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Koster-Slater model for the interface-state problem

M. Di Ventra,* C. Berthod, and N. Binggeli
Institut de Physique Applique´e, Ecole Polytechnique Fe´dérale de Lausanne, CH-1015 Lausanne, Switzerland

~Received 1 May 2000!

A Koster-Slater approach to the problem of localized states at semiconductor interfaces has been developed.
It allows us to relate the existence and/or the energy position of interface states to some essential bulk features
of the constituent materials and some interface-bonding parameters. The condition for the existence of local-
ized states and the relevance of the model will be discussed comparing the predictions entailed by the latter
with the results ofab initio calculations on the Ge/GaAs~110! interface.
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The study of interface states of a given heterostructure
long been recognized as a key element for the improvem
of optoelectronic devices. Depending on their specific nat
i.e., symmetry and binding energy, these states can ac
recombination centers and contribute to the degradation
device performance. Theoretical investigation of heteroju
tion interface states began with the pioneering work of B
aff et al.1 on the~100! GaAs/Ge interface. Since then, seve
different interfaces have been studied, with special emph
on the interface-state problem.1–4 Different key aspects o
this problem, namely the importance of the local interfac
atomic structure and that of the band structures of the b
constituents in determining the interface-state spectrum, h
been highlighted by full-fledged atomic-scale computatio
on one hand and Green’s function formulations on the ot
hand.2–5 To our knowledge, however, a complete und
standing of the origin of interface states and the condition
their existence is still missing.

The available calculations have shown that for a giv
interface, intrinsic localized states are generally found o
along specific lines and/or at specific points of the Brillou
zone~BZ!.1–4 They may appear above or below the contin
ous energy spectrum of a given set of projected bands o
two bulk semiconductors depending on the strength and
of some short-range potentials at the interface.2,3 On the
other hand, the physical properties of a given interface s
must depend on the electronic structure of the bulk cons
ents. In fact, by analogy with the problem of deep def
levels in a bulk semiconductor,6 the existence of interface
states should strongly depend on the dispersion or densi
states ~DOS! of the electronic bands of the two bul
materials.4,5 Finally, another important parameter which
also expected to affect the energy position of interface st
is the energy band lineup between the two bulk solids. P
dicting the existence and the position of interface states f
the above quantities could help designing better devices
provide a deeper understanding of the mechanisms
interface-state formation.

In this paper we derive a simple analytic criterion for t
existence of interface states, based on which localized s
and resonances can be predicted from the above quant
Our starting point relies on the physical assumption that
interface can be regarded as a perturbation of the bon
structures of two different bulk materials.4 Also, since the
perturbation involved is short range, we may formulate
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problem in terms of few perturbed layers and derive a mo
similar to the one Koster and Slater introduced for po
defects in semiconductors.6 We plot in Fig. 1 a scheme of the
interface between two semiconductors~lattice matched! A
andB.7 We construct the interface as a combination of tw
semi-infiniteA andB crystals, and assume that only the ‘‘in
terface layers’’ of each semiconductor~indicated asR0

A and
R0

B in Fig. 1! are perturbed by the interface formation. Mor
over, to simplify as much as possible the equations, we r
in the following to one band«A(B)(k) for each bulk semi-
conductor. The generalization to the multiband case
straightforward, and will be discussed later. The interfa
Hamiltonian then reads~in atomic units!:

H52
¹2

2
1(

a
@Ua~r !1Dua

0~r !#1Fu~z!2
1

2GDV, ~1!

wherea5A, B. The termsUa are the crystal potentials o
the two semiconductors in thehalf spaceonly, corresponding
to the semi-infinite bulk regions of the interface, and can
expressed as a sum of atomic-layer potentialsua(Rj

a ,r ) in
each bulk region. The termsDua

0(r ) are the perturbations to
the bulk potentials induced by the junction at the interfa
sites R0

a ~see Fig. 1!. These terms take into account th
charge transfer at the interface, i.e., the variations of the
terface potential with respect to a superposition of bulk cr
tal potentials.u(z) is the step function which indicates th
change in the electrostatic potentialDV at the interface. The

FIG. 1. Schematic plot of the interface between a semicondu
A and a semiconductorB ~in this case the Ge/GaAs~110! interface!.
Ri

a indicate the positions of the atomic layers in each material.
R10 622 ©2000 The American Physical Society
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potentialsUa , ua , and Dua are measured with respect
the average electrostatic potential in the corresponding c
tal a.

The Bloch functions of each bulk materialck
a(r ) satisfy

the equationHack
a(r )5«a(k)ck

a(r ), with

Ha52
¹2

2
1Ua~r !1(

j 50

`

ua~2Rj
a ,r !. ~2!

The wave vectorsk may be written ask5( k̄,kz), where k̄
belongs to the two-dimensional BZ~2DBZ! of the interface
andkz is along the heterojunction growth direction. We a
sume standard periodic boundary conditions overN layers
for the bulk semiconductorsA andB, so thatkz5ki , with i
50, . . . ,N21.

From the Bloch functions of each bulk we can build a
of isolated Wannier functions centered on each layer
localized over a distance of the order of the lattice spacind
between two nearest-neighbor planes:8

wj
a~ k̄,r !5

1

AN
(
kz

e2 ikR j
a
ck

a~r !uS Nd

2
2uz2zj

au D , ~3!

whereRj
a5(0, 0,zj

a) indicate the positions of the atomic lay
ers in the two bulk regions. We then choose as a basis
interface states with a givenk̄ the set

fa~k,r !5
1

AN
(
j 50

N21

eikR j
a
wj

a~ k̄,r !. ~4!

A general interface state can thus be written as

C~ k̄,r !5(
kz

cA~k!fA~k,r !1(
kz

cB~k!fB~k,r !. ~5!

The wave-vectork̄ is a good quantum number, since th
system retains its periodicity in planes parallel to the int
face. In the following, we thus drop it from the notation, a
a given k̄ will be understood. Thekz and j summations in
Eqs.~3!–~5! refer to thekz values and the layer positions o
each bulk only, and we assume that the Wannier function
bulksA andB are orthogonal, i.e.,̂wi

Auwj
B&50. Orthogonal-

ity of the Wannier functions of the two different materia
implies:

^fa~kz!ufb~kz8!&5dkzkz8
dab . ~6!

The solution of the interface problemHC5EC then re-
duces to the evaluation of the sets of equations

^fa~kz!uH2EuC&50 ~7!

for a5A, B. Taking into account the orthogonality conditio
~6! and including up to second-nearest-neighbor interacti
and two-center integrals9 in the evaluation of the matrix el
ements ofH onto the basis set~3!, it is straightforward to
show that
s-

-

t
d

or

-

of

s

^fA~kz!uH2EufA~kz8!&

5@«A~k!2E2DV/2#dkzkz8
1

VA

N
e2 i (kz2kz8)z0

A

2
D«A

N
@ei (kz1kz8)z0

A
1e2 i (kz1kz8)z0

A
#, ~8!

where

VA5^w0
AuuB~2R0

A!2uA~2R0
A!1DuA

0 uw0
A& ~9!

and

D«A5^w0
AuHAuw1

A&. ~10!

The equivalent terms for theB states can be obtained from
Eqs. ~8!–~10! by interchangingA with B and 2DV/2 with
1DV/2. The first term on the right-hand side of Eq.~8! is
diagonal, and contains the band energy«a(k) measured with
respect to the average electrostatic potential in bulka. The
second term expresses the expectation value of the differ
of interface-layer potentialsuB(2R0

A ,r ) anduA(2R0
A ,r ) of

the two materials over Wannier functions located on o
one side of the interface. The last term contains the ma
element of the Hamiltonian of the bulk crystalHa between
Wannier functions located on neighboring sites.

The interbulk matrix elements read:

^fA~kz!uH2EufB~kz8!&5
1

N
~VAB1D«AB!e2 i (kz2kz8)z0

A
,

~11!

where

VAB5
1

2
^w0

AuuA~1R0
A!2uB~1R0

A!uw0
B&

1
1

2
^w0

AuuB~2R0
A!2uA~2R0

A!uw0
B& ~12!

and

D«AB5^w0
Au 1

2 ~HA1HB!uw0
B&. ~13!

These terms couple the two interface layers in the hete
junction. The same notation as for the intrabulk terms h
been used, making clear the meaning of each term in E
~11!–~13!.

Multiplying Eq. ~7! by eikzz0
a
/@E2«a(k)7DV/2# and

summing overkz , we finally obtain the following condition
for the existence of localized states:

~12VAG0
A1D«AS0

A!~12VBG0
B1D«BS0

B!

2~VAB1D«AB!2G0
AG0

B50, ~14!

where

G0
A~ k̄, E!5

1

N (
kz

1

E2«A~k!2DV/2

5E D0
A~ k̄,«!d«

E2«2DV/2
~15!
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and

S0
A~ k̄, E!5

1

N (
kz

eikzd

E2«A~k!2DV/2
, ~16!

and G0
B and S0

B are obtained by replacingA with B and
2DV/2 with 1DV/2 in Eqs.~15! and ~16!. G0

a is the usual
~retarded! Green’s function of bulka,10 and D0

a the corre-
sponding DOS per unit cell integrated alongkz . We note
that in the above expressionsDV may be replaced, e.g., b
the A/B valence-band offset when the band energ
«A(B)(k) are measured relative to their respectiveA(B)
valence-band edge andE is measured with respect to th
average between theA andB valence-band edges in the he
erojunction.

Equation ~14! can be further simplified if only linea
terms in the expansion of the bulk bands are retained, i.e.
termsD«aS0

a}O(D«a
2) andD«AB

2 are neglected. The equa
tion for the existence of interface states then reads:

12VAG0
A2VBG0

B2@~VAB12D«AB!VAB2VAVB#G0
AG0

B50.

~17!

The energyE is imaginary inside the bands and real oth
wise. It is straightforward to generalize the condition for t
existence of interface states to the case of many bands
each semiconductor.11 In this case a more complex matr
equation states the multiband interactions which govern
existence of interface states. We note, however, that in
special cases that will be addressed below, where the m
VAB'0 ~nearly isolateds-band! or whenVA'0, VB'0 and
G0

A , G0
B are multiples of the unity matrix (p-valence bands

of cubic semiconductor at the X,̄ M̄, and X̄8 2DBZ points of
the~110! interface!, the general matrix equation is equivale
to a set of one-dimensional equations of the form~17!. We
will therefore concentrate on Eq.~17! in what follows.

Condition~17! reduces to the usual Koster-Slater relatio6

12VG050 for point defects when only one semiconduc
and on-site interactions are retained,V being the potential
induced by the point-defect perturbation in the host
scribed byG0. Given the linear relationship between the on
particle Green’s function and the DOS, we find from E
~17! that, for a given set of parameters (VA , VB , VAB

2

12D«ABVAB and DV), the existence of bound states a
resonances depends essentially on:~i! the strength of the
DOS of each band with respect to the corresponding on-
parameterVA(B)

21 , and~ii ! the amplitude of theproductof the
DOS’s of the two bulk bands with respect to the interfa
coupling parameter (VAB

2 12D«ABVAB)21. Interface states
may be pushed above and/or below the bulk bands dep
ing not only on the strength of the on-site termsVA andVB at
the interface, but also on therelative strengthof these terms
and the potential termVAB due to the different chemica
bonding at the interface. In fact, whenVA5VB50, VAB will
push statesboth aboveand below the bulk bands. It should
be noted, however, that when the band offset is not van
ing, even in a one-dimensional model, the on-site pertur
tions induced by the interface may induce resonances ra
than bound states. This is in contrast to the case of p
defects, or isovalent layer impurities, where a state is alw
bound in one dimension.12
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With the above considerations in mind, we can now ide
tify the regions and points of the 2DBZ, for a given interfac
where interface states are more likely to appear. We h
chosen as a prototypical example the Ge/GaAs~110! inter-
face studied by Pickettet al.2 In particular, we refer to Fig. 1
of Ref. 2 for the notations and results on the interface sta
In view of the relation between Green’s function and DO
we elected to directly investigate the DOS features of
bulk materials. We therefore looked at the valence DOS
both Ge and GaAs bulks for a given point of the~110! 2DBZ
integrated along a line ink-space parallel to the growth di
rection. The result is plotted in Fig. 2 for the four high
symmetry points of the~110! 2DBZ. We also indicated in
Fig. 2 the energy position of the localized and resonant st

FIG. 2. Wave-vector-resolved density of states~DOS! of bulk
Ge and GaAs for the four high-symmetry points of the~110! 2DBZ,
and integrated along a line ink-space parallel to the@110# crystal-
lographic direction. The two DOS are aligned using the calcula
valence-band offset of 0.52 eV at the~110! Ge/GaAs interface. The
volume of normalization is the GaAs unit-cell volume. The vertic
lines indicate the energy position of the interface states, and
notation is the same as in Ref. 2. The degeneracies of the bulk
~GaAs! valence-band DOS features, given in order of increas

energy, are: 2,2~1,1,2! at X̄ and M̄, and 1,1,2~1,1,2! at X̄8.
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we found for the specific interface. The bulk DOS’s ha
been calculated using tetragonal supercells of four atoms
ented along the~110! direction. For each point in the 2DBZ
we sampled the~110! direction with 101k-points distributed
on a uniform grid. A Gaussian broadening of 0.1 eV h
been used for the DOS’s plot. The zero of energy has b
fixed at the top of the Ge valence band.13

The bottom edge of thes-band of GaAs is well separate
from the Ge bands. Thus, the As-relateds-interface-state (S1
state in Ref. 2! clearly originates from the bottom-edge stat
of GaAs, and is induced by an on-site potential. TheVAs
on-site-potential component is attractive due to the attrac
ionic potential of the nearest-neighbor Ge atoms, and is
sponsible for the existence of this state. Due to the ene
separation of the GaAs and Ge band edges, and also tos
symmetry of the corresponding bottom-edge bulk states,
interaction termVAB does not contribute significantly in Eq
~17!. This is also confirmed by the spherical character of
S1 states. Moving upwards in energy, we see that the S2 state
derives mainly from the X̄and M̄ edges at about27 eV of
GaAs. The on-site matrix elementVGa is repulsive in this
energy region: the nearest Ge atoms produce a repulsive
tential on the Wannier function at the Ga sites. For the in
action termVAB , the same considerations as for the Ass

states are valid. We note that at theḠ and X̄8 points, no
comparable DOS features are detected at similar energi

At X̄ 8 two pronounced and strongly overlapping DO
features of Ge and GaAs are visible, with band edges
about22.5 eV and21.5 eV. The lower edges contribute
the B1 and P1 states, and the upper ones to the P2 and B2
states. However, only the B1 and B2 states can be followed
along the 2DBZ up to the X¯ point. The strong overlap nea
the band edges and thep character of the wave functions a

*Present address: Department of Physics, Virginia Polytechnic
stitute and State University, Blacksburg, Virginia, 24061.
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these edges make the contribution of theVAB term important,
as evidenced by the mixed Ge-GaAs character of the res
ing interface states. These states are localized by the at
tive ionic potential in the Ge2As bonding region and the

repulsive potential in the Ge2Ga bonding region. At theḠ
point no bound state is present in the fundamental gap. T
is due to the attractive character of the on-site matrix e
mentsVAs andVGe associated with the As-p and Ge-p Wan-
nier functions of the top of the GaAs and Ge valence ban
and to the finite value of the valence-band offset. The c
pling termVAB has thus not enough strength to push a st
in the gap. Similar considerations apply to other interfac
studied in the literature,2–4 thus giving us confidence in th
validity of the approach. We stress that the differe
interface-bonding parameters, defined by Eqs.~9!, ~12!, and
~13!, can be obtained from relatively simple models, such
tight-binding approaches.4 With the above parameters, th
existence of localized states at a given interface can the
inferred from Eq.~17! without the need to perform a full
fledged interface-state calculation.

We finally note that if some intermixing is present at t
interface and involves only the first layer of atoms of ea
semiconductor, Eq.~17! is still valid if the different param-
eters are evaluated as weighted averages of those of the
semiconductors. If the intermixing extends over the seco
layer of the interface~say, e.g., diffusion of atomsA in ma-
terial B) then the effect of materialA on the states localized
in semiconductorB may be neglected to first order, and E
~17! reduces to the usual Koster-Slater relation. Indeed,
local density of states of the bulk is generally recovered a
2–3 layers from the interface, and the formation of interfa
states, to a good approximation, may be inferred from
analysis of impurity states in the corresponding bulk.
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whereVa ,VAB ,D«AB , andG0
a are the matrices whose elemen

are obtained from Eqs.~9!, ~12!, ~13!, and~15!, respectively, by
introducing the band indexes (n, n8) of the Wannier functions,
or the indexesn of the energy bands~for G0

a , diagonal matrix!.
12We refer here to the case of local potentials.
13We used an energy cutoff of 20 Ry, and Troullier-Martin
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This, however, does not change the physics and the trends o
results.




