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Relevance of space anisotropy in the critical behavior ofm-axial Lifshitz points
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The critical behavior ofd-dimensional systems withn-component order parameterf is studied at anm-axial
Lifshitz point where a wave-vector instability occurs in anm-dimensional subspaceRm (m.1). Field theoretic
renormalization group techniques are exploited to examine the effects of terms in the Hamiltonian that break
the rotational symmetry of the Euclidean groupE(m). The framework for considering general operators of
second order inf and fourth order in the derivatives]a with respect to the Cartesian coordinatesxa of Rm is
presented. For the specific case of systems with cubic anisotropy, the effects of having an additional term,
(a51

m (]a
2f)2, are investigated in ane expansion about the upper critical dimensiond* (m)541m/2. Its

associated crossover exponent is computed to ordere2 and found to be positive, so that it is arelevant
perturbation on a model isotropic inRm.
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I. INTRODUCTION

According to the modern theory of critical phenomena1,2

systems can be divided into universality classes such tha
leading singularities of thermodynamic quantities of
members of a given class are the same. The key concept
is that the detailed differences between systems of any g
class are ‘‘irrelevant.’’ The most prominent and best stud
universality classes are those of thed-dimensionaln-vector
models with short-range~ferromagnetic! interactions, conve-
niently represented by the standardf4 model with Hamil-
tonian

H5E ddxF1

2
~¹f!21

t°

2
f21

u°

4!
ufu4G . ~1!

Heref5(fa) ~with a51, . . . ,n) is ann-component order-
parameter field, whilet° and u° are the bare mass and co
pling, respectively. To access a critical point,t° must be tuned
~corresponding to tuning, say, the temperature of the sys
T) to a special valuet°c so that the renormalizedt ~corre-
sponding to the inverse susceptibility of the system! van-
ishes. The importance of this family of models derives fro
the fact that an enormous variety of experimentally stud
systems belong to these universality classes. Specifically
relevant microscopic details include the lattice structure,
range of interactions~assumed finite and ferromagnetic! and
pair interactions decaying with a sufficiently large power
the separation~e.g., van der Waals!.3 Of course, not all mi-
croscopic details are irrelevant. Small admixtures of su
interactions can be treated theoretically as ‘‘relevant per
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bations’’ to the above universality classes, leading to pred
tions of experimentally measurable behavior of crossover
other classes.

There are many extensions of the models~1!, associated
with systems with more complex types of microscopic int
actions. For example, systems withcompetinginteractions
may display a richer variety of behavior. One particular si
plified version is the axial next-nearest-neighbor Isi
~ANNNI ! model,4,5 in which an antiferromagnetic interactio
between NNN pairs along one of the axes in a simple cu
lattice, in addition to the usual nearest-neighbor ferrom
netic interactions, is present. By tuning two~or more! control
parameters in such systems, one can access a Lifshitz po6

The focus of this paper is the critical properties and u
versality classes ofm-axial Lifshitz points,4,6–9 possible in
generalizations of the uniaxial (m51) ANNNI model. To
describe these, we split the Euclidean spaceRd into Rm

3Rm̄ with m̄[d2m. Let us label the coordinates in thes
subspaces asxa , a51, . . . ,m, and xb , b5m11, . . . ,d,
respectively, and introduce the notations]a[]/]xa and ]b
[]/]xb . Then the Hamiltonian of these extended mod
reads

Hiso5E ddxF r°

2 (
a51

m

~]af!21
1

2 (
b5m11

d

~]bf!2

1
s° 1

2 S (
a51

m

]a
2fD 2

1
t°

2
f21

u°

4!
ufu4G . ~2!

Provided the microscopic aspects@e.g., d.d* (m,n), the
lower critical dimension here9# allow the system to be tune
to Lifshitz points, they occur at critical valuesr° LP andt°LP of
©2003 The American Physical Society15-1
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r° andt° . Analogous to the above case, both of therenormal-
izedparameters vanish at these points:r50 andt50. For
m50, the model~2! reduces to the standard isotropicf4

theory of Eq.~1!, with no Lifshitz points. At the other ex
treme,m5d, the system displays an isotropic Lifshitz poin

Although the model~2! was introduced more than 2
years ago, its systematic investigation beyond Landau the
via modern methods of field-theoretic renormalization gro
has just begun.10–15Within the framework of ane expansion
@e[d* (m)2d, whered* (m) is the upper critical dimension
41m/2 and 0<m<8], early studies were either restricted
special values ofm and a subset of critical exponents6,16,17or
else produced results18,17 to O(e2) in conflict with those of
Sak and Grest16 and more recent work.10–15 Only recently
has it become possible to master the enormous technica
ficulties one encounters beyond the one-loop approximat
The full two-loop renormalization group~RG! analysis
yielded results for all exponents~critical, crossover, and
correction-to-scaling! to ordere2 for all values ofm.12–15An
alternative picture of the Lifshitz point has been advoca
by Leite.19 This has been critically assessed in Ref. 20.

Let us also mention some earlier works on modificatio
of the model~2!. Hornreich21 investigated the effects of con
tributions breaking theO(n) invariance of the Hamiltonian
using a one-loop approximation. Folk and Moser22 studied
Lifshitz points in systems with short-range and uniaxial
polar interactions such as uniaxial ferroelectrics.

The purpose of the present paper is to examine the le
macy of taking the fourth-order derivative terms of t
Hamiltonian ~2! as isotropic in the subspaceRm. Made es-
sentially for the sake of simplifying the computations, th
assumption of ‘‘m-isotropy’’ is questionable, since the dis
crete lattice symmetries at microscopic scales are unlikel
respect full rotational invariance. Of course, we must acco
for these underlying symmetries at the continuum level wh
appropriate Hamiltonians are considered. Now, in the lo
wavelength limit, isotropy can be restored by appropri
rescaling of the axes at the level of second-order derivati
However, there is no such luxury in general at the hig
orders. Hence, the replacement

s° 1S (
a51

m

]a
2fD 2

→Ta1a2a3a4
~]a1

]a2
f!]a3

]a4
f ~3!

should be made in Eq.~2!, whereT is a linear combination

Ta1a2a3a4
5s° iTa1a2a3a4

( i ) ~4!

of tensorsT( i ) compatible with the symmetry of the micro
scopic model considered. Here the summation conventio
used: The doubly occurring indexi as well as all pairs ofa
indices are to be summed over. In general~the ‘‘m-clinic’’
case, a generalization of the familiar triclinic case form
53), there are

nm5S m13

4 D ~5!
22441
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such tensors.23,24 Instead of dealing with thenm coefficients
s° i , a convenient set are thenm21 dimensionless coupling
constants

w° i5s° i /s° 1 , i 52, . . . ,nm ~6!

along withs° 1.
In this paper, we will focus our attention on a familia

example: the symmetry associated with anm-cube, i.e., cubic
anisotropy. Besides the totally symmetric tensor

Sa1a2a3a4
[

1

3
~da1a2

da3a4
1da1a4

da3a2
1da1a3

da2a4
!,

~7!

we have only another tensor, namely, the cubic

da1a2a3a4
[da1a2

da2a3
da3a4

. ~8!

Thus Eq.~4! reduces to

Ta1a2a3a4
5s° 1Sa1a2a3a4

1s° 2da1a2a3a4
, ~9!

and the Hamiltonian becomes

H5Hiso1
s° 2

2 E ddx (
a51

m

~]a
2f!2. ~10!

Note that this model should represent the universa
class of a simple generalization of the ANNNI model, i.
from the uniaxial Ising (m5n51) to them-axial O(n) case.
Specifically, consider a simple cubic latticeZd with classical
n-vector spinssi of unit length on its sitesi. Assume that the
spins are coupled in an O(n) symmetric fashion, but with
different characteristics within the two subspacesRm and
Rm̄. In the former, suppose the interactions are like those
the ANNNI model: nearest-neighbor ferromagnetic~of
strength J1.0) but second-neighborantiferromagnetic
~strengthJ2.0) along each of them principal lattice direc-
tions. In the complementary subspace, let the interaction
only nearest-neighbor ferromagnetic~of strength J3.0).
The lattice HamiltonianHlat is explicitly

kBTHlat52J1 (̂
i,j&

i2 j56ea

si•sj

1J2 (̂
i,j&

i2 j562ea

si•sj2J3 (̂
i,j&

i2 j56eb

si•sj . ~11!

Denoting the Fourier transform ofsi by s̃q , we recast this
expression in Fourier space: (qa ,qb). The first line yields a
contribution }(a51

m @J2cos(2qa)2J1cos(qa)# to the coeffi-

cient of us̃qu2. The Lifshitz point can be accessed, at th
naive level, by tuning theO(qa

2) term to vanish, i.e.,J1

54J2. Meanwhile, theO(qa
4) term is precisely of the form

of the s° 2 term in the coarse-grained Hamiltonian~10!.
Though this procedure does not directly yield as° 1 term,
there are two good reasons that such a term is unavoida
5-2
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Firstly, we generalized the ANNNI model in the simple
possible manner: All further-neighbor interactions cou
only spins along the principal directions.25,26 Had we intro-
duced NNN bonds along diagonals~i.e., i2 j56ea1

6ea2
),

there would be a contribution of the form
(a1Þa2

qa1

2 qa2

2 usqu2, which involves both the symmetric ten

sor ~7! as well as the cubic one~8!. Second, the isotropic
coupling will be automatically generated when sho
wavelength degrees of freedom are integrated out, as wi
shown in the RG analysis below. Thus, we expect that a w
class of lattice models similar to Eq.~11! will fall into the
universality class described by the Hamiltonian~10!.

Unless stated otherwise, we will restrict our attention,
simplicity, to this case@i.e., Eq.~9!, tensor with cubic sym-
metry# and study only the Hamiltonian~10!. Our goal is to
examine the effects of this type of anisotropy on theisotropic
m-axial Lifshitz point. Generalizing a two-loop RG analys
of the latter case,12,13 we will show that the cubic anisotrop
}s° 2 is a relevantperturbation, at ordere2.

In the next section we present the formal framework
renormalization of them-anisotropic model with general ten
sors of the form~4!, including the associated RG equation
In Sec. II B, we specialize to the case~10! with only a cubic
anisotropy. Since the anisotropy of interest appears in
momenta of a two-point vertex function, a two-loop comp
tation is necessary. More explicit results, to first order in
cubic anisotropy, are provided, so that its effects on the
flow near the isotropic fixed point, as well as scaling pro
erties, can be investigated. For general values ofm andn, the
e expansion, toO(e2), of the associated crossover expone
w2(n,m,d), is obtained in terms of integrals over a sing
variable. In Sec. III, we compute these integrals, analytica
for the special cases ofm52,6 and numerically for a rang
of other m’s. An estimate ofw2(1,2,3) is presented. Con
cluding remarks are reserved for Sec. IV. Finally, there
three appendixes to which some details of our calculati
have been relegated.

II. RENORMALIZATION GROUP ANALYSIS

A. General anisotropy: Renormalization and RG equations

To renormalize our theory with general ‘‘m-anisotropy’’
~4!, we straightforwardly extend the considerations for t
m-isotropic model~2! in Ref. 12. For the details in the analy
sis, we will follow the conventions and notations of Ref. 1
Here, we havenm variables,s° i , whose scaling dimension
vanish at the Gaussian fixed pointr°5t°5u°50. There are
two consequences: Associated with each of thes° i is a renor-
malization factorZs i

. Further, these quantities, as well as

other renormalization factors, become functions ofnm di-
mensionless coupling constants, namely, the renormal
four-point couplingu and nm21 renormalized counterpart
of the bare variablesw° i @Eq. ~6!#:

wi[s i /s1 , i 52, . . . ,nm . ~12!

Accordingly, we reparametrize the theory as
22441
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s° i5Zs i
~u,w!s i , ~13!

f5@Zf~u,w!#1/2fren, ~14!

~r°2r° LP!s° 1
21/25m Zr~u,w!r, ~15!

t°2t°LP5m2Zt~u,w!@t1At~u,w!r2#, ~16!

u°s° 1
2m/4Fm,e5meZu~u,w!u, ~17!

wherem is a momentum scale,Fm,e denotes the normaliza
tion factor

Fm,e5
G~11e/2!G2~12e/2!G~m/4!

~4p!(81m22e)/4G~22e!G~m/2!
, ~18!

andw stands for the set$w2 , . . . ,wnm
% of nm21 variables.

Following Ref. 27, we have included a renormalization fun
tion At(u,w) to absorb momentum-independent poles p
portionalr2 of the two-point vertex function.

The fact that the theory must reduce forw50 to the
m-isotropic one implies the relations

Zi~u,w50!5Zi
SD~u!, i5f,u,t,r ~19!

Zs1
~u,w50!5Zs

SD~u!, ~20!

where theZ factors marked by the superscript SD are tho
of Ref. 13. The functionAt(u,w50) has been computed t
one-loop order in Ref. 27. Its explicit form will not b
needed in the following.

Turning to the RG equations, we use the notation]mu0 for
m derivatives at fixed bare variables (u° , s° i , t° , andr° ), and
define theb and exponent functions

bk[m]mu0k, k5u,t,r,s i , ~21!

hl~u,w![m ]mu0ln Zl , l5f,u,t,r,s i . ~22!

The functionshl depend only onu and w. Since we use
minimal subtraction of poles, they are even independen
e. In terms of these variables and27

bt~u,w![At@m]mu0ln At1ht22hr#, ~23!

the b functions can be written as

bu52@e1hu~u,w!#u, ~24!

bt52@21ht~u,w!#t2r2bt~u,w!, ~25!

br52@11hr~u,w!#r, ~26!

bs i
52hs i

~u,w! s i . ~27!

Also, since we fixed all renormalization factorsZl such that
the regular part of their Laurent series ine is exactly unity,
the associatedhl functions are related to the residues of t
Zl’s via

hl52u]uRese50Zl . ~28!
5-3
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In terms of the operator

Dm[m]m1(
k

bk]k , ~29!

the RG equations of the renormalizedN-point cumulant
functions Gren

(N)(x)[^) j 51
N faj ,ren(xj )&

cum and the corre-

sponding vertex functionsG ren
(N) read, respectively,

FDm1
N

2
hfGGren

(N)50, FDm2
N

2
hfGG ren

(N)50. ~30!

Being dimensionless,w will appear in theZ’s to arbitrary
orders in general, even though we are dealing with the s
tematics of an expansion in powers ofu ~the loop expan-
sion!. However, our principal goal here is a local stabili
analysis of the model~10! about the isotropic fixed point

Piso* :~u* ,w50!, ~31!

whereu* is the nontrivial zero ofbu(e,u,w50) the explicit
form of which, up toO(e2), is given in Eq.~60! of Ref. 13.
To this end, we can linearize aboutPiso* . Hence it will be
sufficient to compute the counterterms to first order inw.

B. Cubic anisotropy: RG flow and scaling

Zf512
n12

3

1

12~82m!
@ j f~m!236i f~m!w#

u2

e

1O~w2,u3!, ~32!

ZfZs1
511

n12

3

1

96m~m12!
@ j s~m!236i s1

~m!w#
u2

e

1O~w2,u3!, ~33!

and

ZfZs2
512

n12

3

4i s2
~m!

m~m12!~m14!~m16!

u2

e

1O~wu2,u3!. ~34!
22441
s-

Here, j f(m) and j s(m) are single-variable integrals encou
tered in Ref. 13. Their definitions are noted for the reade
convenience in Appendix A: Eqs.~A28! and ~A29!. Though
more complicated,i f(m), i s1

(m), andi s2
(m) are analogous

integrals, defined in Eqs.~A24!–~A26!.
From the structure of theseZ factors, it is clear that, at this

two-loop order, bothhs1
and hs2

are proportional to@(n

12)/3#u2 with coefficients linear inw. As a result of Eq.
~27!, and keeping only termsto first orderin s2, we find the
associatedb functions to be of the form

S bs1

bs2

D 522
n12

3
u2S K11 K12

0 K22
D S s1

s2
D @11O~w!#,

~35!

where

K11[
j f~m!

12~82m!
1

j s~m!

96m~m12!
,

K12[2
3i f~m!

82m
2

3i s1
~m!

8m~m12!
,

K22[
j f~m!

12~82m!
2

4i s2
~m!

m~m12!~m14!~m16!
,

are constants, independent of the couplings.
Since our main interest is the neighborhood ofPiso* , we

need to evaluateu in this equation only at them-isotropic
fixed point,

u* 5
6e

n18
1O~e2!. ~36!

Given the form of the matrix in Eq.~35!, the eigenvalues are
trivially obtained, the first of which is jusths* in Refs. 12 and
13:

hs1
* [hs* 52

24~n12!

~n18!2
K11e

21O~e3!,

hs2
* [2

24~n12!

~n18!2
K22e

21O~e3!.

Associated with these are, respectively, the~linear! scaling
fields:

s11bs2 and s2 , ~37!

whereb[K12/K112K22. NearPiso* , we may drop the irrel-
evant contributions proportional tou2u* , so that the flow
equations

,
]

d,
s̄ i5bs i

~38!

are solved bys̄ i(,). Imposing the initial conditionss̄ i(1)
5s i , these take the asymptotic forms
5-4
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s̄1~, !'~s11bs2!,2hs* 2bs2,2hs2
* , ~39!

s̄2~, !'s2,2hs2
* . ~40!

Thus, to the order of interest, the anisotropyw leads to a
dependence on the following ratio of running variables:

s̄2~, !/s̄1~, !'~s2 /s1!,2(hs2
* 2hs* ) ~41!

5@w1O~w2!#,2(hs2
* 2hs* ). ~42!

As we will show,hs2
* 2hs* is positive, so that the effect of

w is more significant in the infrared limit (,→0). Therefore,
we introduce the anisotropy crossover exponent

w2[n l2~hs2
* 2hs* !, ~43!

which governs the scaling behavior ofw with t: w;t2w2.
Since theh ’s are already ofO(e2), we may insert the zeroth
order value forn l2 ~i.e., 1/2! to obtain

w25
n12

~n18!2

1

m~m12!
F 48i s2

~m!

~m14!~m16!
1

j s~m!

8
Ge2

1O~e3!. ~44!

As a consequence of the contribution proportional tor2 of
bt @see Eq.~25!#, the variablet is not a scaling field. Pro-
ceeding similarly as in Ref. 27, we can define a nonlin
scaling field28

gt5t1cr2
t

~u!r21cr2,w
t

~u!wr21••• ~45!

with the asymptotic scale dependenceḡt(,); l 21/n l2gt ,
where the ellipsis stands for terms of higher order inw.

Utilizing the above results, one can generalize the con
erations of Refs. 12 and27 in a straightforward fashion
obtain the scaling forms of the renormalizedN-point cumu-
lantsG(N):

G(N)@$xa ,xb%;gt ,r,s1 ,s2 ,u,m#

'gt
2n l2DGYGF H Amxa

s1/4gt
n l4

,
mxb

gt
n l2 J ;

r

gt
w

,
w

gt
w2G , ~46!

whereDG is the scaling dimension ofG(N):

DG5~N/2!@d221h l21m~u21!#. ~47!

With the exception ofw2, explicit expressions for all expo
nents, up toO(e2), are given in Refs. 12 and 13. In the ne
section, we present a brief summary of the steps for com
ing w2.

III. EXPLICIT RESULTS FOR THE ANISOTROPY
CROSSOVER EXPONENT

From Eq.~44!, we see that only two integrals are need
for finding the exponentw2, namely,j s(m) and i s2

(m). As
shown in Appendix A, all integrations can be performed a
22441
r
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lytically, except the one over the scaling variable

y[
Axaxa

~xbxb!1/4
, ~48!

for which we resort to numerical means. The first,j s , is
familiar from Ref. 13, recalled here in Table I.

The second involves, in general, a product of three hyp
geometric functions. As outlined in Appendix E of Ref. 1
we write

i s2
~m!5E

0

`

dyI m~y!5E
0

y0
dyI m~y!1Rm~y0!, ~49!

splitting the integral into a contribution from a finite interv
(0,y0) and a remainderRm(y0). The pointy0 was chosen so
that standard numerical integration routines~specifically,
MATHEMATICA 29! yield sufficiently accurate results for th
first termanda few terms of the asymptotic expansion forI m
suffice for evaluatingRm approximately. In practice, we
chosey0.9.5 and just the leading term of the asympto
expansion. The latter can be computed analytically and le
to

Rm~y0!'
3Ap282m~m22!2

G~m/2!GS 1

2
1m/4DG~22m/4!

y0
m28

82m
. ~50!

Combining this with the numerical integration over (0,y0),
we arrive at the values ofi s2

(m) displayed in Table I.30

As discussed in Ref. 13, the casesm52 andm56 are
quite special. The scaling functions from whichI m(y) is
formed—and henceI m(y) itself—reduce to elementary func
tions. @From another perspective, their asymptotic expa
sions terminate at low orders:12,13 See Eqs.~C1!, ~C7! and
~B8!, ~B9!. Indeed, the approximation~50! even vanishes for
m52.# As a result,i s2

can be computed analytically. Th
results~see Appendix C!,

i s2
~2!5

2

27
, i s2

~6!520S 8 ln
4

3
2

59

27D , ~51!

are in conformity with the values quoted in Table I and pr
vide useful checks of our numerical procedure. For co
pleteness, let us also recall the analytic values

j s~2!5
128

27
, j s~6!5

448

9
~52!

TABLE I. Numerical values of the integralsj s(m), i s2
(m), and

the coefficientsC(m) of w2 introduced in Eq.~53!.

m js(m) i s2
(m) C(m)

2 4.74074 0.074074 0.00309
3 10.804 0.24682 0.00380
4 20.067 0.6175 0.00444
5 32.95 1.279 0.00501
6 49.7778 2.325428 0.00552
5-5
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from Ref. 13.
Inserting the values from Table I into Eq.~44!, we write

the anisotropy crossover exponent as

w25
27~n12!

~n18!2
C~m!e21O~e3!. ~53!

Here theC(m) are thee2 coefficients of the crossover expo
nentw2 for n51. They are listed in the last column.

For the special cases where analytic results are availa
we have

C~2!5
1

324
~54!

and

C~6!5
1

27F4

3
ln

4

3
2

19

81G . ~55!

As we see, in all cases,w2 is positive at this order. Thus, w
conclude that the isotropic fixed pointPiso* is unstable agains
perturbations from cubic anisotropy of the form included
the Hamiltonian~10!.

Of specific interest is the scalar biaxial casem52, n
51, corresponding to a biaxial generalization of the thr
dimensional ANNNI model discussed in the Introductio
The upper critical dimension being 5, let us sete52 to con-
sider a physical system ind53:

w2~n51,m52,d53!5
1

81
.0.0123. ~56!

Since this exponent is so small, we see that, unless
anisotropic amplitudes are large, we must be extremely c
to the Lifshitz point ~by careful tuning of the two contro
parameters! in order to detect any serious deviations from t
critical behavior in the class of the isotropic fixed pointPiso* .

IV. CONCLUDING REMARKS

We studied the critical properties ofm-axial Lifshitz
points in systems with spatial anisotropic interactions. S
cially, for anm-dimensional subspace ofRd in which a wave-
vector instability occurs, we considered the effects of ar
trary fourth-order couplings of the form

Ta1a2a3a4
qa1

qa2
qa3

qa4
fq•f2q , ~57!

with f being ann-component order parameter. Unlike pr
vious studies of ‘‘anisotropic’’ Lifshitz points,21 we are not
concerned with couplings that break the O(n) symmetry of
the order parameter. In this sense, ourf is more appropriate
for, say, multicomponent alloys than for spin systems. Es
cially for the n51 ~Ising! case, we showed how anisotrop
of the form ~57! naturally arises from a generalized ANNN
model. In the case we explicitly considered only a cu
anisotropy, corresponding to a tensor~8!, was present@cf.
Eqs.~9! and ~10!#.

Using field-theoretic renormalization group techniqu
and expanding about the upper critical dimension, we fou
22441
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that this is arelevant perturbation for an isotropicm-axial
Lifshitz point. To O(e2), the crossover exponent has be
computed for a range ofm, with analytic forms for the spe-
cial cases ofm52,6. Though we have not obtained simil
results for general anisotropic interactions, there is no do
that cubic anisotropy of the form included in the Hamiltoni
~10! will be generically present even in systems with low
symmetries, leading to crossover in general. Since all pr
ous investigations31 of m-axial Lifshitz points~with m.1)
are based onm-isotropic Hamiltonians, our conclusion i
that, unless the microscopics of a system enforces rotati
invariance inRm, the critical properties will not fall into the
universality classes found so far. Nevertheless, we sho
caution that, though the crossover exponent is positive,
numerical values are relatively small. For example, in
case most likely to be physically accessible (d53,m52,n
51), this exponent is only 1/81. Though measurable dev
tions from the isotropic class may be difficult to detect f
real systems, it should be interesting to test our prediction
Monte Carlo simulations of suitably designed lattice mode

A more interesting question is, given the RG flow is aw
from the m-isotropic fixed point, whether there is a ne
stable fixed point or not. Of course, if the former is true, th
we have a new universality class. However, prelimina
studies indicate that theb function forw has no zero, for any
finite, nonvanishingw. Worse, the flow seems to run indefi
nitely towards Hamiltonians associated with singular pro
gators ~i.e., parts quadratic inf no longer being positive
definite!, so thatO(q6) terms will be needed to stabilize th
theory. In addition, we might speculate that the system wo
undergo a first-order transition, albeit a weak one. Clea
further investigations are necessary before definitive con
sions can be reached.
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APPENDIX A: CALCULATION OF THE TWO-LOOP
GRAPH OF G „2… TO ORDER s° 2

Let us denote momenta inRd by q5(k,p) with compo-
nentskPRm andpPRm̄ (m̄[d2m). As we will be dealing
with cubic spatial anisotropy extensively, let us define

ǩ4[ (
a51

m

ka
4 , ~A1!

which is to be distinguished from the usualk4[(k•k)2. At
the Lifshitz pointt5r50, the Fourier transform ofG(x),
the free propagator in position space, is
5-6
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G̃~q![G̃~k,p!5@p21s° 1k41s° 2ǩ4#21. ~A2!

To two loops, G̃ (2)(q), the Fourier transform of the bar
vertex functionG (2), is given by

G̃ (2)~q!5
1

G̃~q!
2

n12

3

u° 2

6
G3̃~q!1O~u° 3!, ~A3!

where G3̃(q) denotes the Fourier transform ofG3(x). In
addition, at this order of thee expansion, we will need only

the residues of the simple pole ofG̃ (2) at e50. Thus, all
coefficients ofe21 may be evaluated ate50, or d5d* 54
1m/2.

Let us compute the pole terms ofG3̃ to first order inw°

[s° 2 /s° 1. Since the dependence ons° 1 follows from dimen-
sional considerations, we temporarily sets° 151. Expanding
in w° , we have

G3̃5@G3̃#w° 501w° @]w° G3̃#w° 501O~w° 2!. ~A4!

The pole contribution of the first term on the right-hand s
has been computed in Ref. 12. Expressed in terms of
integralsj f(m) and j s(m) of Ref. 13@see its equations~43!,
~44!, and~46!#, the result is

@G3̃#w° 505
Fm,e

2

e F2
j f~m!

2~82m!
p21

j s~m!

16m~m12!
k4G1O~e0!.

~A5!

To compute thew° derivative appearing in Eq.~A4!, we start
from its position-space representation,G3(x), and obtain

@]w° G3~x!#w° 50523G0
2~x!(

a
]a

4~G0* G0!~x!. ~A6!

HereG0(x)[G(x)uw° 50, and (G0* G0)(x) means a convolu-
tion in position space„i.e., Fourier transform of@G̃0(q)#2

….
Next, let us exploit the scaling forms of bothG0 and

G0* G0. Defining the radii

r[Axaxa, R[Axbxb, ~A7!

the scaling variables

ya[xaR21/2, z[yaya5y2, ~A8!

and the vectorsy[$ya% ande[$xb%/R, we write

G0~x!5R221eFm,d~y! ~A9!

and

~G0* G0!~x!5ReYm,d~z!. ~A10!

Here, the scaling functions are

Fm,d~y![E
k

(m)E
p

(m̄)eik•y1 ip•e

k41p2
~A11!

and
22441
e

Ym,d~y2![E
k

(m)E
p

(m̄) eik•y1 ip•e

~k41p2!2
, ~A12!

where *k
(m)[(2p)2m*dmk and *p

(m̄)[(2p)2m̄*dm̄p. Their
explicit expressions in terms of Taylor series and hyperg
metric functions, as well as the asymptotic expansions
largez, are given in Appendix B.

Inserting the above scaling forms into Eq.~A6! and per-
forming the Fourier transformation, we encounter integ
tions overx. Using hyperspherical coordinates (yAR,Vm) in
Rm and (R,Vm̄) in Rm̄, let us denote angular averages by

f̄ D[SD
21E f ~VD!dVD , ~A13!

where SD[*dVD52pD/2/G(D/2) is the surface area of
D-dimensional unit sphere. In the radial integration*0

`dR,
the distributionR2312e is found to appear. Employing its
Laurent expansion32

R2312e5
1

4e
d9~R!1O~e0!, ~A14!

we find

@]w° G̃3#w° 505
23

4e
Sm̄

]2

]R2
eiRp•e m̄E dmyeiARk•yFm,d*

2 ~y!

3(
a

]ya

4 Ym,d* ~y2!uR501O~e0!. ~A15!

The rightmost part of Eq.~A15! can be rewritten as

(
a51

m

]ya

4 Ym,d* ~y2!512mYm,d*
9 ~y2!148y2Ym,d*

- ~y2!

116(
a

ya
4Ym,d*

( iv)
~y2!, ~A16!

whereY( iv)(z)[d4Y(z)/dz4.
Note that the function ofR that must be differentiated in

Eq. ~A15! has an expansion in even powers ofAR because
the angular integration in*dmy yields zero for the coeffi-
cients of all odd powers. Thus only the contributions}R2

produced by the two exponential functions contribute to
pole term on the right-hand side.

For the angular averages, we may exploit the characte
tic function

eik•y
m

5 (
,50

`
~ iky!2,G~m/2!

4,,!G~,1m/2!
~A17!

to find

ya1
•••ya2N

m
/y2N5

da1a2
•••da2N21a2N

1•••

m~m12!~m14!•••@m12~N21!#
.

~A18!
5-7
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In the numerator the ellipsis••• stands for the remaining
(2N21)!! 21 pairings of the indices. This can also b
thought of as 2N-point function of a Gaussian theory whos
propagator between two ‘‘points’’a i and a j is given by
da ia j

.
Utilizing these results, we easily find

]2

]R2
eiRp•e

m̄
uR5052

p2

m̄
, ~A19!

(
a

ya
4 m

5
3y4

m12
, ~A20!

]2

]R2
eiARk•y

m
uR505

k4y4

4m~m12!
, ~A21!

and

]2

]R2 (
a

ya
4eiARk•y

m
uR50

5
3~m18!k41 ǩ4

4m~m12!~m14!~m16!
y8. ~A22!

Combined with Eq.~A15!, these results yield

@]w° G̃3#w° 505
Fm,e

2

e
F18i f~m!

82m
p22

9i s1
~m!

4m~m12!
k4

2
24i s2

~m!

m~m12!~m14!~m16!
ǩ4G1O~e0!,

~A23!

where we have introduced the integrals

i f~m![BmE
0

`

dy ym21Fm,d*
2

~y!FmYm,d*
9 ~y2!

14y2Ym,d*
- ~y2!1

4

m12
y4Ym,d*

( iv)
~y2!G ,

~A24!

i s1
~m![BmE

0

`

dyym13FmYm,d*
9 ~y2!14y2Ym,d*

- ~y2!

1
4~m18!y4

~m14!~m16!
Ym,d*

( iv)
~y2!G , ~A25!

and

i s2
~m![BmE

0

`

dyym17Fm,d*
2

~y!Ym,d*
( iv)

~y2!, ~A26!

with

Bm[
S42m/2Sm

Fm,0
2

5
2101mp613m/4G~m/2!

G~22m/4!G2~m/4!
. ~A27!
22441
For completeness, we recall the definitions13 of

j f~m![BmE
0

`

dyym21Fm,d*
3

~y! ~A28!

and

j s~m![BmE
0

`

dyym13Fm,d*
3

~y!. ~A29!

APPENDIX B: THE SCALING FUNCTIONS Fm,d„y…

AND Ym,d„z…

First, let us recall the properties of the scaling functi
Fm,d(y), which were established in Refs. 12 and13. Its Ta
lor expansion is

Fm,d~y!5
p (12d)/2

221m (
,50

`
G~,/2112e/2!

,!GS ,/21
1

2
1m/4D S 2

y2

4 D ,

.

~B1!

It is possible to express the power series in closed form
exploiting a relation of the generalized hypergeometric fu
tions 1F2 ~by summing the contributions with even and od
values of, separately!, namely,

(
,50

`
1

,!

G~a1,/2!

G~b1,/2!
~2y!,

5
G~a!

G~b! 1F2S a;
1

2
,b;

y2

4 D

2y

GS a1
1

2D
GS b1

1

2D 1F2S a1
1

2
;
3

2
,b1

1

2
;
y2

4 D .

~B2!

The largey properties of1F2 lead us to the asymptotic ex
pansion

Fm,d* ~y! '
y→`

212m

p (61m)/4

m22

GS 1

2
1m/4D y24@11O~y24!#,

~B3!

which will be used in numerical evaluations ofi s2
(m) de-

scribed in Sec. III.
The scaling functionYm,d(y2) was also studied in Ref

13: It appeared in the calculation of another scaling functi
Q(y), that was needed for the coupling constant renorm
ization at the two-loop level. Its Taylor expansion, from E
~D4! in this reference, reads
5-8
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Ym,d~z!5
p (12d)/2

241m (
,50

`
G~,/22e/2!

,!GS ,/21
1

2
1m/4D S 2

z

4D ,

.

~B4!

As for F above, we can write a closed form for this functio
in terms of two hypergeometric functions:

Ym,d~z!5
p (12d)/2

241m F G~2e/2!

GS 1

2
1m/4D 1F2S 2

e

2
;
1

2
,
1

2
1

m

4
;
z2

64D

2
z

4

GS 1

2
2e/2D

G~11m/4! 1F2S 1

2
2

e

2
;
3

2
,11

m

4
;

z2

64D G .

~B5!

Let us note that, though the series~B4! starts with a term
that has a pole ine, all its derivatives are regular ate50. In
particular, for the calculation of the integrali s2

(m), we need

only Ym,d*
( iv) (z) at the upper critical dimensiond* 541m/2.

Thus,
-

s
-

e

22441
Ym,d*
( iv)

~z!5
1

2121mp (61m)/4 (
,50

`
1

,!

G~21,/2!~2z/4!,

GS 5

2
1m/41,/2D

~B6!

5
1

2141mp (61m)/4F 4

GS 5

2
1m/4D 1F2S 2;

1

2
,
5

2
1

m

4
;
z2

64D

2

zGS 5

2D
G~31m/4! 1F2S 5

2
;
3

2
,31

m

4
;

z2

64D G . ~B7!

In the special casesm52 andm56, the hypergeometric
functions here reduce to the elementary functions:

Y2,5
( iv)~z!5

3

~4p!2z4 F12e2z/4S 11
z

4
1

z2

32
1

z3

384D G
~B8!

and
Y6,7
( iv)~z!5

48~23201z2!1e2z/4@153601z~161z!~240112z1z2!#

~4p!364z6
. ~B9!
l-
e

se
For the integrali s2
(m), we will need the asymptotic ex

pansion ofYm,d*
( iv) (z):

Ym,d*
( iv)

~z! '
z→`

3

221mp (61m)/4GS 1

2
1

m

4 D z24@11O~z22!#.

~B10!

Let us, however, note that, for arbitrary values ofm, de-
rivatives of Ym,d* (z) can be expressed completely in term
of Fm,d* (y) ~with y5Az),12,13 since their Taylor series ex
pansions differ only slightly. In particular, using

GS ,

2
112

e

2D5S ,

2
2

e

2DGS ,

2
2

e

2D , ~B11!

we get the general relation

Fm,d~Az!52@zYm,d8 ~z!2eYm,d~z!#. ~B12!

Recalling thatYm,d has a pole ate50, we verify that
Ym,d(z)52Fm,d* (0)/(2e)1O(e0). Thus, in the limit e
→0, we find an exceedingly simple relationship betwe
Ym,d8 andFm,d :
n

Ym,d*
8 ~z!5

1

2z
@Fm,d* ~Az!2Fm,d* ~0!#. ~B13!

In other words, the scaling functionFm,d* completely deter-
mines all derivatives ofYm,d* , a fact we will exploit in the
following appendix.

APPENDIX C: ANALYTIC RESULTS FOR mÄ2 AND mÄ6

The special casem52 is the simplest one since the sca
ing function F acquires an extremely simple form at th
upper critical dimension:

F2,5~Az!5
1

~4p!2
e2z/4. ~C1!

For the functionY2,58 , using the relation~B13!, we thus get

Y2,58 ~z!5
1

~4p!2

1

2z
~e2z/421!. ~C2!

Even more simplifications of integrals are realized if we u
the representation
5-9
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E
0

1

dte2zt/45
4

z
~12e2z/4!, ~C3!

so that

Y2,5
( iv)~z!5

1

~4p!2

2

45E0

1

dtt3e2zt/4. ~C4!

Inserting this expression into Eq.~A26! for the integral
i s2

, we find

i s2
~2!52E

0

`

dzz4e22zE
0

1

dtt3e2zt. ~C5!

To arrive here, we changed the integration variable toz
[z/4 for convenience. Carrying out the trivial integration
we get

i s2
~2!5234!E

0

1

dtt3~ t12!255
2

27
. ~C6!

The special casem56 is, as usual, somewhat more i
volved. This is due to a more complicated functional form
the corresponding scaling functionF. Using z5z/4 once
more, we have

F6,7~A4z!5
1

2~4p!3

1

z2
@12~11z!e2z#. ~C7!

Again, we exploit an integral representation like Eq.~C3!—
now, for both functionsF6,7 andY6,78 . Thus, Eq.~C7! can be
written as
,

tt

vie

,’
2

22441
,

f

F6,7~A4z!5
1

2~4p!3E0

1

dtte2zt. ~C8!

Inserting this into the relation~B13!, we obtain

Y6,78 ~z!52
1

16~4p!3E0

1

dtt2E
0

1

dye2zty/4 ~C9!

and

Y6,7
( iv)~z!5

1

45~4p!3E0

1

dtt5E
0

1

dyy3e2zty/4. ~C10!

The desired integrali s2
(6) thus becomes

i s2
~6!54E

0

`

dzz6E
0

1

daae2azE
0

1

dbbe2bz

3E
0

1

dtt5E
0

1

dyy3e2zty

5436!E
0

1

daaE
0

1

dbbE
0

1

dtt5E
0

1

dyy3

3
1

~a1b1ty!7

520S 8 ln
4

3
2

59

27D . ~C11!

The integration overz was trivial, and the last result wa
obtained by simple repeated integrations with the help
MATHEMATICA .29
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