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We have measured the spectral momentum density p(E,q} of graphite by (e,2e) spectroscopy for
momentum parallel and perpendicular to the crystal e axis. In the independent-electron approxima-
tion, p(E, q}=go ~

U„(G)
~

25(q —lt —G)5(E —E(t}}where the one-electron wave function is

%„(rl=e'"' go U„(G)e'o' and G is a reciprocal-lattice vector. The measurements covered a range

of momentum parallel to the c axis equal to 0&
~ q ~

& 1.84 A and a range of momentum perpen-
o ]

dicular to the c axis equal to 0(
~ q ~

(2.35 A . The energy range spanned the valence band of
graphite from 4.4 eV above the Fermi energy to 27.6 eV below the Fermi energy. The momentum

resolution was OA7 and 0.73 A (full width at half maximum) for momentum parallel and perpen-
dicular to the c axis, respectively. The energy resolution was 8.6 eV. The maximum coincidence
rate was -0.02 counts/sec, The band structure Eik} and spectral density

~
Uq(G}

~

t have been

calculated from Srst principles using a self-consistent density-functional theory in the local-density
approximation with a mixed-basis pseudopotential technique, The agreement within experimental
uncertainties between measurement and theory is excellent.

INTRODUCTION

The spectral momentum density p(E, q) of graphite has
been measured by (e,2e) spectroscopy for one direction of
momentum in the basal plane (0&

~ q ~

&2.35 A ') and
for momentum parallel to the c axis (0(

~ q ~

(1.84
A ). This is the first study of a crystal by this experi-
mental technique. In the single-particle approximation
the spectral density is equal to

~
4&(q=lt+G}

~

when
E =E(k) (G is a reciprocal-lattice vector). The spectral
density of graphite has been calculated from first princi-
ples using self-consistent, density-functional theory in the
local-density approximation with a mixed-basis pseudo-
potential technique. Excellent agreement is found within
the experimental uncertainties between theory and the
measurements reported here. The same theoretical ap-
proach has been used to calculate the band structure and
charge density of graphite. ' The band structure has been
measured by several groups using angle-resolved photo-
electron spectroscopy (ARPES) for electron momentum
in the basal plane of the crystal. " The difference be-
tween theory and these measurements is less than or of
order 1 eV. There is also good agreement between the
calculated and measured charge densities. ' The density-
functional technique has been used to calculate the
ground-state properties of many solids and the agreement
with measurements is often within a few percent. Thus,
from our perspective, a mature theory of graphite exists
and has been well confirmed by several independent ex-
periments. %'e view the calculated spectral density as a

benchmark for evaluating this new experimental tech-
nique, (e,2e} spectroscopy. The agreement between our
measurements and theory is strong evidence that the
analysis' ' relating the (e,2e) coincidence rate to the
spectral momentum density is correct.

The spectral momentum density provides very detailed
information about the electronic structure of solids and
can be measured only by (e,2e) spectroscopy. The band
structure of crystalline solids can be measured by
ARPES, but at this time information regarding the one-
electron wave functions cannot be obtained from the in-
tensity of the photoemission peaks. The integral of
p(E, q) over momentum is the density of states, which, of
course, can be measured by angle-integrated photoemis-
sion. The integral of p(E, q) over energy, the momentum
density, can be obtained from Compton scattering and
positron annihilation. The price one pays to measure the
full spectral momentum density by (e,2e) spectroscopy is
low count rate. The technique is a coincidence measure-
ment, explained in more detail in the next section, and
our maximum coincidence rate was approximately 1

event per minute. The experiment required four months
of data taking. In order to obtain this rate, the energy
resolution was hE =8.6 eV [full width at half maximum
(FWHM)] and the momentum resolution was estimated
to be 0.47 and 0.73 A ' (FWHM) for momentum paral-
lel and perpendicular to the crystal e axis, respectively.
The coincidence rate is proportional to AE Aq". Possible
ways to increase the data rate are being explored, but it is
clear that in general most information regarding the elec-
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tronic structure of crystalline solids can be obtained more
expeditiously and with higher resolution by other tech-
niques. Where (e,2e) spectroscopy provides fundamental
insights is in the investigation of disordered solids. For
example, in an initial experiment on amorphous car-
bon, ' two well-de5ned bands were observed which did
not broaden (within the experimental resolution) even
well out beyond the momentum of the crystalline Bril-
louin zone boundary. This counterintuitive result is be-
ing investigated theoretically. ' '

The rest of this paper is organized as follows. The
theory of (e,2e) scattering from solids is discussed in the
first section. The details of calculating the spectral
momentum density of graphite are also described in that
section. The experimental results are given in the second
section and are analyzed in the third section. Finally, the
results are summarized.

The kinematics for (e,2e) scattering is shown in Fig.
1(a). The energy of the incident electron is 25 keV. The
angles of the scattered and recoiling electrons are
8, =82=45' so that the energies of the outgoing electrons
are —12.5 keV. The precollision binding energy and
momentum of the ejected electron are determined by con-
servation of energy and momentum. Electrons in the tar-
get with momentum perpendicular to the incident beam
direction can be observed by varying the angle P. Elec-
trons with momentum parallel to the incident beam can
be detected by varying 8l and 82 symmetrically about 45'.
The cross section for (e,2e) scattering from a target elec-
tron with binding energy e and real momentum q is'

der

l dE2 d+1 d+2 ill
I PO

I
dfl M«t

X
~

F(q=p, +p2 —p, ) (

2

X 5(E i +E2 —Eo —s),

%i, „(r)=e'"'ui, „(r)=g u (G)e'"+
6

(3)

[F(q) i
= g i u„„(G)[ 5(q —k —G) .

Thus, the spectral momentum density is a map of the
band structure in the repeated zone representation with
the intensity equal to the square of the Fourier expansion

where (do ldQ)M«, is the Mott electron-electron cross
section which is a function of the scattering angle be-
tween Po and P, . The function

~
F(q)

~
is the momen-

tum density of the one-electron target orbital lp (r)

F(q)=(1/2m ) f e 's'4' (r)dr, (2)

where in a crystal, the one-electron orbital can be written
as a Bloch wave function (G is a reciprocal-lattice vector,
k is a lattice wave vector, and n is a band index)

coefFicient. In deriving the cross section, two approxima-
tions were made that require experimental verification.
The Srst approximation is that the incident, scattered and
recoiling electron can be represented by plane waves.
There have been several studies of atomic and molecular
systems' ' which indicate that the plane-wave approxi-
mation is good when the incident electron energy is
greater than -2 keV. The energy of the incident elec-
tron is an order of magnitude larger than this lower limit
in our case so that the plane-wave approximation should
be quite accurate. The second assumption, the impulse
approximation, is that at large scattering angles and for
incident energies much larger than the binding energy of
the recoiling electron, the spectator electrons are frozen
while the collision takes place. In other words, the
single-particle states of all electrons except the incident
and recoiling electrons do not change during the col-
lision. This typically is not a good approximation in
strongly correlated systems such as atoms, molecules, and
narrow d and f bands of solids. In these cases "satellite"
peaks to the single-particle spectrum are observed which
arise from the excitation of spectator electrons during the
collision process. These shake-up processes rarely occur
in weakly correlated S and I' valence bands of solids.
Consistent with this general observation, we do not ob-
serve any structure in our (e,2e) data which could be as-
sociated with multielectron excitations. The good agree-
ment between our measurements and the spectral
momentum density predicted on the basis of the single-
particle approximation is strong evidence that the ap-
proximations in the derivation of the (e, 2e) cross section
are valid.

Finally, in our scattering geometry the proportionality
constant between the spectral momentum density and the
(e,2e) coincidence rate is nearly independent of the target
electron momentum q, which is being observed. The pro-
portionality constant does depend on q because of the an-
gular dependence of the Mott cross section, but the
dependence is very weak. The Mott cross section
changes by less than 6%%uo as we sweep from q = —3 A
to 3 A '. Thus, to an excellent approximation the mea-
sured coincidence rate is a direct map of the spectral
momentum density. It is diScult to make an absolute
determination of the proportionality constant between
coincidence rate and spectral momentum density, but it is
the relative variation of

~
F

~

with energy and momen-
tum which is of primary interest and this quantity can be
measured accurately.

The band structure of graphite has been calculated by
several groups. ' Holzwarth, et al. used a first-
principles, self-consistent technique which has been very
successful in describing many ground-state properties of
crystalhne solids. The technique is based on density-
functional theory in the local-density approximation us-
ing the mixed-basis pseudopotential approach. In addi-
tion to the band dispersion relations, the expansion
coeScients for the band wave functions come out directly
from these calculations. In Figs. 1(b) and l(c) are shown
the Brillouin zone of graphite and the band structure for
particular symmetry directions. The six o valence bands,
based on sp orbitals in the basal plane, are shown as
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solid lines, while the two m valence bands from the p,
atomic orbitals are represented by dashed lines. Due to
the weak interlayer interaction, the electronic structure is
nearly two-dimensional, collapsing the number of valence
bands to three cr bands and one m band. The spectral
densities of the cr and m bands are shown in Fig. 2(a) for
momentum in the basal plane (I ~M). The wave func-
tions for the lowest o. bands are S-like; that is, the
momentum density is maximum at q =0 and decreases
monotonically as q increases. The wave functions for the
upper two 0 bands are P-like; the momentum density of
the 0 2 band is zero at q =0, rises abruptly near the Bril-
louin zone boundary to a peak in the second zone, and
then falls o8 exponentially as q~ao. The momentum
density of the e3 band peaks in the third zone. The spec-
tral densities in the 1 ~E direction are shown in Fig.
2(b). They are qualitatively similar to the momentum
densities in the I ~M direction. The momentum density
of the m band is zero for q in the I -I(.'-M plane because
the m orbital has a node there. In Fig. 2(c) are the spec-
tral momentum densities for q along the c axis in the
I —A direction. The bands are quite Sat in this direction,
dispersing less than or of order 1 eV. The momentum
density of the lowest o band again falls ofF monotonically
from q =0. The momentum densities of the upper 0.

bands are zero for q along the e axis for symmetry
reasons. The momentum density of the m-band displays
p-wave character; ii is zero at the origin and peaks in the
third zone at q =1.5 A '. From these calculations one
can see that graphite is an interesting blend of nearly
free-electron behavior for q in the crystal plane and
atomic character for momentum perpendicular to the
crystal plane.

EXPERIMENTAL RESULTS

The sample was natural graphite from mines at Ticon-
deroga, New York. Initial thinning of this layered ma-
terial was by the "standard Scotch-tape method. " We
were not able to obtain usable samples less than -500 A
thick by this procedure. In order to reduce the thickness
to —100 k we took samples which were —1000 A thick
and thinned them further by reactive ion etching using a
mixture of oxygen and argon. There is evidence that
plasma etching does far less damage to the surface layers
of a crystal than ion milling. %'e obtained an area of
film, slightly larger than the area of our electron beam
spot, which we estimated was —150 A thick, based on
the attenuation of a laser beam passing through the sam-
ple. From an analysis of the multiple scattering contribu-
tion to our elastic scattering data (described in the Ap-
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FIG. I. (a) Kinematics for (e,2e) scattering. (b) BriHouin zone of graphite. (c) Band structure of graphite.
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pendix}, we found the thickness was -110 A, in rough
agreement with the estimate by laser beam attenuation.
The technique for preparing the film assured that the c
axis was perpendicular to the Slm surface. %'e attempted
to measure the orientation of the crystal axes in the plane
of the film, but were not successful. This is not too
significant because with our present resolution the pre-
dicted vanation in the spectral density for dNerent
momentum directions in the basal plane cannot be
resolved.

In order to evaluate now much damage was done to the
crystal by our thinning procedure, we measured the Ra-
man spectra of the sample before and after etching it.
We also checked the spectra after taking data for several
weeks to see if the sample had been adversely affected by
the electron beam. In Fig. 3(a) is the spectra of pristine
graphite which exhibits a single Raman line at 1575
cm '. After thinning sample with tape [Fig. 3(b}] and
etching the sample [Fig. 3(c)], the 1575-cm line is still
present and has not broadened. A new line at 1355 cm
is present which has been observed by others in micro-
crystalline graphite and arises from the breakdown of the

k selection rule as the crystallite size gets smaller. It
has been observed that the relative intensity of the 1355
line with respect to the 1575-cm line varies inversely
with the planar dimension of the crystallite. The small
peak at —1622 cm ' has been associated with weak dis-
order in the crystalline. In Fig. 3(d) is the Raman spectra
of a sample after taking (e,2e) data for five weeks. There
is no visible change in the spectra. Finally, in Fig. 3(e} is
the Raman spectra of amorphous carbon. It is clear that
our sample has retained crystalline order through the
process of thinning it.

The (e,2e) spectrometer has been described in detail in
Ref. 33. The incident electron energy was 25 keV in
these measurements. The energy resolution was 8.6 eV
F%HM and the momentum resolution was estimated to
be 0.47 and 0.73 A. ' for momentum parallel and per-
pendicular to the c axis, respectively. The coincidence
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FIG. 2. Spectral momentum densities for diferent graphite
bands as a function of momentum. (a) Momentum densities for
o&, o&, and o3 bands for momentum in the I —.M direction.
Momentum density of the m band is zero by symmetry. (b)
Momentum densities of the o

&
and o 2 bands for momentum in

the I -K direction. Momentum density of the m band is zero by
symmetry. (c) Momentum densities of the o
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momentum para11el to the c axis (I -A). Momentum densities
of the crz and o.3 bands are zero by symmetry.
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FIG. 3. Raman spectra of our samples and of amorphous

carbon. (a) Raman spectra of graphite crystal. (1) Raman spec-
tra of graphite Slm after thinning arith scotch tape. (c) Raman
spectra of graphite Slm after thinning eath scotch tape and with
reactive ion etching. (d) Raman spectra of graphite film after
electron bombardment for 6ve vreeks. (e) Raman spectra of
amorphous carbon.
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rate as a function of binding energy (with respect to the
Fermi energy) for total momentum approximately equal
to zero is shown in Fig. 4. The open rircles are the raw
data. Statistical error bars for one binding energy are
shown.

The coincidence rate goes to zero above the Fermi en-
ergy, but does not go to zero belo~ the bottom of the
valence band (Es =20 eV) because of multiple scattering.
A general procedure for deconvoluting the contributions
of multiple scattering from the raw data has been given
by Jones and Ritter. Specific application of this pro-
cedure to graphite, which is complicated by the crystal-
line anisoiropy, is discussed in the Appendix. The solid
circles in Fig. 4 are the deconvoluted (e,2e) scattering
rate. A weak peak at -8 eV and a more intense peak at
-20 eV are clearly evident. The complete set of decon-
voluted data is shown in Figs. 5(a) and 5(b). In Fig. 5(a)
data are shown for the momentum vector in the basal
plane and with the magnitude of the momentum ranging
from —0.35 to 2.35 A ' in steps of 0.3 A '. The com-
ponent of momentum parallel to the c axis was nominally
zero, but due to a misalignment of the spectrometer, the
parallel offset was ——0.61 A '. In Fig. 5(b) data are
shown for the momentum vector parallel to the c axis
from —0.61 A ' to 1.84 A ' in steps of 0.27 A
Again, the perpendicular component of momentum was
not zero, but was ofrset by —0.35 A ' because of
misalignment. The solid lines in Figs. 5(a) and 5(b) are
generated by fitting one or two Gaussian peaks to the
data with the center and amplitude of the Gaussians as
free parameters. The width of the Gaussian peaks was
determined from the data near zero momentum. The
momentum dependence of the width is negligible. In
Tables I and II are the resulting parameters for momen-
tum parallel and perpendicular to the c axis, respectively.
These results will be compared to theory in the next sec-
tion.

The maximum coincidence rate we observed was
=0.02 counts/second for total momentum approximate-
ly zero and binding energy =20 eV. We find that multi-

w 4 ~

momentum

-0.55'-O.N

(b)
' momentum

-0.6I & 0.24

-0 05 ~~ ~ -0.54

0.25 ~ ~ "0.07

0.2I

0,48

pie scattering is a major factor in determining the max-
imum rate. Coincidence events are removed from a par-
ticular energy-momentum bin by small-angle scattering
(typically creation of a plasmon) either before or after the
wide angle (e,2e) collision. The optimum film thickness
to maximize the coincidence rate is A, /2. 7 where I, is the
total mean free path of the inrident electron. In the
analysis of multiple scattering in our graphite data we
found that the ratio of thickness to mean free path was
0.5. The count rate would have been roughly 50% higher
if the sample thickness had been optimum.

We took data over a four-month period. There are
several sources of systematic errors which can arise over
such a long collection time. We have considered (1) the
incident electron current will vary, (2) the electron optics
will vary afFecting the incident current and the transmis-
sion of scattered electrons from the target to the detector,
(3) high-frequency noise on the power or ground lines will
produce bursts of false coincidence events, (4) the sample
will change with time. The variation in beam current and
tune conditions is mitigated by sweeping through a set of
energy-momentum values in a period which is shorter
than the drift time of the system. The energy-momentum
set is swept repetitively in random order under computer
control. After approximately 9 h a computer 61e is creat-
ed which stores the coincidence data, and other informa-
tion, for that period of time. Then all counters are

l. 15

CU

E

QP

E
O

U

LP
tP
CL

CA

1.02

I.29

o, 8
EF

~ 0 0
0 o 0

0
FWHM

IO 20

Binding energy (eV)
Ep 10 20

~ 2.05

2.55

l.57

R

i.s~
EF 10 20

FIG. 4. Spectral momentum density of graphite as a function
of energy (with respect to the Fermi energy) vnth the com-
ponent of momentum parallel to the c axis equal to 0.21 A
and ~ith the component of momentum perpendicular to the c

0
axis equal to —0.35 A '. The open circles are the raw data.
The solid circles are the data after correcting for multiple
scattering.
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FIG. 5. The spectral momentum densities of graphite as a
function of energy (with respect to the Fermi energy) for
diferent momenta. The solid lines are least-squares fits of
Gaussian peaks to the data. (a) Momentum perpendicular to
the c axis (parallel component is —0.61 A '). (b) Momentum
parallel to the c-axis (perpendicular component is —0.35 A ').
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TASK,E I. Momentum parallel to the c axis (perpendicular component is —0.35 A ').

q (A ')

—0.6120.24
—0.34
—0.07

0.21
0.48
0.75
1.02
1.29
1.57
1.84

Energy
Srst peak (eV)

10.65
6.06
2.94
6.53
9.79
9.21
9.32
8.60
6.85
8.48

Amplitude
Srst peak

0.12
0.11
0.04
0.10
0.31
0.32
0.55
0.44
0.42
0.25

Energy
second peak (eV)

22.3
20.9
22.5
22. 1

22.9
24.5
25.3
25.4
26.2
25.5

Amplitude
second peak

0.56
0.47
0.67
0.53
0.53
0.42
0.40
0.31
0.23
0.09

cleared and the process starts again. If there is evidence
of false coincidence events in the file {the coincidence
count is more than ten standard deviations from the aver-
age}, due, for example, to high-frequency noise triggering
the counter, then the file is rejected. Out of 174 files, we
have rejected six. We monitor whether the sample is
changing during the experiment by comparing files taken
at the beginning of the run with files taken at the end.
We saw no evidence of time dependence in the data. Fi-
nally, we took data in overlapping regions of binding en-
ergy and momentum rather than attempting to measure
the total energy-momentum set in one block. This al-
lowed us to better monitor the experiment and meant
that complete data for some energy-momentum values
would exist if the experiment aborted unexpectedly (the
sample breaking, for example). The first set of data was
taken on a course grid of momentum points, but spanned
all the energy values. Then the other momentum
columns were filled in. To normalize the data properly,
we overlapped the later data sets with at least one
momentum column from the first set. The ratio of the
coincidence counts in the overlapping momentum
columns was used as the normalizing factor.

Our data is compared with theory in Figs. 6 and 7 for
momentum parallel and perpendicular to the c axis, re-

spectively. There is one free parameter for matching ex-
periment and theory which is an overall scale factor.
This factor has been determined from the average spec-
tral density near q =0 (q (0.5 A ' }of the o, band. The
same scale factor is applied to all the data, for nomen-
tum both parallel and perpendicular to the c axis. In the
first case, Fig. 6, there is a constant component of
momentum perpendicular to the c axis, qi = —0.35 A
while the component of momentum parallel to the c axis
is variable. The nband (d. ashed line) and cr, band (solid
line), almost dispersionless along the c axis, are drawn in
the repeated zone representation. The dispersion is &1
eV and has not been shown since it cannot be observed
with our energy resolution. The first Brillouin-zone
boundary for momentum parallel to the c axis is qi

——0.47
A '. %e represent the spectral momentum density as an
arrow on the energy-momentum plane. The theoretical
densities are light arrows on top of the band dispersion;
the experimental results from Table l are the heavy ar-
rows. The agreement between theory and experiment is
excellent for the n band. The spectral density of the o,
band agrees very well with theory; the apparent disper-
sion of the band to larger binding energy is probably due
to incomplete deconvolution of multiple scattering from
the data. The spectral momentum densities of the two
less tightly bound sigma bands, o z and o ~, are zero for
synmetry reasons.

TABLE II. Momentum perpendicular to the c axis (parallel component is —0.61 A ').

—0.35+0.37
—0.05

0.25
0.55
0.85
1.15
1.45
1.75
2.05
2.35

Energy
Srst peak (eV)

7.10
7.49
6.00
7.71

12.5
4.64

Amplitude
Srst peak

0.08
0.19
0.09
0.16
0.26
0.12

Energy
second peak (eV)

20.1

23.0
21.4
21.3
19.3
17.2
12.1
9.20
7.18
8.53

Amplitude
second peak

0.57
0.60
0.53
0.50
0.37
0.48
0.55
0.62
0.40
0.19
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FIG. 6. The spectral momentum densities of graphite as a
function of momenta. The momentum is parallel to the c axis
{I-3) with a constant component perpendicular to the e axis

qj ———0.35 A '. The dashed and solid lines are the m and a&

bands„respectively. The light arrows are the theoretical spec-
tral densities and the heavy arrows are the measured spectral
densities from Table I.

FIG. 7. The spectral momentum densities of graphite as a
function of moments and energy. The momentum is perpendic-
ular to the c axis (theoretical curves are for I -M direction)
with a constant component parallel to the c axis

q~~
———0.61

The dashed and solid lines are the n and crt bands, re-
spectively. The light arrows are the theoretical spectral densi-
ties and the heavy arrows are the measured spectral densities
from Table II.

The spectral densities as a function of momentum per-
pendicular to the c axis are shown in Fig. 7. In this case
there is a constant component of momentum parallel to
the c axis qi

———0.61 A '. Again the theoretical density
is represented by the light arrows placed on the energy
dispersion curves, while the experimental results from
Table II are represented by heavy arrows. There is very
good agreement between theory and experiment for the
cr, band. The spectral density of the o 2 band is predicted
to be negligible in the first Brillouin zone, then rise sharp-
ly at the zone boundary and peak in the second Brillouin
zone. For q & 1 A ' we can not resolve the m, 0 2, and 0 3

bands because of our low resolution. %e tentatively iden-
tify the weak structure at q =0.25 A ' (E =6 eV),
q =0.55 A ' (E =7.7 eV), and q =1.15 A ' (E =4.6
eV) with the m band. The existence of m band spectral
density is due to the small component of momentum
parallel to the c axis. The data at q =0.85 A ' can be 6t
almost equally well with two Gaussians centered at
E =12.5 eV and E =19.3 eV (as plotted on Fig. 7) or
with one Gaussian at E =15.4 eV. The first choice
preserves the continuity of the spectral density in the o,
band but raises the question of whether the peak at
E =12.5 eV is associated with the 0 z band. If it is, then
the spectral density of the oz band in the first Brillouin
zone is much larger than predicted by theory. But this
possible discrepancy is tentative until the measurement
can be repeated with better resolution. In Fig. 7 we have
compared our data to the calculated spectral density for
momentum in the I ~M direction. %ithin our resolu-
tion and statistics, the dilerence in spectral density for
difFerent directions in the basal plane cannot be resolved.

The spectral momentum density of graphite has been
measured for momentum in the basal plane and for
momentum parallel to the c axis of the crystal. The re-
sults were compared to a first-principles calculation of
the spectral density and excellent agreement was found.
This is further confirmation of the power and accuracy of
density-functional theory. Viewed from another perspec-
tive, graphite has been investigated by several experimen-
tal and theoretical techniques and the electronic structure
of this material is understood well, certainly at the level
of —1 eV accuracy. The agreement between our mea-
surements and the theoretical calculation of the spectral
density provides evidence that the assumptions and ap-
proximations in the derivation of the (e,2e) cross section
are valid. The agreement further dc;monstrates that
(e,2e) spectroscopy gives sensible results when applied to
a system which is well characterized. The technique can
be extended with conMence now to other materials, such
as amorphous solids, where the electronic structure is less
well understood.
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In a typical (e,2e) experiment on thin films, the target
thickness is comparable to the mean free path for small-
angle scattering. Jones and Ritter have shown that the
(e,2e) coincidence rate R for a film of thickness b, can be
written as the convolution of a "smearing function" 5
and the difFerential inverse mean free path for (e,2e)
scattering, d X(, 2,)/dE d 0, d 02, which is the quantity
of interest:

Pp „is the resolution function of the incident beam,

XinI'„;„=A,;„ l3I'„
d qdE

P();„——5(q)5(E),

where

d X„/d q de=(d X„/d q)5(E)

(A6)

(A7)

(Al)

where "s" is the convolution operation, Ip is the in-
cident current (electrons/sec), and b,E, b Qi, and (»),02 are
the experimental resolutions. The difFerential cross sec-
tion is related to the difFerential inverse mean free path by

do 1 dX
dEdQ)d02 P dEdQ)dQ2 ' (A2)

S(e,q;E, )»), )

where p is the density of target electrons. The smearing
function incorporates all kinematically allowed combina-
tions of small-angle, elastic, and inelastic scattering
which can contribute to the multiple scattering back-
ground in the (e,2e) coincidence data. The smearing
function can be written

X(,"2,) =2R /l(»I0 R8S/b—,I(),

X(e,2e) X(e,2e) +R /~IO X(e,2e) S ~

(AS)

(A9)

and d X;„/d q ds are the differential inverse mean free
paths for elastic and inelastic scattering, respectively.
The factors A,„and A,;„are the mean free paths for elastic
and inelastic scattering. The functions P' and I'", refer-
ring to the scattered and recoiling electrons, are the same
as the function P except the energy of the electrons are
roughly half the energy of the incident electrons and the
coordinate system for the momentum is difkrent for the
incident, scattered, and recoiling electrons. Thus, the
smearin~ function is determined by four functions:
d X i/d q de d X' /d q de Pp ( and Pp, ( (in our spec-
trometer the resolution function for the scattered and
recoiling electrons, Pp, i and Pp„are equal). There are

7

several ways to deconvolute d X(, 2,)/dE dQ, 102 from
the measured coincidence rate. %e have used the itera-
tive technique suggested by Van Cittert:

where E is the incident energy, C is defined in Ref. 34,
and K is a function of the probability for small angle
scattering with total energy loss e and total momentum
transfer q. The integer j, (k„l, ) is the number of elastic
scattering events before the (e,2e) collision [after the
(e,2e) colhsion for the scattered, recoiling electron] and j;
(k;, l;) is the number of inelastic scattering events before
the (e,2e) collision [after the (e,2e) coihsion for the scat-
tered, recoiling electron]. The function lt; integrated over
e and q is normalized to unity. The sum of all the
coeScients C is also one. Thus, the term

in the function S is the probability that j,+k, +I, elastic
scattering events and j, +k, +1, inelastic scattering events
will occur in a film of thickness 6 when the energy of the
incident beam is E, the total energy loss is c., and the total
momentum transfer is q. The function K is

je»ke»le»jf»k, , l,. je»el j, , 'n ke»el k,.» n le» l /, , in

(A5)

X(, 2, )
——(d X(, 2,)/dE dQ, d02)(()E b,Q) b, 02 .

We discuss next the difFerential inverse mean free path
for elastic scattering and then the differential inverse
mean free path for inelastic scattering. With these func-
tions, we have calculated S up to second-order multiple
scattering. We estimate how the cuto8' at second order
affects the accuracy of X[,2,].

Elastic scattering will occur only if the Bragg condition
is satisf]Led. In our scattering geometry to observe target
electron momentum q in the plane of the Sm we vary the
angle of the incident beam with respect to the normal of
the film [see Fig. 1(a)]. For our graphite sample the c axis
is normal to the plane of the film. There will be no Bragg
scattering when observing electrons with momentum in-
side the first Brillouin zone. The incident beam will be
elastically scattered when the component of the momen-
tum perpendicular to the e axis 6rst touches the Brillouin
zone boundary (qua=1. 5 A '). The Bragg re6ection
changes the sign of the angle between the incident elec-
tron and the e axis but does not a8ect the magnitude of
q~ which is observed. Since the band dispersion and
spectral momentum density are invariant under the trans-
formation q~ —q, the (e,2e) data are not affected by
Bragg scattering of the incident hearn. The scattered and
recoiling electrons leaving the (e,2e) vertex also can be
Bragg reflected before they exit from the sample. There
will be no scattering of these two electrons until the com-
ponent of momentum parallel to the e axis is qII=2. 9

Q

A '. This is nearly 6 times the Inomenturn of the 6rst
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X&(q v —Rco~), (A10)

where ao is the Bohr radius, Eo is the energy loss, Eo is
the incident energy, 8 is the angle between q and the c
axis, ei is the dielectric function for q parallel to the c
axis, si is the dielectric function for q perpendicular to
the c-axis, co is the plasmon energy, and U is the incident
velocity. Measurements of d X;„/d q ds as a function
of

~ q ~

show that it is proportional to 1/q out to a criti-
cal momentum q, =1.25 A ', then it falls off more rap-
idly than 1/q . We have made the approximation that si
and si are independent of q for q & q, and that
d~X,„/diq ds is zero for q ~q, . For the energy depen-
dence of the parallel and perpendicular dielectric func-
tion we At the experimental data of Ref. 38 to the
Drude-Sellmeier formula. The perpendicular dielectric
function was fit with a plasma energy of 21 eV and two
harmonic oscillators at 15 and 4 eV. The damping con-
stants [A'/(relaxation time)] were 3.0, 7.0, and 2.0 eV for
the plasmon and two harmonic oscillators, respectively.
The oscillator strengths were 0.15, 0.80, and 0.15, respec-
tively. The parallel dielectric function was fit with a
plasmon energy of 15.0 eV and three harmonic oscillators
at 15.0, 10.0, and 4.0 eV. The respective damping con-
stants were 1.5, 12.0, 0.75, and 2.0 eV. The respective os-
cillator strengths were 0.35, 0.50, 0.20, and 0.05. These
parameters gave an excellent At for the positions of the
small-angle, energy-loss peaks. The experimental and
fitted peak heights differ by less than 3% for momentum
parallel to the c axis and 12%%uo for momentum perpendic-
ular to the c axis.

The last parameters which enter the smearing function
are the target thickness and the mean free path for inelas-
tic scattering. These parameters always appear as a ratio
in the smearing function. This ratio can be determined
from the multiple scattering peaks associated with elastic
scattering of electrons at 45. In addition to the elastic
peak there are peaks at lower energy corresponding to
electrons which have created plasmons either before or
after the -45' elastic vertex. The ratios of the plasmon

Brillouin zone boundary in the direction of the c axis and
lies beyond our last data point at q =1.84 A '. Thus,
for momenta perpendicular and parallel to the c axis of
graphite our (e,2e) data was unaffected by elastic Bragg
scattering.

The smearing function to second order contains contri-
butions only from small-angle, inelastic scattering of the
incident, scattered, and recoiling electrons. Since graph-
ite is anisotropic, the difkrcntial inverse mean free path
for sma11-angle scattering is a tensor which depends on
the initial and final direction of the scattered electron.
The tensor is diagonal in a coordinate system in which
momentum is measured relative to the e axis. The
differential inverse mean free path written in terms of the
dielectric function is

d X;„(E,q)

d qdE
—1= (1/aoEO)Im

q2cos28ell(E q)+q2sin2esi(E, q)

peaks to the elastic peak can be calculated in the same
way as the smearing function. Assuming the elastic mean
free path for graphite is infinite, the ratio of the first
plasmon loss peak to the elastic peak is

one-plasmon

elastic peak

d X;„F(E=Eq, q)
'"

d &q dE hq„b, q bq,
g{P) dq A,;„

d X„F(E=Ep, q)
2h{p) f dqA, ;„ i 8 ~'" d'q d ~ ~q. ~qy ~q,

(A 1 1)

g (P)= 1 —1/P+1/(e~ —1),
h (P)=1+1/P —e~/(e~ —1),
P=(~Z —la, u,„,

(A12)

(A13)

(A14)

f(E =0)=f(q=0)=1,

ff (E)dE =hE,

ff (q)dq=dq„bq~ bq„.

(A15)

(A16)

(A17)

Fitting the one parameter, b/A, ;„, to our data we find

b /I, ;„=0.5 for electrons of energy 25 keV. The inelastic
mean free path is A,;„=220 A, from integrating
d X;„/d q dE. This implies that t = 110 A, which is con-
sistent with our estimate of the thickness from the at-
tenuation of light.

In the deconvolution of our data, only first- and
second-order terms in the smearing function were calcu-
lated. The first-order term is the (e,2e) vertex with no
other scattering. The second-order term is an (e,2e) ver-
tex with one small-angle, inelastic vertex for either the in-
cident, scattered, or recoiling electron. In the deconvolu-
tion procedure, the second-order term required numerical
integration of a four-dimensional integral. A third-order
term wou1d require numerical evaluation of a six-
dimensional integral. %'e have estimated the error in our
deconvolution procedure from dropping higher-order
terms in the smearing function by the following argu-
ment. Assume the diff'erential inverse mean free path for
(e,2e) scattering is zero for binding energies less than the
Fermi energy, and constant (say X ) for binding energies
greater than the Fermi energy. Then it is straightforward
to show that the measured coincidence rate at binding en-

ergy, Ez, is X times the integral of the smearing function
over energy and momentum with the upper limit on the
energy integral equal to E&. The first-order term in the
smearing function peaks near Es =0 (the Fermi energy);
the second-order term peaks near the plasmon energy
(-25 eV); the third-order term peaks at twice the
plasmon energy; and higher order terms peak at even
larger binding energies. Our data extend from

where d~X;„/d3q ds and d X„/d q ds are the dif-

ferential loss functions before and after the 45' elastic
scattering event, respectively. The resolution function
F(E,q) =f (E)f (q) is defined such that



SPECTRAL MOMENTUM DENSITY OF GRAPHITE FROM. . . 3923

E& ———4.4 eV to E ——27.6 eV, so that only the 6rst- and
second-order terms in the smearing function inAuence
significantly the measured coincidence rate. %e have es-
tirnated the error due to cutting off the series at second

order by integrating the 6rst-, second-, and third-order
terms in the smearing function over the range of our
data. The third-order contribution is -6%%uo of the first-
and second-order contribution.
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