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We present a method for calculating some select eigenvalues and corresponding eigenvectors of a given
Hamiltonian. We show that it is possible to target the eigenvalues and eigenvectors of wttrest diago-
nalizing the full Hamiltonian, by usingny arbitrary physical propertpf the eigenvectors. This allows us to
target, for example, the eigenvectors based on their localization propériges states localized at a given
surface or interfage We also show that the method scales linearly with system size.
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[. INTRODUCTION criteria other than the eigenenergies are more relevant to tar-
get specific eigensolutions of a given Hamiltonian, e.g., the
The calculation of the eigenvalues and correspondindocalization properties of the wave functions at surfaces or
eigenvectors of a given Hamiltoniad is of fundamental interfaces.
importance in quantum mechanics. In many physical prob- We present in this paper an alternative approach to target
lems, it is enough to determine the eigensolutionsidhat  select eigenvalues and corresponding eigenvectors by using
correspond to the lowest-energy states of the spectrum. larbitrary physical properties of the eigensolutions. The
this case, several numerical methods are available that effinethod relies on the use of the Jacobi-Davidson techiique
ciently allow us to diagonalizél with respect to the lowest- that does not require “squaring” the Hamiltonian operator as
energy state$:® However, there are many physics problemsin the FS method, but solves the eigenvalue equation di-
that require knowledge of only some select eigenvalues antectly. This technique does not suffer from either of the FS
corresponding eigenvectors b, which arenot the lowest- problems and can easily be extended to generalized eigen-
energy states of the spectrum, and for which the diagonalizaralue problems resulting from the use of particular methods
tion of the full Hamiltonian is computationally very expen- and technicalities for the solution of the Sctlimger equa-
sive if not impossiblé.‘8 For these problems, the tion, such as the projector augmented wéRAW) method*
determination of such eigensolutions presents a challenge. T the use of ultrasoft pseudopotenttéler a nonorthogonal
this end, Wang and Zundedeveloped a methofthe so-  basis set.
called “folded spectruntFS)” method] which scales linearly The paper is organized as follows. In Sec. Il, we will
with system size rather than the usual cubic scaling requiretiriefly outline the problem we want to address and its current
by traditional matrix diagonalization techniquésThe  solution within the FS method. In Secs. Il and IV, we
method consists of “folding” the eigenvalues of the spec-present the Jacobi-Davidson method that represents the core
trum around a given reference energy and “squaring” theof the alternative approach we propose. In Sec. V its practi-
resulting Hamiltonian operat8rUsing Hamiltonians con- cal implementation is outlined. In Sec. VI, we discuss its
structed from semiempirical pseudopotentials, those authoi@nvergence properties and scalability with system size. Fi-
have successfully applied the technigue to a number of intemally, in Sec. VII, we discuss few examples of application of
esting problems including the calculation of the dielectricthe present approach where different selection criteria are
properties of quantum dofsyariation of the band gap with used.
guantum dot size, and the solution of the “inverse band-
structure problem.a In all of these cases only a relatively Il. THE EIGENVALUE PROBLEM
small fraction of the total number of eigensolutions of the
Schralinger equation was determined around a specific en- The main concern in electronic structure calculations is
ergy. However, the “squaring” of the Hamiltonian operator solving the eigenvalue problem,
in the FS method greatly increases the difficulty in solving
the original eigenvalue problem. Moreover, in electronic Hii=¢ei, (1)
structure calculations, the solution of a generalized eigen-
value problem is sometimes requirfd? The FS method wherey;’s are the electronic wave functiorid, is the system
could, in principle, be extended to such cases but at the costamiltonian, and the;’s are the energy eigenvalues. Equa-
of a significant increase in solving difficulty. In addition, the tion (1) can represent, for instance, a set of Kohn-SHam
FS method can only handle reference energies as selecti@yuations to determine the ground-state properties of a given
criterion. However, in certain physical problems selectionsystem. A generalized eigenvalue equation can occur if a

0163-1829/2002/6@4)/2451047)/$20.00 66 245104-1 ©2002 The American Physical Society

of


borrego
Typewritten Text
Copyright by the American Physical Society. Tackett, A. R.; Di Ventra, M., "Targeting specific eigenvectors and eigenvalues of a given Hamiltonian using arbitrary selection criteria," Phys. Rev. B 66, 245104  DOI: http://dx.doi.org/10.1103/PhysRevB.66.245104


A. R. TACKETT AND M. DI VENTRA PHYSICAL REVIEW B 66, 245104 (2002

nonorthogonal basis set is chosen or as a result of thdling generalized eigenvalue problems poses no difficulty. In
pseudopotential formalisit:'2 The generalized eigenvalue the following, we refer to the latter case to illustrate the

problem is defined as method.
The method consists of solving the projected eigenprob-
Hii =04, (20 |em with differentsearchandtestsubspaces. Theearchsub-

where the new operatod is called the overlap operator. SPaceV=[vy V,---v,] spans the space of the possible so-
There are several techniques for trying to find a few of thdutions, and theestsubspacV=[w, w,---w,] providesa

smallest or largest eigenvalues, but few of them are effectivéPace for testing the quality of the solutions. In most appli-
in finding selected eigenvalues inside the specttifur- ~ Cations, thetestand searchsubspaces are the same, leading
thermore, all of these methods rely on the eigenvalues as tH@ the following equation for the projected generalized eigen-
selection criterion, and cannot be generalized to using otheflue problem:
selection criteria. VIHVU =& vTovL, | ®)

A. Folded spectrum method The new eigenvectors are then calculatedyd§"=Vu; .
There are few methods for solving interior eigenvalueOWeVer, when targeting selected interior eigenvalues

problems?? The most successful approach to date is thearound some reference energy, it is more advantageous
folded spectrum methdiThis technique is based upon fold- to make thaestandsearchsubspaces different. This leads to

ing the eigenvalue spectrum around a reference engigy the following equation:

thus shifting the lowest eigenstate of the resulting system to WTHV U =& WTOVU: (6)

that closest to the reference energy. The resulting eigenvalue b v

equation Is If the testspace is chosen as
(H_sref)z‘/’iz(si_sref)zlpi ) ()] W=(H—¢,0)V, 7

which is then solved with standard teChniqueS to find th%ndw is made orthogonaWTW:L the eigenva]ue prob_

lowest-energy statésThe main disadvantage of this tech- |em can be solved in an efficient way. First, let us shift the
nique is that “squaring” the effective Hamiltonian operator spectrum with the reference energy;,

also “squares” the condition number, which is directly re-

lated to the difficulty in solving the FS equation. This in- Hyi=¢,0¢;,

crease in the condition number makes solving the FS method

much more difficult. As stated by the authors of the FS (H—&,6:0) ;= (&;—&1e1) Ot ,

method!® a typical case requires 100 conjugate gradient

(CG) stepsper energy bandper iteration. Each CG step re- H(/,i:;od,i , (8)

quires two applications ofl due to the squaring operation. _ _

This corresponds te-200 applications oH per bandper ~ WhereH=H—g (O ande;j=g;—ges-

iteration. As the authors of FS method also point out, this is Now we can apply the oblique projection with'=HV
about the “square” of the normal number of CG steps re-and ;= Vu; to the eigenvalue equation giving

quired for solving the original eigenvalue equatign.

WTHVU,=z;WToVuy;. (9)
B. Extending the FS method to generalized eigenvalue ) )
problems BecauseW is orthogonal, we obtain
Even if never used in this context, the FS method can WHAvu =3,wWtovu,,

easily be extended to handle generalized eigenvalue prob-
lems. The resulting generalized folded spectrum equation is WIWu,=%,WTovy;
(H_srefo)o_l(H —&1f0) = (g _8ref)2o¢i . (4
o . T -

However, from the above equation it is obvious that now w OVui_gui '
the condition number and difficulty has increased “cubi- :
cally” over the original eigenvalue problem, and we have 1
implicitly assumed that th® operator can be invertéd. WTOR Wy ==y, (10)

11l. JACOBI-DAVIDSON METHOD . ~_1
sinceV=H"*W.

The Jacobi-Davidson methd@ briefly described here, is Notice that this choice of the test subspace is mathemati-
an oblique projection method that solves the eigenvalueally equivalent to using a normal orthogonal projection
equation directly. This means that the condition number andnethod for computing the eigenvalues of
difficulty in solving for the selected eigensolutions is the _
same as the original eigenvalue equation. As a result, han- H l=(H—g,0) L (11
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the Schur vectors. There is also a one-to-one correspondence
between the converged Schur vectors and the actual eigen-
vectors.
A partial generalized Schur form for the matrix pair
':,l‘_j 85\ e (H,0O) is defined as
t:.) €71 &
2 ok o | | HQ =2, S,  OQ=ZTx, (14
- & where the matriceQ, andZ, are orthogonah X k matrices,
with S, and T, both being upper triangular matrices. Each
' 4 column ofQ,, denoted byy;, is a generalized Schur vector.
The diagonal elements & and T, are related to the eigen-
Eigenvalue (g) values according to
FIG. 1. Plot of the harmonic Ritz values vs original eigenvalue S(i,i)
spectrum. The dashed lines correspond to the original eigenvalues €j :m (15

with the solid vertical line in the center representing the reference
energy chosen for targeting. The harmonic Ritz values are located gthe pair @; ,(Sc(i,i),Ti(i,i))) is referred to as a generalized

the intersection of the curved and dashed lines. Notice that originaschur pair. Sinc&, andZ, are both orthonormal, Eq14)
eigenvalues for states 4 and 5 are extrema of the harmonic Ritggn pe rewritten as

problem.

A . . Z{HQ=S¢,  Z{OQy=Tx. (16
However, no explicit inversion is necessary in the solution
of Eq. (10). In this scheme the eigenvectors are the same a&pplying this to the original eigenvalue equation, we see it is

the original eigenvalue problem, but the eigenvalues are nowasy to get the eigenvalues and eigenvectors from the partial
shifted and inverted as generalized Schur form.

Let ;=Q.u; then

1
i~ Eref 12 Hyi=¢i0¢i,
and are called harmonic Ritz valu¥sThis makes the origi- HQ,u;=&,0Q,u; ,

nal eigenvalues extremal eigenvalues of the shifted and in-
verted eigenproblem. This is illustrated in Fig. 1, where Eq.

T =77 .
(12) is plotted as a function of the eigenvalse ZHQuU =812, OQuu;,

Scui=¢&;Tyu; . (17)
IV. PARTIAL GENERALIZED SCHUR FORM

AND DEFLATION The eigenvectors are then calculated according to the origi-

. . . nal equation ;= Q.U; .

s'nlnlethee' JeancO;)é;(?ra\;gg0’?e?§tgrsoa$1rtl"l (:RZtnéP";i”ye(t:?(;?ectzﬁ The partial generalized Schur form can efficiently be used
ing Igenv ! unt Igenv tn conjunction with deflation. Assume th&}, and Z, cur-

verges. In order.to makg sure that a converged eigenvector ﬁntly exist and we seek to expand the generalized Schur

not “found” again, it is important to be able to remove the

converged eigenvectors from the eigenvalue problem. This ifsorm by finding suitable vectorg andz to calculateQy ;

accomplished bydeflatingthe original problem. If the test —[Qua] andZy,,=[2,z]. Then according to the definition,

and search subspaces are the same, this is accomplishedt[:})e/Se vectors must satisfy
simply projecting out the converged eigenvectors from the

original problem. Let¥ =[ y/;4,- - - ,] where each column HQ 1= Zk1Se OQ1=ZkaTier (18)
; is a converged eigenvector. The deflated eigenproblem isubstituting the above definitions into the previous equations
then defined as gives
(1_O‘l“l}T)(H_srefo)(l_q,q,ToT)‘//new:O- (13 S s
H[Qkal=[Zkz] 0 }

This requires memory for two vectorgs( and Oy;) for @
each converged eigenvector. A similar equation can be writ-
ten if both the test and search subspaces are different but B Tt
requiring four vectors for each converged eigenvector. O[Qual=[Z«z] 0 Bl (19

A better choice is to use a partial generalized Schur form
that requires only two vectors per converged vector. ThaVe have introduced two new real numbersand 8, such
Schur vectors themselves are not eigenvectors of the eigethat e = a/ 8. Expanding the above equations gives for the
value equation, but it is easy to extract the eigenvectors fromew columns
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Eref

Hq=Z,s+za—s=Z](Hq—za), 1
aref:\/ﬁy Bref:\/ﬁ- (26)
0q=Z,t+2zB—t=2}(0q—zp). (20) T eref T &res

The next step is to update the test and search subspaces.
Since we are dealing with the orthonormal matrices, the
search subspace is updated as

Using the substitutions given above foandt, and combin-
ing the equations to eliminate the terms involvingives

+ _
(1-2,Z,)(BH—a0)q=0. (21 V. CVLV,
Note that the new vectors must also satisfy the orthonor-
mal constraints@ L Q andzl Z) and that the eigenvalues are vV v,
defined as = a/B, so that Eq(21) can be expressed as
V—[Vv,]. (27

+ Yy
(122 (BH~a0)(1~QQA=0. 22 We recall thatv is by definition orthogonal t@Q. The test
This means that the generalized Schur pairs are also solgubspace vectaw is defined as
tions to the deflated eigenvalue problem. The eigenvectors
can then be calculated from the Schur pairs by using Eg. W=(BrefH— aefO)V. (28)

along with the definitiony; = Qiu; As before, we are only interested in the component orthogo-

nal to bothwW andZ:
V. IMPLEMENTATION OF THE JACOBI-DAVIDSON

METHOD w, —wL (W andZz),

In an actual implementation of the method, we start from
a random guess far andz with theQ,Z,V, andW matrices
set to null. Q and Z contain the partial generalized Schur
form of the converged Schur vectors withandW defining We[Ww,]. (29

the search and test subspaces. The first step is to solve thl'ﬁe next step is to perform a Subspace rotation by So|ving

Jacobi-Davidson equation for the correction veatowhich  the projected generalized Schur problem for the matrix pair
will be used to augment the search and test subspaces. The

Jacobi-Davidson equation is easily derived:

wy —w, /fw |,

U (WTHV)Ug=S, U/ (W'OV)Ug=T, (30)
(H—2.f0)(q+Vv)=0, L R_ LG ) 3
for the left (U.) and right Ug) generalized Schur vectors

(H—¢&,ef0)v=—(H—¢,,;0)q, and upper triangular matricés and T. Remember that the
eigenvalues can be calculated with the diagonal elements of
(H—g,ef0O)v=—r, (23 S andT, according to Eq(15).

wherer=(H—¢,¢{0)q.

Since only the component of orthogonal tog contains
any new information, we can enforce this condition by re- The most obvious selection criterion is targeting a specific
moving this direction from both the test and search subtange of the eigenvalue spectrum. Another option consists of

A. Arbitrary selection criteria

spaces according to targeting the eigenvectors based on their localization prop-
. N erty. In general, using the present approach, an arbitrary se-
(1-2Z")(H—&.e:0)(1—qq")v=—r. (24)  |ection criterion can be used for selecting eigenvectors. This

As stated earlier one also wants to ensure that already coff@" be done in the following way. It is possible to reorder the
verged Schur vectors are not “revisited” by deflating the MatricesS, T, Uy , andUg such that the vector to be targeted
correction equation. The converged Schur vectors are stordg Stored in the first column dfg, denoted byUg(:,1), with

in Q andZ as described earlier. Using this and the definitionth® corresponding eigenvalue storedS(i,1)/T(1,1). This
€r01= o/ Bref, the general form for the Jacobi-Davidson reordering is not difficult and is discussed in Ref. 19 with an

correction equation is given by actual implementation given in Ref. 20. The power of the

method comes from the fact that the reordering is arbitrary.

(1-2Z")(1—2Z")(BretH— 1efO) For targeting eigenvectors in the interior of the spectrum, one

. . would order the matrices according to how close they are to
X(1-99")(1-QQ"H)v="~r. (29 the reference energy or

This can also be combined with a preconditioner as dis-
cussed in Sec. 2.6 of Ref. 10. It is not necessary to solve Eq. lerer= S(LD/T(L D) <[erer—S(2.2/T(22)] <. (31)

(25) exactly. Typically just a few steps of an iterative method

such asGMRES or BICGSTAB are required’*® The choice of ~ Another option is to order the matrices based on their local-

a,ef and B, is important and discussed in detail in Sec. 2.4ization properties in space, for example, states localized at an
of Ref. 10 and given below interface or at a surface. In principle, any property that can
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be obtained from the eigenvectors can be targeted. Examplegctors. Since only a single eigenvector is targeted at a time
are given later demonstrating both eigenvalues and localizahere is the worst-case possibility of selecting a different de-

tion property targeting. generate vector to target at each iteration. However, if all the
Once the matrices have been reordered, the new targdegenerate vectors can be held in the search subspace then

vectors can be calculated as they would all tend to converge at about the same rate. On
the other hand, if the search subspace is too small, then every

a=Ur(:,1), z=U.(:,D). (32)  correction vector added could add information on a vector

From this, the new residual can be calculated to test fopot contained in the search _subspace. The _subseq_uent sh(ink—
convergence as follows: ing of the subspace when it had reached its maximum size

would eliminate some of these degenerate vectors causing
r=(T(1,)H-S(1,)0)q. (33 the process to repeat. In this case, one could always be add-
) . ing a vector that corresponds to a new degenerate vector.
If the residual is less than the convergence tolerance, updat-"\we now discuss the scalability of the method with system
ing the generalized Schur matrices deflates the eigenprokjze \we assume in the following that the number of eigen-

lem: pairs that need to be found is much less than the total number
of eigensolutions oH in a given basis set. The number of

Q—[Qal, Z—[zz]. (34 eigenpairs needed is typically independent of the number of

One then selects the next vector in the sort to target and tr@toms. Take for example, using spectrum targeting for deter-

process continues until all eigenvectors are found. mining the band gap. In theory one only needs two eigen-

vectors, the highest occupied eigenstate and lowest unoccu-
pied eigenstate, to determine the band gap. This does not
depend on the number of atoms. In practice though one is not

_The test and search subspaces are not allowed to groy(,aranteed to find the above states first. Instead one will find
without bound. Instead they are allowed to grow only up 0 &seyeral states on both sides of the Fermi surface and from
maximum sizen,y before they are shrunk back down 10 a these determine the band gap. In this case, the number of
minimum basen,,. This is easily accomplished with eigenpairs found is still independent of the number of atoms,
i.e., if the system size is doubled the total number of states
found remains fixed. Although this does correspond to a
slightly larger prefactor for the overall scaling.

The work for each iteration scales the same as an indi-

vidual matrix-vector operation fdd s or Oys. For large sys-

_Because of the reordering process discussed prgvioqslyéms eachH ¢ operation is dominated by the number of non-
this allows the most promising vectors to be kept while dls—Iocal terms(e.g., in the pseudopotential appropchvhich

<r:]ard|ir;gztoh_e4ge'st. Typically the range of, is 10-20 and scales linearly with the number of atoms. The size of each
max vector also scales linearly with the number of atoms. For this
reason, if a plane-wave basis set is chosen and the nonlocal
V1. CONVERGENCE AND SCALABILITY terms are evaluated in plane-wave space, the algorithm has

If the Jacobi-Davidson correction equation is solved ex-duadratic scaling o®(n°) (wheren is the number of atoms
actly, the method seems to have cubic convergéhemw-  ©ON the other hand, if these terms are evaluated in real space
ever, this is not explicitly proven. Even though the method istheY can be performed in parallel by making use of the space
designed to target a single eigenvector at a time, one buildgcality of these terms. This approach has a scaling of
up information on nearby eigenvectors. For this reason on@(nn2n) due to the two fast Fourier transforms to transfer

would expect that after the first vector is found the remainingh€ solution to/from Fourier space. Finally, if all computa-
vectors would converge at a fairly uniform rate, which is tions are performed in real space, the method scales linearly,

B. Restarting

Viestart— VUR(:, 1iNmin),

Wiestart— WU (5, 1iNmin). (39

shown to be true in the examples below. [O(n)] with the number of atoms.
The degenerate and nearly degenerate eigenvalues also do
not pose a problertsee examples belowThis is mainly due VII. EXAMPLES

to two reasons. The first is due to deflation of the eigenprob- The following are the three examples of application of the
lem. With deflation the degenerate eigenvectors found are 9 P bp

removed from the spectrum. This keeps eigenvectors already eerfgict) d_ffggggizldt'::gf;éIgngtlegr'?fe'g;g?nsféf r?;?/t: g\g tehr:n
found from interfering with the current target vector. The Y ) p

other reason can be understood by looking at Fig. 1. Noticghosen to highlight the different strengths of the method. The

that if the reference energy is close to a nearly degenera%gsge?eaccuracy in the wave function has been chosen to be

eigenvector, the shifted and inverted eigenvalue tends t
infinity—wi(_jely separating it fror_n other n_earby nearly de- IHy—sOy||<1075. (36)
generate eigenvectors and making the eigenvalue an extre-

mum that is easily targeted. One potential problem with deWhen the number of basis functions are taken into account
generate eigenvalues can occur if the test and seardhis corresponds to a rms accuracy of 1Cfor each basis
subspaces are not large enough to hold all the degenerdienction coefficient. Note that this accuracy is considerably
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FIG. 3. Example of eigenvalue targeting with a generalized ei-
FIG. 2. Convergence for the nine closest eigenvectors to thgenvalue problem. A nine-atom SiGupercell was used with a

target energy for an Ps, supercell using semiempirical pseudo- fixed PAW Hamiltonian. The ten eigenstates closest to the reference
potentials. The energy chosen was to test the method’s ability tenergy were found.
handle degenerate and nearly degenerate eigenstates. There are a
total of 150 eigenstates withi: 0.1 Ry of the reference energy. A considerable improvement with respect to the FS
The pseudopotentials used result in a standard eigenvalue problefhethod can be readily seen. As stated previously, the FS

_ ) ) ~ method requires on average200 applications ofH per
higher than usually required in the total-energy calculationspand per iteratiod® In general, about 5-10 iterations are
The iterative solveGMRES (Ref. 17 has been used with a required to reach convergence using the FS method. This
maximum of 10 iterations allowed per target vector. In all ymounts to about 1000—2000 applicationshbfper band.
cases, we plot the logarithm of the error in the currentlyrrom Figs. 2 and 3, it is evident that we need less than 4000
targeted wave function versus the total numbergi opera-  H,, operations for 9 and 10 eigenvalues, respectively, which
tions performed. Deflation has been used to remove the CORprresponds to less than 400 applicationsHofper band.
verged eigenvectors so that they are not “found” again as=yrthermore, the example in Fig. 3 represents a generalized
described earlier. No preconditioning was used in the specsigenvalue problem. As we have stated in Sec. I B, in the FS
trum targeting examples, and only a simple preconditionepethod the condition number of this problem increases cu-
was used in the localization targeting example. Use of amjcally over the original eigenvalue problem and, therefore,
appropriate preconditioner can considerably decrease thggyd require more than 1000 applications-bper band per

number ofH ¢ operations performed. iteration, or, equivalently, more than “@pplications ofH
per band to reach convergence. On the other hand, as it is
A. Spectrum targeting evident from Fig. 3, the condition number of the generalized

eigenvalue problem is practically unchanged within the

The first example is an jPs, supercell. We used the
Present method.

semiempirical pseudopotentials obtained from Fu an
Zungef! and an energy cutoff of 32 Ry. This is an example
of a standard eigenvalue problem, i®=1, or the identity B. Localization targeting
operator. The reference energy was chosen because of the The |ast example demonstrates the ability to target local-
high number of nearly degenerate eigenstates. There exigtation properties of the eigenvectors by finding the lowest-
over 150 eigenstates within an energy range*dd.1Ry  energy eigenvector situated around each of the 27 Ca atoms
around the reference energy. This represents a very challengr a Cg-F, supercellsee Fig. 4 An energy cutoff of 64 Ry
ing problem due to high degeneracy. The nine eigenstatagas been used. In the present case, we look for the eigenvec-
closest to the reference were chossee Fig. 2 The testand  tors ¢ such that the probability
search subspaces are limited 1Q,,=20 and n,=40.
These are much smaller than the degeneracy and could lead o 5
to problems as discussed previously. However, in the case at EI fo drfe(r—ry)| (37)
hand we found that this did not occur. Notice that over half
of the work goes to building up a good test and search subs maximized, where; is the position of théth Ca atom in
space. the cell, andr is a “localization radius,” which we assume
The second example is a smallquartz supercell of nine to be 3 a.u. Again, the PAW method was used, requiring the
atoms. We used the PAW method with a fixed Hamiltonian tosolution of a generalized eigenvalue problem. It should be
solve the eigenproblem and an energy cutoff of 36 Ry. Asoted that the wave functions were not truncated in any way
stated earlier, the PAW method requires solving a generalizedutside the augmentation region. With the use of standard
eigenvalue problem. The results are shown in Fig. 3 wher@pproaches, such a problem would require spanning the
the ten eigenstates closest to the target were selected. It\ighole energy spectrum with subsequent analysis of each in-
evident from Figs. 2 and 3 that either the standard eigenvaludividual eigenvector.
problem or the generalized eigenvalue problem do not pose A simple preconditioner was used in order to speed con-
any difficulty and require a comparable numbertofs op-  vergence. The preconditiondl simply damps the wave
erations. function outside the localization radius. This is similar to the
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1 the solution to the original eigenvalue problem. Any solu-
0 ’| i - ‘? 1 SR tion, ¢, to the eigenvalue problem is also a solution to
RS < ) ’ M(Hy—eO0y)=0. (39)

2 d Py

! f ; Substituting in the preconditioner definition gives

4
pl |

Log+o of Eigenvector Error
&

-4 7 y 1 3 (H‘//_SO‘M:O: |r_ri|<01
4 p
s L L l Desired Accuracy 3
-6 Z(Hz/;—st,//)zo, [r=ri|>r,. (40
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 In order for the localization targeting to work, one needs
Total number of Hy operations to convert the Schur vectors to actual eigenvectors. This is

o _ easily done using methods previously discussed.
FIG. 4. Space localization example targeting the lowest wave

function located on each of the 27 Ca atoms in£g. A fixed
PAW Hamiltonian was used resulting in a generalized eigenvalue
equation. The simple real-space preconditioner discussed in the text |n conclusion, we have presented an efficient method to
was used. target eigenvalues and eigenvectors of a given Hamiltonian
N ) using arbitrary selection criteria. The method can easily
eigenvalue solutions for the standard DFT eigenvalue probgjectronic structures, and does not require the diagonaliza-
lem. In the localization targeting case, we are simply damptjon of the full Hamiltonian.
ing components of wave functions that exist outside the tar- - stryctures with large numbers of atoms can also be easily
geted region. This preconditioner does not, in any wayhandled since the method scales linearly with the number of

change the solution. It only_ affects thg convergence rate. lhtoms. Finally, the method can easily be extended to gener-
should also be noted that this preconditioner does not attempgfized eigenvalue problems without an increase in solving

to approximateH —£,,O as discussed in Ref. 10. The Ref. gjfficulty.

10 preconditioner is designed for spectrum targeting only.
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