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t-J model studied by the power Lanczos method

Y. C. Chen
Department ofPhysics, National Tsing Hua University, Hsinchu, Taiwan

T. K. Lee
Center for Stochastic Processes in Science and Engineering and Department ofPhysics,

Virginia I'Olytechnlc Institute and State University, Blacksburg, Virginia 24061
(Received 15 November 1994)

The initial trial wave function used in a simple ground-state projection method, the power method, is

systematically improved by using Lanczos algorithm. Much faster convergence to the ground state
achieved by using these wave functions significantly reduces the effect of the fermion sign problem. The
results for the ground state of the two-dimensional t-J model are presented. The density correlation
function for the t-J model at small J shows a surprisingly good agreement with that of a system of nonin-
teracting hard-core bosons.

Recently we have studied ground-state properties of
the t-J model in one' and two dimensions by using a
simplified Green-function Monte Carlo (GFMC)
method, the power method. In this method the
ground-state wave function of a Hamiltonian 8 is ob-
tained by applying large powers of the operator 8'-H to a
trial wave function, where 8' is a constant. In ferrnionic
systems when the power becomes large same
configurations with opposite signs will be generated if a
Monte Carlo (MC) algorithm is used. It causes very large
error bars in numerical values. This is the famous sign
problem ' occurred in MC simulations of ferrnionic sys-
tems. In one dimension the phase of the wave function
can be fixed to rid of the sign problem, power method is
very successful for all possible electronic densities. ' In
two dimensions only at low electronic density the sign
problem is not severe and the converged ground state is
obtained. At high density the sign problem makes the
power method inefFective to study this interesting region
for high-temperature superconductors.

The freedom to choose the trial wave function is one of
the special properties of the ground-state projection
method. A trial function chosen inappropriately would
require a lot of computer time to converge to ground
state. Sometimes the sign problem makes the conver-
gence impossible. It is imperative to have a good trial
function to reduce the number of negative terms which
increases with the power.

In the last several years variational MC method has
been widely used to study the t-J model. Several in-
novative wave functions have been proposed for the
ground state. Some of them tested by the power method
are not as close to the ground state as one would have an-
ticipated. There were few methods that we can use to
systematically improve the trial wave function. Recently
Heeb and Rice proposed to use Lanczos' iteration to
obtain better wave functions. The effectiveness of the
method is demonstrated by studying the two-dimensional
antiferromagnetic Heisenberg model. Along the same
idea, in the study of 1.;H molecule, CafFarel et al. " ob-
tained lower energies by analyzing results of GFMC

method in a generalized Lanczos scheme.
Although Lanczos method' is best known in searching

for wave functions of small clusters, the method itself is
quite general. Starting with a wave function

~ $0 &, we can
generate a tridiagonal matrix by using the recurrence re-
lation'

where n =1,2, . . . , etc. The matrix elements, a„and b„,
are related to the moments of the Harniltonian. For ex-
ample, ao=(go~H~po& and b, =Q($0~(M —ao) ~$0&.
When n increases, the lowest eigenvalue of the tridiago-
nal matrix approaches the ground-state energy. And the
eigenfunction of this lowest eigenvalue gets closer to the
ground-state wave function. It is straightforward to
show that in successive iteration the eigenstates have the
form

and

etc. These functions form the basis in Krylov subspace. '

The C's are calculated from the matrix elements, a„and
b„, by diagonalizing the matrix.

Heeb and Rice propose to calculate the matrix ele-
ments, a„and b„, by using the Monte Carlo technique.
The C's are then determined. However, in this method
the values of the matrix elements must be calculated very
accurately. A small error will produce large uncertainty
in the eigenvalues and in C's. Here we choose an alterna-
tive. We treat C's as the variational parameters. The
wave function with the optimal energy is the eigenfunc-
tion with the lowest eigenvalue. This is more eKcient
and sometimes more accurate than diagonalizing the ma-
trix. '"

The result of this variational Lanczos algorithm is
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that we have a sequence of wave functions,
~ $0), ~'0, ), ~%'~ ), . . . , etc., with lower and lower energy.
Besides the statistical fluctuation associated with the MC
technique, the same result as the Lanczos method will be
obtained. The fact that this method does not need very
large memory space to store all the configurations as in
the usual Lanczos method is one of its biggest advan-
tages. But there is a practical difficulty with this ap-
proach of getting the ground state. Each time the Hamil-
tonian H is applied to a particular configuration the num-
ber of new configurations generated is of order of, N, the
size of the cluster. It is impractical to do any calculation
with

~ 4„) for n ~ 3 for a cluster of 64 sites or greater. A
more efficient way to obtain the ground state is to use
~'I', ) or ~%'z) as the trial wave functions in the power
method. We shall refer to this as the power-Lanczos (PL)
method. If the starting trial function before the power
method is applied is

~
ql„) we shall call it PLn. PLO is the

same as the usual power method. For the reason dis-
cussed above we shall only consider PL1 and PL2 in this
paper.

Once the optimal wave functions ~%', ) and ~%'z) are
determined, we can proceed to calculate quantities such
as (0'&~(W —H) ~%'&)/('P, ~%&), where p is the power. It
is sufficient to choose the constant 8'to be zero in the t-J
model. The procedure to carry out this part is the same
as the power method. '

We use several different forms of ~$0) to study the tJ-
Hamiltonian. The familiar Gutzwiller wave function'
(GWF) is just the wave function for an ideal Fermi gas
excluding configurations with doubly occupied sites.
Another function proposed by Hellberg and Mele and
used by Valenti and Gros in two dimensions (2D) was
shown to be close to the ground state at low density.
This function, which we shall call HMVG, is basically of
the same form as GWF, i.e., a Slater determinant for up-
spin electrons and one for down-spin electrons. In addi-
tion to these two determinants, it has a long-range corre-
lation part between all the particles, II, & ~r,

—r ~' (while
for nearest-neighbor particles we choose v=O). Besides
these two functions we also use the projected BCS state
or the resonating-valence-bond state ' with either s-
wave or d-wave symmetry for the gap order parameter.

The energy, E=(H ~+')l(H ~), as a function of
power p, is plotted in Fig. 1 for 10 particles in a 4X4 lat-
tice. Here we consider J =2t and GWF is chosen to be
the imtial trial function ~$0). The open triangles are the
result of Lanczos algorithm for different orders of itera-
tion. These results are obtained exactly using the usual
Lanczos method described briefly in Eq. (I). The varia-
tional energy of GWF is about 5% above the ground-
state energy. This difference is reduced to about 0.3%%uo by
using the second-order wave function. The solid circles,
squares, and triangles are the results of PLO, PL1, and
PL2 by using ~$0), ~%', ), and ~%'z), respectively. For
~4, ) of Eq. (2), we choose C, to be 0.8. We have
C', =1.72 and Cz=0.72 in ~%z) of Eq. (3). Clearly, when
the power becomes large enough, all these three algo-
rithms would produce ground-state energy. For compar-
ison, we also calculated the energy exactly without using
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FIG. 1. Energy as a function of power for 10 electrons in a
4X4 cluster. GWF is the trial function used for J=2t. The
solid circles, squares, and triangles represent results for PLO,
PL1, and PL2, respectively. The dashed lines represent exact
results without using Monte Carlo technique. Open triangles
are the exact results obtained from each order of Lanczos itera-
tion. In the inset ratio of contributions from negative terms and
contributions from positive terms as a function of the power m
in (( H) ). —

the MC technique in PLO, PL1, and PL2. They are
shown by the dashed lines. The excellent agreement be-
tween exact and MC calculations reaffirms the stability of
MC technique.

The relatively large error bar at powers greater than 4,
in Fig. 1, is mainly due to the fermion sign problem. The
effect of this sign is studied by calculating the ratio of
contributions from negative and positive terms in the
quantities (( H) ). It is s—hown in the inset of Fig. 1.
This ratio is about the same for different PL's. At large
powers the negative terms make it very time consuming
to get good statistics.

The data for PLO and PL1 are obtained by averaging
10—20 independent groups, X . Each group usually con-
sists of 1000—2000 starting configurations, X, . The
configurations are chosen by sweeping the lattice. Each
starting configuration would produce several hundred
branches, Nb, in the evaluation of powers of H. For a
system of X, electrons, we estimate the number of deter-
minants or its ratio calculated in PL„with pth power is
about Ns XN, XN,"X (N, +a XNb ), where a is a fraction
of p. For a system with N, of the order of 10, the calcu-
lation in PL2 without power is at least several times
longer than PL1 with power even without taking into ac-
count the effort in optimizing the ~%'z). This is out of
reach with our computing resources. In order to demon-
strate that more laborious calculation of PL2 without
power can be easily replaced by more efficient calcula-
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tions of PL1 with power, we shall onl consid

In Figs. 2(a) and 3(a) energy as a function of o
plotted for 26p 6 and 42 electrons, respectivel in an 8X

ion o power is

lattice for J =
as an

. 1t. VGHM function with v=0.04 i
~Pc) and its variational energy is about 3% above the

n = —", . The situation is improved substantially in PL1
when ~%'i) of Eq. (2) is used. C =1.33 F'in ig. 2(a) and

in ig. 3(a). The effect of the negative sign
'

1

when the d

'
e sign is arger

e density is increased from (n ) = —" to —" The
variational energies of ~%2) are represented by the solid

, and in

above L
ig. 3 where C

&

=2.95 and C' =2.18. As
a ove, PL1 with power takes less time than this varia-
tional PL2 calculation yet it obt

'
d thaine t e same or better

energy. The important-sampling idea used in the power
method is necessary to overcom the e excess time require-
ment of the Lanczos approach.

Besides the energy we also calculate the equal-time
correlation functions, in particular th de spin and density

structure factors, S(k) and N(k) , respectively. These
structure factors are plotted along th I -X-M-Ie - - - direction
in the Brillouin zone in Figs. 2(b) and 2(c) for (n ) = «
and in Figs. 3(b) and 3(c) for (n ) = «. 0pen circles
represent the variational result of VGHM 004, and open
squares are for PL1 without power 0wer. pen triangles are
results of PL1 with power equal to 6 for (n ) = «and
power equal to 5 for (n ) = 4'. Th 1'd l'e so i ines connecting

changed markedly between the initial variational wave
unction and the first-order Lanczos wave f t'

si uation seems to get worse when the density (n) in-

the best variational energy at J=0 1t Th'is points out a

VG
possible deficiency in using the t 1e ria wave function

GHM to understand ground states of the t-J model at

the r
ig electronic density. For compariso 1ison, we a so s ow

not r
e results of GWF as dotted lines. GWF 1 1c ear y does

no reflect the correlation of the ground state. So far we
have not yet found a wave function that would have ener-
gy within 5% of the ground state.
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Recently we have shown that many results of the t-J
model at low electronic density are qualitatively con-
sistent with the prediction of the Tomonaga-Luttinger
liquid' in one dimension. The cusps or peaks at k=2k+
in S(k) are enhanced over the variational results of
VGHM. N(k) has a maximum at k=(n, m). But we
cannot' identify in N(k) the characteristic wave vector
2k@ associated with spinless fermions (SF) as claimed by
Putikka et al. ' using the high-temperature expansion.
There is another fact against the ideal SF. Unlike one di-
mension the energy of the t-J model in the limit of van-
ishing J is lower than SF by about 12 and 6% for n =

—,",
and —'„', respectively. Here we try to understand N(k)
from a different point of view.

One way to treat the constraint of no double occupan-
cy in the t-J model is to write the fermion operator as a
product of a hard-core boson and a fermion operator. In
this slave-boson approach' the fermion operator
represents spin degree of freedom and the boson is for
charge degree of freedom. We may expect the charge
correlation to be similar to that of a system of nonin-
teracting hard-core bosons in the limit of vanishing J. In
one-dimensional hard-core bosons and spinless fermions
are equivalent, but they are not in two dimensions.

The ground-state correlation function of a system of
noninteracting hard-core bosons is calculated by using
the power method. The trial wave function is of the form
of Jastrow type. ' Details of this calculation will be
presented elsewhere. Results of density correlation are
represented by the solid circles in Figs. 2(c) and 3(c).
They almost lie on top of the triangles representing the
result of PL1, except at very small k. A similar result '

has been found for the infinite-U Hubbard model for

small clusters. On the other hand, N(k) of SF as shown
by the dashed lines in Figs. 2(c) and 3(c) is not as close to
the result of t-J model. The fact that hard-core bosons
have almost the same density-density correlation as the
charges in the t-J model does not by itself prove the sepa-
ration of spin and charge. But this and other evi-
dences ' ' make the idea of separation of charge and
spin in the t-J model more plausible.

In conclusion, we have presented an algorithm that uti-
lizes the advantages of two very powerful techniques, the
Lanczos and the power methods. On the one hand, the
variational Lanczos improves the trial function to ac-
celerate the convergence to the ground state in the power
method so the effect of fermion sign problem is reduced.
Unlike the commonly used fixed-node method, our re-
sults are not overwhelmingly influenced by the initial
choice of trial functions. On the other hand, the impor-
tant sampling used in the power method can achieve the
same results as the pure Lanczos approach but with
much more eKciency. This benefit would become more
important when the number of electrons increases. A
surprising result has been found. The density-density
correlation obtained at small J is very close to that of a
system of noninteracting hard-core bosons, and it is not
the same as that of spinless fermions. '
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