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Power spectrum of the current in systems with a conserved density
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Motivated by recent studies of model sandpiles, the power spectrum S of the current in dissipative
dynamical systems with a conserved density is investigated. In contrast to self-organized criticality ex-
hibited in certain lattice gases and noisy Langevin equations, where power laws are described by
universal, simple indices, the index of S(f) for small frequency f is determined at a second-order
phase transition by nontrivial critical exponents. For systems with no external drive (i.e., model 8),
the exact result for the dynamic exponent z is rederived. With drive (driven diffusive systems), the in-

dex is given by the exponent of anisotropies. Simulation in two dimensions yields good agreements
with theoretical predictions.

Recently, there has been considerable interest in the
studies of power spectra for dynamical systems exhibiting
temporal and spatial scale invariance. Such an interest is
inspired by the idea of self-organized criticality which is
an attempt to provide an explanation for the ubiquity of
power-law behavior, particularly the occurrence of 1/f
noise, found in dissipative dynainical systems. Within
that framework, it is generally argued that a dissipative
systein driven out of equilibrium exhibits generic power-
law behavior without any parameter tuning.

Apart from sandpile models, ' several nonequilibrium
lattice-gas models were also found to show some of the
same characteristics. Since the total number of particles,
N, is not conserved in those models, its temporal Auctua-
tion is of obvious physical interests. The power spectra of
N have been shown to display I/f behavior, insensitive to
a wide range of physical parameters and independent of
the spatial dimensions. The driven diffusive systems rep-
resent another important class of nonequilibrium lattice
gas. In addition to nearest-neighbor interaction among
the particles, the system is driven out of equilibrium by an
external driving force which acts locally like a uniform
electric field. Dissipation is introduced by coupling the
system to a heat bath which absorbs the energy input by
the field. Far above the critical temperature T„power-
law behavior prevails by virtue of the physical argument
offered by self-organized criticality. However at T,
power laws are modified by critical fluctuations. In gen-
eral, power laws are then characterized by nontrivial criti-
cal exponents. This is in contrast to certain lattice gases
and noisy, Lagevin equations which yield integral or half-
integral indices like 1, —', , or 2.

The driven diffusive systems belong to the class of sys-
tems having locally conserving bulk density. For lattice
gases, this refers to the case in which the local dynamics
strictly conserves the number of particles. For Langevin
theories, this refers to the case in which the bulk density
strictly obeys a continuity equation, hence with vanishing
noise correlation at zero momenta. For constant total
number of particles, the simplest power spectrum S(co) to
consider is that of the current density J. In this paper, the
scaling behavior of this quantity at T, for the driven
diA'usive systems with attractive interaction is derived by

scaling arguments, and numerical results from Monte
Carlo simulation in two dimensions are presented. As ex-
pected, the exponent (p defined in S(n)) —co ~ for small
frequency ca is completely determined by critical ex-
ponents, in particular the dynamic exponent z. S has
also been computed in low spatial dimensions (d ~ 2) in
the high-temperature, homogeneous phase, where anoma-
lous, nondiffusive behavior was found.

In the presence of an external drive, the current along
the drive is finite. Its spatial average normal to a unit area
is a temporally fluctuating quantity given by Q(t)

'ZxllZXJ. JII(x, t) =V 'Ji(kt =O, k~ =O, t), i.e. ,
the spatial Fourier transform of JII, with V the volume.
Here the coordinates are labeled with respect to the direc-
tion of the drive. The power spectrum
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, (J(((k =O, a))J(((k'=O, a)'))
B(k +k') b (t() + co')

= V 'GJJ(k =O, n))

is defined as an ensemble average in the steady state.
In a continuum description, the coarse-grained particle

density (/)(x, t ) obeys a continuity equation

a = —V J. (2)
Bt

Thus, S(ca) can be obtained from the density correlation
function through

S(co) = V 'co lim k(~ G«(k(~, k& =O, n)) . (3)
kll 0

The J-J correlations along directions other than the longi-
tudinal one vanish upon taking k& 0. The scaling be-
havior of S(c()) can then be derived from the known prop-
ertiesof 6&& at T,. ' ''

For simplicity, let us first consider the equilibrium sys-
tems with no drive, i.e., model 8. Replacing k(( in Eq. (3)
by k in the absence of anisotropy, we have for small a)

S(c0)-V 'co lim k k +" 'G(k 'c0)
k 0

y —
l (z —4+ g)/z
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Here rl and z are the usual correlation-function and dy-
namic exponents. The last line follows from the singulari-
ty of the scaling function G(x) —xi 4+" ')~' as x
because S(co) is positive definite and finite. With no
external drive, (J)=0, and Q(t) at different times are un-
correlated. To see these, recall that the current density
for model 8 is

J= —IV +j, (5)

with the first (second) term being the deterministic (ran-
dom) part, I the transport coe%cient, and Jt' the usual
Landau-Ginzburg-Wilson Hamiltonian. Thus, only the
random noise j contributes to J(k O, t). Since j has
Gaussian distribution with zero mean,

&j.(x, r)j p(x', t')) =2rTS.pb(x x')b(r ——r'), (6)

S(ro) —V 'co (8)

where w=(2 —rl&+2k —z&)/z&. This result is generally
valid for systems satisfying Eq. (2), i.e., with strictly con-
serving density. Clearly, p is specific to the relevant terms
in J(p) in Eq. (2). It has been determined theoretically
for the driven diffusive systeins that the transverse ex-

a white-noise spectrum (S independent of e) for Q fol-
lows for all temperature. This is easily verified numerical-
ly for the Ising lattice gas (see Fig. 1). Moreover, the
linear T dependence in Eq. (6) is found to be valid over a
wide range of T. Consequently, for S(oi) in Eq. (4) to be
independent of co, the exact result z =4 —

rl is rederived.
Returning to the driven systems, the scaling form of the

correlation function at T, was obtained by treating critical
fiuctuations in a dynamic renormalization-group anal-
ysis. ' It is governed by strong anisotropies:

Gqq(kp, k~, co) =k~ " G(kgkg, k~ "a)), (7)

in which k&1 is the major source of subtlety of the associ-
ated finite-size effects. '" Using this, a finite right-hand
side of Eq. (3) in the limit k~~ 0 demands S to scale in
the low frequency limit as

ponents are mean-field like:' ' z& =4 and ri& =0, for all
spatial dimensions d between 2 and 5. The simple result
p =(k —1)/2 thus follows. Therefore, this is a direct way
to measure the important exponent for spatial anisotropy,
k, which plays a crucial role in the finite-size scaling near
criticality. Using again the field-theoretic result' ' k = (11—d)/3, p is found to interpolate between 1 and —,

' as d
changes from 2 to 5.

Simulation results. Monte Carlo simulations have
been carried out to test this prediction. In d =2, the lat-
tice gas is defined on a square lattice of sizes L x L, updat-
ed according to the Metropolis jump rates with strongly
biased hopping (spin exchange) dynamics. Since the
simulations have been described in detail elsewhere,
there is no need to repeat it here. With temperature fixed
at T, (=1.42 in units of the Onsager critical tempera-
ture, as determined recently by finite-size scaling" ), the
power spectruin of the averaged current Q(t) is computed
in the steady state with a length of time series r ranging
from 2' to 2' sweeps, averaged over from 50 to 100 runs,
for L =30, 50, and 80. Taken together, an assessment of
the effects of finite time sequences and finite system sizes
can thus be made.

Figures 2 and 3 are log~o-log~o plots of S(co) against
f=co/2n, showing evidence of power law at relatively low
frequency (in comparison to other models ). Since, for
finite systems, this asymptotic behavior does not extend
over many decades, a log-log plot may be misleading. But
by plotting 1/S vs f, a linear behavior at small f is clearly
shown. This justifies the use of log-log plot.

Near T„a slight dependence of p on temperature is
detected. As T approaches T, = 1.42 from either side, p
converges to unity, in agreement with Eq. (8), as
exemplified by Fig. 2. For T well below T„a power-law
description seems to break down with the appearance of a
"shoulder" at some intermediate frequency, signaling a
time scale is in play. Such a time scale apparently has to
do with the presence of domain walls. y continues to de-
crease as T is increased beyond T„presumably reaching
the asyinptotic logarithmic behavior in the infinite-T lim-
it. Unfortunately, the data in this limit are too noisy to
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FIG. l. A log~o-log~o plot of the power spectrum S(f) of the averaged current vs frequency f for the equilibrium Ising lattice gas
(with E 0) in a wide range of temperature: T =3, 1.05, 0.8, and 0.65, from top to bottom, in units of T, (E 0).
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FIG. 2. S(f) for the averaged current vs frequency f for the
driven lattice gas at T=T„where T, = 1.42. The straight line
serves as a comparison. The vertical displacement of the curves
for diff'erent system sizes is due to the log~oV factor in Eq. (6).
Finite-size eA'ects are only noticeable at low frequencies.

resolve the diA'erence between a logarithmic behavior and
a power law with a very small exponent.

By finite-size scaling, "'
L~~ and L & are also related by

the exponent k via a scaling variable L~~L& . X in this
form has also been estimated' to be about 2.24, which
corresponds to +=0.62. This disagrees decisively with
the above data and Eq. (8). The origin of such a
discrepancy clearly lies in the previous uncertainty in T, .

To conclude, analyzing the power spectrum of the
current in driven diffusive models not only deinonstrates
quantitatively the diA'erence between thermodynamic crit-
ical scaling and self-organized criticality (within the con-
text of models as studied in Refs. 4 and 6), but also yields

FIG. 3. Same as Fig. 2, but for T=1.38, slightly below T,.
The slopes are slightly greater than one, whereas they are some-
what smaller than one for T slightly above T, (not shown).

valuable information on critical exponents, relatively free
from subtle finite-size eA'ects. For systems with no drive,
this analysis simply reproduces the exact result for the dy-
namic exponent z. Studying power spectra for other phys-
ical quantities should also prove useful in obtaining reli-
able estimates of critical exponents.
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