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Mobile spin bags and their interaction in the spin-density-wave background
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The motion of one doped hole in the spin-density-wave background has been studied by the varia-

tional approach. A spin-bag solution for the doped hole has been obtained that applies in the weak-

and intermediate-coupling regime. The effective attraction between two spin bags with antiparallel

spins has been shown to be p- and d-wave like. The low-lying spin-fiip excitations are found to be
important both in the spin-bag effect of the doped holes and the effective attraction between them,
which, in the latter case, are combined with the exchange of the simple-amplitude Auctuations to
give a dominant contribution. On the other hand, the total attractive interaction is reduced by the
Coulomb repulsion, which is restored in the presence of the "bag" effect.

I. INTRODUCTION

It is generally believed that the observed strong two-
dimensional (2D) antiferromagnetic spin correlations' in
the insulating phase of the oxide materials
La2 „(Sr,Ba)„Cu04 ~ and YB2Cu307 y may provide an
important clue to the understanding of high T, in the
neighboring superconducting phase. Recently, the ex-
istence of strong spin correlations in the superconducting
phase has also been reported. Naturally, it is tempting
for one to get a hint of the high-T, superconducting state
through doping, starting from the magnetic insulator
parent. There are two ways to approach the 2D anti-
ferromagnetic insulating state based on the single-band
Hubbard model. One is from the strong-coupling, local-
ized limit where one gets a Mott insulator in the half-
filled case with one electron per Cu site, described by the
antiferromagnetic Heisenberg Hamiltonian. The alterna-
tive way is from the itinerant approach, where the insu-
lating spin-density-wave (SDW) state is present.

In the half-filled case, the mean-field SDW ground
state will approach to the exact Neel state in the strong-
coupling limit. In the same limit, the collective modes
obtained in the itinerant picture agree with the spin-
wave excitations in the antiferromagnetic Heisenberg
model. It is therefore reasonable to conjecture that the
validity of the itinerant approach is not only restricted in
the weak-coupling limit, it could be also applied to a
moderately larger-U regime where the realistic situation
may be laid upon.

An essential point is the existence of the antiferromag-
netic order, which presumably extends into the supercon-
ducting phase although it becomes short-range ordering.
Based on this point of view, the spin-bag mechanism is
proposed by Schrieffer, Wen, and Zhang (SWZ). When
a hole is doped into the antiferromagnetic background,
its motion should be renormalized to avoid disordering
the background. But this causes an increase of the hole

energy. From a more sophisticated point of view, the re-
normalization of the hole motion and its induced local
distortion of background should be both present and
reach a balance in energy. As a result one finds an entity
of the quasihole surrounded by a local distortion of the
SDW background moves around with charge +e and
spin index o. =+—,', which is referred to as a "spin bag" by
SWZ.

The spin-bag mechanism for superconductivity is intui-
tively based on the following continuum mean-field argu-
ment: Two spin bags attract each other to form the
Cooper pair as the result that the two holes tend to share
one common bag to lower their total energy. Quantita-
tively, the proper random-phase-approximation (RPA)
approaches have shown that there is indeed a d-wave-
like attraction between the quasiholes through exchang-
ing the amplitude fluctuation. However, the amplitude
fluctuation actually plays a less important role in the
quasihole's self-energy, whereas the polaronic or spin-
bag effect is presumably important. Then one would nat-
urally question the validity of such approaches to the
effective potential, in which the effect of spin bag should
also enter.

In the present paper, an alternative approach, i.e., the
variational method, will be used and the results are
justified by the Brillouin-Wigner perturbative approach.
The Hubbard localized (on-site) interaction together with
the existence of an SDW gap in the individual particle-
hole excitations make such an approach more efficient.
An explicit wave function as well as the energy spectrum
for spin bag are obtained in the intermediate coupling re-
gime U( W=8t. The spin-bag energy is in agreement
with the numerical results of Su. The effective coupling
between two spin bags is then discussed. Although the
p-wave and d-wave-like attractive potential is still ob-
tained, its behavior as a function of U is quite different
from the simple RPA approach presented in Refs. 6—8.
We find that the low-energy spin-flip excitations, which
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are important to the spin-bag effect, also play an impor-
tant role in the effective interaction through combining
with the exchange of the simple amplitude fluctuations.
The general conclusions in the present paper seem to be
applicable at least qualitatively to the large doping region
as long as the short-range antiferromagnetic order exists.

In Sec. II, the ground state of one doped hole in the
SDW background is studied through the variational
method which is justified by the Brillouin-Wigner pertur-
bative approach. The wave function and energy spec-
trum for the doped hole are obtained. Then, the effective
interaction between two spin bags is calculated in Sec.
III, which is both qualitatively and quantitatively
different from the conclusions obtained before. Final-
ly, conclusions and discussions are presented in Sec. IV.

II. A MOBILE SPIN BAG

+pl(u» trpj U» )p»~] (1.2)

And the exact Hamiltonian H could be rewritten in two
parts,

H =Ho+Hf,
in which Ho is the mean-field diagonalized part of H,

Hp =const+ g' [( E„p)a»~—a—»~
k, v

+«» —u)p». p». ]

(1.3)

(1.4)

where p= —U/2 at the half-filled case. Hf is neglected
in the mean-field approximation. It includes the fluctua-
tions above the mean-Geld ground state

Hf =U+5n (5n 2,
J

(1.5)

where 5n, = n —( n, )p and ( n, )p is the average on
the mean-field ground state.

In the canonical transformation (1.2), the it-space
operators a» and P» describe, respectively, the lower
and upper quasiparticle bands split by the SDW gap 5
and the wave vector k extends within the new Brillouin
zone (i.e., the magnetic zone) which reduced to the half of
the original one with the nesting vector Q=(+m /
a, +m. /a) being a new reciprocal vector (see Fig. 1 of Ref.
6). The coefficients u» and U» in Eq. (1.2) are determined

by

Qk =
1/2

1 —c.k/Ek

2
(1.6a)

The two-dimensional Hubbard Hamiltonian with
nearest-neighbor hopping on a square lattice is given by

H= t g (c, —c/ +H c )+U. g. njtn/& .
(~,j)0 J

In the (SDW) mean-field approximation, H could be ap-
proximately diagonalized through the following canoni-
cal transformation:

ik.R
, e

c = g' —[(u»+op U»)a»
N

Vk

1 /21+C.k/Ek

2
(1.6b)

in which

e»= 2—t [cos(k„a)+cos(ka)],
(s2+g2)li2

k k

(1.7)

(1.8)

and the quantity p, appearing in Eq. (1.2) is defined by

i@R (1.9)

which has only two values: +1 according to different lat-
tice site RJ. In fact, p determines the two sublattices of
the SDW state. This can be seen from the staggered mag-
netization moment m at the lattice side j whose expres-
sion in the mean-field theory is given by

m =(2b, /U)p (1.10)

Thus one gets two sublattices with the total spin at each
site either up or down, corresponding to p =+1 and

pj = —1, respectively.
Based on either sublattice, we could define a complete

set of the Wannier-type states in the lattice space

tkR,
a,.= g' ' (l.1 la)

&N /2

ik RI
e

~&N/2» '
k

(1.11b)

+—X' (ai.ai.+pt.pi. »U

1o.
(1.12)

where the summations are over the given sublattice and
the hopping integral ti is defined by

tim + ~ ke
I

k

(1.13)

The bare electron operator c is expressed in the lattice
representation according to the canonical transforma-
tions (1.2), (l.1 la), and (1.11b) as follows:

cj = g' [B,(1)a«+pJB J(l)p«. ), (1.14)

in which B,(I ) is given by

where RI is the lattice vector for the given sublattice. It
is easy to show that a» and p» could be inversely ex-

pressed by a& and p&, which means the two sublattices
are equivalent in defining the lattice representation (1.11).
For symmetry, in the following we shall choose the sub-
lattice such that m & 0( (0) in discussing the doped hole
with spin up (down). The difference between the sublat-
tices should be remembered only in the case involving
two more doped holes with different spins.

According to the lattice representations (l. lla) and
(1.11b), Hp in Eq. (1.4) could be rewritten into the follow-

ing form:

Hp=const —g'tt (a, a Ptt P )—
lm cr
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v 2, ik (R.—R()B (1)= g'e ' ' (u(+op~v() .

The mean-field ground state ~0& in the half-filled case
is an itinerant antiferromagnetic insulating state, with the
lower quasiparticle band filled with electrons while the
upper band is totally empty. When a hole is doped into
such an SD% background, it is described by the
quasihole state ((kcr & =a(, ~0& with the energy spectrum
E(,—U/2 in the incan-field theory, which is an eigenstate
of Ho. But beyond the mean-field approximation, one
finds a coupling of the quasihole with the SD% back-
ground through Hf.

The motion of the doped hole is described by the
Heisenberg equation

. d U
i —a—(t}= E ——(z (t)

the half-filled SD% ground state. But we shall pursue
SWZ's basic point of view that the spin-bag e6'ect comes
from the coupling of the doped hole with the mean fie-ld
SD% background. Thus in the following approach the
half-filled true ground state will be replaced by the
mean-field state ~0&. The correction to ~0& due to the
zero-point fluctuations will be neglected. Under this ap-
proximation, we study the renormalization effect on the
quasihole due to its coupling with the excitations above
the mean-field SDW ground state.

Hence, the doped hole's time-dependent state is deter-
mined by (z(, (t)~0&. In the absence of the commutator
[Hf(t), (zi, (t)], Eq. (1.16) simply gives a phase factor to
the time dependence of the state ai, (t)~0&. The commu-
tator [Hf(t), (zi, (t)] in Eq. (1.16) could be regarded as in-
stant excitations at time t, induced by the doped hole in
the SDW background. It is easy to verify

+[Hf(t), a(, (r)], (1.16)
—ik R I

[Hf(r),~.(r)]lo&=g' ' p.(r)10&,
N/2

(1.17}

where a(, (t) and H/(t) are both in the Heisenberg repre-
sentation. For one doped hole case, Eq. (1.16) will act on where

= U g' g p/B &(l)B /(m )B (n)B (I')P~
I'rnn j

(1.18)

As it has been noted before, the sublattice RI is chosen
such that the on-site magnetization moment m I has the
same sign as the doped hole's spin cr, i.e., o.p, &=+1
just for the reason of symmetry.

A basic excitation state is therefore obtained according
to Eq. (1.17):

())( =p( a( U g' (TKO( I I' )(z(
I(

+U g' oK, (l, l')(13( a( a(
I'(&I)

+4 &( r( -.+4 -.&( &(—.)—
—ik R

y,.l0& (&Oly',.y,.lO&)'",
N/2

(1.19)
+U g' crKi(1, 1')P( a(. a( +

I'( W I&

where

(1.23)

in which a particle-hole pair is excited around the doped
hole as Eq. (1.18) shows. Actually, ~(ti, & is the most im-

portant excitation state in the weak- and intermediate-
coupling regime (U (&=8t). This point will be made
more clearly later.

Then a variational state for a doped hole could be con-
structed by ~kcr & and ~Pi, & as follows:

Ko(l, l')= g op B )(I)B )(l'),
J

K((l, l')= g op B (l)B )(I')B ~J(l),
J

K~(l, 1')= g opJB /(1)B (I')B i(i) .

(1.24a)

(1.24b)

(1.24c)

& =sin8(, ~ko &
—cos6)i, l((}(,.& .

By minimizing & g(, ~H~f(, &, 0(, is determined by

&ko ~Hf~p~ &+c.c.
&(()~.IHI(()~. & Eo F.„+U/2 '— —

(1.20)

(1.21)

We denote Koo =Ko(l, l); and Ko, =Ko(!,l'), K»
=K((l, l'), Kz(=K&(1, /') for I'=nearest neighbor of I
(NN) in the sublattice; and so on. In Table I, the numeri-
cal values of the coeScients K; have been shown for the

where Fo= &O~H~O&. The quasihole's spectruin is shifted
from Ek —U/2 to Ek as follows:

& ko lHII((~. &+c.c.
k k 2

cotO k (1 22} U Koo Koi Kq,Kl )

TABLE I. Numerical values of the coeScients K;,. for the
first four terms.

The function B+. , (l) appearing in Eq. (1.18) is a
strongly localized function of R, —R( [Eq. (1.15)], which
enables one to make the following expansion in P( [Eq.
(1.18)]:

2t
5t

10t
20t

0.276
0.236
0.148
0.079

0.029
0.058
0.045
0.026

—0.021
—0.009
—0.002
—2.5 X 10

—0.012
—0.005
—0.001
—1.5 X 10
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first several terms. We find that K, (l, 1'},K2(l, l'), and all

of those which are not explicitly present in the expansion
(1.23) are much less than Koo in the whole region of U,
and therefore, as a good approximation, one could retain
the first term in the right-hand side of Eq. (1.23), i.e.,

2I OU
tan20k

=-
r, +r, —E„'

(1.31)

(1.32)

U g' oKO(.1, 1')aI 13i a—i (1.25) 0k is chosen such that tanek) 0 and the spin bag's spec-
trum is given by

Defining

r,=(1 o lH/ly&. &/U,

Eo+ UI2

and

r,=(y„.~H, ~y„.),
then a direct calculation shows

I 0= g'K (0,1) (1.26)

1I,=3t + g' tttKO(0, 1)KO(0,1'};
(

(1.27)

I' = —UgB (0)+ QB (0)2 cTJ p2 0'J

X g' B ( l)KO(0, 1)

(1.28)

where to:—tII.
Therefore, according to Eqs. (1.19)—(1.25),

f11„.&=y„.io&, (1.29)

in which

where the spin-bag operator gz is defined by
—&kR I

(»»k+ «o»tA 'Y t }at — (1—.30)
N/2

UE =E ———UI cot0k k 2 0 (1.33)

As Eqs. (1.32) and (1.33) show, Ek is still a simple func-
tion of Ek, with its lowest energy reached along the mag-
netic zone boundary (corresponding to Ez = b, ). The
lowest energy of the spin-bag band as a function of U/t is
shown in Fig. 1 by a solid curve, in contrast with
6 —U/2, the quasihole's lowest energy which is
represented by a dotted curve. The crossed curve in Fig.
1 represents a localized spin-bag solution which has been
obtained in several numerical works within the inhomo-
geneous mean-field approximation. But the spin bag in
the present paper is a mobile one which gains more kinet-
ic energy and thus has lower energy as compared to the
localized spin-bag solution, as Fig. 1 shows. On the other
hand, Eq. (1.33) shows that the "spin-bag" effect not only
greatly reduces the quasihole's energy, but also narrows
the bandwidth. For example, the reduction of the band-
width reaches to 50% at U =5t

To have a picture of the size of the spin bag, we note
that the wave functions (1.30) are composed by a set of
Wannier-type functions. The distribution of such a
Wannier-type function centered at some site mainly
spreads over to its four nearest-neighbor sites, consistent
with the localized solution in the numerical approach.
The small size of the spin bag comes from the quick con-
vergence in the expansion of Eq. (1.23), where an approx-
irnate truncation has been made.

In obtaining the spin-bag solution [Eqs. (1.29)—(1.33)],
only one important excitation ~4& ) is involved in the
variational state (1.20). To justify our solution, we intro-
duce the following Brillouin-Wigner expansion

U 1 1 1
Ek —Ek —— ko H) +H~ HI+Hg HI H~+

ED+Ek —Ho Eo+Ek Ho Eo+Ek Ho
(1.34)

The prime on the large parentheses in Eq. (1.34) means
that ~ka) should not appear as an intermediate state in
the expansion.

If only ~P& ) is retained in all the intermediate states of
the Brillouin-Wigner expansion (1.34), then one again
gets the results of Eq. (1.33) after using

1 1

Eo+E„Ho Eo+E—„—~Pg IHolgg )

portant. With a large U, this is certainly the case as

t(t (1WI') It() —1/U

At U =2t, the error brought by the relation (1.35) to Ek
is —15% as estimated by the perturbative method. Thus
as long as U is not sufticiently small, the approximation
(1.35) is reasonable. The propagator

1/(Eo+Eq —Ho )

(1.35)
The approximation (1.35) is equivalent to say that the
effect of the hopping terms in Ho [Eq. (1.12)] is not so im-

acting on ~(()z ) will also produce other intermediate
states and make the spin-bag size spread out, due to the
hopping processes. But we find such an effect is similarly
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FIG. 1. The lowest energy of the spin-bag band vs U is

presented by the solid curve, in contrast with the dotted curve,
6—U/2, the mean-field quasihole's energy along the magnetic
zone boundary. The crossed curve is the localized spin-bag en-

ergy obtained by the numerical approach (Ref. 5). The dashed
curve gives a higher order correction to the spin-bag solution

Eq. (1.33) [see the context below Eq. (1.36)].

(ko lHIlg«) and (,Pz~lHIlgz ). The contribution of
the matrix element ($«lH lP«) to E„is quite impor-
tant. We have noted that P& ) describes a doped hole
tightly accompanied by a particle-hole pair excited from
the SDW background, according to Eqs. (1.19) and (1.25).
In the process related to ($«lHIlg„), one finds a
strong coupling between the hole and the particle which
carry opposite spins. This means that the contribution
coming from the spin-flip components (gP a ) is dom-
inant in the self-energy of the spin bag. The physical pic-
ture is simple: A particle-hole pair is excited by the
doped hole which actually is a charge excitation (excita-
tion energy & 2b, ). To decrease its energy cost, the excit-
ed particle has to couple with the doped hole strongly
and closely accompanies it, forming an "exciton" which
is related to the low-lying spin-Hip excitation.

) is deduced frotn a& l0) or [HI, a& ]l0). More
excitation states could be obtained from az l0), 'az l0),
etc. , in which terms like [H&, [H&,az ]]l0), and so on,
are involved. According to the localized property of
Bz (I), one could find a straightforward way that except
for |))z ), the only important excited state coming from

[Hf [HI, az ]] l
0 ) is given by

negligible provided U is not too small.
Under the above-described approximations to obtain

the spin-bag energy (1.33), all other matrix elements are
neglected in the Brillouin-Wigner expansion (1.34) except

I

where

(1.36)

j& = g'aEO(l, l') g g' p B (p)B ~(m)B J(n)B, (1')PI aI P a„al0) .
m, n, p

(1.37}

lP) involves two particle-hole pairs excited from the
background by the doped hole. Including both lPz ) and

lP) in all the intermediate states in Eq. (1.34}, we obtain
a correction to Eq. (1.33). The dashed curve in Fig. 1

shows such a correction to the lowest energy of spin-bag
spectrum. One 6nds that it is negligible in the regime
U ( 8'=8t As P) inc. ludes the spin-flip components
(gp&a& and g p&a&) whose excitation energy decreases
in the large U regime, the correction coming from lP)
could become non-negligible at the strong-coupling re-
gime U ~ 8'as Fig. l shows. With the increase of U, one
can expect the intermediate states with many particle-
hole excitations will be involved which result in an en-
larging spin disorder around the doped hole. " There-
fore, we obtained a fairly good spin-bag solution in the
intermediate-coupling regime U & 8'=8t, in agreement
with the conjecture of SWZ.

III. THE EFFECTIVE INTERACTION

tor frt, [Eq. (1.30)] satisfies, generally, the following equa-
tion:

[»P«]=&~4k + ~~ (2.1)

What we have done in the last section is equivalent to
neglecting Az . Therefore Eq. (2.1) is approximately di-

agonalized in the single hole case. In the presence of two
or more spin bags, however, Az will play a role in the
interaction between these spin bags.

To consider the interaction between spin bags, the
basic state for two free spin bags is defined in the sub-
space of total zero-momentum and antiparallel spin (the
case for the parallel spin can be similarly considered):

(2.2)

The matrix element (k'1, —k'LlHlkf, —kl) can be ex-
pressed as

(k 1, —k 1lHlkl, -k»
=(2E„+&,) &k'1, —k'1lkt', —k1)+H„',„,(2.3)

In Sec. II, the spin-bag solution is obtained for a single
hole doped in the SDW background. The spin-bag opera-

where the interaction matrix element H&. i, is determined

by
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Hk k =(k'1, —k'&I Aktg —ktl0&

+(k 1, -k 1I&«A „Io&
+« t, —k 1lqktq „H,lo&. (2.4)

Ak defined in Eq. (2.1) plays a central role in the first
two terms on the right-hand side of Eq. (2.4), while the
last term represents a correlation between two spin bags
through absorbing a virtual background fluctuation
above the mean-field state.

In the approach to a single spin bag, we have chosen
different sublattices for different spins [e.g., for the case
of spin up (down), the sublattice is chosen such that

iQ.R .

p =e ' = + 1( —1 )]. In the following, the sublat tice
with p =+1 will be denoted by the lattice vector R1,
while for the sublattice with p = —1, it is defined by the
lattice vector R1 and the corresponding Wannier-type
quasiparticle operators are denoted by aI pI, etc. , and
the function defined in Eq. (1.15) is rewritten as 8 I(I ) for
distinguishing.

It should be noted that the two-free-spin-bag state
Ikf, —kl & is not exactly orthogonal for different k's as

is a composite operator. Actually, one could find an
exchange process giving a nonzero contribution to
(k'1, —k' 1 Ik 1, —k l & for krak'. In Appendix A, howev-

er, such a contribution is shown to be proportional to
cos 8 in the region close to the magnetic zone boundary
with IekI, IEk. I (b„where cos8 is the coefficient appearing
in the spin-bag operator I(tk [Eq. (1.30)]. cos8 is equal to
zero as U~O. In the moderate U regime, the order of
cos 8 will be neglected. To be consistent with such an
approximately orthogonal condition, Hk. k is meani. ngful

only to the order which is lower than Ekcos 8 as Eq. (2.3)
shows. Therefore, the contribution in Hk „ofEq. (2.4)
will be arranged in the power of cos8 and retained up to
the order of cos 8.

In the scheme presented in Appendix B, Hk k could be
straightforwardly calculated according to Eqs. (2.4) and
(2.1). With the condition of IskI, I sk, I

(5 and to the order
of cos 8, one obtains according to Eqs. (B2), (B9), and
(B10) in Appendix B

4, —i(k —k') ~ (R( —R(, )
Hk k

= sln8kcos8ksin8k'cos8k'
2 X e&'

11

XU 2+8+ (l)B (I')A (I)AJ(I') D(I QB+/(—l)B J(l')
J J

X AI(I)
~ k' +Pj Uk' ik' (R . —R( ) ~ k +pj Uk —ik.(R —R( )

e ' '+ e

+ AJ(1')
+Uk —ik(R —R) k P& k .(,—,.

e ' '+ — e

R—(sin 8kcos 8k. +sin 8kcos 8k) g'e ' ' U QB+,(I)8,(1')AI(I)A, (I')
~

1, 1' J
(2.5)

g p, B'+,(1)B,(1'),1

0 j
(2.6)

in which DI I, A (I), and A (I') are all strongly localized
functions and defined by

non-negligible contribution in the summation over j.
Therefore, the effective interaction of Eq. (2.5) is reduced
to the following form:

cos(k„'—k„)a+cos(k' —k )a

2 N
V , (2.9)

AI(l)= gpj 8+, (I)g'8, (I'}8, (I'), (2.7)

A (I') = g ( —
p~ )8 (I') g'8+ (1}8+.(I} . (2 g)

Such an effective potential is found to be the nearest-
neighbor interaction, that is, only R& =R&+a(+i, +j) is
important in the summations over I and I' in Eq. (2.5).
On the other hand, along the magnetic zone boundary,
uk —uk —1/&2, and one could approximately replace,
for example,

[(uk+p, uk )/&2]e

by the factor (1+pi)/2 in Eq (2 5) as only RJ=Rl has

where

V =8(sin 8)(cos 8) U

X g 48+,(l)B,(1') A, (l)A (I') 28+, (l)B (I')—
J

2D1 1t

1+pj 1 pj
A, ( I ) + A,.( I')

(2.10)

in which l' is the nearest-neighbor site of l in the original
lattice ad 8k-—Ok have been replaced approximately by
8—=8 (S„=O).
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By using the following s-wave-like, p-wave-like, and d-
wave-like symmetry functions

g, (k) =
—,
' [cos(k„a)+cos(ka )];

g~(k) =
—,'[sin(k„a)+sin(k a)];

gt(k) =
—,
' [sin(k„a)—sin(k a)];

gd (k) =
—,
' [cos(k„a) —cos(k~a )],

one has

cos( k,' —k„)a+cos( k ' —k )a

2

=g, (k)g, (k')+g, (k)g, (k')

(2.11a)

(2.11b)

(2.11c)

(2.11d)

+g~(k)g~(k')+gd(k)gd(k ) . (2.12)

Around the magnetic zone boundary, it is easy to check
g, (k)g, (k') =0 and thus Ht, i, has chielly the p-wave and
d-wave-like components in this region, which in fact is
the direct consequence of the existence of two sublattices.

According to the interactive potential V [Eq. (2.10)]
and the spectrum Ek [Eq. (1.33)], the binding energy of
two spin bags could be calculated in terms of Eq. (32) of
Ref. 6. Hl, i, in Eq. (2.9) is derived in the region of

~ Ei, ~, ~ Ei, ~
( b, . Around

~ et, ~

=b„the change in E& is quite
large as compared to the binding energy and it thus pro-
vides a natural cutoff—the states in the region

~ e& ~

~ b
contribute little to the bound state of two spin bags due
to a comparatively large enhancement of the "kinetic en-
ergy" E], in this region. Thus, although the effective po-
tential is the nearest-neighbor interaction, the size of the

Cooper pair could extend over several times of the lattice
constant.

The numerical values of V as a function of U/t are
shown in Fig. 2 by the solid curve in the intermediate
coupling regime U ~st. One can see that the attractive
potential obtained in the present paper is generally re-
duced as compared with the RPA result shown by the
dashed curve in Fig. 2, which corresponds to the d-wave
component. For example, at U=5t, V=0. 17t and the
calculated binding energy for d-wave pairing is 0.004t
which is much reduced comparing to 0.019t obtained in
the RPA approach; at U=7t, the binding energy ob-
tained for d-wave pairing is 0.009t in contrast with 0.011t
obtained in Ref. 6. But when U) 8 the attraction po-
tential (2.10) becomes stronger than that obtained in the
RPA approach. Actually, the former behaves like 1/U in
the large-U limit whereas in the latter case, the potential
decreases as quickly as 1/U . These discrepancies will be
discussed in Sec. IV. Here we note that in the RPA ap-
proach, some important diagrams have been totally
neglected and the spin-bag effect has not been included
appropriately in the effective interaction. Although the
p-wave components in H z. t, [Eq. (2.9)] have equal
weights as the d-wave component, the binding energy of
p-wave pairing is found to be quite small due to its much
lesser density of states as compared to the d-wave chan-
nel.

It is noted that a similar calculation could be carried
out for the case of two spin bags with parallel spins. The
attractive interaction is found to be very weak, consistent
with the result of the RPA approach.

IV. CONCLUSION AND DISCUSSION

0.6 -r'

0,4

0.2-

0

U/t

FIG. 2. The attractive potential V [Eq. (2.10}] vs Ult is
shown by the solid curve. The dashed curve is the d-wave com-
ponent of the attractive potential obtained in the RPA ap-
proach (Ref. 6).

In the itinerant approach, the "parent" antiferromag-
netic insulator is a commensurate spin-density-wave
state. A hole doped into such a system will induce a local
distortion surrounding it in the SDW background. Such
distortion is described by the particle-hole excitations. In
the weak and intermediate coupling regime ( U ( W = 8t)
it is shown that only the excitation involving one
particle-hole pair which couples strongly with the doped
hole is predominantly important. A spin-bag wave func-
tion is therefore constructed in this regime. The "bag"
size is found quite small with its profile extending over
from a center site only to its four nearest-neighbor sites.
As discussed in Sec. II, more particle-hole excitations will
be involved in the spin-bag entity when U) O'. These
excitations result in a spin disordering around the doped
hole and make the size of the spin bag become large in
the strong-coupling regime.

With obtaining a single spin-bag state, one could con-
struct the free-spin-bag representation and discuss the
effective coupling between the spin bags. Such an in-
teraction between two spin bags (with antiparallel spin) is
shown to be attractive, which is p-wave and d-wave like
as the consequence of the existence of two sublattices.
The potential V [Eq. (2.10)] as a function of U has been
shown by the solid curve in Fig. 2.

A similar conclusion, though with different physics in-
volved, has been also reached in the RPA approach.
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FIG. 3. The lowest order (actually the most important) pro-
cess of the exchange of the amplitude fluctuation in the RPA.

In the RPA the most important contribution to the at-
tractive interaction comes from the direct exchange of
the amplitude fluctuations. Figure 3 shows the lowest or-
der diagram of such a process giving a leading order of
U y„(Q). The high order contributions are actually
negligible in the intermediate- and strong-coupling re-
gime. The d-wave component of the attractive potential
obtained in the RPA (Ref. 6) is represented by the dashed
curve in Fig. 2 which reaches a maximum around U-3t.
With the increase of U, the potential decreases as 1/U .
However, the result of this paper as shown by the solid
curve in Fig. 2 is quite different. While the magnitude of
the attractive potential is generally reduced in U ( W re-
gime, its maximum is pushed to the large-U regime
(around U-10t) and decreases as I/U in the large-U lim-
it.

In fact, all of the results in the present paper could be
obtained in the equation-of-motion formalism. There one
could show that not only the RPA process of Fig. 3 is
present in the effective interaction [Eq. (2.9)] but those
processes shown in Fig. 4 also contribute to the attractive
potential. Their total contribution to Hz z is given by

(a)

the first term in Eq. (2.10) which is much larger than the
RPA result. This means that the contribution coming
from Fig. 4 is dominant over the exchange of the simple
amplitude fluctuations of Fig. 3 which is emphasized in
the RPA calculations of Refs. 4 and 6—8. It is noted that
the most important contribution to the spin-bag energy
as discussed in Sec. II also comes from similar diagrams
shown in Fig. 4(b). These diagrams involve the low ener-

gy spin-flip excitations. Therefore, both the strong spin-
bag effect and the attractive interaction between spin
bags are closely related to the low-lying spin-flip excita-
tions. But this does not imply that the itinerant approach
is simply in accordance with the strong-coupling ap-
proach, as it should be pointed out that the processes of
Fig. 4 still involve the exchange of the amplitude and
charge fluctuations, with the spin-flip processes appearing
in the vertices. On the other hand, under the condition
of [e&f, Je& [ & 6, the direct exchange of the spin-flip fluc-
tuations still have a negligible contribution to H&. k, in
agreement with the RPA approach. ' A repulsive
contribution is also present in HI, z or V [the second and
third terms on the right side of Eq. (2.10)]. It involves
the vertex correction to the direct Coulomb interaction of
the doped hole. The lowest order diagram is shown in
Fig. 5, which is not present in the simple RPA approach.
An intuitive way to understand this interaction is to note
that, while the on-site Coulomb interaction is reduced in
the SDW background due to the existence of two sublat-
tices, it is restored within the "bag" which suppresses the
local antiferromagnetic ordering or sublattices in it.
Therefore, there is an extra Coulomb repulsion when two
spin bags temporarily share a common bag. For this
reason, the total attractive interaction is much reduced in
the weak-coupling regime as compared to the RPA re-
sult, as Fig. 2 shows. On the other hand, with the in-
crease of U, the attractive interaction is enhanced due to
the contribution of the low-lying spin-flip processes ap-
pearing in the vertices.

Therefore, from the nondiagramrnatical approach in
this paper, we have learned that the simple calculation
based on the RPA carried out in Refs. 6—8 is not enough
and the vertex correction and higher order vertices in-
volving spin-flip excitations should be both included to
get a reliable result in a diagrammatical approach. Al-
though our calculations are carried out in the half-filled
limit where the long-range antiferromagnetic ordering is
well defined, the general features of the spin bags and
their interaction, such as their small size and the nearest-

+ I ~ 0

FIG. 4. A set of processes involved in the attractive potential
of Eq. (2.9), which in fact is dominant over the process shown in

Fig. 2.
FIG. 5. The Coulomb interaction with the lowest order ver-

tex correction.



1998 Z. Y. WENG, C. S. TING, AND T. K. LEE 41

neighbor attractive coupling, enable one to expect that
even in the large doping case with disappearing of the
long-range order, the spin-bag picture probably still
works qualitatively as long as the local antiferromagnetic
order exists.

i k.RI

l/i/, /
= y' (sin8/, +cos8„P/$y/$ )a/$,&N/2

(A 1)

chosen such that op/=+1. Explicitly, p/, t and 1(//, / are
written in the following form:
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APPENDIX A

—ik.R
Pl

(sin8k —cos8/, P /y &
)a

N/2
(A2)

[a '. a/. J
= [P'.P/. 1

=
N

X' e
k

(A3)

where RI and R refer to the different sublattices, re-
spectively, and one could show according to Eqs. (1.1la)
and (1.11b) that

The spin-bag operator f/, is expressed in the lattice
representation by Eq. (1.30), in which the sublattice is

I

By the definition of Eq. (2.2} as well as Eqs. (Al) and
(A2), one obtains

(k'1, —k'&~kt', —k$ ) =5/, /,
——[sin8kcos8k sin8&cos8/, C, (k, k')+cos 8/cos 8/, C2(k, k')],2

(A4)

where

C/(k, k') =2C(k)C(k'),

with

(A5)
in which D/ /. is defined in Eq. (2.6).

APPENDIX 8

C(k) = g e 'p, B+,(0) (A6}

B+ (0) is a very localized function of R and actually its
value is non-negligible only at R =0 and R/ =a (+i, 6 j);
here a is the lattice constant. Around the magnetic zone
boundary where ~e/, ~

&b„one has approximately

ut, -u/, —I/v'2 [Eqs. (1.6a) and (1.6b)] and thus the fac-
tor

(u/, —
p/u/, )/&2-(1 —p )/2

which becomes vanishing at R, =0 as p, =+1. There-
fore, C(k) reduces to

C(k) =+B+,(0)~a
~

R —apt (A7)

(k'1', —k'1 ~kl, —kl ) ———(cos 8)C2(k, k') (A8)

for krak', where 8&-8/, is denoted by 8 and C2(k, k') is
given by

when ~e/, ~
&b. For example, at U=2t, C(k)

=0.023ck/6; etc. Hence, under the condition
~e„~,~e„.

~
&b„C,(k, k')=2C(k)C(k') could be simply

neglected and one finds

The interaction matrix element Hk. k is determined by
Eq. (2.4). On the right-hand side of Eq. (2.4), the first two
terms involve the operator Ak which is defined through
Eq. (2.1). A/, is an incoherent part of the motion of the
spin bag which has a negligible effect on the spin bag's
self-energy. But with the presence of another spin bag,
Ak is important to the correlation between these two
spin bags.

As Eq. (2.1) shows, A/, is determined by the commu-
tator [H, P& ] after extracting out the diagonal part
E/, f/, . A/, could be written in two parts:
A/, =At +A), in which A& is deduced from

[Ho, 1(/, ], while A) is from [Hf,g„].A „represents
an incoherent propagation of the spin bag, with the in-
coherent hoppings of the particle and holes involved in
the spin-bag entity, which actually has no effect on other
spin bags (except an exchange process which is negligible,
similar to the discussion of the orthogonal condition of
state ~k, 1, —kl ) for different k's in Appendix A).
Therefore, one finds in A k, only the terms coming from
[Hf Qj((y] contribute to H„'.„.

A$ is related to the commutator [Hf, fr„].In P/, ,
there are two terms: One is the single-hole channel,—ik-R
sin8/, g/ (e '/&N/2)a/, and the other one is

—ik.R,the three-particle-hole channel, cr cos8k gI (e '/
N/2)p/ y/ a/, as shown by Eq. (1.30). The contri-

bution of the single-hole part of P/, to [Hf, f/, ] is given
as follows:
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—ik.R I
—ik R I

Hf, sin8k g' ai =sin0k g' U
N/2 i N/2

X g g'. [8 (1)B (1')8 (m)B (n)aI, a a„
j I'mn

+p 8 (l)B (1')8 (m)8 (n)P .Ia a„
B—(1)8 (1'}8 (m)B (n)aIP,„+ P

p~B—(l)B (I')8 ~(m)B ~(n)PI, P„P
pB —(1)B (1')8 (m)B (n)ai a„P
pB,—(1)B (1')8 J(m)8 ~(n}a& I3 a„
B(1)—B (1')8 ( m )8 ( n )PI P a„
B(1)B— , (l')8 ~(m) 8, ( n)P I a„ /3 ] . (Bl)

could be similarly calculated. For simplicity, its lengthy
expression will not be present here; however, its diagram-

-0
I
I
I
I

(a) (b) (c)

For clarity, Eq. (Bl) is shown diagrammatically in Fig.
6(a). There, the incoming hole (initial state) with spin a
enters from the left with a particle-hole pair carrying spin
—a excited in the final state (right side). Each line
represents a particle (creation operator) or hole (annihila-
tion operator), distinguished by a right-directing or left-
directing arrow. These particle (hole) lines could be in ei-

ther band, corresponding to the numerous terms in Eq.
(Bl). The dashed line in Fig. 6(a) is the interaction line.

The expression
—ik R

Hf, cr cosek y P/ yt ai
N/2

matical representations are shown in Figs. 6(b)—6(h), just
as Eq. (B1) is shown in Fig. 6(a).

Firstly, we consider those terms in [Hf, g& ] which
give nonvanishinIr results when acting on ~0), and are
denoted by [Hf, gz ],. It would contribute both to the
diagonal part 2E&(k'f, —k'l~kl, —kl ) as well as HI, z,
through the matrix elements ( k' f, —k' J,

~ [Hf,
l1 i, t ],p ~l ~0 ) and ( k' I, —k' l f„t[Hf, p „i], o) .

For [Hf, g& ]„the right-side particle lines in Fig. 6
should be all in the upper band (denoted by 13 } to give a
nonzero result when acting on ~0), while the hole lines in
the right side are all in the lower band (denoted by a).
The processes shown in Figs. 6(a) and 6(b) simply corre-
spond to the transition from the single-hole state ~kcr ) to
the excitation state ~Pi, ) (see Sec. II) and vice versa. The
process of ~(t„)~~P„)is included in Figs. 6(c) and 6(d).
All these terms are essential to the spin-bag solution dis-
cussed in Sec. II, or to the diagonal part
2E&(k'l, —k&~kl', —k$) here. Now one can see the ap-
proximations made in Sec. II to obtain the spin-bag solu-
tion (1.29)—(1.33): A truncation is made by neglecting the
higher order contributions of Figs. 6(f)—6(h). Figure 6(e)
has been also neglected as its very small matrix element
as compared to that of Figs. 6(c) and 6(d). On the other

0 -0
I
I

I
I

-0
I
I

,
' 0

{e) {g)

FIG. 6. The diagrammatical representation of [Hf fQ ]
which are classified in terms of the different vertices. The left-
side lines in each diagram are the incoming particle and holes of

and the right-side lines represent the outcoming particles
and holes of [Hf, g„].The particle (hole} is denoted by the
right- (left-)directing arrow.

I

I

I

I
I I

I

I
I I

FIG. 7. A typical process involved in the full-time develop-
ment of one doped hole's motion, which is a combination of the
vertices of Figs. 6(a)—6(d).
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hand, the process ~P), )~~P), ) (which is orthogonal to
) ) in Figs. 6(c) and 6(d) is also neglected, as its ma-

trix element is quite small as compared to ((()), lHf ly),.&.

It is noted that the elementary processes shown in Fig. 6
may occur in any interval of time during the full time de-
velopment, and the retained diagrams, Figs. 6(a)—6(d},
could compose, for example, such process as shown in

I

Fig. 7 in the self-energy of the spin bag.
Except for the above-discussed contributions to the di-

agonal part 2Ek ( k' f, —k' $
~
k f, —k g ),[Hf, fk ], also

contribute to the correlations between two spin bags, i.e.,
HI, . ),. For example, the term shown in Fig. 6(e) has a
non-negligible contribution to Hk k to the order of cos L9:

r—U sin8„cos8ksin8), cos8„+'e ' ' g B+J(1)B
N II

~k +P, Uk' ik' (R —R~)
D)), — A (I) e

7 2

~k —
p, Uk' —,—ik' (R —RI, )+ A (1')e
2

(B2)

in which R& (R& } corresponds to the sublattice with total
spin up (down) and the functions D& &, AJ(1), and A~(l')
are defined by Eqs. (2.6)—(2.8) in Sec. III. Such a contri-
bution is diagrammatically shown in Figs. 8(a) and 8(b),
where each brace on either side means that the lines in-
cluded belong to the same spin bag. We note that in the
full time development, Figs. 8(a) and 8(b) could produce
the diagrams of Figs. 8(c) and 8(d) by combining with

Fig. 6(a)—6(d). On the other hand, it is found that the
terms corresponding to Figs. 6(c) and 6(d) do not contrib-
ute to Hk k except an exchange process which is negligi-
ble in analogy with the discussion in Appendix A. Fig-
ures 6(I)—6(h) are also neglected as their contributions to
Hk k are at least of order of cos I9.

Next, we consider those terms in [Hf, f), j which give
the vanishing results when acting directly on ~0), which
are denoted by [Hf, P), jb. Obviously, these terms all be-
long to Af and appear in H& ), through the matrix ele-

ment (k't, —k'l~[Hf, gz& jbg ),t~0) (evidently, (k'1,
—k'&II1), t[Hf P),J]bl0&=0).

The contributions of [Hf, f),&]b to H& & are diagram-
matically shown in Figs. 9(a)—9(k). Of them, Figs.
9(a)—9(d) come from those terms in [Hf, f),&]b which are
corresponding to Fig. 6(a). Figure 9(e) is the contribution
of [Hf, g),&]b from Fig. 6(b). Figures 9(A and 9(g) are
from Fig. 6(d) and Fig. 9(h) is from Fig. 6(e). And Figs.
9(i)—9(k) correspond to the contributions to [Hf Q),t]b
shown in Figs. 6(I) and 6(h), respectively. All other con-
tributions of [Hf, f),&]b to HI, ), are either zero of the or-
der higher than cos 8, which are presumably negligible as
discussed in Sec. III.

For example, Fig. 9(a) represents the direct Coulomb
interaction between two quasiholes. The term [Hf, g),& jb
which contributes to Fig. 9(a) is shown in Fig. 6(a) and its
expression is obtained from Eq. (B1) as follows:

—ik-R
t

sin8k P' UP P'B+J(1)B+~(l')B ~(m)B J(n)ai &a &a„J (B3)
J )~n

There are two terms in g k( and thus two contributions in (k'1', —k'l ~[Hf, fr), t]bg &(~0). For the single-hole channel
of f k&, it is corresponding to Fig. 9(a) and is given by

(a) (c)

FIG. 8. (a) and (b): The contributions to H'„.
„

from a vertex of [Hf, gz ], shown in Fig. 6(e). (c) and (d): The combinations of (a)
and (b) with the vertices of Figs. 6(a)—6(d) in the full-time development.



41 MOBILE SPIN BAGS AND THEIR INTERACTION IN THE. . . 2001

I
I

I

I

I

I
I

i
I
I

(b) (c) (e)

FIG. 9. The contributions to Hi,
„

from the different vertices of [Hf QQ jb

sin Oi, sin Ok, g' e2 2 4

//'mm '

'kl

U g 8+1(l)B+ (m) g'8 (n)[n, m'] g'8 (n')[n', I],
n'

(B4)

where [n, m'] is defined by

—ik(R —R )

[n, m']=——g' e
k

(B5)

Equation (B4) could be further reduced to the following simple form:

—sin O„sin O„U(u„—U„')(uk —
Uk ) . (B6)

Thus the contribution of Fig. 9(a) to H„'
„

is vanishingly small near the magnetic zone boundary as uk -Uk.
As to the three-particle-hole channel of p „&,(B3) gives the following contribution to (k'l', —k'l ~[Hf, fI, I ]bf i, i ~0)

which is corresponding to the diagram of Fig. 9(b):

4 —ik.(RI —R(, )+ik' (R —R, )

sinOI, cosOi, sinOI, cosOI, g' e ' ' UN'
//mm

X QB+ (I) g' 8+ (I, )8 (12)8 (13)5 . &[1&,1'][12,m']
j /l /213

I &i, II[)'(I ~ II) (B7)

There are two terms in the last set of parentheses of the above expression. The second term in (B7) comes from an ex-
change effect which could be shown ~ C(k)C(k ) and thus is negligible when ~E„~,~s„.

~

(b, as discussed in Appendix A.
For the first term, it could be simplified after using the relation g'8 (l)[l, l']=8 (I') and the approximation

&+j(I)B+~(m)=B+ -(l)6/ in the summation over j, that is

4, —i (k —k') -(Rl —R(, ) 2 I
sinOi cosO&sinOi, cosOi, g' e ' ' U g 8+~(1)8 ~(l') .

N //' J

(B8)

All other contributions of [Hf, pi, t ]& to Hi; i, could be calculated in this way. We note that the contributions of Fig.
9(d), Fig. 9(e), Fig. 9(f), Fig. 9(g), and Fig. 9(k) are all negligible along the magnetic zone boundary as ~EI, ~, ~E„~& b, . And

the last result is
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~k'f, —k' jl([Hf, g„t]bp kg~0) = g'e
II

X sin8&cos8&sinO& cos8& U

Xg B+ (1)B (1')i
J

2B+t (l)B t (1')

+D uk+pJVk —ik (R —R()A. (l)e
2

k PJ k
A (lg)

ik.(RJ —R( )

J

—sin g&.cos28& U

Xg B+,(l)B,.(l') A,.(l) A, (l'), . (89)

Therefore, the first two terms in H& k fEq. (2.4)] involving Ak are obtained in Eqs. (82) and (89). The last matrix ele-
ment in Eq. (2.4), i.e., ( k'f, —k' J, ~fk&p k&Hf j0), could be regarded as the effective coupling of spin bags through ab-
sorbing the virtual background fluctuations. Such a matrix element could be discussed similarly. Under the condition
of ~ek~, ~ek. ~( (b„and to the order of cos 8, it is obtained

(k'f, —k'$(pktp ktHf~0) = —sin Hkcos (9k g'e ' ' UgB+t(l)B (1')A (l)A (1') .
J

(810)
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