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Damage evolution and time-to-failure are investigated for a model material in which damage formation is a
stochastic event. Specifically, the probability of failure at any site at tinseproportional too;(t) 7, where
oi(t) is the local stress at siteat timet and differs from the applied stress because of the stress redistribution
from prior damage. An analytic model of the damage process predicts two regimes of failure: percolationlike
failure for <2 and “avalanche” failure forp>2. In the percolationlike regime, failure occurs by gradual
global accumulation of damage culminating in a connected cluster which spans the system. In the avalanche
regime, failure occurs by rapid growth of a single crack after a transient period during which the critical crack
developed. The scalings of the transient period, the subsequent crack dynamics, and the time-dependent
probability distribution for failure are determined analytically as functions of the system size and the exponent
7. Specific predictions are that failure is more abrupt with increasinfailure times scale inversely with a
power of the logarithm of system size, and the distribution of failure times is a double exponential and
broadens with increasing, so that the failure becomes less predictable as it is becoming more abrupt. The
conditions for the transition to the rapid growth regime are identified, offering the possibility of early detection
of impending failure. In a companion paper, numerical simulations of this failure process in two-dimensional
lattices are compared in detail to the analytical predictip§8163-182807)04117-9

I. INTRODUCTION AND PROBLEM STATEMENT propriate nondestructive evaluation techniques might iden-
tify precursor damage prior to failure. The expected
Failure under load is a major limitation to the application remaining life of the material might then be accurately esti-
of many materials, especially structural materials at elevatechated or the component removed from service prior to cata-
temperatures. Understanding the mechanisms by which darstrophic failure.
age forms, coalesces, and leads to failure, and the associatedStress-driven damage accumulation is particularly impor-
time scales for these phenomena, is a critical area of researtént in brittle materials such as ceramics at high tempera-
for engineering applications of structural components. Thestures, because the critical amount of damage required to
time-dependent failure phenomena are also often nonlinearause failure can be rather limited and difficult to detect.
in both time and stress, making the development of predicSeveral different types of mechanisms can operate in deter-
tive models of damage accumulation and failure particularlymining damage growth in such materials. The clearest dam-
challenging. Models are necessary, however, for several re&ge mechanism is the slow growth of preexisting cracks due
sons. First, it is costly and time consuming to performto chemical attack at the crack tipsThe existing cracks
enough experiments in the laboratory to fully identify the grow at rates determined by the kinetic breaking of bonds,
(unknown) probability distribution of any failure process, which is usually associated with the applied stress intensity
which is necessary to establish material or component reliat the tips of the cracks. Larger cracks grow faster, and the
ability. Second, the failure in many materials can be driverlargest crack is the first to reach a critical stage at which
by weak-link considerations, i.e., the material fails upon therapid, unassisted crack growth can occur. This situation is
first occurrence of a critical amount of damage anywhere irthus easily described with knowledge of the underlying ini-
the material. This leads to a natural dependence of failuréal flaw population and the kinetics of the crack growth.
time and/or strength on material volume, and to a scaling o€Crack interactions are usually negligible because the popula-
the associated probability distributions with material volume tion is dilute, and hence the single-crack problem combined
Knowledge of the expected analytic behavior of such distri-with a growth law is sufficient for adequate representation of
butions under various degradation modes can then guide thie failure behaviof.Less well defined is failure by “creep
fitting of experimental data and the extrapolation of suchdamage,” which is damage that does not evolve from the
data to eithefi) much larger system sizes than can be testegbreexisting flaws but rather develops due to time-dependent
in controlled experiments, such as full-scale components, aleformation under load which causes nucleation of voids/
(i) much longer life situations, usually at lower stresses, tharcavities/cracks. Such damage generally controls failure at
can be tested in acceptable laboratory time scales. Third, tHew applied stresses where preexisting flaws are blunted and
development of predictive models can help identify precur-do not extend. This implies that the failure times for such
sors to failure and rank the severity of damage, so that approcesses are also much longer, making testing and assess-
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FIG. 2. Creep strain rate versus stress for siliconized SiC, indi-
cating high stress exponeliy~11) for stresses above 140 MPa
where cavitation is observed.

failure, and in essence assumes that failure occurs at some
critical creep strain, which might be independent of actual
applied stress iim=1. Underlying models which generate
such relationships from some microstructural damage evolu-
tion law do not exist, to our knowledge.

Our goal here is to examine damage evolution and failure
within the framework of one well-defined damage formation
law. We focus on capturing the major dynamics of the dam-
age evolution, induced strain, and ultimate material failure,
and their dependences on system volume and nonlinearity in
the stress dependence of the damage evolution in systems for
which the “damage” is a probabilistic, nucleated event
driven by local stress. One material which appears to behave
in this manner is the composite Si/SIC® Under load at
elevated temperatures, cavities form in this material between
SiC/SiC grain-boundary facets, as shown in Fig. 1. The cavi-
ties extend across the entire grain boundary and the rate of
cavitation is strongly dependent on the level of applied stress
(g™ above a threshold strain of 100 MFFg. 2). Further-

FIG. 1. Evolution of cavity damage in siliconized SiCarbo- ~ MOT€ the spatial distribution of cavities is not random; clus-

rundum Company KX-Oflunder flexure testing at 1300 °C. Note tering occurs in_ the form of arr«_ays of cavijcies in_planes
the formation of extended cavity clusters perpendicular to the apfoughly perpendicular to the tensile load afg. 1). Sen-
plied tensile load(applied stress is horizonjalFigure obtained ~Sitivity of the cavitation rate tdocal stress is suggested by
from Dr. S. WiederhoriJ. Am. Ceram. Soc79, 977 (1996]. the clustering behavior and verified by the observations that
cavitation occurs preferentially in the large tensile stress field
ment difficult. Since the damage is not related to the initialahead of intentionally introduced indent cracks under small
flaw distribution, the statistical distribution of evolving dam- remote loads. The cavity arrays are not formed by the slow
age is not clearly determined. Similar to the slow crackcrack growth mechanism because the cavities are physically
growth mechanism, the damage nucleation and growth cagisconnected, being separated by uncavitated boundaries or,
be very sensitive to stress state. Then, damage localizatiafore often, pools of very ductile silicon. The cavities are
occurs because local damage enhances the stresses in résponsible for most of the creep deformation in the material,
neighborhood and drives further local damage faster than aéad to strength degradation by cavity coalescence in time,
points remote from the damage. and ultimately some cavities coalesce to form a sufficiently
Detailed models for the basic dynamics of damage evolutarge cavity that drives macroscopic failure. The failure time
tion under such “creep” mechanisms are not well devel-decreases with increasing applied stress, and over a range of
oped. Models such as the semiempirical Coleman model folemperatures and loads the failure and creep data can be fit to
the statistical distribution of time-dependent fiber strengthsy Monkman-Grant relationship with an unusual exponent of
are often used but do not accommodate specific damag@=1.45° The progression of damage in time and the depen-
mechanismé. A common empirical estimate is the dence of failure time on microscopic aspects of the damage
Monkman-Grant approach, which connects creep rate to faiformation are general features occurring in many other ma-
ure time by postulating a relationship between the minimunterials and motivate the study of general damage models to
(steady-ratecreep rates,, and failure timet; of the form  predict the remaining strength and reliability in such materi-
em t=C, whereC is some constant anuh is a parametet.  als.
The Monkman-Grant approach implicitly connects creep and In developing a model which is general but relevant to
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materials such as Si/SiC, we first recognize several key fediow such effects are manifest in the damage evolution and
tures of the deformation and damage. First, the presence dilure of the material. Some preliminary work toward this
fully extended facet-sized cavities suggests that cavity forgoal has been published previously.
mation is controlled by a critical nucleation step, and is thus To go from a qualitative understanding of the conse-
a probabilistic event. Second, the sensitivity of CaVitationquenceS of EC(].) in tandem with some load transfer rules to
rate to stress and the observation of cavity clustering bot quantitative calculation of the damage accumulation and
suggest that this cavitation rate is dependent onldigal 4ty failure point is a daunting task. The myriad of damage
stress acting across each grain boundary at any given timgyster shapegespecially for two and three dimensions
We thus consider an elastic material consisting of an orderegh o range elastic load transfers, and cluster interactions that
array of connected, cavitatable sites. At eachisithe local 5 0"nqssible makes exact analytic calculations hopeless. Nu-
(_tensne) stresso;(t) consists .(.)f the applled_load pIu_s a_dd|- merical simulations can include many of the necessary spe-
tional loads transferred to sitedue to previous cavitation i getajls, and will be discussed at length in the companion
damage at other sites. The cavitation ra@) (probability — oh0r previous simulation work by Hansen, Roux, and Hin-
of cavitation per unit timis a}ssumed to have power-law richsen has, however, uncovered some fascinating results re-
dependence on the local tensile stress: garding the failure as a function of size and the parameter
_ Hansen, Roux, and Hinrichsen studied the accumulated dam-
age at failure in simulation studies of electrical fuse networks
Here,A is a rate prefactor and the exponentletermines the  which exhibit many features identical to elastic netwadtks.
sensitivity of the cavitation rate to applied stress; both can b&or <2, a linear dependence of total damage on system
dependent on temperature. A power-law rate is used becauseze,N;«<Nt, was found. However, fo,>2 Hansen, Roux,
it generates a power-law dependence of strain rate on appliethd Hinrichsen found a sublinear dependemtes N ¥ with
stress, as observed in Si/SIC The form of Eq.(1) is also  y<1 andy decreasing with increasing. The fixed damage
similar to that often assumed for the stress dependence @faction N¢/N+ for small » is as found in the limity=0, and
slow-crack growth, although a different physical mechanisnfurthermore the fluctuations in failure damage around the
is envisioned. mean were found to be similar to those obtained in the per-
The evolution of damage in an array of sites obeying Eqcolation problem. The decreasing damage fraction at higher
(1) is complex. Initially, the material is undamaged and all » was accompanied by an associated failure mode dominated
sites oriented perpendicular to the applied field have théy one large crack. These results suggest that the two re-
same cavitation. Isolated cavities are then nucleated rarmgimes of 5 correspond to intrinsically different modes of
domly throughout the material. Stress redistribution aroundailure, “percolationlike” and “avalanchelike.” Simulations
the existing cavities increases the stress at nearby sites in tiean provide guidance, but it is difficult to extend simulations
plane perpendicular to the applied load. The enhanced stress realistic component size scales and to generalize the re-
preferentially drives cavitation at sites near to the existingsults to other load transfer rules. An approximate analytic
cavities, but initially there are many more sites remote fromformulation capable of capturing the major dynamics and
the existing cavities that are subject to essentially the appliedcaling is clearly necessary, and is the subject of this paper.
stress. The location of subsequent cavities must be deter- Theoretical work on time-dependent damage evolution
mined probabilistically, and each sitehas a relative rate and failure for the damage nucleation problem described by
given byr(t)/Z;r;(t). The typical timeAt required to form  Eqg. (1) has been performed by several workers. Most nota-
the next cavity Is simply the inverse of the sum of the ratesbly, Phoenix, Tierney, and Kuo have considered this problem
At=1/Z;r(t). As time proceeds, new cavities form, cavity in two dimensions under the restriction that the damage clus-
clusters form, and the stress at the tips of larger cavity clusters are linear and that all of the stress from a cluster of
ters is generally larger than that at smaller clusters. Thigavities is transferred to the immediate neighboring sites at
stress enhancement continues to drive the formation of largéhe cluster end$~** They primarily investigated the
clusters faster than smaller clusters, but is mitigated againstsymptotic limits of the model, i.e., the regime of largand
by the greater number of smaller clusters and/or uncavitateshort times(low failure probabilitie$, and uncovered inter-
sites. Cavitation continues until failure, at which point oneesting features of the failure. Our work makes similar as-
cavity cluster spans the entire length of the system—no exsumptions at the outset and, although approached quite dif-
plicit condition for the onset of actual “fast-fracture” crack ferently, shows very similar features to those of Tierney and
growth is considered. The damage evolution is thus coneo-workers and in some ways validates their asymptotic re-
trolled simultaneously by the current spatial distribution ofsults for much smaller values af. We will discuss their
clusters and the enhanced rates prevailing around these clugsults in more detail at the end of this paper.
ters. The remainder of this paper is organized as follows. In
For the above model, the special case;sf0 corresponds Sec. Il we present an analytical model for the damage evo-
to the random-dilution percolation problem. The local stresgution and failure under the local damage process described
does not affect the cavitation rates: all rates are alwayby Eq. (1). We then demonstrate the existence of two re-
equally likely. Damage forms randomly throughout the ma-gimes of failure within the model as observed in simulations.
terial until a connected percolation cluster is formed after dn Sec. lll, we derive analytic expressions for the failure
critical volume fractionp. of sites are damaged. For the time, its scaling with system size, and the precursor condi-
cases wherep>0, there is some enhancement of the rategions prior to failure, as functions of the driving parameters.
due to enhanced local stresses and hence some tendency limSec. IV we present results for the failure time distribution,
ward damage localization. The major issue addressed hereasd its size-scaling behavior. Section V contains further dis-
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cussion. In the Appendix, we discuss the inclusion of mean-

field interactions into the model. A companion paper de- R(c,t)= E N(c’,t)/Nt. )
scribes extensive numerical simulations and comparisons c=c
with the analytic results described in this paper. The failure probability due to clusters of sizeor larger(i.e.,
the probability of appearance of a clustec) at timet is
Il. ANALYTIC MODEL FOR DAMAGE AND FAILURE obtained using standard weak-link arguments as
A. Damage accumulation and macroscopic observables P(c,t)=1—e NRED (6)

Our model material consists ofN; interconnected, ) . .
damage-prone boundaries, with each boundary having Thg t_yp|cal (63.2% level largest clustelc™ at timet then
neighbors. As the damage evolves, each boundary is eith&Atisfies
uncavitated or part of a cluster of cavities of sizel. The
d_am_age_ state at any instant can thus be characte_rized by the NR(c* t)= 2 N(c*,t)=1, )
distribution of cavity clusterdN(c,t), whereN(c,t) is the et
number of clusters of size in the material at time, and ] ) ]
their spatial locations. In principle, the time evolution of I-€., there is typically one cluster at least as large ascsiza
N(c,t) depends on the complicated stress fields generated Bfe system. o o _ _
the presence of cavity clusters throughout the material, and a 1he characteristic failure timg is the time at which the
particular sizec does not specify a precise geometry of thetypical largest crack size* is equal to the_transverse sample
cluster. We posit that, because the stresses at the tips of!@gthL, c* =L. Mathematically, failure is expressed by
cluster perpendicular to the loading axis experience the high-
est stresses, that the cluster geometry is preferentially quasi- NrR(L,tr)=1. ®)
linear and oriented mainly perpendicular to the loading axis
Then, the size refers to the length of well-defined cluster in
two dimensiong2D), and is related to the cluster area in 3D
problems. Before discussing means of calculatif{g,t), it

is constructive to assume thd) N(c,t) has been supplied It is possible that fast crack propagation emanating from

bybs?miz_ Teanstﬁnfll) th_(;: calwt)t/ cIusterT f_lo not mtebract the largest cluster can interrupt the nucleated damage process
substantially so that cavily cluster correlations can beé N€s 4 o 56 failure. In such a case, most of the material life-

glected, and then to demonsirate how essentially all of th9me is taken up in the initial formation, via cavitation, of the

time-dependent macroscopic properties of the material C&fritical defect sizec.,;; needed for crack propagation, and so

be calculated. This is done below. - e failure time satisfieBl;R(c.,t;)=1 and the probability
The tlme-depgndent st.raln in the T"ate“‘f"' IS pqmposed bt rupture isP(c;,t) following from Eq. (6). The critical

two parts. The first part,|s the elastic strain arising from 8size can be obtained from fracture mechanics consideration

damage-reduced Young's modulit), of the time-dependent tensile strength, i.e., the strength of the

material after surviving a certain time at some applied load.

A strengthS is obtained from a defect of size=(YK;./S)?,

E(t) can be related to the cavity cluster distribution using a/Vith Y @ geometrical parameter aiq. the material tough-

mean-field theory as ness at the test tem_perature. Hence, the characteristic time-

dependent strength is

Since it does not make sense to talk about cracks larger than
L, we must haveR(L,t)=N(L,t)/N; and hence failure oc-
curs at a mean timg satisfyingN(L,t;)=1. The probability

of failure is thenP(L,t), with P given in Eq.(6).

8elza'app/E(t)- 2

= — ﬁ d K.
E()=E(0)| 1~ - 2 ¢N(e,) €) S(t)= . ©

for planar cracks ind dimensions, with3 a parameter3 ; x
. o . As time progr incr nd th rength r .
=0.47x for a continuum elastic medium in 2B° The sec- s time progresses™ increases and the strength decreases

, . Failur ring the cr r rs at a sizesatisfy-
ond contribution is the strain due to the creation of new. ailure during the creep process occurs at a sigesatisfy

volume V/ n h cavity formation di db ing Eqg. (9) with S equal to the applied stress. Here, we will
R%ju” gndcisupo each cavity lormation, as diSCUSSEd bYpe interested in the largest cluster size versus time, but will

not consider further the issue of failure by fracture from the
largest cluster.
2 eN(eyt), (4) Equations(2)—(9) provide the mathematical basis for cal-
3lpér culating essentially all of the quantities of interest during the
creep damage process from the underlying cluster distribu-

where Lll is the Iength of the Specimen along the tensileﬂon N(C,t) As yet’ we do not knovN(C,t) and we turn to
axis. Both contributions to the strain are determined byhat formidable problem below.

N(c,t).

The total number of clusters of size equal to, or greater
than, ¢ is a useful quantity for various reasons, as we shall
see. Normalizing this cumulant by the total number of sites, To make analytic progress on understanding the subtle
or material volume, then yields the generalized ‘“risk of rup- aspects uncovered by numerical simulations, and the experi-
ture” function mental results on materials such as Si/SiC, requires an ap-

1V,

Evol—

B. Analytic model of damage evolution
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proximate analysis which retains the key physics. We start In the limit a.7/c<<1 the solution to Eq(13) is obtained
by rescaling the underlying rate law by factoring out theby neglecting the-a.N(c,t) “depletion” term on the right-

applied stress, hand side(rhg) of Eq. (13), leading to
ri(ty=Ac? (oilo50". (10 el ,
i app( [ app) N(C,T):( H a_c; TC. (14)
In this form, we can identify an underlying ratg=Ao 7, 0or c'=1 ©

time scalery=ry*, and a dimensionless rate enhancement . . . , . .
factor (1/cpy)” describing how the local stressiamodifies 1" this regime,N(c, ) is rapidly decreasing for increasing
the nucleation rate atrelative to the reference ratg. We  ClUSter sizeg at any fixed timer<1. If the ratioa/c is not
then recognize that for evolving damage, the damage rate & increasing function of, then Eq.(14) is the solution for
highest at the tipgperimetef of existing damage where the N(c,t) for all times 7<1/a; an_d the clustgr size d|st_r|but|on
local stress transfer is highest. We therefore focus attentiofleCreases at least exponentially fast with increasing cluster
on these tip sites by assuming that all sites in the system arg?€: €.
either (i) tip sites, at the tip of a cluster of sizeunits and c(In7)
under an enhanced stress denated (i) damaged sites in N(c,7)<Nre ) (15)

the cavity clusters themselves, which are under no stress, andyge clusters are thus very unlikely; most of the accumu-

(iii ) all remaining nontip, nondamaged sites, under only thgsieq damage is tied up in smaller clusters. From (Bg.we

applied stressry,,. This division of sites into three catego- g5 have a risk of rupture functid®(c,7) that decreases at
ries eliminates long-range interactions between existingaast exponentially fast.

damage and linking together of two existing clusters, issues | the long-time limita.7/c>1 the solution to Eq(13)

we will address later. Then, the quantity to determine is the,ecomes simphf

cluster size distributio(c,t) which is the number of size

clusters at timet. Within the assumptions above, sizelus- N(c, 7)«Nrag 1 (16)
ters can only form via the growth of size-1 clusters and

can only be lost by growth to size+ 1 clusters. Hence, the which can partially be motivated by considering the “steady-

evolution of N(c,t) follows a Master Equation: state” conditiondN(c,7)/d7=0 of Egs.(13). In this regime,
the associated largest cluster si?edefined by Eq(7) can
dN(c,t) be rewritten by taking the derivative &(c,t) in Eq. (5),

=zAcd N(c—1t)—zAs¢N(ct) c=1, substituting Eqgs(13) for the dN(c,t)/dt terms, performing

(1)  the summation, integrating, and considering:-c*. This
yields

dt

where the growth rate of a size cluster iszAo J with z

being the number of possible growth sites at the tips of the T

cluster (e.g., z=2 for a 1—d line, z=4 for the triangular f d7’ aex _{N(c* —1,7")=1, a7
lattice) and g =075p- N(O/t) is the number of “size 0" cavi- 0

ties, or nondamaged/nontip sites and satisfies the sum ruleyhich states that the integrated flux of clusters growing into

sizec* equals unity. Hence, as the largest cluster enters the
N(0)=N;— 2 (c+2)N(c,t). (12) Io_ng-t_ime regim_e of Eq(16) the_n c* must increase rapidly
c=1 with time to satisfy Eq(17). This rapid growth is the ava-

lanche observed in the simulations and always occurs if the

Defining a dimensionless time=t/7,=1tAo g, and recog-  |ongtime regime can be reached prior to failure. This can
nizing that the stress enhancement is generally propoonn@my occur if a/c is an increasing function of.
to the applied fieldr.= K oy, WhereK, is the stress con- ¢

centration factor at each of tieetip sites of a size cluster,

allows us to rewrite Eq(12) in the nondimensional form Ill. PREDICTIONS OF FAILURE BEHAVIOR

We now apply the model to understand the fundamentally
dN(c,7) _ N(C—1.7)— a.N (13) different failure behaviors fo<2 and>2 observed in the
dr %l (c=1,7)=acN(c,7), simulation study by Hansen, Roux, and Hinrich$&rin
) ) ) these simulations, the stress concentration factors scale es-
wherea,=zK/7 is the dimensionless growth rate ang=1.  sentially as the square root of cluster size, and so we assume
Equation(13) contains all of the damage evolution dynamics ihe formk .= (1+ 1/z)cY2 This form distributes the stress of
that are considered in the present model, and is a welly sjze 1 cavity equally to the neighbors at its tips, and for

defined set of coupled equations f(c,7) in terms of the  |arger clusters the desired square-root dependence for linear
underlying parameterg and » and the total number of gystems obtains.

sites Nt entering into the initial conditions. Equatidd3)
was proposed earlier in Refs. 9 and 18.

The solutions to the coupled set of equationsNdgc, 7)
can be obtained analytically by using Laplace transforms and For =<2, the short-time limite.7/c<1 applies toall
by approximatingN(0;t)=N;.*® Of particular interest are cluster sizes for times<1/a; becauser./c is not increasing
two limiting cases, corresponding to short and long times fowith c. Damage occurs as a gradual proliferation of small
any crack size. clusters which ultimately do link together to form a large

A. Percolationlike failure: n<2
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Damage at Failure
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FIG. 3. Predicted damage at failuxg versus system size for various. Solid lines are simulations on electrical fuse netwdiRsf.
10); dashed lines are predictions of present model.

crack. Such linking processes arat contained in our model. form. Since failure does occur within the range of validity of
But, they only occur late in life just as in the percolation the short-time solution, the use of the short-time solution is
problem(7n=0), where it is observed that the divergence ofthus validateda posteriori
the correlation length and largest cluster size are narrowly For <2 the failure is thus percolationlike, even though
confined to a region near the critical point. Because no singléhere is some tendency of the stress-dependent damage term
large cracks grow on their own, it is reasonable to estimatéo drive preferential large cluster development. Up to the
the failure time as the point at which the elastic modulus ofpower of =2, the rate enhancement by stress concentrations
the highly damaged system has decreased to E€rgq)=0.  is not strong enough to compete against the more frequent
This is a mean-field estimate for the “critical” percolation “random” evolution of many smaller clusters growing at
point and therefore is expected to capture the general behalower rates. The small-cluster damage dominates the total
ior but not give a highly accurate value for the failure or totaldamage and leads to global percolationlike failure before
damagep.= N;/N at failure. enough time has elapsed for any large self-propagating clus-
To determine the failure timey, we first assume the ters to emergdi.e., failure occurs before &f). A single
short-time solution to be accurate up g i.e., assume that large cluster does exist at failure, but has been formed by the
7<1la;. We can then substitute the short-time solution forfairly rapid coalescence of smaller clusters just as the critical
N(c,7) [Eq.(14)] into the mean-field expression for the elas- point is being reached.
tic modulus[Eg. (3)], set the elastic modulus to zero, and  For <2, the failure time is also predicted to be indepen-
solve for the required time; . The case ofyj=2, which is the  dent of the system sizN;, and the total damage at failure
largest value ofy for which the short-time solution holds for scales linearly with the system size, in agreement with the
times shorter than &4, yields an analytic result. Fop=2,  simulations'® Numerical solutions of Eq(13) with the
Eq. (14) reduces to N(c,t)=Na$ 17°, where o;  mean-field failure conditiorE(r)=0 yield predictions for
=z(1+ 1/z)2. Subbing into Eq(3) and settingE=0 leads to  the total damage at failure versus system sizezaad shown
a failure timer; satisfying in Fig. 3. The guantitative agreement with the simulation
. results for»=2 is quite good, indicating the general accu-
ay S c racy of the mean-field estimate of the failure point with no
B & Sl (183 adjustable parametefs.

After performing the sum and rearranging, the failure time is B. Avalanche failure: >2

the solution of a quadratic equation which we choose to . L
For »>2, the short-time limit is always exceeded for

write as ; . ;
some larger cluster sizes prior to global failure. Under such
a7y z(1+1/z)? conditions, the cluster size distribution is no longer exponen-
(1— ay7)2 = 8 : (18b tially decreasing but has a largetail which decays slower
1

than exponentially. From Edq17) it is clear that the largest
Equation(18b) always has a solution satisfying,7;<<1 for  clusterc* can reach a stage at which it grows rapidly across
any value of the coefficienB appearing in the mean-field the material to cause failure. Numerical solutions of the full
elastic modulus expression. Fg2, a similar conclusion system of Eq(13) for the largest cluster™ versus timer are
holds but the result cannot be expressed in a simple analytghown in Fig. 4 forp=4 at two system sizes; the fairly
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that when a crack reaches a sufficient giag yet unknown

it tends to propagate without any “supply” from smaller
crack sizes. We apply this notion to the typical largest
crack that ultimately causes failure. We would like to deter-
mine the time, denoted”, at which the largest crack*
emerges from the distribution of smaller cracks and starts the
avalanche process. We show below that establishing the time
7 then leads to a determination of the size scaling of both
the failure timer; and its distribution. Two key steps enable
us to identify 7* and obtain a relationship betwee# and

7. (1) a simplified analytic solution for the largest crack
c*(t) as a function of time in the avalanche regime, &2d
the criterion thatr™ is the time at which the largest crack
0 : —— : : ¢ : ; emerges from the small-crack/short-time solutionNdc,t).

0 0005 001 0015 0.02 0.025 003 0035 0.04 0.045 To follow the evolution of the largest crack, we take the

4 Time definition of c*(t) from Eq. (7) and differentiate with re-

spect to time to obtain

(913
[«

N
8 B
¥ ¥

Crack Size C*
&

FIG. 4. Growth of typical largest cluster* versus time, for

7=4 andN;=10%, 10F. The solid lines are full numerical result; * E

. . ) . dc dN(c,7)
dashed lines are the approximate result. Also shown is demarcation - N(c*,7)+ >, ———=0. (19
line for short-time/long-time crossover, determineddyyr/c=1. dr c=c* dr

, _ The sum can be rewritten, using E43), to give
sudden, rapid growth of the largest crack after some transient

period and the size dependence of the phenomenon, are dc* agx_N(c* —1,7)
clearly exhibited in these results. Predictions for the total a7 %er acN(C*,7) ,
damage\; at failure versugy and system sizdl; are shown ¢ '
in Fig. 3, and again there is good quantitative agreement witivhere the rhs has been multiplied and divided & .

the simulations with essentially no adjustable parameters igtrictly in the avalanche regime, we can then use the long-

(20)

the theory’ time solution of Eq(16) to obtain
During the rapid-growth period exhibited in Fig. 4,
smaller clusters can continue to grow but they are not nec- dc* *
essary to complete the failure. For increasing system sizes dr “c- (22)

N+ the onset of rapid growth occurs at earlier times, and so o o ] )

there is less other damage and interactions of the largedihe driving equation is that for a single crack growing at a
cluster with the smaller clusters can be neglected for largéaté proportional to its size. This demonstrates that the larg-
system sizes. est crack in the avalanche regime does grow independently

of the supply of smaller cracks. The evolution of Eg1)
can now be integrated starting from a sizat some timer
IV. FAILURE TIME SCALING and ending at the known final value of =L at the failure
IN THE AVALANCHE REGIME time 7. For the case of square-root stress-enhancements

A. Scaling of the mean [a.=2z(1+ 1/z)"c"?], one obtains the result

In the percolation regime;<2, there is no size depen- o 2(1+1/z) "(pl2— 1) (17— 7) | M- 72
dence of the mean failure time or damage at failure. Noris € (m=L{1+ LI-72 :
the size dependence in the avalanche regiyne€ evident (22

from the form of Eqs(13) or (17), although it is apparent in . . o
Figs. 3 and 4. The evolution of modulus, strain, and failure! NiS expression for the largest crack versus time is com-
time distribution can be calculated directly from Ei3) and ~ Pared to the full solutions, obtained from E¢$3) and(7),
then Egs.(3)—(7), but this does not provide any physical " Fig. 4 for the case oh=4 aUlezlod’lds- In Fig. 4, the
insight into the factors and events which actually control thet” —7 Plane is divided by the liner 7/c* =1 corresponding
time-to-failure and its distribution versus siklg and». Nor {0 the two regimes of short times/small cracks and long
does it provide guidance for any observed scaling behaviotimes/large cracks. Equatid@?2) is an excellent approxima-
In addition, one would like to identify any signature of in- tion to the exact result in the entiref 7/c*>1 (the upper
cipient failure so as to anticipate failure in any one samplefight in the Fig. 4. As discussed above must be in this
and one would like such a signature to have the same siZ&gime for the avalanche to occur;df is in the short-time
and 5 dependence as the failure time itself. Thus it is necestegime then self-sustaining growth cannot occur. The time at
sary to analyze the predicted damage evolution more caravhich c*(7) crosses into the long-time/large-crack regime is
fully to clearly extract the origin of the size scalings. postulated here to be the avalanche onset tifieand is

In the avalanche regimi;>2), one single large “crack” obtained from the simultaneous solution of E2&2) and the
ultimately controls the failure and so we focus on the typicalcondition
largest cluster, denoted previously @& The nature of the
long-time solution Eq(16) to Eq. (13) stems from the fact agrlc* =1. (23
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The result is very evident even over modest increases in system size. The
appearance of the particular exponef2—1 explicitly dem-
onstrates that the value af=2 is the critical value for the
transition to the avalanche regime for square-root stress con-
centrations. Fom=2, there is no predicted size dependence
with the second term being vanishingly small for large sys-and in fact7* is never attained.
tem Size’\S. The associated critical cluster size at this pOint is The predicted critical crack S|ie|n|t|at|ng the avalanche
denotedc=c*(7*). This result is equivalent to assuming grows only very slowly with system size, and decreases with
that as soon as the largest crack reaches thecsiitdeaves increasingz. Thus, for largerp and moderate system sizes,
the short-time regime and grows forward to failure, accordthe value ofc is not large. Our neglect of cluster-cluster
ing to Eq.(22), in atimer —7*. The large L limit of Eq. (24)  interactions and our limitation of the cluster shapes to a qua-
also implies that the size scaling of the real failure times  sjlinear form are supported by the fairly small valuescof
then identical to that of the onset timé&. This is a main predicted by Eq(25) (for =4 andN;=10%, ¢~11 and for
result of this paper. N;=10%, ¢~13 while for »=8 andN,=10°, ¢~4). In other

The relationship betweer and 7; is interesting, but we  words, large multiply branched clusters are not responsible
do not have any expression for either of the two indepentgr the onset of failuré?®

dently. A major advantage of working with thé identified
here is that, being on the border of the short-time regime, we
can use the analytic short-time solutions ffc, 7). We ob-
tain the scaling of* with system size by using the short-  Equations24) and(26) prescribe the characteristic failure
time solution Eq.(14) for N(c,7), settingN(¢c,7*)=1, and time 7;, at which point the failure probability is 0.633ee
solving this simultaneously with Eq(23) (az7*/c=1) Egs. (6) and (9)]. Of importance for reliability is the distri-
yields, using Stirling’s approximation along the way, the bution of failure times around the characteristic time, and the
critical cluster size size scaling of that distribution. We discuss approaches to
obtaining this distribution below.
IN(N7) In(z(1+1/z) n) 1q92+1 Since the characteristic failure time is determined by
P In(v27)— 2 21 In(C),  the formation of the criticak cluster at*, we postulate that
(25) the failure time distributjon is controlled byAthe probability
of appearance of the sizecrack vs time. The cluster may
where the size scaling is essentially controlled by the firsappear earlier than, or later than, the typical tirfe but
term. The associated onset timie then simply once formed we postulate that it grows to failure in the fixed
time 7, —7*. The cumulative probability of forming a size
cluster versus time is, from E¢6),

™ =(1-2In) 7+

nz(1+1/z)7L72 1 9

B. Failure time distributions

o>

= —alin(NY T, (26
‘ P(&,7)=1—exp(—N{R(&, 7)), @7

where only the dominant scaling is exhibited. Then, by Eq.
(24), the failure timer; scales similarly tor*. We have thus and at time7* the probability is 0.632. The corresponding
derived analytic expressions for the failure timethe onset  probability of complete failur¢probability of finding a crack
or precursor time7*, and the critical cluster sizé that of sizec=L versus timer) is then obtained by ggid shift of
begins the avalanche. These are main results of this papethis cumulative probability forward in time by the amount
and clearly demonstrate the size-scaling of the failure pro-r;—7*:
cess deriving from the underlying rate law of Eq..(1)

In the work of Phoenix and TierngyPT), the timer was
postulated to be the failure time, in essence, and then PT
used their asymptotic short-time results which are identical
to our short-time results to obtain scalings foand 7* that  where 7 refers to the typical failure time in a system of
are identical to the scalings obtained abdvV&he validity of  linear sizel so thatP(L,7;)=0.632. The failure time distri-
taking 7* as a good approximation to the failure time wasbution determined from the full numerical results of Etg)
supported by exact calculations on a system of blge10  is shown in Figs. &) and b) along with the values ob-
and »=20. Our results demonstrate that the failure time doegained by a rigid shift of Eq(28), and the agreement is quite
scale like7 and that there is a fixed difference betwe&n good. Over the middle range of the probability distribution,
and ;. For the case studied by PT, we predict the differencéhe failure is controlled by the appearance of ¢thetuster. At
to be 10%, which is in good agreement with the differencdower probabilities, there is some deviation and the predicted
exhibited in PT! The range of applicability of the scalings probability of failure is not conservative, which drives us to
found by PT was previously unknown, and PT expected theiconsider improved descriptions shortly. )
asymptotic results to break down below abopt10. The Using the short-time solutionR(C,7)~N(C,7)= ¢, the
analysis here indicates that the scalings are actually apprdailure probability from Eqs(27) and(28) is Weibull in form
priate down to the transition poin>2, with the recognition  with the critical sizec as the Weibull modulus:
that the difference betweert andr; grows to be significant. )

All of the scaling behavior is predicted to be algebraic in P&, r)=1—e (77" (299
the logarithm of the system size. However, since the expo-
nentx/2—1 can be large, the decrease in failure time can bend

P(L,T):P(e,T_ETf), (28
7
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approximated by 1.2/ From Egs.(299 and (29b we see

1.0 ——
r that the mean is shifted by a constant factor whiktays the

o8 same, and hence the c.o.v. for the failure time distribution is
50
% c.o.v.~i~ /2 l, (30
S 06 C  InNg
ng: where only the dominant scaling is shown. The c.o.v. de-
S04l creases weakly with sizh;, and in a manner that isde-

E pendenif 7. At fixed size, the c.o.v. increases with increas-
3 ol ing n because the material is much more sensitive to
’ fluctuations in the damage at largerHence, at highenr; the
i failure simultaneously becomes more abrypt—;) and

00 s less predictable
’ Further refinements in estimating the failure time distribu-
tion are subtle. Weak-link scaling concepts are not strictly

applicable here: failure in a subvolume of material does not
immediately cause failure in the entire volume because the
crack spanning the subvolume must still grow across the
remaining cross section to fail the entire volume. A relation-
ship between failure distributions of different size systems
can be derived, however, which leads to a new more accurate
form for the probability distribution. First, note that the fail-
ure probability of Eq(6) involvesN; andR(c,t). From the
differential equations foN(c,t) and the definition oR(c,t),

we also see thaR(c,t) does not involve the system size
explicitly or implicitly. Hence, we can uniquely relate the
probability distributions of different size systems through

00 ek their commonR(c.).
) ’ ) Time ’ ) Let the probability of finding a crack of sizein volume
N; be P;(c, 7). The probability of failure of a siz&l, system
10 — - is thenP,(L,,7) whereL,=N12, as usual. Solving Eq6)
i with c=L, for R(L,,7) in terms of P;(L,,7), and then
08 b using thisR(L,,7) in Eq. (6) for a system size oN,, we

o
=N

o
P

<
[

|

0.0 L=t
0.000
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obtain the probability distribution for the occurrence oflan
crack anywhere in a volumi, as

Pa(Ly,7)=1-[1=Py(Ly, 7"/, (31)

This result is an upper bound to the actual failure distribution
for sizeN,, i.e., Po(L,,7)<Py(L4,7).

Now, if L, is larger than the critical size, required for
rapid growth of the dominant crack in thé, volume, then
the L, cluster will grow to sizel, precisely following the
large-cluster growth of Eq21). The time to fail the sizé\,
system is thus a timAr,_, longer than the time-to form
the L, cluster, where

FIG. 5. Probability of failure versus time. The solid line is the
full numerical result; short dashed line is the probability of obtain-
ing cluster of size& versus time; long-dashed line is the probability
of size ¢ rigidly shifted by 2r/7. (@ =4, N1=10% (b) 7=4,

A _ f‘—z dc* _ 1
27 | TaE T 21+ 1) (gl2— 1)

Ny=10F: (c) =8, Ny=10" 1 1
T 7 T X @ﬂ_ @m . (32
—(2/ c 12 . . . -
P(L.7)= 1—exr{ B ( (Tl_(Z/Z;:f (20b) The failure probability of sizéN, then satisfies
f Po(Ly,7)=Po(Ly, 7= AT )
Phoenix and Tierney also predicted the above Weibull dis- =1-[1-Py(Ly,7—Ar_ )N, (33
- 1 1 1—-2 ’

tributions based on the asymptotic/short-time lihiTierney
further improved the analysis to obtain better Weibull distri-which exactly relates the failure distribution of sikdg to
butions for the low-probability tait>*® For a Weibull distri-  that of the smaller sizél; .

bution of modulusc, the coefficient of variation(c.o.v. The relation Eq(33) can now be used to find the failure
=standard deviation divided by the meais closely distribution P,(L,,7) from the characteristic failure times
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N cally, we have plotted [mn N;—In(=In(1-P))] vs
- In[(r+A7,_,)/7] for N;=10% and »=4,8. According to Eq.
L 1 (38), the plot should then be a straight line of slope
i ] (1—»/2)~%; the data in Fig. 6, wherP is obtained from Eq.
(13) andA7,_, from Eq.(32), is nearly linear and essentially
] confirms the predicted double-exponential scaling over a
~ < n=8 n= ] wide range of probability. The slope fop=4 is slightly
~ lower than the predicted value ef1, but is still nearly lin-
S~ 1 ear. Equation(38) is a great improvement over the simple
T~ 1 Weibull ansatz of Eq9.27)—(29) in the low-probability tail,
L ~< | although the simple Weibull captures the essence of the
i = probability distribution. The double-exponential form has
T been shown to be the appropriate distribution function for
2056 28 20 -15 -1.0 -0.5 0.0 static failure problems, but it is also accepted that distin-
In((t+AT)/1) guishing between a Weibull form and a double-exponential
can be difficult unless a very broad range of sizes or stresses
FIG. 6. Scaling of failure probability? vs time r (NT=104 and (here, timey are investigatea‘.)
7n=4,8) as calculated from Eq14), which from Eq.(39) should be
linear if plotted as IAINNt—In(In(1—P))] vs [(7+A7)/7]. The pre-
dicted slope i§1—#%/2) "1, which is close to the calculated value in
each case. We have discussed a model to capture what we believe is
the essence of the complex time-dependent failure driven by
for larger systems, which are accurately known from Egsnucleated damage. We have found subtle relationships be-
(24)—(26). Specifically, suppose we know the characteristictween the macroscopically measured failure time, failure
failure time 7, for sizeN, i.e., time distribution, critical cluster size, and the underlying
nonlinear driving factorm and system size. The details of the
Pa(L2,7,)=0.632, (34) predicted scalings will be fully compared to nhumerical simu-
for all system sizedN,>N; . Inverting Eq.(33) at time 7, lations in the companion paper, but the trends in behavior are
then gives the failure probability for siz&, at time  Vvery consistent with previous simulation results.

In(In(Np)-In(-In(1-P))
T T
/
/
I

N
n
T

/
/
|

V. DISCUSSION

7,—AT_, as The present damage model and analysis also predict a
failure probability consistent with the empirical Coleman
Pi(Ly, 7~ ATy 5)=1-0.368"1"Nz, (35  model? The Coleman model describes the failure probability

versus time and applied stressas

tdtr ( O')'B P*]
[SlZ) ] e
o to \og

wheret,, oy, 8, andp* are parameters. Under constant stress

this simplifies to
)"
—) ] (40
to

So, given a timer at which we wan® (L4, 7), we first find
the sizeN, such thatr=7,—A7_,, and then use thisl, on
the rhs of Eq.(35 to obtain the probability. For small P(c t)=1—exp{ _
probabilities/largeN, we can carry this through analytically '

because foN,>N, the time shiftAr,_,, becomes indepen-
dent ofN,. Using the scaling of Eq26) for the failure time
7, we thus have

r=7— A ,=D(INN)* " 72— A7, ,, (36 o |
. 2 l 2 ( 2) 1-2 ( ) P(o,t)zl—ex | Z
and solving forN, yields

Og

A U1 5/2) The present results for the onset of failure arouhdan be
N2=ex;{ %) } (37)  written in dimensional form following from E¢(29a as
c
Wherep is some constant. Substituting Eg§7) into Eq.(35) P(t)= 1—exp{ _(L*) ] (41)
then yields t
THATL ., 11— 7l2) But sincet* implicitly depends on applied stress we can
P,(Ly,7)=1— ex;{ - Nlex;{ - T) ) } write more generally
38 o\ [ ¢\ &

The failure probability is thus of thdouble-exponential form P(o,)=1- exp[ _((T_o) (%) ] ' (42)

with an additional shiftAr;_,, dependent on the sizN,.

This result is valid for short timeéi.e., somewhat smaller wheretg is the onset time at some reference stregsThe

than the characteristic failure time for sike) corresponding final failure probability of Eq(29b) adopts a similar form. A

to large N,, N,>N;, but with the weak restriction that comparison of Eq940) and(42) shows them to be identical
¢,<L;. The only real approximations used in obtaining Eqg.with the association of* =c and 8= 7. If the applied stress

(38) is the scaling relation of Eq26) and the approximate changes with time, the effect on the present model is to
N, independence of the time shift in E(B1). In Fig. 6 is  speed up or slow down the damage evolution proportionally
shown a test of the scaling predicted by E88). Specifi- but the progression of damage does not otherwise change, as
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shown in the Appendix. Hence, the present results are alsare slightly larger by a factor of approximately+0.0%,
consistent with the full Coleman model of EQ9). In con-  which has almost no effect on the overall scaling behavior or
trast to the Coleman model, however, the present model hage |ocation of the transition to avalanche behavior. For
underlying damage-rate parametérsind » which then lead  ;,=4, the coefficients are larger by 2—3 % independent, of
to predicted(size-dependehtquantitiesty and ¢ at some  while for =8 the coefficients are larger by only 0.1%, again
applied stresgr. independent ot. The modifications to the coefficients thus

The present model is also consistent with the lineahaye negligible effects on the overall scaling behavior of the
Monkman-Grant reIauonsth.Spe__cmcally, the minimum  failyre. Some details of the precise evolution such as actual
creep rate in the present model&sat short times, where ¢4 time and the time* will be changed very slightly in
only isolated clusters are formed. So, with-1/E(t)~1  janivde, but the scalings predicted in this paper are ex-
+(BIN7)2C°N(C,t) we have ‘f,miHNdN(l’_t)/dt at short  hocted to be quite accurate. These results are consistent with
times and hence y,~ap=1/Ac gy, The failure time ist; 0 5navsis of Phoenix and Tierney, who also derived the
=1iA0 [, Where 7 is a pure dimensionless number. Thus, recursion relation of Eq45) by a different approach.

Eminti= Tt (43) As mentioned earlier, the problem of damage evolution

o i , studied here has been previously considered in detail by
which is the Monkman-Grant relationship between creep rat®&psenix and Tierney(PT),! Tierney!213

. : ; and Kuo and
and failure time. Phoenix* for the one-dimensional case of linear clusters

A major conceptual approximation in the present work is_p) “pT provided exact recursions relations for the failure
the neglect of linking of smaller clusters to form larger clus- e gistributions of increasing system sizes but the recur-
ters. Such linking could cause the formation of a criticalgjons were not easily extendable to large systems. They thus
crack at much earlier times than predicted here, and modifyerformed asymptotic analyses for largeand short times,
the scalings. We have previously considered linking in the; g optained results fak(c,7) andP(c, r) analogous to our
case of a one-dimensional systém2) where two ClUSters gpot-time results of Eq(14) and showed that the linking
of sizesc,c’ separated by a single intervening site are alhrqcesses can be neglected at early times, as suggested also
lowed to link by a stress concentratian - which may be o, £q. (45). These workers then demonstrated that the
quite enhanced relative to the isolated crack stress concegyejope formed by the absolute lower bounds of the entire
trations. Here, we consider only the short-time limit with family of P(c,7) c=1,23... formed an apparently rapidly
linking and show that the time dependence for formation of &,nyergent function +exp(—W(t)) for the failure probabil-
size ¢ crack still scales withs®. Specifically, considering ity, with eachP(c,7) a Weibull function. The accuracy of

Egs.(A1)~(A6) in Ref. 18 and considering the limit of small yhe fynctionw(t) was validated by comparison to an exact
numbers of clustergshort timeg leads to the differential 5 cu1ation of the trua\(t) on a system of sizdl;=10 and

equations 7=20, as noted earlier. This agreement led PT and others to
c-2 proposeW(t) as an accurate estimate to the true failure dis-
dN(c,7) 1 L ) .
———=a, N(c—1,7)+ = 2 ae_or—1o/N(C,7) tribution, and to use the short-time/asymptotic results to de-
dr 202, ’ rive scalings for the key quantitie$ andc. PT anticipated a
XN(c—c'—1,7) c=3, (44) possible breakdown in these scalings for smafjebut our

results suggest otherwise. We have proceeded differently but
whereac_c,_w=a§_c,_l’c, is the linking rate for clusters have obtained many similar results by using the short-time
of sizesc—c’—1 andc’. The first term on the rhs of Eq. limits as well. The important differences with the work of PT
(44) is the simple single-step growth term while the secondare(i) we have considered smajland shown a transition to
term is due to all of the possible linking steps that can formpercolationlike behaviolji) we have demonstrated a special
a sizec cluster. The solution to Eq(44) is of the form  relationship between the true failure time and the tifheso
N(c,7)=f.7° where the coefficient, satisfies the recursion that the scaling of* is appropriate to failureiii) we have
relation demonstrated the applicability of the asymptotic results to
essentially allz>2, and(iv) we have proposed a different
analytic form for theW(t) function[Eq. (38)]. Our results,
where different than PT, are thus very complementary to that
(45) extensive work.
o We have also recently uncovered a short paper in the
The effect of the linking changes the prefactor of the poweiryssian literature by Gotliket al. which addresses the gen-
law but not the form of the scaling. ~eral problem discussed hefetKinetic equations” similar
In the most extreme case, one-half of the stress ca_rrled _bb() Eq. (13) were derived for the evolution of the cluster
the two clusters could be shed onto the one intervening sitgjstribution, and the short-time solution was explicitly pre-
so that sented. In addition, these authors proposed a condition under
c—1\7 which the short-time solution becomes invalid, and postu-
ac—c’—l,c’:(T) (46)  lated that the largest cluster at this time would then grow
sequentially across the specimen to failure. The condition for
Numerical evaluation of the coefficienfs then shows the crossover from the short-time regime to a growth regime is
following behavior for variousy. For =0, the coefficients identical to the condition Phoenix and Tierney used for fail-
become much larger and the exaetd percolation solution ure, but Gotlibet al. also recognized the key presence of an
is regained, as shown in Ref. 18. Fp=2, the coefficients additional time increment for growth to failure. Conceptu-

1 c—2

fc:E ac-1fe1+ E ac—cr—1¢fecr—1fer c=3.
c'=1
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ally, the ideas of Gotlitet al. are thus very similar to those APPENDIX: INCLUSION OF AVERAGE
put forth here and in our earlier work. Here, however, we CLUSTER INTERACTIONS
demonstrate explicitly the transition in failure behavior ver-

sus the nonlinearityy, and also how the onset of unstable
(avalanchg growth begins around a characteristic tirde

Since the rates of damage formation depend sensitively on
the local stresses, interactions which increase the local

We then use the short-time approximation for the cluster siz tgizsazvélilélci;ghﬁovvsrt){) l:gcsé'uiﬁi:eéfgset;??nfggg?gngrﬁ]czﬁs'
distribution, but only to obtain the size scalings. Our results ' X

for the probability distribution of the failure time were also average, or mean-fn_ald manner. Note that as the damgge ac-
unanticipated in the work of Gotlibt al. cumulates, the elastic modul&$7) decreasefEq. (3)]. This

The model dscusse ere s a tme.depercen anaog (100U decesse s @ reflecon of e wyeragmeasng
the static fracture models developed to describe failure i y 9 9 ' 9

systems with heterogeneously distributed static fractur(Iéhe eXtema"y ap_plled stres_s Is fixedagp,. To fold back th's
average increasing stress into the damage accumulation pro-

2 _ H _
strengths” Both types of models neglect long-range interac cess, one can envision that there is effectiveexternally

tions and focus only on the growth of existing clusters, or thea lied streswSM (1) acting on the entire system at time
formation of new clusters. In the time-dependent probleml_ﬁp frecti atpp( ﬂg i | ty int i
studied here the heterogeneity is self-generated by the evo- IS eliective stress, refiectilgverageciuster interactions,
lution of the damage itself, and there is no heterogeneity it simply
the local failure rates. Furthermore, failure in the present

eff —
problem is not instantaneous but rather stems from the onset Tapd 7) = Tap=(0)/E(7). (A1)

of an accelerating growth process. This latter aspect m"."keosince this effective stress is applied to all undamaged sites
fche present problem somewhat more tr_actable than the tlm%-qua”y’ it does not effect the distribution of damaggnly
|rr1]dephenlgent problems, where there is an actual fracturge time required to attain any prescribed level of damage is
threshold. affected. Sincerggp(r)z%pp, the rate of damage accumula-

. A .p.artu_:ularly important result Of. the present work is .the tion is accelerated by including interactions. To demonstrate
identification ofapr.ecursor' onset t'lmé th:?\t presages fail- 4. formally, we rewrite Eq.(11) by replacing o, by
ure. The macroscopic condltlo(r;traln, strain rate, et)r;pre_— %t (7). Defining a new time incrementr as

vailing around7* will be the subject of further investigation P
to determine if the onset of avalanche failure can be identi-

eff n
fied macroscopically. Such an identification may be difficult, d7= ULT) dr, (A2)
but represents a critical step toward understanding reliability Tapp

and failure avoidance in real materials.

In a companion paper we perform extensive numerica
simulations on the present damage problem, and compare tRe
results of those simulations to the analytic model predictions dAN(CF)
discussed here. The overall results show that, with a modifi- Y
cation to the stress concentration factors to match those of dr

the discrete model used in the simulations, one obtains quan- . = . . . ) -
titative agreement between theory and “experiment” for ab-Which is identical to Eq(13) with 7replaced byr. Thus the

solute failure times, general nature of the failure mode, an&IUSter distributionN(c, 7) obtained at timer without aver-

scaling of the failure times. This detailed comparison sup29¢ interactions is attained at an earlier imé the pres-

ports the approximations made in the analytic model anf"c® of interactions:
provides confidence that similar concepts can be applied to

Jve can rewrite Eq(13) in terms of the new time variable

=acaN(c—17)—aN(c—17), (A3)

more complex and heterogeneous time-dependent failure N(C,T)no interactions= N(C, T)interactions (A4)
processes. with
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