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The interface of a stochastic Ising lattice gas driven into a nonequilibrium steady state by a con-
stant, uniform electric field E parallel to the interface is studied by extensive Monte Carlo simula-
tion in two dimensions. Dependence on the system size and the field strength of the interface
profile, roughness, time, and spatial correlation functions and structure factors are found numerical-
ly, by means of a coarse-graining method. The interface at zero field is shown to be rough by the
divergence of both the interface width and correlation time. As soon as E is turned on, the interface
becomes smooth. We argue that the general results may be extended to other similar nonequilibri-

um systems, and in higher dimensions.

I. INTRODUCTION

The physics of interfaces has received considerable at-
tention in recent years.! It encompasses a wide range of
low-temperature physical phenomena of fundamental im-
portance. One subject that has been extensively studied
has to do with the roughening transition,> which is be-
lieved to occur in bulk dimension d =3 at a finite
roughening transition temperature (7 ) below the critical
temperature (7,). On approaching Ty from below, the
interface separating two coexisting phases becomes rough
as the interface width diverges in the thermodynamic
limit. In the rough phase, the correlation length diverges
along the interface, leading to a power-law decay of the
two-point correlation function. In contrast, the interface
for two bulk dimensions (d =2) is rough for all tempera-
tures T <T,, i.e., T =0. It has been shown that some
two-dimensional solid-on-solid (SOS) models® (which de-
scribe an interface in three bulk dimensions without bub-
bles and overhang excitations) undergo, at a finite T, a
roughening transition whose critical properties are of the
Kosterlitz-Thouless type.* The d =3 Ising-model inter-
face is believed to exhibit a similar transition of the same
universality class’ at a slightly lower Ty. Since the singu-
larities predicted at T are very weak, they are difficult to
detect experimentally. However, roughening on crystal
surfaces seems to have been observed in diffraction exper-
iments.®

The roughening transition is usually destroyed by the
application of external fields (customarily termed *pin-
ning fields”) such as gravity in fluids or a magnetic field
gradient in magnetic systems.” In real materials, this
transition is often masked by the presence of impurities
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and defects. The interface is thus inevitably influenced to
some extent by external fields in an uncontrolled way. A
similar, but physically different, situation is when the
field is controlled to maintain the system in a steady state
away from equilibrium. A question of apparent physical
interest is whether or not such a field is relevant to the
roughening transition. This is not at all clear at the
outset. In this paper we attempt to answer this question
within the context of a recently studied system. In its
simplest form, it is represented by an Ising lattice gas of
charged particles driven by an external, constant, uni-
form electric field (E).® For bulk properties of this mod-
el, progress has emerged mainly from computer simula-
tions. This is due to the inherent difficulties of formulat-
ing analytically statistical mechanical treatments for
nonequilibrium systems. Such treatments necessarily
start from the equation of motion, e.g., the master equa-
tion,” or equivalently a dynamic functional.'® From
simulations in both d =2 and d =3, the systems were ob-
served to phase separate below a certain critical tempera-
ture which is higher than the zero-field (Onsager) value.
Such separations are very anisotropic, with the interface
parallel to the field direction under periodic boundary
conditions. The transition is believed to be of second or-
der, as concluded from both theories and simulations (at
critical density). However, the nature of the transition is
still controversial, since theories predict mean-field be-
havior,”!? disagreeing with available simulation re-
sults.®!! Below criticality, there are studies of linear sta-
bilities of the interface based on a phenomenological
theory.!?

We found, by computer simulation, that the field de-
stroys interface roughness for a wide range of values of
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E."® Though we study only a d =2 system, the results
have implications in d =3. This paper is organized as
follows. Section II describes the simulation method for
the interface. The main results are stated in Sec. III.
Section IV contains discussions and concluding remarks.

II. SIMULATION METHOD

Using standard Monte Carlo methods'* on the two-
dimensional Ising model with spin-exchange dynamics,
we mimic the motion of particles with number (charge)
conservation. We will use spin or particle language inter-
changeably, with spin o=+1 (—1) at each site of a
square lattice representing a particle (hole). The spins
inter- act via the usual ferromagnetic Ising Hamiltonian
H=-J3%,,0;0;, where J>0, and the sum is over
nearest-neighbor pairs. The external field E, chosen to be
in the +x direction, enters through the (Metropolis)
jump rates so that the relative probabilities of particles
jumping along (against) E are enhanced (suppressed).®
Throughout this paper, temperature 7 is measured in
units of the zero-field critical temperature T, ~2.269,'
while E is expressed in units of J. The size of the system
is L,L, with a fixed number of particles N=L,L, /2.
Below the critical temperature T,.(E), the system phase
separates into particle-rich and particle-poor phases. The
interface between these two phases is forced to lie (on the
average) along y =L, /2, by placing only particles and
holes on the row at y =0 and L,+1, respectively.
Periodic boundary condition (PBC) is imposed in the x
direction (along E).

To obtain a sensible description of the interface, we
need to consider the interplay between various lengths in
the system.!® Our main concern is to examine the size
(L,) dependence of the width (w) of the interface at tem-
perature below T,. There are two contributions to w:
One comes from the intrinsic width of the interface,
which is of the order of the bulk correlation length &5,
and another comes from thermal fluctuations of the local
mean position of the interface (capillary waves). The
divergence of the former as the bulk critical point is ap-
proached is responsible for the disappearance of the in-
terface, while the latter gives rise to the interface rough-
ness. At low temperature (which we ensure in our simu-
lation), the latter contribution dominates. Instead of
measuring the interface width by computing moments of
the density profile alone,”’ we define interface
configurations by associating a local height function 4 (x)
with each bulk configuration. This enables us to calculate
height-height correlation functions. As far as we are
aware, this is the first such calculation using Monte Carlo
simulation on a bulk model. To arrive at h (x), we first
coarse grain the bulk density of each configuration so as
to obtain a smooth density. Our method consists of
spreading the “raw” particle density (0 or 1) at each site
to its four neighbors by assigning 0 or 1 to all five sites.
When iterated, bubbles and overhangs disappear. With
such a smooth bulk density, it is possible to define a
single-valued function 4 (x). This method has the advan-
tage over the one using the density profile of suppressing
the influence of bulk excitations (in the form of bubbles)
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on the interface. While the physics should be indepen-
dent of the details of how we coarse grain, this also
presents a natural way to study local properties of the in-
terface.

Note that the coarse graining is performed on a copy
of the particle configuration after every fixed number of
updates [25 or 50 in units of Monte Carlo step per site
(MCS)]. The evolution of the interface is still given by
the bulk evolution. The size L, normal to the interface
does not play an important role here, provided that it is
large enough to avoid repulsion between the interface and
the boundaries.

III. SIMULATION RESULTS

We perform large-scale Monte Carlo simulations on a
wide range of system sizes (L, from 4 to 60, L, from 24
to 36) and field values (E from O to 50, which is essential-
ly infinity). We choose temperatures 7' =0.75 for E =0,
0.5, and T =0.9 for larger E. The relaxation time is ex-
traordinarily long, especially for E =0. The origin of this
difficulty is well known: Particle number is conserved lo-
cally. Particles must be transported both into the bulk
and along the interface in order to change an interface
configuration. Mathematically, this property is manifest-
ed in nonlocal (both spatial and temporal) couplings be-
tween different parts of the interface.!® Therefore, very
long runs (0.5 to 2X 10% MCS) are required to generate
statistically meaningful data for small E. Long relaxation
time is evident from the following time-correlation mea-
surement.

The calculations reported here took about 300 h of
CPU time on the Cyber 205. Errors are estimated from
the spread of data from three to four different runs, as
well as from standard deviations in time averagings. The
results are following. ‘

A. Density profile m (y)

The density profile is given by the mean magnetization,
in spin language, along each row,

m(y)
o
1
1

-1 1
10 15 20

FIG. 1. The density profile obtained by averaging o(x,y)
over x. Temperatures are T'=0.75 for E =0, and 0.9 for E5<0.
L, =30.
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m(y)=(1/L)So(x,p) . §)

We ensure that the interface is free from boundary effects
by choosing L, to be much larger than both the interface
width and the lengths (of order &) characterizing the de-
cay from the m ==+1 boundary values to the mean values
in the bulk phases. It is obvious from Fig. 1 that the in-
terface becomes much sharper at larger field E.

B. Width of interface w

Many possible measures of the width are conceivable.!’
One natural choice is given by the root mean square of
the height variable A (x),

w?={((h—<(h))?) . ()

Alternatively, we consider the height-height correlation
function

C(x)={([h(x)—h(0)]*), 3)

and define 2w? as C,,,,, the maximum value of C(x). In
a finite system under periodic boundary conditions,
Cnax =C(L, /2). We also calculate the second moment
of the gradient of the density profile m (y). All three
measures give similar and consistent results. It turns out
that the results from m (y) have the largest statistical er-
rors, which is believed to arise from the bulk excitations.
A plot of w? as a function of L, for various values of E
has been published previously (Fig. 1 of Ref. 13). The in-
crease of w? towards its asymptotic value is slower for
smaller E. The present level of accuracy of the data with
small field (E =0.5) does not support a definitive con-
clusion, although we believe that the interface will be
asymptotically rough only at E=0. For E=0, w? ap-
pears to diverge linearly in L, as L, — o, as predicted by
exact calculations,® capillary wave theory,”! and as
confirmed by molecular dynamics simulation.?? For
E >0, by analyzing the finite-size behavior of w2, we
found that the best fit shows w? saturating at a finite
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FIG. 2. A scaling plot of the width in the limit of strong E
and large L,; {=L, (E/T)**. All symbols have the same mean-
ing as in Fig. 1.
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value as L, increases. Thus, we conclude that the inter-
face is smooth. The reader is referred to Ref. 13 for de-
tails of the analysis.

In the large-L, limit, we expect w? to diverge as E —O0.
We will return to this small-E limit later. At the opposite
limit of large E, we probe the way in which the width ap-
proaches the finite value at E = o« by plotting

[wXL,,E,T)~w*L,,50,T)]/L,

against 1/&, where {=L,(E/T)° and s is an adjustable
exponent. We found that the data scale, for large § with
s=~2.5 (see Fig. 2), as they collapse on a single curve.
This scaling implies for the large-E limit

w(L,,E,T)—wL,,50,T)=~L, X(£) 4)

with the asymptotic behavior X({)~1/£ as {— . We
interpret this behavior as the existence of a new length
scale Ag provided by E, scaling as £~ ° as E-— 0.
Though this scaling may be approximate, it is distinct
from critical scaling.?®

C. Height-height correlation function C (x)

As for any spatial correlations, periodic boundary con-
ditions introduce serious finite-size effects when the
correlation length is comparable to the system size.*
This is the case for E=0. The linear behavior, expected
to hold for all large x for an infinite system, now only ex-
tends to within a small fraction of L, from x =0, long be-
fore x reaches L, /2. The agreement is good between our
normalized measured values C(x)/C_,,, and the predic-
tion of capillary wave theory?' (with PBC imposed). For
larger E, the bendover due to the finite-size effect of PBC
is less significant, which is consistent with the reduction
of the correlation length (see Fig. 3). For a given E, it ap-
pears that the interface is rough only for small distances.
Beyond some effective crossover length controlled by E,
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FIG. 3. The height-height correlation function as a function
of distance for L, =60. For strong E, the effect of finite size due
to PBC is negligibly small for x <20. The E =0 correlation is
an order of magnitude off the scale of this graph. All symbols
have the same meaning as in Fig. 1, except O is for E =50.
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FIG. 4. A plot of an effective crossover length Ag vs (E/T)~°
for various s. The fit is closest to linear for s =2.5. E’s here are
3, 5,and 50.

the interface is smooth, resulting in the plateaus found in
the C(x) and w? curves. We get a rough estimate of this
length from C(x) by the crossing of the extension of the
initial linear behavior and the asymptote at large distance
and found approximately Az ~E ~%3 (see Fig. 4). The
dependence on E of this length agrees with the above in-
dependent estimate in the scaling plot of w?.

D. Structure factor G (q)

The structure factor
G(q)={8h(q)8h(—gq)) (5)

is just the Fourier transform of the height-height correla-
tion function

C(x)=2[{(8n)?)—{(8h(x)8h(0))],

where 8h(x)=h(x)—(h ). In a published plot (Fig. 2 of
Ref. 13), we observe that G(g)~ ! increases linearly as q2
for E =0. This divergence of G(q) at ¢ =0 is a manifes-
tation of the Goldstone mode associated with the spon-
taneous symmetry breaking of translational invariance by
the presence of the interface.?’ For finite E, the data de-
viate from linearity near ¢ =0. Recall that the effect of
conventional pinning fields is to introduce a mass to the
spectrum?!7 which forces G (0)~! to be positive. The be-
havior under E is evidently different. The finite sizes of
our systems prevent us from probing further to see if
G (0) < oo, or if there is some correction term of the form
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FIG. 5. Time-correlation function of the width for L, =30.
The rapid decays for large E indicates smooth interface. ¢ is
measured in MCS. All symbols have the same meaning as in
Fig. 3. Solid curve is for E =0.

g% with a <2, in a small-g expansion of G (g)~!. In either
case, the interface is smooth. This interesting issue
deserves further study, but is presumably difficult, as one
does not know in advance how small ¢ must be before
asymptopia sets in. Perhaps a finite-size analysis is again
helpful.

E. Time-displaced correlation function F(t)

We measure the following quantity to examine the
dynamical aspect of the interface:

(w*(Ow*0)) —(w?)?
(w*)—(w?)?
Figure 5 summarizes the disparity of time scales associat-
ed with the interface as E varies. To get some quantita-
tive feeling, we fit F(z) to a sum of two exponential func-
tions, and extract from it an effective time scale 7(L,, E)

by a weighted average of the two fitted decay constants.
On examining the size dependence of 7, we observe that

F(t)= (6)

400 r T
w
¥ 200
-
1 1
o 30 60
Lx

FIG. 6. Effective correlation time, in MCS, for large E as a
function of L,. Note saturation in the large-L, limit. All sym-
bols have the same meaning as in Fig. 3.
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7(L,,E =0) increases with L, in a way faster than linear-
ly. This is analogous to critical slowing down.?® For
larger E, the increase of 7 with L is slower, and 7 ap-
pears to saturate at large L, similar to the behavior of the
width (see Fig. 6). In the infinite E limit, all F(¢) for
different system sizes practically collapse onto one curve.
This provides strong support for the assertion that the in-
terface is smooth, even for moderate E. Returning to the
case of E =0, we are not able to access the long-time tail
due to long-relaxation times. Thus 7 for E =0 character-
izes the relatively short-time decay. It is believed that the
long-time decay will be characterized by a correlation
time which scales as L7, with z =3 according to classical
theories.?’

IV. DISCUSSIONS AND CONCLUDING REMARKS

We believe that the suppression of interfacial rough-
ness by the external field is a general feature of driven
steady-state systems, despite the fact that we have only
studied a d =2 lattice system in a limited range of tem-
perature. It is reasonable to suggest by analogy with
gravity that the results are true for all temperatures
below T.(E), although this conjecture is subject to fur-
ther verification. Intuitively, the microscopic mechanism
of “smoothing” should also be applicable in higher di-
mensions. This mechanism calls for particles to jump
along the field much more frequently than normal to it.
But it is the latter kind of jumps which ultimately lead to
interface roughness. In other words, the time scale asso-
ciated with the creation of a long-wavelength modulation
in the inerface is much longer than that of destruction by
a strong field. Thus for a given E, the interface appears
to be rough at small distances. At distances larger than a
certain crossover Ap, at which the above two time scales
become comparable in magnitude, the interfacial width
stabilizes. For lattice systems in d =3 with a positive Ty,
the interplay between T and E should be very delicate
and interesting near T =T, and E =0. This problem
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deserves further study.

For other systems in nonequilibrium steady states, it is
conceivable that some share certain common features
with the model we studied, though they are mostly more
complicated. One of the key characteristics is a constant
flux of constituents along the interface. In such systems
we speculate that the interface is also smooth.

Beyond these are systems where the flux is orthogonal
to the interface.?® The question of stability and the possi-
bility of dynamical scaling naturally arise. The present
system seems to provide one simple model in which such
issues can be investigated in detail, namely, when the field
is directed to be normal to the interface. It is interesting
to note that if we change the boundary condition along E
from PBC to hard walls, and that normal to E from hard
walls to PBC, then E is precisely gravity, and we should
also see a smooth interface for any finite E, with
G(q)~=1/(q*+const) for small g.?"’

As noted previously, a system with E =0 is critical
(with infinite correlation length and time). So the “near-
critical” small-E limit is particularly interesting, with E
playing the role of a reduced temperature. On physical
grounds, the interface should obey scaling, since the in-
terface should be rough on all scales up to the interface
correlation length (which diverges as £ —0). We should
investigate this limit and understand to what universality
class this behavior belongs. As far as its demand on com-
puter resources is concerned, this represents another
large-scale project in the future.

ACKNOWLEDGMENTS

The following sources of support are gratefully ac-
knowledged: the Advanced Computational Methods
Center, the Research Foundation of University of Geor-
gia, the Comisié Interdepartmental de Recerca i Innova-
cié Tecnologica (CIRIT) de la Generalitat de Catalunya
(Spain), and the Division of Materials Research of the
National Science Foundation.

*Present address: Physics Department, Virginia Polytechnic In-
stitute and State University, Blacksburg, VA 24061.

TPresent address: Physics Department, University of Minneso-
ta, Minneapolis, MN 55455.

IFor reviews on interfaces, see, e.g., D. Jasnow, Rep. Prog.
Phys. 47, 1059 (1984); R. K. P. Zia, in Statistical and Particle
Physics: Common Problems and Techniques, edited by K. C.
Bowler and A. J. McKane (Scottish Universities Summer
School in Physics Press, Edinburgh, 1984), pp. 247-301, and
references therein.

2For a recent review, see H. van Beijeren and I. Nolden, in To-
pics in Current Physics, edited by W. Schommers and P. von
Blanckenhagen (Springer, Berlin, 1987), Vol. 43, pp. 259-300,
and references therein.

3S. T. Chui and J. D. Weeks, Phys. Rev. B 14, 4978 (1976); H.
van Beijeren, Phys. Rev. Lett. 38, 993(1977).

4. M. Kosterlitz and D. J. Thouless, J. Phys. C. 6, 1181 (1973);
J. M. Kosterlitz, ibid. 7, 1046 (1974).

SK. K. Mon, S. Wansleben, D. P. Landay, and K. Binder, Phys.

Rev. Lett. 60, 708 (1988).

6J. Villain, D. Grempel, and J. Lapujoulade, J. Phys. F 15, 809
(1985); J. Lapujoulade, J. Perreau, and A. Kara, Surf. Sci.
129, 59 (1983); E. H. Conrad, R. M. Aten, D. S. Kaufman, L.
R. Allen, M. den Nijs, and E. K. Riedel, J. Chem. Phys. 84,
1015 (1986); M. den Nijs, E. K. Riedel, E. H. Conrad, and T.
Engel, Phys. Rev. Lett. 55, 1689 (1985).

7J. D. Weeks, Phys. Rev. Lett. 52, 2160 (1984).

8S. Katz, J. L. Lebowitz, and H. Spohn, Phys. Rev. B 28, 1655
(1983); J. Stat. Phys. 34, 497 (1984); 38, 725 (1985).

°H. van Beijeren and L. S. Schulman, Phys. Rev. Lett. 53, 806
(1984).

10K .-t. Leung and J. L. Cardy, J. Stat. Phys. 44, 567 (1986); H.
K. Janssen and B. Schmittmann, Z. Phys. B 64, 503 (1986); K.
Gawadzki and A. Kupiainen, Nucl. Phys. B269, 45 (1986).

113, L. Vallés and J. Marro, J. Stat. Phys. 49, 89 (1987).

12K -t. Leung, J. Stat. Phys. 50, 405 (1988); A. Hernandez-
Machado and D. Jasnow, Phys. Rev. A 37, 656 (1988).

3K.-t. Leung, K. K. Mon, J. L. Vallés, and R. K. P. Zia, Phys.



39 ROUGHNESS, SPATIAL, AND TEMPORAL CORRELATIONS OF . ..

Rev. Lett. 61, 1744 (1988).

14See, e.g., Monte Carlo Methods in Statistical Physics, edited by
K. Binder (Springer, Berlin, 1979).

I5L. Onsager, Phys. Rev. 65, 117 (1944).

16Excellent discussions can be found in B. Widom, in Phase
Transitions and Critical Phenomena, edited by C. Domb and
M. S. Green (Academic, New York, 1972), Vol. 2, p. 79; J. D.
Weeks, J. Chem. Phys. 67, 3106 (1977), and Ref. 5 of this pa-
per. See also J. Bricmont, J. L. Lebowitz, and C. E. Pfister, J.
Stat. Phys. 25, 313 (1981).

17E. Burkner and D. Stauffer, Z. Phys. B 53, 241 (1983); R. C.
Desai and D. Stauffer, J. Phys. A 21, L59 (1988),

18y, s, Langer and L. A. Turski, Acta. Metall. 25, 1113 (1977);
K.-t. Leung in Ref.12.

19R. Swendesen, Phys. Rev. Phys. B 15, 5421 (1977); J. Adler,
ibid. 36,2473 (1987).

20D, B. Abraham, Phys. Rev. Lett. 47, 545 (1981); D. B. Abra-
ham and P. Reed, ibid. 33, 377 (1974); Commun. Math. Phys.
49, 35 (1976).

21F, P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett.

9317

15, 621 (1965).

22y, H. Sikkenk, H. J. Hilhorst, and A. F. Bakker, Physica
131A, 587 (1985).

23For a recent review, see M. Barber, in Phase Transitions and
Critical Phenomena, edited by C. Domb and J. Lebowitz
(Academic, New York, 1984), Vol. 8, p. 145, and references
therein.

248ee, in the case of XY model and its dual models, Y. Saito and
H. Miiller-Krumbhaar, Phys. Rev. B 23, 308 (1981); R.
Swendsen, ibid. 25, 2019 (1982); W. J. Shugard, J. D. Weeks,
and G. H. Gilmer, ibid. 25, 2022 (1982).

25See M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), and Ref.
5 of this paper.

26See, e.g., P. C. Hohenberg and B. I. Halperin, Rev. Mod.
Phys. 49, 435 (1977).

27Theoretically, it is customary to calculate the dispersion rela-
tion w(q)~gq?® See, e.g., J. S. Langer and L. A. Turski, Ref.
18; G. Jug and D. Jasnow, Phys. Rev. B 31, 7385 (1985); D.
Jasnow and R. K. P. Zia, Phys. Rev. A 36, 2243 (1987).

28H. Guo and D. Jasnow, Phys. Rev. A 34, 5027 (1986).





