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Macroscopic properties of carbon nanotubes from molecular-mechanics simulations
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Results of molecular-mechanics simulations of axial and torsional deformations of a single wall carbon
nanotube are used to find Young’s modulus, the shear modulus, and the wall thickness of an equivalent
continuum tube made of a linear elastic isotropic material. These values are used to compare the response of
the continuum tube in bending and buckling with that obtained from the molecular mechanics simulations. It
is found that the strain energy of bending deformation computed from the Euler-Bernoulli beam theory
matches well with that obtained from the molecular-mechanics simulations. The molecular-mechanics predic-
tions of the critical strains for axial buckling and shell wall buckling do not match well with those derived from
the Euler buckling formula and the Donnell shell theory.
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I. INTRODUCTION

Since their discovery in 1991, both single wall and m
tiwall carbon nanotubes have become an active area o
search. This is partly due to their having an extremely h
specific strength and stiffness. These properties and thei
lindrical shape allow for their potential applications in su
diverse fields as fibrous reinforcement, atomic level pipi
and nanostructures. The structural applications of car
nanotubes require that we ascertain their macroscopic p
erties. Previous experimental and theoretical studies h
tacitly presumed that they can be modeled as linear ela
and isotropic. Tables I and II summarize, respectively, val
of Young’s modulusE computed by various investigator
from molecular mechanics~MM ! simulations and experi
mental data. Except for the work of Yakobsonet al.,1

Halicioglu2 and Zhouet al.,3 they all assume a wall thicknes
of 3.4 Å, which is the separation distance between adjac
walls in a multiwall nanotube~MWNT!. The scatter in the
experimental data is partly due to the poor resolution at th
extremely small scales. There is less scatter in the value
E computed from the MM simulations;E so found is close to
0163-1829/2004/69~23!/235406~10!/$22.50 69 2354
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1 TPa. Yakobsonet al.1 state that thep-bond length 0.66 Å
is a better choice for the wall thickness because it more pr
erly models the wall buckling behavior of nanotubes.

When designing composites with carbon nanotubes as
inforcements, it is imperative that one replace a nanotube
an equivalent continuum structure such as a fiber or a hol
cylindrical tube. The response of the continuum structure
different deformations should closely mimic that of the ca
bon nanotube. Here we find a cylindrical tube made o
linear elastic isotropic material whose response to mech
cal deformations is equivalent to that of a single wall carb
nanotube~SWNT!; a schematic sketch is given in Fig. 1. Th
deformations of a SWNT are analyzed by MM simulation
and those of the cylindrical tube by commonly used en
neering theories.

Two MM potentials, MM3 ~Ref. 4! and the
Tersoff-Brenner,5 are used to simulate deformations of
SWNT in tension, compression, torsion, bending, and bu
ling. Results from the tension and torsion tests are use
ascertain whetherE and the shear modulusG vary with the
strain. Values ofE andG at zero strain in terms of the wa
thicknesst, changes in the diameter of a SWNT, and t
TABLE I. Values of Young’s modulus computed from experimental data.

Modulus Deviation
Author~s! Year ~TPa! ~TPa! Test method Tube

Treacyet al. ~Ref. 6! 1996 1.8 1.4 Thermal vibrations MWNT
Wong et al. ~Ref. 7! 1997 1.28 0.6 Cantilever bending MWNT
Krishnanet al. ~Ref. 8! 1998 1.3 0.5 Thermal vibrations SWNT
Salvetatet al. ~Ref. 9! 1999 0.81 0.41 3 point bending BUNDLES
Salvetatet al. ~Ref. 9! 1999 1.28 0.59 3 point bending MWNT
Tombleret al. ~Ref. 10! 2000 1.2 naa 3 point bending SWNT
Cooper and Young~Ref. 11! 2000 0.7822.34 na Raman spectroscopy SWNT
Yu et al. ~Ref. 12! 2000 0.2720.95 na Tension MWNT
Lourie and Wagner~Ref. 13! 1998 2.823.6 na Raman spectroscopy SWNT
Lourie and Wagner~Ref. 13! 1998 1.722.4 na Raman spectroscopy MWNT
Yu et al. ~Ref. 14! 2000 0.3221.47 na Tension Ropes

aNot available.
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TABLE II. Values of Young’s modulus predicted from atomistic simulations.

Modulus Thickness Poisson’s
Author~s! Year ~TPa! ~Å! ratio n Potential / Method Trend

Robertsonet al. ~Ref. 15! 1992 1.06 3.4 Brenner & LDFa 1/r 2, helicity
Yakobsonet al. ~Ref. 1! 1995 5.5 0.66 Brenner na
Yakobsonet al. ~Ref. 1! 1996 1.07 3.4 0.19 Brenner
Cornwell and Wille~Ref. 16! 1997 1 3.4 Brenner 1/r 2

Halicioglu ~Ref. 2! 1997 0.5 6.8 Brenner Radial
Lu ~MWNT! ~Ref. 17! 1997 1.11 3.4 Universal force field Number of wal
Lu ~SWNT! ~Ref. 17! 1997 0.97 3.4 Universal Force field None
Hernandezet al. ~Ref. 18! 1998 1.24a 3.4 Density-functional theorya None
Yao and Lordi~Ref. 19! 1998 1 3.4 Universal force field 1/r 2

Ozaki et al. ~Ref. 20! 2000 0.98 3.4 Tight binding O~N! None
Van Lier et al. ~Ref. 21! 2000 1.09 3.4 0.11 Hartree-Focka Helicity ~small!
Zhou et al. ~Ref. 3! 2000 5.1 0.71 Electronic band theory 1/r 2

Belytschkoet al. ~Ref. 22! 2002 0.94 3.4 0.29 Modified Morse

aQuantum-mechanical method.
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relation E52(11n)G, for an isotropic linear elastic mate
rial, are used to findE, G, t, and Poisson’s ration. For
simulations involving the bending and the buckling of
SWNT, these values ofE, G, n, andt are employed to com
pare the response predicted from the MM simulations w
that given by the commonly used engineering approache

The paper is organized as follows. Section II describ
briefly the potentials used for MM simulations. Techniqu
employed in virtual experiments used to analyze tensile,
sional, bending, and buckling deformations of a SWNT
described in Sec. III. Section IV gives results of MM sim
lations of tensile and torsional deformations and also l
expressions for Young’s modulus and the shear modulus.
wall thickness and the elastic moduli of the cylindrical co
tinuum tube are evaluated in Sec. V; these values are s
that the mechanical response of the continuum tube in ten
and torsional deformations is equivalent to that of t
SWNT. In Sec. VI, results of MM simulations for bendin
and buckling deformations of the SWNT are compared w
that of the equivalent continuum tube derived from t
Euler-Bernoulli beam theory and the Donnell shell theory
is shown in Sec. VII that the strain energy of the combin
tensile and torsional deformations of a SWNT equals
sum of the strain energies for individual deformations. F

FIG. 1. ~Color online! Single wall carbon nanotube and a
equivalent cylindrical tube.
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the MM3 potential, contributions of different terms to th
total strain energy are delineated in Sec. VIII. Characteris
of cylindrical continuum tubes equivalent in the mechani
response to SWNT’s of different helicities are given in Se
IX, and conclusions are summarized in Sec. X.

II. POTENTIALS

Two potentials used in this work are the MM3~Ref. 3!
and the Tersoff-Brenner.4 The MM3 potential is a class II
pairwise potential with both higher-order polynomial expa
sions and cross terms; it is used primarily to model prote
This potential is appropriate for carbon nanotubes due to
similarity of carbon bonding between the nanotube graph
and the aromatic protein structures; the expression for
MM3 potential is given in the Appendix.

The Tersoff-Brenner potential is an empirical bond-ord
potential specifically designed for diamond and graph
structures. The bond strength is a pairwise potential func
of the atomic separation, angle, and the number of bo
~neighbors!. Rather than using a polynomial function to d
fine the bond strength, the Tersoff-Brenner potential uses
ponential functions similar to the Morse22 potential; the ex-
pression for the Tersoff-Brenner potential is given in t
Appendix.

In our simulations, the carbon atoms in the MM3 potent
were modeled23 as alkene, or type 2 atoms, with th
molecular-mechanics package Tinker.24 The potential energy
of the structure is minimized through an adaptive minimiz
tion routine which utilizes either a truncated Newton or
negative curvature technique. Except where noted, all si
lations used a nonbonded cutoff value of 30 Å, and mi
mized the potential energy to within 0.001 kcal/mol/Å rm
The computer programBRENNERMD was used for simula-
tions with the Tersoff-Brenner potential. These simulatio
minimized the Lagrangian using molecular-dynamics te
niques with the temperature held at 300 K.

The MM3, the Tersoff-Brenner, the Amber and the Mor
6-2
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FIG. 2. ~Color online! Varia-
tion with the bond strain of the
Morse, the MM3, the Tersoff-
Brenner, and the Amber bond
stretching potentials.
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bond-stretching terms for carbon-carbonsp2 hybrid bonds
are compared in Fig. 2 as a function of the bond strain. T
bond strain equals the change in the bond length divided
the equilibrium bond length. Expressions for the Amber a
the Morse potentials are only used in Fig. 2 so these exp
sions are not included; they can be found in Refs. 26 and
The Morse potential is generally believed to accurat
model the covalent bonds. The bond-stretching terms
MM3 and Tersoff-Brenner potentials are very close to tho
of the Morse potential for bond strains up to 20%. The A
ber potential is a force-constant model, therefore is symm
ric and parabolic about the vertical axis; it is accurate o
for small strains. The MM3, the Tersoff-Brenner, and t
Morse potentials have asymmetric variations with compr
sive deformations requiring more energy than tensile de
mations of the same magnitude. Equations~A1! of the Ap-
pendix show that the MM3 bond-stretching potential is
quartic function of the bond strain; thus the moduli compu
from it will depend upon the bond strain.

III. VIRTUAL EXPERIMENTS

The minimum-energy configuration for the molecul
structure is first found. That is, all atoms are allowed to mo
freely until the total energy for the structure reaches a m
mum. This minimum-energy configuration of the structure
henceforth referred to as the relaxed structure. For each
crement in load, displacements for the deformation mode
estimated and applied to the relaxed structure. The appro
ate boundary conditions for the specific deformation mo
are applied by fixing positions of suitably selected atoms
maintain the prescribed displacement. Next the minimu
energy configuration for the loaded structure is found by
lowing the remaining atoms to move until the total potent
23540
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energy attains a minimum value. The strain energy due
deformation of the structure is determined by simply su
tracting the energy of the relaxed structure from that of
loaded structure. From a plot of the strain energy vs a m
sure of deformation, effective parameters for a continu
model are derived.

Two SWNT models, involving infinite and finite lengths
were used. The infinite length tubes were modeled as s
periodic tubes consisting of 256 atoms, whose bonds
interactions wrapped across the axial period. The nonbon
cutoff distance was reduced to 10 Å so that atoms will n
interact with each other both directly and across the perio
boundary. The periodic models were effective for quick
studying axial deformations, large compressive strains,
axial wall buckling. The finite length models were used
study the torsional, bending, and column buckling deform
tions. The ends of these nanotubes were left open wh
changes the bonding character of the structure and lead
edge effects. In order to mitigate these effects the bound
conditions were applied approximately one diameter len
from the edge and the tube’s aspect ratio~length/diameter!
was kept above ten. Local effects, such as necking or sw
ing during axial deformation occur within 2 Å of theatoms
where boundary conditions were applied; these were fo
to have negligible effect on the total energy of the system

Unless otherwise noted, all tests were performed o
~16,0! ~Ref. 28! SWNT. The diameters of the relaxed tub
were 11.87 Å and 12.58 Å for tubes modeled with the MM
and the TB potentials, respectively.

IV. RESPONSE IN SIMPLE TESTS

The axial deformation tests were performed on perio
SWNT’s and did not require any boundary conditions. F
6-3
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FIG. 3. ~Color online! Strain
energy results from~a! the axial,
and ~b! the torsional deformation
of a SWNT with the MM3 and the
Tersoff-Brenner potentials.
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the torsion test, boundary conditions were applied to t
circumferential rings of atoms approximately one diame
away from the open ends. The minimum-energy configu
tion always coincided with zero axial deformation. Befo
the onset of buckling, circular cross sections remained cir
lar for both the tension, compression, and torsion tests.
coefficients of variation~percent standard deviation! of the
radial positions of atoms, for the relaxed and the 10
stretched configurations, were 0.05 and 0.12, respectiv
The diameter of the cross section of a tube deformed in
sion remained constant, but changed when it was defor
axially. Thus, Poisson’s ratio was uniquely defined for ea
load step as the negative of the ratio of the lateral strain
the axial strain.
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In a hollow cylindrical continuum tube equivalent to th
SWNT, the simple tension and torsion tests would indu
simple stress states of axial and shear stress, respectivel
of the strain energy is produced by a single stress compo
thereby allowing the axial and the shear moduli to be direc
computed. The MM strain energy results for these tests,
ing both the MM3 and the Tersoff-Brenner potentials, a
presented in Fig. 3. A smooth polynomial is fitted to the d
points representing strain energies at different strains.
first derivative of this fit yields the corresponding stress co
ponent, and the second derivative gives the elastic modu
If the degree of the best-fit polynomial is higher than tw
then the elastic modulus will vary with the deformation. T
lowest-order best-fit polynomial for the tension test data
6-4
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FIG. 4. ~Color online! Com-
parison of the second- and th
third-order fits to the MM3 strain
energy results.
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tained with the MM3 potential is third order and is given b

Wn5~28.18331027«315.931027«2

22.95310212«!/A~ t !, ~1!

whereWn is the strain energy density inJ/m3, « the nominal
axial strain, andA(t) the cross-sectional area, inm2, is a
function of the wall thicknesst. Thus the axial modulusE in
Pascals is given by

E5~24.91«11.18!1026/A~ t !. ~2!

The third-order and the second-order polynomial fits ha
regression correlations of 1.0 and 0.996, respectively. W
both values are very high, the third-order fit more accurat
describes the data, as shown in Fig. 4.

Young’s modulus derived from the Tersoff-Brenner pote
tial is given by

E5~25.33«11.25!1026/A~ t !. ~3!

The correlation coefficients of the second-order and
third-order polynomial fits are 0.997 and 1.0, respectively

A procedure similar to the one described above for
tension test was followed for the torsion test. Values, in P
cal, of the shear moduli so found are

G5~86.4g211.4536!1025/J~ t !

for the Tersoff-Brenner potential,

G51.7231025/J~ t ! for the MM3 potential, ~4!

whereJ, the polar moment of inertia of the equivalent co
tinuum tube, is a function of the wall thickness. Where
deformations of the continuum tube are homogeneous for
simple tension test, they are inhomogeneous for the tor
test. The shear strain at points on the midsurface of the c
tinuum tube was taken to equal that in the SWNT.
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At zero strain, Young’s moduli computed with the tw
potentials differ by about 6%, while their variations with«
are nearly the same. At 10% axial strain, Young’s modu
derived from the MM3 potential has changed by over 58%
its value at zero strain. However, the shear moduli and P
son’s ratio do not necessarily share the same qualitative
haviors; Poisson’s ratios computed from the results of
MM simulations are shown in Fig. 5. While the MM3 de
rived Poisson’s ratio has a linear variation with the ax
strain that derived from the Tersoff-Brenner potential var
nonlinearly for axial strains exceeding20.02.

We note that for a linear elastic isotropic material,E, G,
andn are constants and satisfy the relationE52G(11n).

V. DETERMINATION OF THE WALL-THICKNESS
OF THE EQUIVALENT CONTINUUM TUBE

The problem of finding a continuum cylindrical tub
whose response to axial and torsional deformations is id
tical to that of a~16,0! SWNT is complicated by the fact tha
its Young’s modulus and Poisson’s ratio should vary with t
axial strain but the shear modulus be either a constant or
with the shear strain. In order to simplify the problem, it w
decided that the equivalent continuum tube is made o
linear elastic isotropic material with mean diameter equa
the diameter of the SWNT, wall thicknesst, and moduli
equal to those of the SWNT at zero strain. Thus, in E
~2!–~4!,

A~ t !5pF S r c1
t

2D 2

2S r c2
t

2D 2G ,
and J~ t !5

p

2 F S r c1
t

2D 4

2S r c2
t

2D 4G ,
wherer c is the radius of the SWNT. Substitution from Eq
~2!–~4! into
6-5
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FIG. 5. ~Color online! Varia-
tion with the axial strain of Pois-
son’s ratio derived from the MM3
and the Tersoff-Brenner poten
tials.
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E~0,t !52G~0,t !@11n~0!# ~5!

gives an equation for the determination of the wall thickn
t of the equivalent continuum tube. Knowingt, E, andG can
be computed from Eqs.~2!–~4!.

The results are presented in Table III for the MM3 and
Tersoff-Brenner potentials. The wall thickness thus fou
equals 1.34 Å and 0.98 Å for the MM3 and the Terso
Brenner potentials, respectively; it differs from the oft
used value of 3.4 Å, and the 0.66 Å proposed by Yakob
et al.;1 had we used a wall thickness of 3.4 Å, then we wou
have obtainedE(0) to be 0.99 TPa and 0.89 TPa, respe
tively, for the MM3 and the Tersoff-Brenner potentials whic
compare favorably with the values reported in the literatu

VI. BENDING AND BUCKLING OF A SWNT

These simulations were done with the MM3 potent
only.

A. Bending of a Cantilever Beam

The initial lateral displacements applied to the atoms o
226 Å long ~16,0! SWNT were estimated from the later
deflection equation of the Euler-Bernoulli beam theory fo
cantilever beam loaded by a point load at the unclam
edge. Axial displacements of atoms were estimated from
requirement that plane sections remain plane and per

TABLE III. The wall thickness and elastic constants of a
equivalent linear elastic continuum tube.

Potential Structure Thickness
~Å!

E ~TPa! G ~TPa! n

MM3 ~16,0! 1.34 2.52 0.96 0.21
Tersoff-Brenner ~16,0! 0.98 3.10 0.81 0.26
23540
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dicular to the neutral axis. The boundary conditions used
the minimum-energy configuration found are shown in F
6. The clamped end was modeled by fixing the locations
atoms on a circumferential ring approximately one diame
away from the open end. The point load was applied to th
neighboring atoms on the top of the beam to avoid the t
dency for wall indentation, which may occur when only
single atom is loaded. The axial positions of the loaded
oms were moved until the minimum-energy configurati
was found.

The minimum-energy configurations were found
closely conform to those given by the Euler-Bernoulli bea
theory. The strain energy for a linear elastic isotropic can
lever beam is given by

Wb5
3

2

EI~ t !

L3
d2, ~6!

whereL is the length of the beam,d represents the tip de
flection, andI denotes the area moment of inertia about
neutral axis;

I 5
p

4 F S r c1
t

2D 4

2S r c2
t

2D 4G .

FIG. 6. ~Color online! Deformed shape of a cantilever bea
computed with the MM simulation employing the MM3 potentia
6-6
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FIG. 7. ~Color online! Com-
parison of the strain energy com
puted from the MM simulations
with the MM3 potential with
those obtained from the Euler
Bernoulli theory for the equivalen
continuum tube.
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Figure 7 compares the strain energy computed from
MM3 simulations with that given by Eq.~6!. Thus the
equivalent continuum tube mimics well the bending def
mations of a SWNT.

B. Buckling

The column, axial shell wall, and torsional wall bucklin
were simulated by following the procedure employed
studying simple axial and torsional deformations. No init
perturbations were introduced to induce a buckling respo
The four buckling modes found are shown in Fig. 8.
SWNT was assumed to have buckled when either the st
energy of deformations dropped significantly for an infin
tesimal increase in the load or lateral deflections were v
large. These invariably correspond to a noticeable increas
the number of iterations needed for the solution to conve

1. Column buckling

A ~16,0! SWNT with an effective length of 171 Å wa
used to study the column buckling. The boundary conditio
used in the MM simulations closely resemble conditions
a clamped-clamped Euler column because the cross sec

FIG. 8. ~Color online! Four buckling modes found during th
MM simulations: ~a! shell wall, ~b! columnar,~c! columnar with
crimping, and~d! torsional~with boundary conditions highlighted!.
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are not allowed to rotate. Comparing the critical buckli
strain from the MM3 simulations with that for an Euler co
umn provides an assessment of the equivalent continu
model. The critical strain

«crit ical54p2
I ~ t !

L2A~ t !
5

p2F S r c1
t

2D 2

1S r c2
t

2D 2G
L2

~7!

for an Euler column is independent of the elastic modul
For L5171 Å, r c55.935 Å, and t51.34 Å, «crit ical
50.024 and is 16% less than that for the MM simulation
This could be due to not initially perturbing the SWNT.

2. Shell wall buckling

Two types of shell wall buckling, namely axial compre
sion and torsional buckling, were studied. The Donnell sh
theory was used to compute the buckling load for the cy
drical tube for both cases even though the ratio of the thi
ness to the mean radiust/r c50.23 is higher than the range o
validity of the Donnell theory~e.g. see Yamaki25!.

Axial Compression. The MM simulations of the axial wall
buckling used periodic boundary conditions which mo
closely approximate simple supports. At an axial strain
9.8%, the SWNT buckled into two circumferential sinusoid
waves with a single axial wave as shown in Fig. 8~a!.

According to the Donnell shell theory, the critical axi
stress in a cylindrical tube is given by

scr5
1

A3~12n!

Et

r c
. ~8!

Equation~8! is valid when the normal lengthZ defined by

Z5~12n2!1/2
L2

r ct
, ~9!
6-7
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FIG. 9. ~Color online! For the
MM3 potential, variation with the
axial strain of the energies of dif
ferent modes of deformation.
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of a
exceeds 2.85. The numberN of half-sine waves in the axia
direction, and the numberm of sine waves in the circumfer
ential direction are given by

N5Integer H F3

4
~12n2!G1/4Ar c

t J ,

m5Integer H ~12!1/4

2p
AzJ , ~10!

where integers closest to numbers given by the right-h
sides that yield the smallest buckling load should be use

For the periodic model of the SWNT,L516.18 Å, r c
55.937 Å, t51.34 Å, n50.21; therefore,Z532, N52,
m52, and the axial strain at buckling50.147. The MM
simulations giveN52 and a critical strain of 0.098. Th
shape of the midsection of the buckled SWNT resemble
peanut implying thatm52. Thus the axial strain from the
Donnell shell theory does not match well with that from t
MM simulations.

3. Torsional buckling

The MM simulations for the torsional deformations em
ployed a 171 Å long SWNT. The tube buckled at a sh
strain of 0.064 and the buckled shape had two half-s
waves in the circumferential direction. For the equivale
continuum tube,Z53000; thus it can be regarded as bei
infinitely long. According to the Donnell shell theory, th
shear stressts at buckling is given by

ts5
lsD

t/r c
2

, ls52A2~12n!1/4S r c

t D 1/2

, ~11!

whereD5Et3/12(12n2). Equations~11! give a shear strain
of 0.066 which agrees well with that obtained from the M
simulations. However, for very long shells like the one be
23540
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studied here, it is generally believed that the Donnell sh
theory significantly underpredicts the buckling load a
hence the shear strain at buckling.

One way to check the validity of the equivalent co
tinuum tube for buckling deformations is to study the co
tinuum problem with the finite element method. However
has not been pursued here.

VII. COMBINED LOADING OF A SWNT

Whether or not Young’s and the shear moduli found
Sec. IV from MM simulations vary with the strain depend
upon the degree of the best-fit polynomial. In order to che
this and to further validate the equivalent continuum mod
we simulated combined axial stretch and torsional deform
tions of a~16,0! SWNT of effective length 171 Å, diamete
511.87 Å having 3072 atoms of which 2704 were strain
Several combinations of axial stretch and torsional deform
tions were simulated. The strain energies of the combi
deformations were compared with that of the sum of in
vidual deformations and also with the same deformatio
applied to the equivalent cylindrical tube. The maximum d
ference between the strain energy for the combined defor
tions and the sum of the strain energies of the individ
deformations for the MM simulations was found to be le
than 10% implying that the response of the tube up to
shear strain and 4% axial strain can be modeled as lin
Also, the difference in the strain energy of the continuu
tube and that of the MM simulations was less than 10
Thus the equivalent continuum model described above
quite good for analyzing deformations of the SWNT.

VIII. CONTRIBUTIONS TO THE STRAIN ENERGY FROM
DIFFERENT TERMS IN THE MM3 POTENTIAL

In order to better understand the differences in the
sponse in axial tension and compression deformations
6-8
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SWNT with the MM3 potential, we have plotted in Fig. 9 th
variation with the axial strain of different terms in the MM
potential. For deformations involving an elongation of t
tube, the energy due to bond stretching is almost equal to
total energy of the tube. The contribution to the total ene
from the angle bend deformation is annulled by contributio
from the van der Waals forces and torsional deformatio
However, in axial compressive deformations, energies of
formations due to van der Waals forces, bond stretching,
angle bend modes of deformation are nearly the same.
the same value of the axial strain, the total strain energy
the tube is larger when it is deformed in compression th
that when it is deformed in tension. Thus Young’s modu
for compressive deformations is more than that for ten
deformations.

IX. EFFECT OF DIFFERENT WRAPPING INDICES

MM simulations similar to those for a~16,0! SWNT were
performed on ~8,0!, ~10,10!, ~12,6!, ~25,0!, and ~48,0!
SWNT’s and for each case, Young’s modulus, the sh
modulus, Poisson’s ratio, and the wall thickness of
equivalent cylindrical tubes were determined. Results, s
marized in Table IV, evince that the wrapping indices affe
very little the values of the elastic moduli and the wall thic
ness of the equivalent cylindrical tube. For example, Youn
modulus varies from 2.3 to 2.6 TPa, Poisson’s ratio fro
0.19 to 0.22, and the wall thickness from 1.33 to 1.36
Thus results for a~16,0! SWNT are representative of thos
for tubes of other helicities and diameters.

X. CONCLUSIONS

We have used results of the molecular-mechanics sim
tions of a SWNT and the relation among Young’s modul
Poisson’s ratio, and the shear modulus valid for a linear e
tic isotropic material, to derive the thickness and values
the two elastic moduli of an isotropic linear elastic cylind
cal tube equivalent to the SWNT. When the MM3 potentia
used to simulate deformations of a SWNT, it is found that
the equivalent continuum tube, Young’s modulus5 2.52
TPa, shear modulus5 0.96 TPa, Poisson’s ratio5 0.21, and
wall thickness5 1.34 Å. The strain energy of bending d
formations of the equivalent tube is found to match well w

TABLE IV. Parameters of cylindrical tubes equivalent in m
chanical response to different SWNTs.

SWNT Equivalent cylindrical tube

Tube Helicity Thickness Mean diameter E G
structure ~deg! ~Å! ~Å! ~TPa! ~TPa! n

~8,0! 60 1.34 5.97 2.31 1.03 0.19
~12,6! 30 1.35 11.79 2.43 0.99 0.2
~16,0! 60 1.34 11.88 2.52 0.96 0.2
~25,0! 60 1.34 18.55 2.49 0.97 0.2
~48,0! 60 1.33 35.60 2.60 0.94 0.2
~10,10! 0 1.38 12.85 2.41 1.01 0.22
23540
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that computed from the molecular-mechanics simulatio
Also strain energies of the combined axial and torsional
formations computed from the MM simulations match
well with that of the equivalent continuum tube. Howeve
the responses of the SWNT and the cylindrical tube in bu
ling deformations where bending stiffness of the thin w
plays a noticeable role are found to be somewhat differe
The helicity and the diameter of a SWNT have very litt
effect on the wall thickness, Young’s modulus, and the sh
modulus of the equivalent continuum tube.
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APPENDIX

Variablesr, u, andf used below in Eqs.~A1! are shown
in Fig. 10. A subscript 0 on a variable signifies its value
the unstressed equilibrium configuration. The total energy
a body equals the sum of the potential for all atoms in
body @the index j in Eqs. ~A1! ranges over bonded atom
and the indexk over all atoms#. The MM3 potential is given
by Eqs.~A1! in which termsUs , Uu , andUf are the pri-
mary bond deformation terms; the termUVdW is the non-
bonded van der Waals term; andUsf , Ufs , andUuu repre-
sent cross interactions between the variables.

U5(
i

(
j

~Us1Uu1Uf1Usf1Ufs1Uuu8!

1(
i

(
k

UVdW,

Us571.94Ks~r 2r 0!2F122.55~r 2r 0!

1S 7

12D2.55~42r 0!2G ,
Uu50.021 91Ku~u2u0!2@12~u2u0!15.6~1025!~u2u0!2

27.0~1027!~u2u0!319.0~10210!~u2u0!4#,

FIG. 10. Definitions of variablesr, u, andf used in defining
pairwise potentials.
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Uf5~V1/2!~11cosf!1~V2/2!~12cos 2f!

1~V3/2!~11cos 3f!,

UVdW5«0$22.25~r n /r !611.84~105!exp@212.00~r /r n!#%,

Usf52.511Ksb@~r 2r 0!1~r 82r 08!#~u2u0!,

Ufs511.995~Kfs/2!~r 2r 0!~11cos 3f!,

Uuu8520.021914Kuu8~u2u0!~u82u08!. ~A1!

Values of constantsKs , Ku , V1 , V2 , V3 , «0 , gn , Ksb ,
Kfs , andKuu8 are given in Ref. 3.

The Tersoff-Brenner potential reduces to the form giv
in Eqs.~A2! below for carbon-carbon bonds. The number
neighbors within a prescribed distance determines the n
ber of bonds for an atom. The number of bonds, or bo
order, helps define the bond strength of the pairwise b
potential.

U5(
i

(
j (. i )

VR~r i j !2B̄i j VA~r i j !,
nd

ro
s.

,

-

tt

23540
n
f

-
d
d

VR~r i j !5 f i j ~r i j !Di j
c /~Si j 2a!e2A2Si j b i j (r i j Ri j

e ),

VA~r i j !5 f i j ~r i j !Di j
e Si j /~Si j 21!e2A2Si j b i j (r i j Ri j

e ),

Bi j 5F11 (
k(Þ i , j )

Gi~u i jk ! f ik~r ik!ea i jk [( r i j 2Ri j
e )2(r ik2Rik

e )] G2d i

,

Gc~u i jk !5a0$11c0
2/d0

22c0
2/@d0

21~11cosu i jk !2#%.
~A2!

Herer i j is the distance between two atomsi andj, andu i jk is
the angle between lines joining atomsi and j, and i and k.
The Tersoff-Brenner potential is not a function of the angleu
shown in Fig. 10. The functionsVR(r i j ) andVA(r i j ) are the
repulsive and the attractive potential energies, respectiv
between atomsi and j. The functionBi j is the bond strength
term, andG(u) is the angle bond energy function. The fun
tions f i j (r i j ) and f ik(r ik) are the cutoff functions, which lin-
early reduce from 1 to 0 over a small range, to smooth
the cutoff of long-range atomic interactions. All other qua
tities are constants; their values can be found in Ref. 5.
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