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New phase in the one-dimensional t-J model
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A new phase of a gas of pairs of electrons bounded in a singlet state is found in the one-dimensional
t -J model for J )2t and the density of electrons less than 0.2. This phase was conjectured in the study of
the diagonalization of small lattices [Phys. Rev. Lett. 66, 2388 (1991)]. The existence of this new phase
for much larger lattice sizes is demonstrated by a combination of two numerical methods, the variational
Monte Carlo and the power method. A trial wave function for this phase is proposed and shown to be in

good agreement with the ground state obtained by the power method.

Recently there is a great interest in understanding the
t-J model in one dimension. It is believed that the
knowledge gained will become very useful in the pursuit
of solving the t-J model in two dimensions which has
been widely accepted as the model for high-temperature
superconductors. The non-Fermi-liquid behavior of the
one-dimensional t-J model could very well lay the basis
for understanding high-temperature superconductors as
emphasized by Anderson. '

The phase diagram of the one-dimensional t-J model
was studied by Ogata et al. using the method of exact
diagonalization. It shows that there are two phases, the
Liittinger liquid without a spin gap and the particle-hole
separated phase when the magnetic interaction J is much
larger than the charge hopping energy t. When J gets
larger than 2t, the superconducting correlation becomes
dominant in the Luttinger liquid. It was mentioned that
in the low-density region there may be a phase with two
particles bounded. Because of the limit in using small lat-
tice sizes it has not been able to provide conclusive results
about this phase.

On the other hand variational methods have been quite
useful to obtain some ideas about the phase diagram and
ground-state properties for larger lattice sizes. Recently
Hellberg and Mele (HM) have proposed a variational
wave function that successfully reproduces the phase dia-
gram obtained from the exact diagonalization but with
some differences. In the low-density region, HM wave
function seems to imply the existence of a third phase.

To determine the phase diagram from a variational
study is obviously quite risky. For instance, it is not
known how close to the ground state is the optimized tri-
al wave function with the lowest variational energy. The
choice of wave function pretty much determines the pos-
sible phases. Hence it is important to find a method to
provide some guidance about the validity of the varia-
tional results.

In this paper we use a method that systematically im-
proves the variational wave function and provides infor-
mation about its relation to the ground state. In fact it
may also produce the ground state. This method known

HJ= 1g (S; S;+,——,'n, n, +, ) . (2)

This model has been solved exactly at J=O and J=2t
by using the Bethe ansatz solutions. In both of these
cases, the ground states belong to an unconventional class
of interacting Fermi systems known as the Liittinger
liquid; which exhibit power-law singularities in correla-
tion functions and the momentum distribution at the Fer-
mi surface.

It is possible to obtain the ground-state wave function
by using a projection method. Given a trial wave func-
tion ~ll ) that is not orthogonal to the ground state of a
Hamiltonian H; applying the operator (8' —H)t' to ~P)
will project out the ground state as the power p ap-
proaches infinity. The constant 8'is chosen such that all
the excited states with energy E; satisfies the relation
~(W —E;)l(8' Es)~ &1 where E is th—e ground-state

as the power method projects out the ground state from
a trial wave function by applying large powers of the
Hamiltonian.

Below we shall first briefIy discuss the numerical pro-
cedures of the power method. In most regions of param-
eter space HM wave function is a very good approxima-
tion to the exact ground state. But for J)2t and in the
low-density region, comparing to the ground-state super-
conducting pairing correlation is substantially underes-
timated by HM. To better represent the ground state we
propose a wave function of singlet pairs of bounded elec-
trons. This state is then shown to agree with the ground
state obtained by the power method. This state has a
spin excitation gap. At the end we shall brieAy mention
the possibility of bounded states with more than two par-
ticles.

The Hamiltonian of the one-dimensional t-J model
written in the subspace of no doubly occupied sites has
two terms,

H, = —t g C,t C, +, +H. e.
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energy. For the t-J model we may choose 8'=0.
This method has been used in the spin systems by

many authors. ' It is a simplified version of the Green's
function Monte Carlo method. ' ' Details of our ap-
proach can be found in Ref. 4.

To calculate the expectation value of an operator 0 in
the ground state we need to calculate the two quantities
(p ~0~p ) and (p ~p ), where ~p ) =( H)J—'~Ig) and ~g) is
the trial wave function. The numerical technique we
shall use is a combination of the variational Monte Carlo
(VMC) method and the Neumann-Ulam matrix
method. ' First, the trial wave function is expanded in a
complete orthonormal set,

~ g ) =g a
~
a ) . We then

have

(3)

where

(4)

After the configuration ~a ) is chosen with the probability

a =+sin[6k(r, r—")/2] +sin[3k(r& —r )/2] .
I(m

The hole wave function involving long-range correlations
has the coefficient 11;& ~sin[5k(r, —r )/2]~', where r
denotes the positions of the holes. The holes repel each
other when v is positive and attract otherwise. For v=0
the state ~HM) simply becomes the famous Gutzwiller
wave function ~GW). '

We have found that applying the power ( —HP to the
~

HM ) hardly changes the values of the energy, the spin
structure factor, the charge structure factor, the momen-
tum distribution, and the pairing correlation for most
values of t/J and particle density. In other words ~HM )
is very close to the ground state such that the variational
result (p =0) is almost the same as the results with very
large power p. Only in a region of low-particle density,
n, less than 0.2, we found substantial increase of the pair-
ing correlation as power p increases.

The pairing correlation function is defined as

by using the Metroplis method, we are left to calculate
M(a) of Eq. (4). This is equivalent to evaluating the ma-
trix element (M ~) &. Each matrix element ( H) &

is-
decomposed into the product of a transition probability
and a residual weight' ' as

( H) p=P i3—w i3

with

(6)

gP &=I and P &~0.
p

For simplicity we have chosen w &=w =gii( H) &.
—

M(a) is evaluated by generating many
random walk paths with length 2p and each step is
chosen by the probability I' &. The score
of a path from a~a, ~a&~ —+13 is given by
w w . w I3(a&/a*). The mean value of the

score is exactly M(a).
In principle the ground state almost always can be pro-

jected out no matter what the choice of the trial wave
function g) is. But in practice a good trial wave func-
tion is essential to ensure fast convergence without using
very large powers for larger lattices. The wave function
proposed by Hellberg and Mele (~HM)) was shown in
Ref. 4 to be a very good trial function. ~HM) is a prod-
uct of the spin and hole wave functions with the con-
straint that each site of the lattice is allowed to have at
most one particle. The spin wave function is just the
ideal Fermi-gas wave function. The coefficient a is a
product of two determinants det[Pk(r; )] det[Pk(r~ )],
where Pk(r, . )= exp(ikr;). The determinant is proportion-
al to the Vandermonde determinant when the values of k
are chosen as k= —kI;+lAk, l=0, 1, . . . , N —1 where
N is the number of electrons with same spin. Hence for
a spin configuration

~
a ) the coefficient is of the form

where the pairing operator b ( i) =C; & C;+» —C; & C,.+, &.

In Fig. 1 the value of P (k =0) is plotted as a function of
the power for J=3t. The trial wave function is v= —0.5
HM state. The particle density is n, =

—,
' for three lattice

sizes, L = 12 (squares), L =24 (triangles), and L =36 (cir-
cles). The value of P(k=0) is much larger for the
ground state than what ~HM ) represents. The larger the
lattice the larger the difFerence is. Clearly a better wave
function is needed to understand the ground state.

When there are only two electrons in an infinite chain,
the ground state is easily found. For J)2t, the pair
forms a singlet bound state. Its wave function is of the
form P„~(2tlJ)" 'b" 0), where the operator
b„=+,C, &C; „+&

—C;&C;+„t, and the ground-state ener-
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FIG. 1. The pairing correlation P ( k =0) as a function of
power for J=3t. There are three lattice sizes: L =12 (squares),
L =24 (triangles), and L =36 (circles) for the same particle den-
sity n, = 6. v= —0.5 HM state is used as the trial wave func-
tion.
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gy is eo= J— —4t /J .The size of the pair is approxi-
mately I/ln(J/2t). For J/t =2.5 —3.5 the size of pair is
suKciently small that we can have many pairs in the lat-
tice without having substantial overlap between them.

Hence we propose the following wave function for a
gas of single pairs (SP):

'n —1 1V /2e

[o),

where X, is the total number of particles and Pd is the
projection operator that forbids two particles occupying
the same site. This wave function is of a particular form
of the projected BCS state or the RVB state. '

The variational energy of ~SP) is compared with that
of

~
HM ) for different v. Notice that SP wave function

has no variational parameters. The phase diagram based
on this variational calculation is shown in Fig. 2. The
dashed line is the original phase diagram of HM and the
solid line shows the new singlet phase.

As long as the density of particles n, is low enough
such that there is no sufficient overlap between pairs, the
energy per particle is just half the energy of a bounded
pair, eo/2. Hence for an ideal gas of singlet pairs the
variational energy per site for ~SP ) is just
Esp = —(n, /2)(J+4t /J). The energy of a phase
separated state is —n, J ln2. Thus for J) 3.218t the gas
of singlet pairs will condense. It is expected to be a first-
order transition between the SP phase and the phase-
separated state. When the particle density is substantial,
the pairs overlap and interact strongly it becomes less
meaningful to discuss the ground state in terms of pairs.
In this situation HM wave function includes correlation
between all particles and is expected to have a better vari-
ational energy.

The phase diagram of Fig. 2 only suggests the possible
existence of the new singlet pair phase. To verify it we
apply the power method and examine energy and various

3.5

correlation functions as a function of power. In Fig. 3
energy per site as a function of power is plotted for J=3t
with both HM and SP variational states. There are 6 par-
ticles in 60 sites, i.e., n, =

—,
' . While energy of HM (emp-

ty circles) has decreased more than 1% with increasing
power, the energy of SP (solid circles) hardly varies and it
has the limiting value given by Esp.

In Fig. 4 the static spin structure factor is plotted as a
function of wave vector k for J=3t and n, =

6p The
solid circles are the results of SP without power and it
cannot be differentiated from the result of power =20.
The solid line is the expected result of an ideal gas of
singlet pairs:

4
[1—cos( ka ) ]

1+(2t /J)2
I + (2t /J)" 2(2t /J) —cos( ka)

The triangles in Fig. 4 are the results of v= —0.5 HM
state for power =0, the empty circles are for power = 10,
and the squares for power =20. The result of HM has
not yet converged for power =20, but it clearly ap-
proaches the SP result as the power increases.

It is easy to show that' the structure factor S(k)
would be proportional to k for small k if there is a spin
excitation gap. Quite clearly HM wave function
represents the Luttinger liquid without a spin gap, its
S(k) varies linearly with k. Whereas the SP state as
shown in Eq. (11) varies with k . Since the results of SP
state hardly changes with the power, we believe that the
ground state indeed has a spin gap.

The particle-particle correlation or the charge struc-
ture factor has also been studied and is found to be
peaked near very small wave vector k for both SP and
HM wave functions. The results are consistent with a
ground state without a charge gap.

The pairing correlation function, P(k) of Eq. (9), for
the SP state has a 6-function-like peak at k =0. This is
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FIG. 2. The phase diagram of the t-J model determined by
HM and SP variational wave functions. The dashed lines are
the results obtained by Hellberg and Mele (Ref. 3). The phase-
separated state is marked by v& —0.5. The solid line encloses
the region where the singlet pair state of Eq. (10) has lower vari-
ational energy than the HM state.

power

FIG. 3. Energy per site as a function of power for J=3t and
particle density n, =

6 . The empty and solid circles are the re-

sults of using v= —0.5 HM state and SP state, respectively.
The arrow indicates the energy Esp discussed below Eq. (10).
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FIG. 4. The spin structure factor, S(k), as a function of the
wave vector k for a lattice of 6 holes in 60 sites and for J=3t.
The solid circles are the variational results of the SP state. The
solid line is the result of ideal gas of singlet pairs given by Eq.
(11). The triangles, empty circles, and squares are the results of
power =0, 10, and 20, respectively, using the HM trial wave
function.

very different from the Liittinger-liquid"' behavior where
1/KP(k)-k ~ for small k. In Fig. 5 P(k=0) is plotted as

a function of power for J=3t and n, =
—,', . The value of

P(k=0) for HM state is more than doubled while the
value for SP is unchanged within the statistical errors.

In conclusion, we have shown that there is possibly a
new phase of a gas of singlet pairs for the one-
dimensional t-J model. A trial wave function for this
phase is proposed. Using the power method that projects
out the ground state from a variational state, we find that
the energy, the spin correlation, and the pairing correla-
tion of this new trial function are almost identical with
the projected ground state. The very successful wave
function proposed by Hellberg and Mele does not fare so
well in this region.

So far we have avoided the discussion of interaction be-
tween these pairs. It is self-evident that there is attractive
interaction between the pairs so a phase-separated state
can be formed. This effect can also be seen from Fig. 3.
The wave function of Eq. (10) implicitly introduces a

FIG. 5. The pairing correlation function P(k =0) as a func-
tion of power for J=3t and n, = 60. The empty and solid cir-

cles are the results of using v= —0.5 HM state and SP state, re-
spectively.

repulsion between the pairs by obeying the Pauli statistics
and imposing the constraint of no two particles occupy-
ing the same site. Hence the variational energy is always
higher than the ideal noninteracting gas of pairs. The
ground-state energy obtained by the power method seems
to agree with this ideal value very well. The Hamiltonian
has an effective attractive interaction between pairs to
balance out the repulsion due to statistics and the projec-
tion operator. %'e have also found the ground-state ener-

gy to be lower than the energies of both the ideal SP and
the phase-separated states near their phase boundary. It
is suggestive that states with more than two particles
bounded may exist in the low-density region. The bound-
ary of the phase-separated state may be pushed to even
larger values of J/t.
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