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The critical behavior ofl-dimensional systems witi-component order parametéris studied at am-axial
Lifshitz point where a wave-vector instability occurs inmrdimensional subspad&™ (m>1). Field theoretic
renormalization group techniques are exploited to examine the effects of terms in the Hamiltonian that break
the rotational symmetry of the Euclidean grotifm). The framework for considering general operators of
second order irp and fourth order in the derivatives, with respect to the Cartesian coordinaxgsof R™ is
presented. For the specific case of systems with cubic anisotropy, the effects of having an additional term,
Eﬂ“zl(aigb)z, are investigated in am expansion about the upper critical dimensigh(m)=4+m/2. Its
associated crossover exponent is computed to otéleand found to be positive, so that it isralevant
perturbation on a model isotropic iR™.
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[. INTRODUCTION bations” to the above universality classes, leading to predic-
tions of experimentally measurable behavior of crossovers to
According to the modern theory of critical phenomérfa, other classes.

systems can be divided into universality classes such that the There are many extensions of the modgdls associated
leading singularities of thermodynamic quantities of allwith systems with more complex types of microscopic inter-
members of a given class are the same. The key concept heaetions. For example, systems witlbmpetinginteractions
is that the detailed differences between systems of any givemay display a richer variety of behavior. One particular sim-
class are “irrelevant.” The most prominent and best studiedplified version is the axial next-nearest-neighbor Ising
universality classes are those of telimensionaln-vector ~ (ANNNI) model*®in which an antiferromagnetic interaction
models with short-rangéerromagnetiginteractions, conve- between NNN pairs along one of the axes in a simple cubic
niently represented by the standagd model with Hamil- lattice, in addition to the usual nearest-neighbor ferromag-

tonian netic interactions, is present. By tuning tar more control
parameters in such systems, one can access a Lifshitz%point.
s . The focus of this paper is the critical properties and uni-
N , T, U versality classes of-axial Lifshitz points*®~° possible in
H—f d%| 5 (V) "+ 50"+ 7 ldl* . (1) generalizations of the uniaxiai(=1) ANNNI model. To
describe these, we split the Euclidean sp@einto R™
: . XR™ wi =d—-m. [ i
Here ¢=(¢E}) (with aj 1,.. : ,n) is ann-component order- suﬁspgggsm%j, ;n: tét.lljs’nnl,?t;er:dt?(i 'cc[);o:rdr%nftle’s‘ |n gjese
parameter field, whiler andu are the bare mass and cou- respectively, and introduce the notatiofs=d/dx, and dg
pling, respectively. To access a critical poinmust be tuned  =g/9x,. Then the Hamiltonian of these extended models
(corresponding to tuning, say, the temperature of the systemeads
T) to a special valuer, so that the renormalized (corre-
sponding to the inverse susceptibility of the systeran- d
ishes. The importance of this family of models derives from Hiso= | d%
the fact that an enormous variety of experimentally studied

= 1
2 (0.5 X (9p9)°

B=m+1

N|[D o

systems belong to these universality classes. Specifically, ir- ° m P 0
relevant microscopic details include the lattice structure, the 91 2 T, Y

. . - L + —= d + st — . 2
range of interactiongassumed finite and ferromagnetand 2 C,Zl a?® 2¢ 41 | @

pair interactions decaying with a sufficiently large power of

the separatiorte.g., van der Waals Of course, not all mi- Provided the microscopic aspedts.g., d>d,(m,n), the
croscopic details are irrelevant. Small admixtures of suchower critical dimension hef@ allow the system to be tuned
interactions can be treated theoretically as “relevant perturto Lifshitz points, they occur at critical valugsp and 7, p of
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$ and%. Analogous to the above case, both of theormal- ~ such tensor§?**Instead of dealing with they, coefficients

ized parameters vanish at these poinis:0 andr=0. For  ¢&;, a convenient set are thg,— 1 dimensionless coupling

m=0, the model(2) reduces to the standard isotropi¢ constants

theory of Eq.(1), with no Lifshitz points. At the other ex-

treme,m=d, the system displays an isotropic Lifshitz point. Wi=0il6y, 1=2,...0n (6)
Although the model(2) was introduced more than 25 e

years ago, its systematic investigation beyond Landau theo3ong Witha.

via modern methods of field-theoretic renormalization group N this paper, we will focus our attention on a familiar
has just beguR®~15Within the framework of are expansion example: the symmetry associated withraigube, i.e., cubic

[e=d* (m)—d, whered* (m) is the upper critical dimension anisotropy. Besides the totally symmetric tensor

4+m/2 and 0=m=8], early studies were either restricted to 1

special values ofn and a subset of critical exponeht&!’or ST o S S S S S I
else produced resulfs!’ to O(€?) in conflict with those of 1h2fsfa 37 et Tt Tt e e
Sak and Grest and more recent worl~° Only recently @

has it become possible to master the enormous technical difve have only another tensor, namely, the cubic
ficulties one encounters beyond the one-loop approximation.

The full two-loop renormalization grougRG) analysis Oy apergay= OuyaryOayazOagay: ()
yielded results for all exponent&ritical, crossover, and

correction-to-scalingto ordere? for all values ofm12-1%an  Thus Eq.(4) reduces to

alternative picture of the Lifshitz point has been advocated

by Leite!® This has been critically assessed in Ref. 20. Tayapagay= T1S0 apaz0, T 0200 asagay: ©
Let us also mention some earlier works on modifications, 4 the Hamiltonian becomes

of the model(2). Hornreict* investigated the effects of con-

tributions breaking th&®(n) invariance of the Hamiltonian, & m

using a one-loop approximation. Folk and MdZestudied H=Hiso+ 7] d 21 (3% )2 (10)

Lifshitz points in systems with short-range and uniaxial di-
polar interactions such as uniaxial ferroelectrics. . . .
The purpose of the present paper is to examine the Iegiti-I Notef that_ th'ls model I.Sh?[!“'ld r?ﬁ;‘esiﬁl\mﬁ unlc\i/elrs'allty
macy of taking the fourth-order derivative terms of the]?assr? a :?lm.ple g_enerailzzilon 0 h € AN | maodel, 1.e.,
Hamiltonian (2) asisotropic in the subspac&™. Made es- rom t 1€ uniaxia !smg l(n.—n—l) to.t e”*.aé"a. o) case.
sentially for the sake of simplifying the computations, thisSpeC'f'Ca"y} con3|der a simple Cl_lb'c.lat.t'ﬁ with classical
assumption of n-isotropy” is questionable, since the dis- n-vector spinss of unit length on its sites. Assume that the

crete lattice symmetries at microscopic scales are unlikely tgPIns are coupledlln. an @I symmetric fashion, but with
respect full rotational invariance. Of course, we must accounflfferent characteristics within the two subspadeS and
for these underlying symmetries at the continuum level wheri - In the former, suppose the interactions are like those in
appropriate Hamiltonians are considered. Now, in the longth€ ANNNI model: nearest-neighbor ferromagnetiof
wavelength limit, isotropy can be restored by appropriatestrength J;>0) but second-neighborantiferromagnetic
rescaling of the axes at the level of second-order derivativegstrengthJ,>0) along each of then principal lattice direc-
However, there is no such luxury in general at the highefions. In the complementary subspace, let the interactions be
orders. Hence, the replacement only nearest-neighbor ferromagnetiof strength J;>0).

The lattice Hamiltoniar#,4 is explicitly

o
(21

m 2
2
azl a“¢) _ﬂ;l“z“s%(&“lﬁ“qu)80‘3&“44) &) KeTHia= —J1 > S-S
should be made in Ed2), where7 is a linear combination

/Ta araqa :&iT(i) (4) . <"J> . _<i,J

1%2%3% X a3y

of tensorsT( compatible with the symmetry of the micro- Denoting the Fourier transform of by s;, we recast this
scopic model considered. Here the summation convention igxpression in Fourier spaceq {,qs). The first line yields a
used: The doubly occurring indéxas well as all pairs ofr  contribution «X7_,[J,cos(2),)—J;cos@,)] to the coeffi-

indices are to be summed over. In gendtae “m-clinic  cient of [)%. The Lifshitz point can be accessed, at this
case, a generalization of the familiar triclinic case far pajve level, by tuning th@(Qi) term to vanish, i.e.J;
=3), there are =4J,. Meanwhile, theO(q*) term is precisely of the form

of the ¢, term in the coarse-grained Hamiltonign0).

(5) Though this procedure does not directly yieldoa term,
there are two good reasons that such a term is unavoidable.
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Firstly, we generalized the ANN_NI modgl in the simplest &=2, (UuW)a;, (13)
possible manner: All further—ne|ghbo;I |2r(13teract|ons couple '

only spins along the principal directions>” Had we intro- —17 112 14
duced NNN bonds along diagondise., i—j==*e, *e,), P=[Z4(UWT dren (14
there ;/vogld be a contribution of the . form (f)—f)Lp)c"Tfl’ZZMZp(u,W)p, (15)
Eal#azqalqa2|sq|2, which involves both the symmetric ten-

sor (7) as well as the cubic oné). Second, the isotropic T— 7= m?Z (u,wW)[ 7+ A (u,w)p?], (16)
coupling will be automatically generated when short-

wavelength degrees of freedom are integrated out, as will be fl&l_mMFm,e:MeZu(U,W)U, (17

shown in the RG analysis below. Thus, we expect that a wide ) .
class of lattice models similar to E¢L1) will fall into the ~ Wheréx is a momentum scald;, . denotes the normaliza-
universality class described by the Hamiltonid). tion factor

Unless stated otherwise, we will restrict our attention, for
ise, we wi et o '  T(1+e2)I2(1-el2)T(mid)

simplicity, to this casegi.e., Eq.(9), tensor with cubic sym- — (18)
metry] and study only the Hamiltonia(10). Our goal is to M€ (Qar)BEM-29/AT (2 )T (M/2) |

examine the effects of this type of anisotropy onigwropic .
mraxial Lifshitz point. Generalizing a two-loop RG analysis andw stands for the sefw,, . .. ’an} of np—1 variables.

of the latter casé®*3we will show that the cubic anisotropy Following Ref. 27, we have included a renormalization func-

« &, is arelevantperturbation, at ordee?. tion .AT(u,vzv) to absorb momentum-independent poles pro-
In the next section we present the formal framework forPortionalp* of the two-point vertex function.

renormalization of then-anisotropic model with general ten- ~ 1he fact that the theory must reduce far=0 to the

sors of the form(4), including the associated RG equations. THsotropic one implies the relations

In Sec. Il B, we specialize to the ca€E)) with only a cubic

— N\ — 7SD, —
anisotropy. Since the anisotropy of interest appears in the Z(uw=0)=Z"(u), t=¢.u,7p (19
momenta of a two-point vertex function, a two-loop compu- . _sD
tation is necessary. More explicit results, to first order in the Zp,(UW=0)=2;"(u), (20

cubic anisotropy, are provided, so that its effects on the RGypere thez factors marked by the superscript SD are those

flow near the isotropic fixed point, as well as scaling prop-o¢ Ref. 13, The functiom,(u,w=0) has been computed to
erties, can be investigated. For general valuam ahdn, the one-loop order in Ref. 27. Its explicit form will not be

€ expansion, t@(e?), of the associated crossover exponent,\oaded in the following.

<p2(.n,m,d), is obtained in terms of intggrals over a single Turning to the RG equations, we use the notaﬁgh) for
variable. In Sec. Ill, we compute these integrals, analytically

for the special cases ofi=2,6 and numerically for a range g‘e(fjiﬁg\ﬁtévezn% giegnbeagffxﬁgggrl]e:’(ai » 7, andp), and
of otherm’s. An estimate ofp,(1,2,3) is presented. Con- B P

cluding rema(ks are re;erved for Sec._ IV. Finally, there.are BKEMﬂAoK, K=U,T,p,0;, (21)
three appendixes to which some details of our calculations
have been relegated. mUW=pud,lonZ,, A=¢,u,7p,0. (22

Il RENORMALIZATION GROUP ANALYSIS The functions#, depend only oru and w. Since we use
: minimal subtraction of poles, they are even independent of

A. General anisotropy: Renormalization and RG equations e. In terms of these variables &fid

To renormalize our theory with generahf—ani;otropy” bT(U,W)EAT[MﬁAo'nAﬁ 7.—27,], (23)
(4), we straightforwardly extend the considerations for the . .
misotropic model2) in Ref. 12. For the details in the analy- the 8 functions can be written as
sis, we will follow the conventions and notations of Ref. 13.

Here, we haven, variables,&; , whose scaling dimensions Bu=—[e+ny(u,w)]u, (24)
vanish at the Gaussian f|?<ed po.|p\t= r=u=9. .There are B.=—[2+ 7.(uw)]7— pb_(u,W), (25)
two consequences: Associated with each of¢hés a renor-
malization factoiZ,, . Further, these quantities, as well as all B,=—[1+ n,(u,w)]p, (26)
other renormalization factors, become functionsngf di-
mensionless coupling constants, namely, the renormalized Bo=— ngi(u,w) oj. (27)

four-point couplingu andn,,—1 renormalized counterparts

of the bare variables/; [Eq. (6)]; Also, since we fixed all renormalization factafg such that

the regular part of their Laurent seriesdns exactly unity,

Y i—o 12 the associatedy, functions are related to the residues of the
wi=oloy, 1=2,...N,. (12 Z,'s via
Accordingly, we reparametrize the theory as m=—Uud,Res_oZ, . (28

224415-3
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In terms of the operator

D=, + 2 By, (29)

the RG equations of the renormalizédtpoint cumulant
functions GEQ&(X)E<H}\‘:1¢&JeH(Xj»wm and the corre-
sponding vertex functionﬁﬁg‘é read, respectively,

Gln=0,

ren

rgh=0. (30

N
D,— 2 ¢

N

Being dimensionlessy will appear in theZ's to arbitrary

PHYSICAL REVIEW B68, 224415 (2003

Here,j ,(m) andj,(m) are single-variable integrals encoun-
tered in Ref. 13. Their definitions are noted for the readers’
convenience in Appendix A: Eq$A28) and (A29). Though
more complicated,,(m), igl(m), andiaz(m) are analogous
integrals, defined in EqgA24)—(A26).

From the structure of thes&factors, it is clear that, at this
two-loop order, bothn,,l and 7., are proportional td (n

+2)/3]u? with coefficients linear inw. As a result of Eq.
(27), and keeping only term® first orderin o,, we find the
associate@ functions to be of the form

orders in general, even though we are dealing with the sys-

tematics of an expansion in powers wf(the loop expan-

sion). However, our principal goal here is a local stability

analysis of the modd[10) about the isotropic fixed point

Po:(u* ,w=0), (31

whereu* is the nontrivial zero of3,(e,u,w=0) the explicit
form of which, up toO(€?), is given in Eq.(60) of Ref. 13.
To this end, we can linearize abo®t,. Hence it will be
sufficient to compute the counterterms to first ordewin

B. Cubic anisotropy: RG flow and scaling

Given the general framework above, we turn to explicit
results for the particular case with only a cubic anisotropy.
With just o; and ¢,, we have only one w (and no need for
the set w). Furthermore, we need only terms linear in w.
Referring the reader to Appendix A for the computational
details, we note here that the pole terms of the two-loop
graph -<—- yield the renormalization factors

2

B n+2 1 ) ) u
Z¢—1—Tm[J¢(m)—3a¢(m)W]:
+0(w3,u3), (32)
77 s t2 1 _ 36 u?
¢=o + 3 96m(m+2)[10(m)_ Ul(m)W]?

+0(w?,ud), (33
and
n+2 4i,,(m) u?
Zo2a, = 1T 3 MM 2)(m+ 4)(m+6) €
+0O(wu?,ud). (34)

Bo, n+2 ,[Ki Ki| oy
(,302>:_2Tu 0 Kzz)(ffz Lo,
(35)
where
. _do(m) j,(m)
17 12(8—m) ' 96m(m+2)’
3iym 3ig, (M

27 "8-m 8m(m+2)’

_jg(m) 4i,(m)
T 128-m) m(m+2)(m+4)(m+6)’

K22

are constants, independent of the couplings.

Since our main interest is the neighborhoodZdf,, we
need to evaluate in this equation only at then-isotropic
fixed point,

6e
u*_

_ 2
n+8+O(e ).

(36)

Given the form of the matrix in Eq35), the eigenvalues are
trivially obtained, the first of which is jusy? in Refs. 12 and
13:

_24(n+2)
(n+8)?

e K162+ 0(€),

N5, =7

Associated with these are, respectively, {heear scaling
fields:
and o,

(37)

whereb=K,/K1;— K. NearPj,, we may drop the irrel-
evant contributions proportional to—u*, so that the flow
equations

O'1+b0'2

J o
eﬂgi_ﬂo’i (38)

are solved byo;(€). Imposing the initial conditionsr;(1)
=0, these take the asymptotic forms
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— — — TABLE I. Numerical values of the integrajs(m), i,_(m), and
O)~(o1+bay)t To—bayl ™ 7oy, 39 . ) . 72
71(6)=(o1tbor) 72 ? (39 the coefficientsC(m) of ¢, introduced in Eq(53).
— *
ao(€)=al " oy, 40 . .
26)=0ool e (40 m jo() () c(m)
Thus, to the order of inte_rest, t_he anisot(opylea_ds toa 4.74074 0.074074 0.00309
dependence on the following ratio of running variables: 5 10.804 0.24682 0.00380
— — . 4 20.067 0.6175 0.00444
o) oy()~(ala) € 0T 4D 5 32.95 1.279 0.00501
x % 6 49.7778 2.325428 0.00552
=[w+0O(w?)]¢ (7o, 75), (42)

As we will show, 7 — 775 is positive so that the effect of |ytically, except the one over the scaling variable
w is more significant in the infrared limit(—0). Therefore,

we introduce the anisotropy crossover exponent e VXoXq (48)
(XX ) 1A
e2=12(15,~ 1), (43 (Xg¥s)
. _ _ . - for which we resort to numerical means. The firg}, is
which governs the scaling behavior wwith 7: w—~7"%2.  familiar from Ref. 13, recalled here in Table I.
Since they's are already 0D(e”), we may insert the zeroth-  The second involves, in general, a product of three hyper-
order value fory, (i.e., 1/2 to obtain geometric functions. As outlined in Appendix E of Ref. 13,
) we write
n+2 1 48 ,,(m) jl(m|
o= € % Yy
(n+8)2 m(m+2) | (m+4)(m+6) 8 ivz(m):f dvlm(v):f Odvlm(v)+Rm(vo), (49)
0 0
+0(€). (44)

splitting the integral into a contribution from a finite interval
As a consequence of the contribution proportiongdi@f  (0,v9) and a remaindeR,(vo). The pointyy, was chosen so
B, [see Eq.25)], the variabler is not a scaling field. Pro- that standard numerical integration routinespecifically,
ceeding similarly as in Ref. 27, we can define a nonlineaMATHEMATICA ?%) yield sufficiently accurate results for the

scaling field® first termanda few terms of the asymptotic expansion Fgr
suffice for evaluatingR,, approximately. In practice, we
g,=71+ C;Z(u)p2+ C;2YW(U)Wp2+ e (450 chosevy=9.5 and just the leading term of the asymptotic

_ expansion. The latter can be computed analytically and leads
with the asymptotic scale dependenge(¢)~1-zg_, to
where the ellipsis stands for terms of higher ordewin

Utilizing the above results, one can generalize the consid- 3\/;28"“(m—2)2 ug"—8
erations of Refs. 12 and27 in a straightforward fashion to ~ Rm(vo)= s—m- ©0
obtain the scaling forms of the renormalizNepoint cumu- 'm/2)I'\ =+m/4|T"(2—m/4)
lants G(N): 2

(N) ] Combining this with the numerical integration over #g),
G[{Xa Xg}197p, 01,02, U, 1] we arrive at the values df, (m) displayed in Table

l \/;Xa quﬁ] P ﬂ As discussed in Ref. 13, the cases=2 andm=6 are

' e

'9¢' g’

whereAg is the scaling dimension a&™):

~pn Y2dc
~0. Ye

T , (46)  quite special. The scaling functions from whith(v) is
o8 9, formed—and henck,(v) itsel—reduce to elementary func-
tions. [From another perspective, their asymptotic expan-
sions terminate at low ordeté!® See Eqs(C1), (C7) and
Ag=(N/2)[d—2+ 5,+m(6—1)]. (47 (B8), (B9). Indeed, the approximatioi®0) even vanishes for
m=2.] As a result,ig2 can be computed analytically. The

results(see Appendix ¢

With the exception ofp,, explicit expressions for all expo-
nents, up taD(e?), are given in Refs. 12 and 13. In the next

section, we present a brief summary of the steps for comput- _ 2 _ 4 59
ing ¢,. 16,(2)= 52 |02(6)=20(8In§—2—7 : (52)

lIl. EXPLICIT RESULTS FOR THE ANISOTROPY are in conformity with the values quoted in Table | and pro-

CROSSOVER EXPONENT vide useful checks of our numerical procedure. For com-
pleteness, let us also recall the analytic values
From Eq.(44), we see that only two integrals are needed

for finding the exponeng,, namely,j,(m) andi, (m). As . 128 | 448
shown in Appendix A, all integrations can be performed ana- 27 9

224415-5



H. W. DIEHL, M. A. SHPOT, AND R. K. P. ZIA PHYSICAL REVIEW B68, 224415 (2003

from Ref. 13. that this is arelevant perturbation for an isotropioraxial
Inserting the values from Table | into E¢4), we write  Lifshitz point. To O(e?), the crossover exponent has been
the anisotropy crossover exponent as computed for a range oh, with analytic forms for the spe-

cial cases ofn=2,6. Though we have not obtained similar
results for general anisotropic interactions, there is no doubt
that cubic anisotropy of the form included in the Hamiltonian
(10) will be generically present even in systems with lower
Here theC(m) are thee? coefficients of the crossover expo- symmetries, leading to crossover in general. Since all previ-

27(n+2)

ni8)? C(m)e+0(€d). (53

¢2

nentg, for n=1. They are listed in the last column. ous investigations of m-axial Lifshitz points(with m>1)
For the special cases where analytic results are availableye based ormm-isotropic Hamiltonians, our conclusion is
we have that, unless the microscopics of a system enforces rotational
invariance inR™, the critical properties will not fall into the
C(2)=i (54) universality classes found so far. Nevertheless, we should
324 caution that, though the crossover exponent is positive, its
and numerical values are relatively small. For example, in the
case most likely to be physically accessib=3,m=2n
174 4 19 =1), this exponent is only 1/81. Though measurable devia-
C6)=> §In§— 8_1}' (55  tions from the isotropic class may be difficult to detect for

real systems, it should be interesting to test our predictions in
As we see, in all cases,, is positive at this order. Thus, we Monte Carlo simulations of suitably designed lattice models.
conclude that the isotropic fixed poif, is unstable against A more interesting question is, given the RG flow is away
perturbations from cubic anisotropy of the form included infrom the mrisotropic fixed point, whether there is a new
the Hamiltonian(10). stable fixed point or not. Of course, if the former is true, then
Of specific interest is the scalar biaxial case=2, n we have a new universality class. However, preliminary
=1, corresponding to a biaxial generalization of the threestudies indicate that the function forw has no zero, for any
dimensional ANNNI model discussed in the Introduction.finite, nonvanishingv. Worse, the flow seems to run indefi-
The upper critical dimension being 5, let us set2 to con-  nitely towards Hamiltonians associated with singular propa-

sider a physical system ith=3: gators(i.e., parts quadratic inp no longer being positive
L definite, so thatO(q?) terms will be needed to stabilize the
ey(n=1m=2d=3)= —~0.0123. (56) theory. In addition, we might speculate that the system would

81 undergo a first-order transition, albeit a weak one. Clearly,

_ . _ further investigations are necessary before definitive conclu-
Since this exponent is so small, we see that, unless th&ons can be reached.

anisotropic amplitudes are large, we must be extremely close
to the Lifshitz point(by careful tuning of the two control
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with ¢ being ann-component order parameter. Unlike pre- GRAPH OF I'® TO ORDER ¢,
vious studies of “anisotropic” Lifshitz pointé we are not q _ ,
concerned with couplings that break then®symmetry of Let us denote momenta iR by g=(k,p) with compo-

the order parameter. In this sense, guis more appropriate nentske R™ andpe R™ (m=d—m). As we will be dealing
for, say, multicomponent alloys than for spin systems. EspeWith cubic spatial anisotropy extensively, let us define
cially for then=1 (Ising) case, we showed how anisotropy

of the form(57) naturally arises from a generalized ANNNI K § Kt Al
model. In the case we explicitly considered only a cubic L e (A1)
anisotropy, corresponding to a tend®), was presenfcf.

Egs.(9) and(10)]. which is to be distinguished from the usudi= (k-k)2. At

Using field-theoretic renormalization group techniquesthe Lifshitz point7=p=0, the Fourier transform o&(x),
and expanding about the upper critical dimension, we foundhe free propagator in position space, is
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G(q)=G(k,p)=[p?+ G1k*+ G.k*] 2. (A2)

To two loops, T®(qg), the Fourier transform of the bare
vertex function'?), is given by

o

r®(g)= Ba nt2 =Gi@+0(l%), (A3

where a3(q) denotes the Fourier transform &3(x). In
addition, at this order of the expansion, we will need only

the residues of the simple pole 812 at e=0. Thus, all
coefficients ofe” ! may be evaluated at=0, ord=d* =
+m/2. .

Let us compute the pole terms & to first order inw
=¢,/0,. Since the dependence én follows from dimen-
sional considerations, we temporarily $st=1. Expanding
in W, we have

G*=[G®*Ji=o+ W[ 9z G Ti=0+ O(W?). (A4)

The pole contribution of the first term on the right-hand side
has been computed in Ref. 12. Expressed in terms of the

integralsj ,(m) andj,(m) of Ref. 13[see its equation&t3),
(44), and(46)], the result is

2
m,e

jo(m)
16m(m+2)

_ j¢(m) 2
2(8—m)

k*|+0O(€%).
(A5)

[GS]\i’v:OZ

To compute thev derivative appearing in EqA4), we start
from its position-space representati@r(x), and obtain
[0G3(X) ]a=0=—3G5(X) 2 74(Go*Go)(X). (AB)

HereGy(X)=G(X)|g=0, and Go* Gp)(X) means a convolu-

tion in position spacéi.e., Fourier transform ofG(q)1?).
Next, let us exploit the scaling forms of botd, and
Go* Gy. Defining the radii

F=\XoXa R=\XgXg, (A7)

the scaling variables
v,=X,R Y2  z=v,0,=17 (A8)

and the vectoro={v,} ande={xz}/R, we write

Go(X)=R 2" ®, 4(v) (A9)
and

(Go*Go) (X)=RYma(2). (A10)
Here, the scaling functions are

™ [ )e.k vtip-e
md(v)—f f Wp? (A11)

and

PHYSICAL REVIEW B 68, 224415(2003

M (m) gik-vtip-e
Yma(v )_f J’ (AL 22
(k™ +p?)
where [("=(27)"™fd™k and fgmé(zw)*mfdmp. Their
explicit expressions in terms of Taylor series and hypergeo-
metric functions, as well as the asymptotic expansions for
largez, are given in Appendix B.
Inserting the above scaling forms into E&6) and per-

forming the Fourier transformation, we encounter integra-
tions overx. Using hyperspherical coordinates\(ﬁ,ﬂm) in

R™and R,Q;,) in R™, let us denote angular averages by

(A12)

ﬁssglf f(Qp)dQp, (A13)
where Sp=[dQp=27P"2T'(D/2) is the surface area of a
D-dimensional unit sphere. In the radial integratipfdR,
the distributionR™3*2¢ is found to appear. Employing its
Laurent expansiot

1
R_3+25=E5”(R)+O(e°), (A14)

we find

% eIRp e

. 537
[ﬁwG ]W:O_ (9R2

fdmve"Rk "D g, (V)

X2 0 Ymax()|r=otO(e).  (A15)

The rightmost part of EqtA15) can be rewritten as
m
2 Iy Ymar (V1) =12MY; 0 (v7) +480°Y) 1 (V)

+16§ ViYL (), (A16)
whereY(?)(z)=d*Y(2)/dZ.

Note that the function oR that must be differentiated in
Eq. (A15) has an expansion in even powers\@® because
the angular integration ifd™v yields zero for the coeffi-
cients of all odd powers. Thus only the contribution®?
produced by the two exponential functions contribute to the
pole term on the right-hand side.

For the angular averages, we may exploit the characteris-
tic function

—m o« (ikn)?T(m2
gy kT Tm2) (AL7)
=0 4%IT (£ +m/2)
to find
m ON_ 5“1“2“.6QZN—1“2N
Vay """ Yagy m(m+2)(m+4)---[m+2(N-1)]

(A18)
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In the numerator the ellipsis- -

aia»'

Utilizing these results, we easily find

2 m p2
—eRPe o =— =, A19
= -~ (A19)
3114
; —l (A20)
G k4t
iVRk- v —
IR [R=0 4am(m+2)’ (h21)
and
— E vle R |R 0
_ 3(m+8)ki+k? (a2
“Immimidmie VA2
Combined with Eq(A15), these results yield
- F2 .| 18 4(m 9i,,(mM)
[0 Ta-g= | A g
€ 8—m am(m+2)
24i (m) . o
I
T mmT 2y (mrdymre)k | TOeD:
(A23)
where we have introduced the integrals
id)(m)EBmf dvo™ 1P md*(v) d*(vz)
0
+APY 4o (V) + S VYL ()|
(A24)

iy (M)= Bmf dvp™*3

. MY, g (V7) +42°7Y] o (1P)

4(m+8)v* (i)
A mTE) Y g (V 2)} (A25)
and
Igz(m)EBmf:dvvm”q);d*(v)Y(' (%), (A26)
with

B S4—m/ZSm _ 210+m77_6+3m/41'*(m/2)
" OF2,  T-mi4T(mi4)

(A27)
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stands for the remaining For completeness, we recall the definitibhsf
(2N—1)!I1—1 pairings of the indices. This can also be
thought of as A-point function of a Gaussian theory whose
propagator between two “points®; and «; is given by

(A28)

jd,(m)zBmfo dv™ DY 1 (v)

and

jU(m)Eijo dvvm+3q)3m’d*(v). (A29)

APPENDIX B: THE SCALING FUNCTIONS @, 4(v)
AND Y, «(2)

First, let us recall the properties of the scaling function
®, ¢(v), which were established in Refs. 12 and13. Its Tay-
lor expansion is

v2 4
-7

(B1)

12 =

(Dm,d(v) 52+ 2

rerR2+1-el2)

ar

1
€12+ §+m/4)

It is possible to express the power series in closed form by
exploiting a relation of the generalized hypergeometric func-
tions ;F, (by summing the contributions with even and odd
values of¢ separately, namely,

o 1 T(@a+er),
2 T Tiorn Y
I'(a) 1 y?
:W]_Fz a,z,b,z)

(B2)

The largev properties of,F, lead us to the asymptotic ex-
pansion

21-m m—2 L L
Dpgr(v) = Grmi 71 v [1+0(v )],
v T I §+m/4

(B3)

which will be used in numerical evaluations 'q,fz(m) de-

scribed in Sec. lll.

The scaling functionmed(vz) was also studied in Ref.
13: It appeared in the calculation of another scaling function,
0 (v), that was needed for the coupling constant renormal-
ization at the two-loop level. Its Taylor expansion, from Eq.
(D4) in this reference, reads
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=D 2 T(€/2— €l2 z\¢ 1 o1 T2+¢2)(— 24"
Yma(2)= 2 ( ) -7 Y('”)*(Z)—— LS i )
: 24+m = 1 4 o12+m,(6+m)/4 = (1 5
0| €12+ 2+m/4 r §+m/4+€/2
(B4) (B6)
As for ® above, we can write a closed form for this function
in terms of two hypergeometric functions:
B 1 4 15 m?Z7
platm_(6+m)/4 5 1F2 2'§'§+Z'§1
72 T (~el2) el 1l m2 [|5+m/4
Yma(2)= i Pl =555 T
I's+m/4 5
2 ' =
—2 F 5'33+m'22 B7
(i rarma 22 2% Tl | B7)
2 E 1 e P m z°
AT(1+mia 227227 264
In the special casem=2 andm=6, the hypergeometric
(B5) functions here reduce to the elementary functions:
Let us note that, though the seri@) starts with a term 3 7z 722 78
that has a pole iw, all its derivatives are regular at=0. In Y§D(2)= ———|1-e 4 1+ -+ —+ ——

. . ! : (4)22% 4 32 384
particular, for the calculation of the mtegna,lz(m), we need 88)
only Yfr']f’g*(z) at the upper critical dimensiod* =4+ m/2.

Thus, and
|
_ 48— 320+ 2%) + e #4 15360+ z(16+ 2)(240+ 122+ 2
Vi) 28 ) e ¥ (16+2)( i) ©9)

(47)%642°

For the integral Uz(m), we will need the asymptotic ex- , 1
pansion ofY{"), (2): Yia (2= 55 [ Prar (VD) = Pryge(0)]. (B3
3 In other words, the scaling functich,, 4« completely deter-
zZ Y 1+0(z ?)]. mines all derivatives off, 4+, a fact we will exploit in the

following appendix.

Yo (2) =

1
Z=% 52+m__(6+m)/dp|
247 M F( 5 + 7

B10

( ) APPENDIX C: ANALYTIC RESULTS FOR m=2 AND m=6
Let us, however, note that, for arbitrary valuesnafde- The special casm=2 is the simplest one since the scal-

rivatives of Yy g(2) can be expressed completely in termsmg function ® acquires an extremely simple form at the

of @, g+ (v) (with v=z),***3since their Taylor series ex- upper critical dimension:

pansions differ only slightly. In particular, using

¢ € { € { € 2/4
AT Bt I D, 5(\2)= : (CD)
F(2+1 5 (2 ZF(Z 2), (B11) P, (4 77)2
we get the general relation For the functionY 5, using the relatior{B13), we thus get
Pna(V2)=2[2Y4(2)~ €Yma(2)].  (B12)
/ /4 _
Recalling thatY,, 4 has a pole ate=0, we verify that Y242)= (4 )2 Zz(e . (€2
Ymd(2) = — ®pmgx(0)/(2€) +O(%. Thus, in the limit e
—0, we find an exceedingly simple relationship betweenEven more simplifications of integrals are realized if we use
Yigand®p, g: the representation
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1 4
f dte‘z"“:E(l—e‘”“), (C3)
0

so that

Y§(2)= L2 [Mpe (C4
2907 (am2 8o
Inserting this expression into EgA26) for the integral
iaz, we find

i,,(2)=2 f:dgg“e—zé foldtﬁe—é‘. (C5)

To arrive here, we changed the integration variableto
=z/4 for convenience. Carrying out the trivial integrations,

we get

(C6)

tos 5_2
i = | g
o, (2) 2><4.J0 dtt>(t+2) 57

The special casen=6 is, as usual, somewhat more in-
volved. This is due to a more complicated functional form of

the corresponding scaling functioh. Using {=2z/4 once
more, we have

1 1
2(4m)° ¢
Again, we exploit an integral representation like EG3)—

now, for both functionsbg ; andYg ;. Thus, Eq(C7) can be
written as

g A4 = [1-(1+0e f].  (C7)

PHYSICAL REVIEW B68, 224415 (2003

1 1
j dtte ¢
2(4m)3Jo

Inserting this into the relatio(B13), we obtain

e Aa))= (C9

1

1 1
- | dtt? f dye W4 C9
16(477)3fo 0 (€9

Yo A2)=
and

(iv) 1 st 2ty

Ye,‘%(Z):dett fodyy3e 24 (C10

The desired integralgz(G) thus becomes

i, (6)=4f dggef daae*aif dppe F¢
2 0 0 0
1 1
xj dtt5j dyy’e ¢V
0 0

1 1 1 1
=4><6!f daaf dB,Bf dtt5f dyy?
0 0 0 0

ot
(a+B+ty)’

et 5
B 37 27)

The integration over was trivial, and the last result was
obtained by simple repeated integrations with the help of
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