r ~Å! V ~eV! r r̄ F ~eV! r̄ F ~eV!

2.000 1.3467 0.0808 2.0000 0.7597 0.0671 0.000 0.0000 0.0000 0.0
2.1786 0.8365 0.0835 2.1585 0.1812 0.0727 0.05020.6192 0.050 20.2164
2.3573 0.4096 0.0852 2.3170 20.1391 0.0761 0.100 21.0792 0.100 20.5094
2.5359 0.1386 0.0847 2.4755 20.2214 0.0755 0.150 21.4100 0.150 20.8488
2.7145 0.0062 0.0808 2.6340 20.2153 0.0691 0.200 21.6414 0.200 21.2042
2.8932 20.0488 0.0724 2.7924 20.1766 0.0579 0.250 21.8033 0.250 21.5453
3.0718 20.0665 0.0602 2.9509 20.1291 0.0440 0.300 21.9255 0.300 21.8419
3.2504 20.0662 0.0463 3.1094 20.0909 0.0301 0.350 22.0330 0.350 22.0714
3.4291 20.0605 0.0328 3.2679 20.0643 0.0193 0.400 22.1313 0.400 22.2426
3.6077 20.0529 0.0220 3.4264 20.0423 0.0123 0.450 22.2209 0.450 22.3721
3.7863 20.0503 0.0145 3.5849 20.0252 0.0081 0.500 22.3024 0.500 22.4766
3.9650 20.0537 0.0096 3.7434 20.0139 0.0057 0.550 22.3764 0.550 22.5698
4.1436 20.0554 0.0066 3.9019 20.0089 0.0043 0.600 22.4434 0.600 22.6542
4.3222 20.0535 0.0048 4.0604 20.0084 0.0031 0.650 22.5038 0.650 22.7296
4.5009 20.0485 0.0036 4.2189 20.0078 0.0021 0.700 22.5574 0.700 22.7958
4.6795 20.0400 0.0029 4.3773 20.0043 0.0014 0.750 22.6039 0.750 22.8525
4.8581 20.0279 0.0025 4.5358 0.0006 0.0008 0.80022.6428 0.800 22.8995
5.0368 20.0149 0.0022 4.6943 0.0044 0.0004 0.85022.6737 0.850 22.9364
5.2154 20.0041 0.0018 4.8528 0.0052 0.0002 0.90022.6963 0.900 22.9631
5.3940 0.0025 0.0015 5.0113 0.0037 0.0001 0.95022.7101 0.950 22.9793
5.5727 0.0048 0.0011 5.1698 0.0022 0.0000 0.97522.7136 0.975 22.9834
5.7513 0.0034 0.0006 5.3283 0.0024 0.0000 1.00022.7148 1.000 22.9848
5.9299 0.0006 0.0001 5.4868 0.0020 0.0000 1.02522.7137 1.025 22.9840
6.1086 20.0001 0.0000 5.6453 0.0004 0.0000 1.05022.7108 1.050 22.9838
6.2872 0.0000 0.0000 5.8037 0.0000 0.0000 1.10022.7016 1.100 22.9990
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r c56.287 Å for Al and 5.804 Å for Ni. While the VC po-
tentials limit the interactions to three coordination shells, o
potentials include also the fourth, and the potential for
even includes the fifth, coordination shell. The effective p
interaction with these coordination shells is repulsive and
course, very weak. The obtained potential functions are ta
lated in Table III with 25 points per function. By applyin
some interpolation between the tabulated points the re
can reproduce the functions and use them for approxim
calculations. For more accurate calculations, like those
ported in this paper, the potentials were tabulated with 3
points per function and the intermediate values were de
mined by means of cubic-spline interpolation. These pot
tial files are available via the World Wide Web50 or via
e-mail at mishin@vt.edu.

In Tables I and II we list the data included in the fittin
databases in comparison with the values predicted by
potentials. It is observed that the experimental values of
equilibrium properties, elastic constants, vacancy format
and migration energies, and stacking fault energies are re
duced perfectly. The right values ofEv

f andEv
m are important

for the simulation of diffusion kinetics, radiation damag
and similar phenomena. While for Ni most of the existi
potentials predict reasonable values of bothEv

f andEv
m , for

Al the agreement is usually poorer, especially with respec
Ev

m . Taking the most recent Al potentials,5,25 for example,
the Ercolessi-Adams potential predictsEv

m50.61 eV, in good
agreement with the experimental data~0.65 eV!, while the
potential of Rohrer gives an underestimated value ofEv

m

50.481 eV.
For Al, the earlier experimental value ofgSF
r
i
r
f

u-

er
te
e-
0
r-
-

e
e

n,
ro-

,

to

5166 mJ/m2 ~Ref. 32! was later re-interpreted as about 12
mJ/m2 ~Refs. 51 and 52!; we thus chose to fitgSF to an
intermediate value of 146 mJ/m2. For both Al and Ni, the
experimentalgSF values are significantly higher than thos
predicted by the VC potentials. It should be mentioned t
some of the most recent potentials developed by other gro
also predict rather high values ofgSF, particularly 104
mJ/m2 ~Ref. 5! and 126 mJ/m2 ~Ref. 25! for Al.

To provide an additional confirmation that the highergSF
values represent the right trend, we have evaluatedgSF in Al
by ab initio calculations. We used a five-layer superc
which realized the stacking sequence

...BCABCuBCABCuBCABC...,

with stacking faults separated by just five~111! layers. The
unrelaxed stacking fault energy deduced from such calc
tions was 136616 mJ/m2, which is comparable with the
value of 157 mJ/m2 obtained for the same supercell using o
potential. In contrast, the VC potential predicts a relative
low gSF value of 87 mJ/m2 for this geometry.

An important success of our potentials is that they sh
good agreement with experimental phonon-dispersion cu
~Fig. 2!. Although only the phonon frequencies at pointX
were included in the fitting database, all other frequencies
also reproduced with fairly good accuracy. The somew
larger discrepancy observed for Al may have two source

~1! Al is more difficult for the EAM model than many
noble and transition metals. This may be due to the unusu
high electron density and thus extreme importance of ma
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body interactions, which are accounted for in the EA
model in an oversimplified manner.

~2! Some mismatch between the slopes of the experim
tal and calculated dispersion curves in the long-wavelen
regions„especially for the transverse branches in@qq0# di-
rection; see Fig. 2~a!… indicates that there is some disagre
ment between the elastic constants that can be deduced
the experimental phonon-dispersion curves, on the one h
and those obtained by ultrasonic measurements and us
our database, on the other hand.

The latter type of discrepancy has nothing in comm
with the intrinsic limitations of the EAM model. The A
potential of Ercolessi and Adams5 also gives a good agree
ment with the experimental phonon frequencies. For all ot
Ni and Al potentials that could be tested in this work, t
agreement was considerably poorer.

For self-interstitials, both our potentials and those
Voter and Chen predict the@100# dumbbell to be the lowest
energy configuration, in agreement with experimental dat53

The non-split self-interstitial configuration in the octahed
position (Oh) turns out to be less favorable than the@100#
dumbbell.

For large-angle grain boundaries our potentials pre
higher energies in comparison with the VC potentials. T
trend is illustrated in Tables I and II for the~111! twin and
S55 ~210! and ~310! @001# tilt boundaries. Another impor-
tant quantity listed in the tables is the unstable stacking f
energygus. The meaning of this quantity is illustrated in Fi
3, where we show@ 2̄11# sections of so-calledg surfaces54,55

of Al and Ni on the~111! plane. Ag surface represents a plo

FIG. 2. Comparison of phonon-dispersion curves for Al~a! and
Ni ~b! predicted by the present EAM potentials, with the expe
mental values measured by neutron diffraction at 80 K~Al ! and 298
K ~Ni! ~Ref. 33 for Al and Ref. 34 for Ni!. The phonon frequencie
at pointX were included in the fitting database with low weight.
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of the planar fault energyg as a function of the fault vecto
parallel to a certain crystalline plane. In our case, one hal
the fcc crystal above a~111! plane was shifted rigidly with
respect to the other half in the@ 2̄11# direction. The shift was
implemented by small steps, and after each step the en
of the system was minimized with respect to atomic d
placements normal to the~111! plane. Such displacement
included both relative rigid-body translations of the two ha
crystals and local atomic displacements in the@111# direc-
tion. The excess energyg associated with the planar fau
shows two local minima~Fig. 3!: one at the perfect lattice
position (g50) and the other at the shift vector1

6 @ 2̄11#
corresponding to the formation of an intrinsic stacking fa
(g5gSF). The local maximum between the two minima re
resents an unstable configuration which is referred to as
‘‘unstable stacking fault.’’ The unstable stacking fault e
ergy gus determines the activation barrier for dislocatio
nucleation, and plays an important role in plastic deform
tion and fracture of metals.56 The values ofgus predicted by
our potentials are notably higher than those predicted by
VC potentials, and are expected to be more realistic. Qu
tatively, however, the behavior ofg along the shift direction

@ 2̄11# is similar for all potentials considered here.
The surface energies predicted by our potentials came

to be higher than those predicted by the VC potentials. B
predictions, however, are generally on the lower side of

-

FIG. 3. Calculated sections of theg surface of Al~a! and Ni ~b!
on ~111! plane along@211# direction. The positions of the stable an
unstable stacking faults are indicated.
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experimental values38 and the results ofab initio calculations
~see, e.g., Ref. 57!. As an additional check of this trend, w
have evaluated here an unrelaxed value ofgs(111) for Al
using an eight-layer supercell consisting of five~111! atomic
layers and three~111! layers of vacuum. While the result o
LAPW calculations wasgs(111)5974 mJ/m2, our potential
and that of Voter and Chen gave 865 and 835 mJ/m2, respec-
tively.

Historically, EAM potentials have been much more su
cessful in accounting for the observed surface energies
surface relaxations and reconstructions than the previo
used pair potentials. Nevertheless, EAM potentials are w
known to underestimate surface energies consistently,
reasons probably being related to the large electron-den
gradients occurring at the surface. The recognition of t
fact was the reason why we assigned surface energies a
weight, and focused the attention on the properties of in
nal defects.

In Fig. 4 we show the equations of state of Al and N
calculated with our potentials, in comparison with the resu
of ab initio calculations and the empirical EOS of Ro
et al.39 The originalab initio energies were recalculated a
cording to Eq.~4!. For Al, the EAM-predicted EOS is very
close to that of Roseet al.,39 it is also consistent with theab
initio data, with some small deviations in the region of lar
expansions. For Ni, however, theab initio energy values

FIG. 4. Energy per atom of fcc Al~a! and fcc Ni ~b! as a
function of the lattice parameter. Theab initio values shown in this
plot were subject to transformation according to Eq.~4!. The em-
pirical EOS of Roseet al. ~Ref. 39! is shown for comparison.
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show a significant deviation from the empirical EOS towa
higher energies in the expansion region. A remarkable f
ture of our potential for Ni is that it does predict a ve
similar deviation in the same region, and is in much bet
agreement with theab initio values than the empirical EOS
This discrepancy is not very surprising, as the parameters
Rose’s EOS were derived mainly from experimental d
rather thanab initio calculations. Some results ofab initio
calculations were used by Roseet al. for comparison. While
these usually do follow a universal behavior, theab initio
values ofE0 , R0 , and B often differ from the respective
experimental data. We, therefore, need not expect ourab
initio data to follow Roseet al.’s universal EOS exactly.

In Table IV we compare theab initio structural energies
of Al and Ni with those predicted by our potentials. Th
table represents theab initio data set used at the testin
stage, except for the values marked by the asterisk. The
deviation obtained at the testing stage was 0.06 eV for
and 0.15 eV for Ni. These values correspond to the sat
tion limit discussed in Sec. IV; they measure the limits
accuracy achievable in predicting the structural energies
Al and Ni in the framework of the EAM model. It should b
emphasized, however, that these rms deviations were
tained by averaging over not only different structures b
also different first-neighbor distances. More importantly, t
accuracy in predicting the structural energies depends
matically on the departure of the structures from equilibriu

Indeed, Table IV shows that for the first-neighbor d
tance fixed atR0 the agreement between theab initio and
EAM-predicted energies is very good. In this case the pot
tials successfully represent the right dependence of the
ergy on the local coordination in a wide range of differe
environments. The agreement also remains reasonably g
under strong compression (0.95R0) and even stronger expan
sion (1.1R0), but the discrepancies increase drastically. T
variation of R0 is a very important test of the potential
because the local atomic configurations arising in the c
regions of crystalline defects may feature not only differe
‘‘abnormal’’ coordinations but also distorted interatomic di
tances. It is noted that for Ni the strain gives rise to a lar
discrepancy betweenab initio and EAM-predicted energie
than it does for Al. The latter feature is quite understandab
due to the higher bulk modulus of Ni, the same strain res
in a larger increase in all structural energies of Ni in co
parison with those of Al. Figure 5 illustrates all these fe
tures; it also demonstrates that the scatter of the data poin
basically random, i.e., there is no noticeable systematic
viation between the structural energies predicted by the
tentials and those obtained byab initio calculations.

Table V summarizes the equilibrium first-neighbor d
tances and cohesive energies calculated for different alte
tive crystalline structures of Al and Ni using our potentia
They were obtained by minimizing the crystal energies w
respect to a hydrostatic strain. The energies of noncu
structures were also minimized with respect to thec/a ratio.
It should be emphasized that such constrained energy m
mization does not guarantee that the structures obtained
truly stable or metastable. The calculation of the elastic c
stants of the structures reveals that some of them are el
cally unstable. In Table V, the number of nearest neighb
in each structure,z, is also indicated.~Since theA15 struc-
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TABLE IV. Energies per atom~in eV! of different crystalline structures of Al and Ni calculated by th
LAPW method and by the present EAM potentials. Each structural energy is given for three first-ne
distances: 0.95R0 , R0 , and 1.1R0 , whereR0 is the equilibrium first-neighbor distance in the fcc phase. T
energies marked by the asterisk were fitted during the development of the EAM potentials, all other
generated energies are predicted by the potentials.*Fit to theab initio energy as part of the development
the potential.

Element Structure

0.95R0 R0 1.1R0

ab initio EAM ab initio EAM ab initio EAM

Al fcc 23.25 23.26 23.36 23.36* 23.10 23.07
hcpa 23.21 23.24 23.33 23.33* 23.09 23.09
bcc 23.23 23.24 23.25 23.24* 22.93 22.89
sha 23.11 23.04 23.12 23.10 22.75 22.84
L12 23.13 23.05 23.11 23.02 22.70 22.66
A15 23.18 23.19 22.97 22.89 22.43 22.33
sc 22.98 22.96 22.90 22.92 22.48 22.58
diamond 22.52 22.44 22.36 22.33* 21.88 21.96

Ni fcc 24.23 24.28 24.45 24.45* 23.95 23.99
hcpa 23.20 23.29 24.42 24.43* 23.94 24.00
bcc 24.23 24.32 24.30 24.30* 23.61 23.74
sha 23.99 23.91 23.90 23.87 23.20 23.36
L12 23.84 23.76 23.75 23.78 23.01 23.28
sc 23.66 23.61 23.44 23.47 22.66 22.93
diamond 22.85 22.56 22.51 22.50* 21.73 21.99

aWith ideal c/a ratio.
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ture includes two nonequivalent types of site, we give
value ofz averaged over such sites.! As usual with the EAM
model, the structures with lower coordination tend to
more compact~smallerR0! and less stable~larger E0!. The
A15 structure, however, demonstrates an exception to
rule, in that it turns out to be anomalously stable and has
unusually smallR0 . For Al, theA15 structure is predicted to
have the next-lowest energy after the fcc phase, and to
almost as stable as the hcp phase. For Ni, theA15 structure is
slightly less stable than the hcp and bcc structures, but a
considerably more stable than all other structures listed in
Table V. For Al, we have additionally calculated the energ
of theA15 structure at ten different lattice parameters arou
the equilibrium by the LAPW method. The valuesR0
52.540 Å and E0523.28 eV/atom evaluated from thes
data are in good agreement with our EAM predictions, a
confirm the remarkable stability of this structure.

It is interesting to compare our cohesive energies of
ferent structures of Ni with the results of recent total-ene
tight-binding calculations.58 In Table VI we make this com-
parison for those structures for which tight-binding cohes
energies are available. In addition to the structures con
ered previously, Table VI includesA12 ~a-Mn!, A13 ~b-
Mn!, andD03 ~Fe3Al structure where Fe sites are occupi
by Ni atoms while Al sites are vacant!. For relatively simple
structures, i.e., structures other thanA12,A13, andA15, both
types of calculation are consistent with the usual trend
greater stability~i.e., smallerE0! of more compact structure
~i.e., those with a larger coordination numberz!, as well as
with the bond order concept~smaller energy per bond in
more compact structures!. There is good agreement betwe
our energies and the tight-binding energies, although the
ter show a tendency to some underbinding. In contrast,
a
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cohesive energies obtained with the VC potential show c
siderable deviations from both previous data sets, with a
ticeable tendency to overbinding. The ‘‘exotic’’ structure
A12, A13, andA15 fall out of this trend, in that they show
anomalously large stability. This behavior is consistent w
the known fact that the number of first-neighbor ‘‘bonds,’’z,
is not always an adequate measure of compactness and
bility of crystals, and that further neighbors should be a
taken into account.

As a further test of transferability of our potentials
other, particularly noncubic, environments it was interest
to study the energy behavior along strong deformation pa
In Fig. 6 we show the energies of Al and Ni under a volum
conserving tetragonal strain along the so-called Bain pat59

In the ab initio and EAM calculations the atomic volum
was fixed at the equilibrium valueV0 predicted for the fcc
phase byab initio and EAM calculations, respectively. Th
minimum at c/a51 reflects the stability of the fcc phase
while the maximum observed atc/a51/& corresponds to a
nonequilibrium bcc phase. Although our potentials and th
of Voter and Chen predict qualitatively the same behavior
the energy, our potentials demonstrate much better ag
ment withab initio results.

Figure 7 shows the calculated energy contour plot for
along the Bain path, including both hydrostatic and tetra
nal distortions. The bcc structure, relaxed with respect to
atomic volumeV, corresponds to the saddle point in th
plot. The elastic constants calculated for this structure sat
the instability criterionc11,c12. These observations indicat
that the bcc structure of Al is elastically unstable and,
allowed to evolve under the internal forces, it either retu
to the ground-state fcc structure or develops some fur
tetragonal distortion and turns to a metastable body-cent
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tetragonal~bct! structure. With reference to a bcc structu
the equilibriumc/a ratio of the bct structure equals 0.77
with a first-neighbor distanceR052.774 Å and a cohesive
energy E0523.30 eV/atom. Similar features are also o
served for Ni, with the bcc structure being unstable and
bct structure withR052.426 Å, E0524.34 eV/atom, and
c/a50.905 being metastable. In view of the good agreem
observed in Fig. 6, we can conclude that our predictions w
regard to the instability of the bcc structures and metasta
ity of the bct structures of Al and Ni are confirmed by theab
initio calculations. It is interesting to note that the equili
rium c/a ratios predicted for Al and Ni are close to and l
on the either side of the ideal ratioc/a5A2/3'0.816 corre-
sponding to anAa ~or, which is equivalent,A6! crystalline
structure with z510. The two known prototypes of thi
structure, a-Pa (c/a'0.82) and b-Hg (c/a'0.71), also
show deviations from the idealc/a ratio.

For Al, we also calculated the energy under a trigo

FIG. 5. Comparison ofab initio and EAM-predicted structura
energies of Al~a! and Ni ~b! for three fixed first-neighbor distance
~see Table IV!. The filled circles indicate the energies fitted as p
of the development of the potentials; all other energies are predi
by the potentials. The line of perfect agreement~dotted line! is
shown as a guide to the eye.
,

e

nt
h
il-

l

strain, again with the atomic volume fixed at the respect
equilibrium values for the fcc phase. In this case the prim
tive translation vectors of the structure are

a15~a,b,b!,

a25~b,a,b!,

a35~b,b,a!,

where the angleu between the vectors is given by

cosu5
~2a1b!b

a212b2 .

We thus obtain a fcc lattice whenu560°, a sc lattice when
u590°, and a bcc lattice whenu5109.471°. As in the pre-
vious case, the energies obtained with our potential are
very good quantitative agreement withab initio energies. In
contrast, the VC potential shows strong deviations from
ab initio data, especially for the angles around thesc struc-
ture. The fact that the energy attains a local maximum au
590° reflect the elastic shear instability of thesc structure
with c44,0. In the contour plot of the energy versusu and
V/V0 , which is not shown here, this structure correspon
to a saddle point.

Returning to Fig. 1, it is seen that the potentials sh
some wiggles, particularly in their tails. Moreover, the se
ond derivatives of the potential functions, although contin
ous, show rapid changes around some points. These fea
typically accompany cubic-spline fitting, and generally m
lead to unphysical anomalies of some properties. Althou
no anomalous behavior was ever found by the authors in
calculations reported here, the reader should be warned
further tests might, in principle, reveal some anomalies. T
latter seems to be almost improbable while dealing with m
lecular static simulations, but the risk increases as one g
to quasiharmonic calculations at high temperatures or
other methods that rely on smooth behavior of higher deri
tives.

t
ed

TABLE V. Cohesive energies and equilibrium first-neighb
distances in different crystalline structures of Al and Ni, as p
dicted by the present EAM potentials.

Structure z

Al Ni

R0 ~Å! E0 ~eV/atom! R0 ~Å! E0 ~eV/atom!

fcc 12 2.864 23.36 2.489 24.45
hcp 12 2.830a 23.33 2.467b 24.43
bcc 8 2.802 23.25 2.413 24.34
sh 8 2.852c 23.10 2.341d 23.94
L12 8 2.755 23.06 2.429 23.80
A15 7.5 2.573 23.35 2.256 24.30
sc 6 2.741 22.96 2.347 23.62
diamond 4 2.616 22.47 2.372 22.56

ac/a51.756.
bc/a51.617.
cc/a51.02.
dc/a50.97.
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TABLE VI. Cohesive energiesE0 ~in eV/atom! of different crystalline structures of Ni predicted b
total-energy tight-binding calculations~TB! ~Ref. 58!, by the present EAM potential~EAM!, and by the EAM
potential of Voter and Chen~VC! ~Ref. 9!.

Method

Structure

fcc hcp bcc L12 D03 sc diamond A12 A13 A15

TB 24.45 24.41 24.34a 23.79 23.67 23.42 22.51 24.35 24.39 24.25
EAM 24.45 24.43 24.34 23.80 23.74 23.62 22.56 24.31 24.34 24.30
VC 24.45 24.44 24.37 23.94 23.88 23.91 22.97 24.35 24.36 24.32

aFitted to reproduce the results ofab initio calculations.
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V. DISCUSSION AND SUMMARY

As we mentioned in Sec. I, interatomic potentials of
the only way to simulate large ensembles of atoms at pres
While the first atomistic simulations of this kind were bas
on pair potentials, by the late 1980s they were almost co
pletely replaced by many-body potentials of the EA
type.2,3 The successes and limitations of such potentials h
been recently discussed in Refs. 60 and 61. At present, t
are a great number of EAM-type interatomic potentials av
able for different metals, alloys, and intermetallic com

FIG. 6. Comparison ofab initio and EAM-predicted values o
energy along the Bain path between the fcc and bcc structures o
~a! and Ni ~b!. The calculations were performed with a fixed atom
volume corresponding to the equilibrium fcc phase.
r
nt.

-

e
re

l-

pounds. Although the quality of such potentials vari
widely, a typical potential reproduces some basic phys
properties of the material~such as the lattice parameter, c
hesive energy, elastic constants, and vacancy formation
ergy!, but often fails to reproduce many other, also importa
properties, such as the vacancy migration energy, the st
ing fault energy and so on. It should be clearly realized t
the drawbacks of EAM potentials have two different sourc

~1! The intrinsic shortcomings of the EAM model. Al
though very successful in accounting for the nature of m
tallic bonding, this simple model is based on certain appro
mations, which make it insufficient in many situations.60,61

~2! The drawbacks of the traditional procedures for dev
oping EAM potentials. Many such potentials are based o
small database of experimental properties and/or a sm
number of fitting parameters, not to mention the failure
use modern algorithms for multidimensional parametri
tion.

For the second reason, many EAM potentials are less
curate than they could be within the intrinsic limitations
the EAM model. The abundance of such potentials and th
use in many atomistic simulations has resulted in some
derappreciation of the EAM as such, and the appearanc
the view that EAM potentials are only good for studyin
trends, but not for producing quantitative data.

Al

FIG. 7. The energy contours along the Bain path, calcula
using our EAM potential for Al. The contours are shown in eve
0.012 eV/atom. The saddle point~* ! corresponds to the bcc struc
ture, while the local minima~d! correspond to the stable fcc an
metastable bct structures.
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The chief objective of this paper was to demonstrate t
one can increase the accuracy and reliability of EAM pot
tials dramatically by improving the procedures mentioned
point ~2! above. In fact, due to such improvements one c
eliminate almost all sources or error other than those dicta
by the intrinsic limitations of the model. It then turns out th
EAM potentials, at least for monoatomic metals, can rep
duce many essential properties at a fairly good quantita
level. Moreover, within the region of configuration spa
sampled by the fitting database, EAM potentials are capa
of predicting the energies of different configurations with
accuracy comparable with that of tight-binding or evenab
initio calculations. The importance of such potentials can
be overestimated. When an EAM potential is used in ato
istic simulations, the computation time does not depend
the quality of the potential or the procedures by which it w
generated. It therefore makes perfect sense to apply m
elaborate fitting schemes and develop potentials that re
sent physical properties of the material more accurately
over a larger range of configurations.

The development of such potentials requires the use
large data set including both experimental andab initio data.
Along with the traditional experimental quantities, the da
set should include the vacancy migration energy, the sta
ing fault energy, a few short-wavelength phonon frequenc
and/or any other quantities for which reliable experimen
information is available. It is suggested that theab initio
information be included in the form of the energies of d
ferent alternative crystalline structures, since such ener
are very illustrative and can be conveniently generated u
the supercell approach. The mismatch between theab initio
and experimental lattice periods can be taken care of by
scaling interatomic distances according to Eq.~4!, but better
approximations can also be developed in the future. T
structural energies improve the transferability of the poten
by sampling a large region of configuration space that is
interest in atomistic simulations but is not accessible by
perimental measurements.

Another important improvement is the strategy of para
etrization based on the alternation of fitting and test
steps.6,10 The potential can be parametrized by fitting to t
experimental data and part of the structural energies, w
the other structural energies can be used for testing the
tential. The rms deviation observed at the testing stage is
most meaningful criterion of quality of the potential. Th
optimum number of fitting parameters (Np) for the chosen
database can be found by starting with a smallNp and adding
more parameters until the rms deviation of testing stops
decrease and reaches a saturation. The onset of the satu
indicates that the accuracy of the potential has approac
the upper limit determined by the physical shortcomings
the EAM model. The potential corresponding to the onse
saturation is identified as the best potential for the giv
database.

As a demonstration of this approach we have construc
EAM potentials for Al and Ni. Theab initio part of the
database included the energies of 6–7 different crystal
structures, each with three different nearest-neighbor
tances, generated by LAPW calculations. The hcp, bcc,
diamond structural energies with the nearest-neighbor
tance of the equilibrium fcc phase were included in the
t
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ting database, while all other structural energies were u
for testing the potentials. The potentials thus obtained rep
sent the experimental values of the equilibrium and def
properties of Al and Ni with very good accuracy~Tables I
and II!, and even correctly reproduce the experimental p
non dispersion curves~Fig. 2!. Moreover, the potentials als
reproduce the right energies of different crystalline structu
in a wide range of coordination numbers~Table III, Fig. 5!.
For Ni, our potential predicts almost the same cohesive
ergies of different crystalline structures as the recent to
energy tight-binding calculations58 ~Table VI!. The energy
behavior under tetragonal and trigonal strains, obtained
ab initio calculations, is also nicely reproduced by our p
tentials~Figs. 6 and 8!. All these observations can be take
as a proof of good transferability of our potentials to vario
local environments encountered in atomistic simulations
lattice defects. Overall, it can be concluded that the pot
tials show excellent performance and predictive capacity
quantitativelevel.

Different weights put on different properties take into a
count the strong and weak sides of the EAM,60,61 and make
our fitting scheme more flexible in constructing the best p
tential for a chosen spectrum of applications. The low
weights are assigned to properties for which the experim
tal data are less reliable and/or which are represented b
EAM model less accurately due to its ‘‘intrinsic shortcom
ings.’’ In developing our potentials we gave a priority
bulk properties in contrast to surface energies. Because
EAM model is less accurate for the calculation of surfa
energies than for bulk properties, it is not very clear whet
one potential can perform equally well for both. While th
question calls for further studies, we chose here to const
our potentials with an emphasis on bulk properties and in
nal defects. In particular, since the potentials accurately
produce the vacancy formation and migration energies, t
can be good for simulations of diffusion phenomena. Th
also reproduce the experimental values of intrinsic stack

FIG. 8. Comparison ofab initio and EAM-predicted values o
the energy per atom of Al under a trigonal strain. The trigon
anglesu corresponding to the fcc, bcc, and sc structures are in
cated. The calculation was performed with a fixed atomic volu
corresponding to the equilibrium fcc phase.



e
la
e
d
ie
io
ar

g,
.

e-
Sci-

3406 PRB 59MISHIN, FARKAS, MEHL, AND PAPACONSTANTOPOULOS
fault energies and predict realistic unstable stacking fault
ergies, meaning that they are suitable for simulations of p
tic deformation and fracture of Al and Ni. A prospectiv
research topic is to study the behavior of dislocations un
applied shear stresses, particularly to calculate the Pe
stress, using these potentials. Other interesting applicat
of these potentials include simulations of grain bound
, J
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structure, intergranular fracture, grain boundary slidin
grain boundary diffusion, and radiation damage of metals
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