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Time-dependent damage evolution and failure in materials. I. Theory
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Damage evolution and time-to-failure are investigated for a model material in which damage formation is a
stochastic event. Specifically, the probability of failure at any site at timet is proportional tos i(t)

h, where
s i(t) is the local stress at sitei at timet and differs from the applied stress because of the stress redistribution
from prior damage. An analytic model of the damage process predicts two regimes of failure: percolationlike
failure for h<2 and ‘‘avalanche’’ failure forh.2. In the percolationlike regime, failure occurs by gradual
global accumulation of damage culminating in a connected cluster which spans the system. In the avalanche
regime, failure occurs by rapid growth of a single crack after a transient period during which the critical crack
developed. The scalings of the transient period, the subsequent crack dynamics, and the time-dependent
probability distribution for failure are determined analytically as functions of the system size and the exponent
h. Specific predictions are that failure is more abrupt with increasingh, failure times scale inversely with a
power of the logarithm of system size, and the distribution of failure times is a double exponential and
broadens with increasingh, so that the failure becomes less predictable as it is becoming more abrupt. The
conditions for the transition to the rapid growth regime are identified, offering the possibility of early detection
of impending failure. In a companion paper, numerical simulations of this failure process in two-dimensional
lattices are compared in detail to the analytical predictions.@S0163-1829~97!04117-9#
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I. INTRODUCTION AND PROBLEM STATEMENT

Failure under load is a major limitation to the applicati
of many materials, especially structural materials at eleva
temperatures. Understanding the mechanisms by which d
age forms, coalesces, and leads to failure, and the assoc
time scales for these phenomena, is a critical area of rese
for engineering applications of structural components. Th
time-dependent failure phenomena are also often nonlin
in both time and stress, making the development of pre
tive models of damage accumulation and failure particula
challenging. Models are necessary, however, for several
sons. First, it is costly and time consuming to perfo
enough experiments in the laboratory to fully identify t
~unknown! probability distribution of any failure process
which is necessary to establish material or component
ability. Second, the failure in many materials can be driv
by weak-link considerations, i.e., the material fails upon
first occurrence of a critical amount of damage anywhere
the material. This leads to a natural dependence of fai
time and/or strength on material volume, and to a scaling
the associated probability distributions with material volum
Knowledge of the expected analytic behavior of such dis
butions under various degradation modes can then guide
fitting of experimental data and the extrapolation of su
data to either~i! much larger system sizes than can be tes
in controlled experiments, such as full-scale components
~ii ! much longer life situations, usually at lower stresses, t
can be tested in acceptable laboratory time scales. Third
development of predictive models can help identify prec
sors to failure and rank the severity of damage, so that
550163-1829/97/55~18!/12038~13!/$10.00
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propriate nondestructive evaluation techniques might id
tify precursor damage prior to failure. The expect
remaining life of the material might then be accurately es
mated or the component removed from service prior to ca
strophic failure.

Stress-driven damage accumulation is particularly imp
tant in brittle materials such as ceramics at high tempe
tures, because the critical amount of damage required
cause failure can be rather limited and difficult to dete
Several different types of mechanisms can operate in de
mining damage growth in such materials. The clearest d
age mechanism is the slow growth of preexisting cracks
to chemical attack at the crack tips.1 The existing cracks
grow at rates determined by the kinetic breaking of bon
which is usually associated with the applied stress inten
at the tips of the cracks. Larger cracks grow faster, and
largest crack is the first to reach a critical stage at wh
rapid, unassisted crack growth can occur. This situation
thus easily described with knowledge of the underlying i
tial flaw population and the kinetics of the crack growt
Crack interactions are usually negligible because the pop
tion is dilute, and hence the single-crack problem combin
with a growth law is sufficient for adequate representation
the failure behavior.2 Less well defined is failure by ‘‘creep
damage,’’ which is damage that does not evolve from
preexisting flaws but rather develops due to time-depend
deformation under load which causes nucleation of voi
cavities/cracks. Such damage generally controls failure
low applied stresses where preexisting flaws are blunted
do not extend.3 This implies that the failure times for suc
processes are also much longer, making testing and as
12 038 © 1997 The American Physical Society
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55 12 039TIME-DEPENDENT DAMAGE . . . . I. . . .
ment difficult. Since the damage is not related to the ini
flaw distribution, the statistical distribution of evolving dam
age is not clearly determined. Similar to the slow cra
growth mechanism, the damage nucleation and growth
be very sensitive to stress state. Then, damage localiza
occurs because local damage enhances the stresses
neighborhood and drives further local damage faster tha
points remote from the damage.

Detailed models for the basic dynamics of damage evo
tion under such ‘‘creep’’ mechanisms are not well dev
oped. Models such as the semiempirical Coleman mode
the statistical distribution of time-dependent fiber streng
are often used but do not accommodate specific dam
mechanisms.4 A common empirical estimate is th
Monkman-Grant approach, which connects creep rate to
ure time by postulating a relationship between the minim
~steady-rate! creep rate«̇min and failure timet f of the form
«̇min
m tf5C, whereC is some constant andm is a parameter.5

The Monkman-Grant approach implicitly connects creep a

FIG. 1. Evolution of cavity damage in siliconized SiC~Carbo-
rundum Company KX-01! under flexure testing at 1300 °C. Not
the formation of extended cavity clusters perpendicular to the
plied tensile load~applied stress is horizontal!. Figure obtained
from Dr. S. Wiederhorn@J. Am. Ceram. Soc.79, 977 ~1996!#.
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failure, and in essence assumes that failure occurs at s
critical creep strain, which might be independent of act
applied stress ifm51. Underlying models which generat
such relationships from some microstructural damage ev
tion law do not exist, to our knowledge.

Our goal here is to examine damage evolution and fail
within the framework of one well-defined damage formati
law. We focus on capturing the major dynamics of the da
age evolution, induced strain, and ultimate material failu
and their dependences on system volume and nonlineari
the stress dependence of the damage evolution in system
which the ‘‘damage’’ is a probabilistic, nucleated eve
driven by local stress. One material which appears to beh
in this manner is the composite Si/SiC.6–8 Under load at
elevated temperatures, cavities form in this material betw
SiC/SiC grain-boundary facets, as shown in Fig. 1. The ca
ties extend across the entire grain boundary and the rat
cavitation is strongly dependent on the level of applied str
~}s11! above a threshold strain of 100 MPa~Fig. 2!. Further-
more, the spatial distribution of cavities is not random; clu
tering occurs in the form of arrays of cavities in plan
roughly perpendicular to the tensile load axis~Fig. 1!. Sen-
sitivity of the cavitation rate tolocal stress is suggested b
the clustering behavior and verified by the observations
cavitation occurs preferentially in the large tensile stress fi
ahead of intentionally introduced indent cracks under sm
remote loads. The cavity arrays are not formed by the s
crack growth mechanism because the cavities are physic
disconnected, being separated by uncavitated boundarie
more often, pools of very ductile silicon. The cavities a
responsible for most of the creep deformation in the mater
lead to strength degradation by cavity coalescence in ti
and ultimately some cavities coalesce to form a sufficien
large cavity that drives macroscopic failure. The failure tim
decreases with increasing applied stress, and over a ran
temperatures and loads the failure and creep data can be
a Monkman-Grant relationship with an unusual exponen
m51.45.6 The progression of damage in time and the dep
dence of failure time on microscopic aspects of the dam
formation are general features occurring in many other m
terials and motivate the study of general damage model
predict the remaining strength and reliability in such mate
als.

In developing a model which is general but relevant

p-

FIG. 2. Creep strain rate versus stress for siliconized SiC, in
cating high stress exponent~h'11! for stresses above 140 MP
where cavitation is observed.
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12 040 55W. A. CURTIN AND H. SCHER
materials such as Si/SiC, we first recognize several key
tures of the deformation and damage. First, the presenc
fully extended facet-sized cavities suggests that cavity
mation is controlled by a critical nucleation step, and is th
a probabilistic event. Second, the sensitivity of cavitat
rate to stress and the observation of cavity clustering b
suggest that this cavitation rate is dependent on thelocal
stress acting across each grain boundary at any given t
We thus consider an elastic material consisting of an orde
array of connected, cavitatable sites. At each sitei , the local
~tensile! stresss i(t) consists of the applied load plus add
tional loads transferred to sitei due to previous cavitation
damage at other sites. The cavitation rater i(t) ~probability
of cavitation per unit time! is assumed to have power-la
dependence on the local tensile stress:

r i~ t !5As i~ t !
h. ~1!

Here,A is a rate prefactor and the exponenth determines the
sensitivity of the cavitation rate to applied stress; both can
dependent on temperature. A power-law rate is used bec
it generates a power-law dependence of strain rate on ap
stress, as observed in Si/SiC.6–8 The form of Eq.~1! is also
similar to that often assumed for the stress dependenc
slow-crack growth, although a different physical mechani
is envisioned.

The evolution of damage in an array of sites obeying E
~1! is complex. Initially, the material is undamaged and
sites oriented perpendicular to the applied field have
same cavitation. Isolated cavities are then nucleated
domly throughout the material. Stress redistribution arou
the existing cavities increases the stress at nearby sites i
plane perpendicular to the applied load. The enhanced s
preferentially drives cavitation at sites near to the exist
cavities, but initially there are many more sites remote fr
the existing cavities that are subject to essentially the app
stress. The location of subsequent cavities must be de
mined probabilistically, and each sitei has a relative rate
given byr i(t)/( j r j (t). The typical timeDt required to form
the next cavity is simply the inverse of the sum of the rat
Dt51/( j r j (t). As time proceeds, new cavities form, cavi
clusters form, and the stress at the tips of larger cavity c
ters is generally larger than that at smaller clusters. T
stress enhancement continues to drive the formation of la
clusters faster than smaller clusters, but is mitigated aga
by the greater number of smaller clusters and/or uncavita
sites. Cavitation continues until failure, at which point o
cavity cluster spans the entire length of the system—no
plicit condition for the onset of actual ‘‘fast-fracture’’ crac
growth is considered. The damage evolution is thus c
trolled simultaneously by the current spatial distribution
clusters and the enhanced rates prevailing around these
ters.

For the above model, the special case ofh50 corresponds
to the random-dilution percolation problem. The local stre
does not affect the cavitation rates: all rates are alw
equally likely. Damage forms randomly throughout the m
terial until a connected percolation cluster is formed afte
critical volume fractionpc of sites are damaged. For th
cases whereh.0, there is some enhancement of the ra
due to enhanced local stresses and hence some tenden
ward damage localization. The major issue addressed he
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how such effects are manifest in the damage evolution
failure of the material. Some preliminary work toward th
goal has been published previously.9

To go from a qualitative understanding of the cons
quences of Eq.~1! in tandem with some load transfer rules
a quantitative calculation of the damage accumulation
actual failure point is a daunting task. The myriad of dama
cluster shapes~especially for two and three dimensions!,
long-range elastic load transfers, and cluster interactions
are possible makes exact analytic calculations hopeless.
merical simulations can include many of the necessary s
cific details, and will be discussed at length in the compan
paper. Previous simulation work by Hansen, Roux, and H
richsen has, however, uncovered some fascinating result
garding the failure as a function of size and the parameteh.
Hansen, Roux, and Hinrichsen studied the accumulated d
age at failure in simulation studies of electrical fuse netwo
which exhibit many features identical to elastic networks10

For h<2, a linear dependence of total damage on sys
size,Nf}NT , was found. However, forh.2 Hansen, Roux,
and Hinrichsen found a sublinear dependence,Nf}NT

g with
g,1 andg decreasing with increasingh. The fixed damage
fractionNf /NT for smallh is as found in the limith50, and
furthermore the fluctuations in failure damage around
mean were found to be similar to those obtained in the p
colation problem. The decreasing damage fraction at hig
h was accompanied by an associated failure mode domin
by one large crack. These results suggest that the two
gimes of h correspond to intrinsically different modes o
failure, ‘‘percolationlike’’ and ‘‘avalanchelike.’’ Simulations
can provide guidance, but it is difficult to extend simulatio
to realistic component size scales and to generalize the
sults to other load transfer rules. An approximate analy
formulation capable of capturing the major dynamics a
scaling is clearly necessary, and is the subject of this pa

Theoretical work on time-dependent damage evolut
and failure for the damage nucleation problem described
Eq. ~1! has been performed by several workers. Most no
bly, Phoenix, Tierney, and Kuo have considered this probl
in two dimensions under the restriction that the damage c
ters are linear and that all of the stress from a cluster
cavities is transferred to the immediate neighboring sites
the cluster ends.11–14 They primarily investigated the
asymptotic limits of the model, i.e., the regime of largeh and
short times~low failure probabilities!, and uncovered inter-
esting features of the failure. Our work makes similar a
sumptions at the outset and, although approached quite
ferently, shows very similar features to those of Tierney a
co-workers and in some ways validates their asymptotic
sults for much smaller values ofh. We will discuss their
results in more detail at the end of this paper.

The remainder of this paper is organized as follows.
Sec. II we present an analytical model for the damage e
lution and failure under the local damage process descr
by Eq. ~1!. We then demonstrate the existence of two
gimes of failure within the model as observed in simulatio
In Sec. III, we derive analytic expressions for the failu
time, its scaling with system size, and the precursor con
tions prior to failure, as functions of the driving paramete
In Sec. IV we present results for the failure time distributio
and its size-scaling behavior. Section V contains further d
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55 12 041TIME-DEPENDENT DAMAGE . . . . I. . . .
cussion. In the Appendix, we discuss the inclusion of me
field interactions into the model. A companion paper d
scribes extensive numerical simulations and comparis
with the analytic results described in this paper.

II. ANALYTIC MODEL FOR DAMAGE AND FAILURE

A. Damage accumulation and macroscopic observables

Our model material consists ofNT interconnected,
damage-prone boundaries, with each boundary havinz
neighbors. As the damage evolves, each boundary is e
uncavitated or part of a cluster of cavities of sizec>1. The
damage state at any instant can thus be characterized b
distribution of cavity clustersN(c,t), whereN(c,t) is the
number of clusters of sizec in the material at timet, and
their spatial locations. In principle, the time evolution
N(c,t) depends on the complicated stress fields generate
the presence of cavity clusters throughout the material, a
particular sizec does not specify a precise geometry of t
cluster. We posit that, because the stresses at the tips
cluster perpendicular to the loading axis experience the h
est stresses, that the cluster geometry is preferentially qu
linear and oriented mainly perpendicular to the loading a
Then, the sizec refers to the length of well-defined cluster
two dimensions~2D!, and is related to the cluster area in 3
problems. Before discussing means of calculatingN(c,t), it
is constructive to assume that~i! N(c,t) has been supplied
by some means and~ii ! the cavity clusters do not interac
substantially so that cavity cluster correlations can be
glected, and then to demonstrate how essentially all of
time-dependent macroscopic properties of the material
be calculated. This is done below.

The time-dependent strain in the material is composed
two parts. The first part is the elastic strain arising from
damage-reduced Young’s modulusE(t),

«el5sapp/E~ t !. ~2!

E(t) can be related to the cavity cluster distribution using
mean-field theory15 as

E~ t !5E~0!F12
b

NT
(
c>1

cdN~c,t !G ~3!

for planar cracks ind dimensions, withb a parameter~b
50.47p for a continuum elastic medium in 2D!.16 The sec-
ond contribution is the strain due to the creation of n
volume Vc upon each cavity formation, as discussed
Raj,17 and is

«vol5
1

3

Vc

L11
(
c>1

cN~c,t !, ~4!

where L11 is the length of the specimen along the tens
axis. Both contributions to the strain are determined
N(c,t).

The total number of clusters of size equal to, or grea
than,c is a useful quantity for various reasons, as we sh
see. Normalizing this cumulant by the total number of sit
or material volume, then yields the generalized ‘‘risk of ru
ture’’ function
-
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R~c,t !5 (
c8>c

N~c8,t !/NT . ~5!

The failure probability due to clusters of sizec or larger~i.e.,
the probability of appearance of a cluster>c! at time t is
obtained using standard weak-link arguments as

P~c,t !512e2NTR~c,t !. ~6!

The typical ~63.2% level! largest clusterc* at time t then
satisfies

NTR~c* ,t !5 (
c>c*

N~c* ,t !51, ~7!

i.e., there is typically one cluster at least as large as sizec* in
the system.

The characteristic failure timet f is the time at which the
typical largest crack sizec* is equal to the transverse samp
lengthL, c*5L. Mathematically, failure is expressed by

NTR~L,t f !51. ~8!

Since it does not make sense to talk about cracks larger
L, we must haveR(L,t)5N(L,t)/NT and hence failure oc-
curs at a mean timet f satisfyingN(L,t f)51. The probability
of failure is thenP(L,t), with P given in Eq.~6!.

It is possible that fast crack propagation emanating fr
the largest cluster can interrupt the nucleated damage pro
and cause failure. In such a case, most of the material
time is taken up in the initial formation, via cavitation, of th
critical defect sizeccrit needed for crack propagation, and
the failure time satisfiesNTR~ccrit ,t f!51 and the probability
of rupture isP~ccrit ,t! following from Eq. ~6!. The critical
size can be obtained from fracture mechanics considera
of the time-dependent tensile strength, i.e., the strength of
material after surviving a certain time at some applied lo
A strengthS is obtained from a defect of sizec5(YKic/S)

2,
with Y a geometrical parameter andKic the material tough-
ness at the test temperature. Hence, the characteristic t
dependent strength is

S~ t !5
Kic

Yc* 1/2
. ~9!

As time progressesc* increases and the strength decreas
Failure during the creep process occurs at a sizeccrit satisfy-
ing Eq. ~9! with S equal to the applied stress. Here, we w
be interested in the largest cluster size versus time, but
not consider further the issue of failure by fracture from t
largest cluster.

Equations~2!–~9! provide the mathematical basis for ca
culating essentially all of the quantities of interest during t
creep damage process from the underlying cluster distr
tion N(c,t). As yet, we do not knowN(c,t) and we turn to
that formidable problem below.

B. Analytic model of damage evolution

To make analytic progress on understanding the su
aspects uncovered by numerical simulations, and the exp
mental results on materials such as Si/SiC, requires an
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12 042 55W. A. CURTIN AND H. SCHER
proximate analysis which retains the key physics. We s
by rescaling the underlying rate law by factoring out t
applied stress,

r i~ t !5Asapp
h ~s i /sapp!

h. ~10!

In this form, we can identify an underlying rater 05As app
h or

time scalet05r 0
21, and a dimensionless rate enhancem

factor ~si /sapp!
h describing how the local stress ati modifies

the nucleation rate ati relative to the reference rater 0. We
then recognize that for evolving damage, the damage ra
highest at the tips~perimeter! of existing damage where th
local stress transfer is highest. We therefore focus atten
on these tip sites by assuming that all sites in the system
either ~i! tip sites, at the tip of a cluster of sizec units and
under an enhanced stress denotedsc , ~ii ! damaged sites in
the cavity clusters themselves, which are under no stress
~iii ! all remaining nontip, nondamaged sites, under only
applied stresssapp. This division of sites into three catego
ries eliminates long-range interactions between exis
damage and linking together of two existing clusters, iss
we will address later. Then, the quantity to determine is
cluster size distributionN(c,t) which is the number of sizec
clusters at timet. Within the assumptions above, sizec clus-
ters can only form via the growth of sizec21 clusters and
can only be lost by growth to sizec11 clusters. Hence, the
evolution ofN(c,t) follows a Master Equation:

dN~c,t !

dt
5zAsc21

h N~c21,t !2zAsc
hN~c,t ! c>1,

~11!

where the growth rate of a sizec cluster iszAs c
h with z

being the number of possible growth sites at the tips of
cluster ~e.g., z52 for a 12d line, z54 for the triangular
lattice! ands05sapp. N(0,t) is the number of ‘‘size 0’’ cavi-
ties, or nondamaged/nontip sites and satisfies the sum r

N~0,t !5NT2 (
c>1

~c1z!N~c,t !. ~12!

Defining a dimensionless timet5t/t05tAs app
h and recog-

nizing that the stress enhancement is generally proporti
to the applied fieldsc5Kcsapp, whereKc is the stress con
centration factor at each of thez tip sites of a sizec cluster,
allows us to rewrite Eq.~12! in the nondimensional form

dN~c,t!

dt
5ac21N~c21,t!2acN~c,t!, ~13!

whereac5zKc
h is the dimensionless growth rate anda051.

Equation~13! contains all of the damage evolution dynami
that are considered in the present model, and is a w
defined set of coupled equations forN(c,t) in terms of the
underlying parametersKc and h, and the total number o
sitesNT entering into the initial conditions. Equation~13!
was proposed earlier in Refs. 9 and 18.

The solutions to the coupled set of equations forN(c,t)
can be obtained analytically by using Laplace transforms
by approximatingN(0,t)5NT .

18 Of particular interest are
two limiting cases, corresponding to short and long times
any crack sizec.
rt

t

is

n
re

nd
e

g
s
e

e

e

al

ll-

d

r

In the limit act/c!1 the solution to Eq.~13! is obtained
by neglecting the2acN(c,t) ‘‘depletion’’ term on the right-
hand side~rhs! of Eq. ~13!, leading to

N~c,t!5S )
c851

c21
ac8
c8 D tc. ~14!

In this regime,N(c,t) is rapidly decreasing for increasin
cluster sizesc at any fixed timet,1. If the ratioac/c is not
an increasing function ofc, then Eq.~14! is the solution for
N(c,t) for all timest,1/a1 and the cluster size distributio
decreases at least exponentially fast with increasing clu
size, i.e.,

N~c,t!<NTe
c~ lnt!. ~15!

Large clusters are thus very unlikely; most of the accum
lated damage is tied up in smaller clusters. From Eq.~5!, we
also have a risk of rupture functionR(c,t) that decreases a
least exponentially fast.

In the long-time limitact/c@1 the solution to Eq.~13!
becomes simply18

N~c,t!}NTac
21, ~16!

which can partially be motivated by considering the ‘‘stead
state’’ conditiondN(c,t)/dt50 of Eqs.~13!. In this regime,
the associated largest cluster sizec* defined by Eq.~7! can
be rewritten by taking the derivative ofR(c,t) in Eq. ~5!,
substituting Eqs.~13! for the dN(c,t)/dt terms, performing
the summation, integrating, and consideringc5c* . This
yields

E
0

t

dt8ac*21N~c*21,t8!51, ~17!

which states that the integrated flux of clusters growing i
sizec* equals unity. Hence, as the largest cluster enters
long-time regime of Eq.~16! thenc* must increase rapidly
with time to satisfy Eq.~17!. This rapid growth is the ava
lanche observed in the simulations and always occurs if
long-time regime can be reached prior to failure. This c
only occur ifac/c is an increasing function ofc.

III. PREDICTIONS OF FAILURE BEHAVIOR

We now apply the model to understand the fundament
different failure behaviors forh<2 andh.2 observed in the
simulation study by Hansen, Roux, and Hinrichsen.10 In
these simulations, the stress concentration factors scale
sentially as the square root of cluster size, and so we ass
the formKc5(111/z)c1/2. This form distributes the stress o
a size 1 cavity equally to thez neighbors at its tips, and fo
larger clusters the desired square-root dependence for li
systems obtains.

A. Percolationlike failure: h<2

For h<2, the short-time limitact/c,1 applies toall
cluster sizes for timest,1/a1 becauseac/c is not increasing
with c. Damage occurs as a gradual proliferation of sm
clusters which ultimately do link together to form a larg
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FIG. 3. Predicted damage at failureNf versus system sizeNT for varioush. Solid lines are simulations on electrical fuse networks~Ref.
10!; dashed lines are predictions of present model.
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crack. Such linking processes arenotcontained in our model
But, they only occur late in life just as in the percolatio
problem~h50!, where it is observed that the divergence
the correlation length and largest cluster size are narro
confined to a region near the critical point. Because no sin
large cracks grow on their own, it is reasonable to estim
the failure time as the point at which the elastic modulus
the highly damaged system has decreased to zero,E(t f)50.
This is a mean-field estimate for the ‘‘critical’’ percolatio
point and therefore is expected to capture the general be
ior but not give a highly accurate value for the failure or to
damagepc5Nf /NT at failure.

To determine the failure timetf , we first assume the
short-time solution to be accurate up totf , i.e., assume tha
tf,1/a1. We can then substitute the short-time solution
N(c,t) @Eq. ~14!# into the mean-field expression for the ela
tic modulus@Eq. ~3!#, set the elastic modulus to zero, an
solve for the required timetf . The case ofh52, which is the
largest value ofh for which the short-time solution holds fo
times shorter than 1/a1, yields an analytic result. Forh52,
Eq. ~14! reduces to N(c,t)5NTa 1

c21tc, where a1
5z(111/z)2. Subbing into Eq.~3! and settingE50 leads to
a failure timetf satisfying

a1

b
5 (

c51

`

c2~a1t f !
c. ~18a!

After performing the sum and rearranging, the failure time
the solution of a quadratic equation which we choose
write as

a1t f
~12a1t f !

2 5
z~111/z!2

b
. ~18b!

Equation~18b! always has a solution satisfyinga1tf,1 for
any value of the coefficientb appearing in the mean-fiel
elastic modulus expression. Forh,2, a similar conclusion
holds but the result cannot be expressed in a simple ana
f
ly
le
te
f

v-
l

r

s
o

tic

form. Since failure does occur within the range of validity
the short-time solution, the use of the short-time solution
thus validateda posteriori.

For h<2 the failure is thus percolationlike, even thoug
there is some tendency of the stress-dependent damage
to drive preferential large cluster development. Up to t
power ofh52, the rate enhancement by stress concentrat
is not strong enough to compete against the more frequ
‘‘random’’ evolution of many smaller clusters growing a
lower rates. The small-cluster damage dominates the t
damage and leads to global percolationlike failure bef
enough time has elapsed for any large self-propagating c
ters to emerge~i.e., failure occurs before 1/a1!. A single
large cluster does exist at failure, but has been formed by
fairly rapid coalescence of smaller clusters just as the crit
point is being reached.

For h<2, the failure time is also predicted to be indepe
dent of the system sizeNT , and the total damage at failur
scales linearly with the system size, in agreement with
simulations.10 Numerical solutions of Eq.~13! with the
mean-field failure conditionE(t f)50 yield predictions for
the total damage at failure versus system size andh as shown
in Fig. 3. The quantitative agreement with the simulati
results forh52 is quite good, indicating the general acc
racy of the mean-field estimate of the failure point with
adjustable parameters.9

B. Avalanche failure: h>2

For h.2, the short-time limit is always exceeded fo
some larger cluster sizes prior to global failure. Under su
conditions, the cluster size distribution is no longer expon
tially decreasing but has a large-c tail which decays slower
than exponentially. From Eq.~17! it is clear that the larges
clusterc* can reach a stage at which it grows rapidly acro
the material to cause failure. Numerical solutions of the f
system of Eq.~13! for the largest clusterc* versus timet are
shown in Fig. 4 forh54 at two system sizes; the fairl
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12 044 55W. A. CURTIN AND H. SCHER
sudden, rapid growth of the largest crack after some trans
period and the size dependence of the phenomenon,
clearly exhibited in these results. Predictions for the to
damageNf at failure versush and system sizeNT are shown
in Fig. 3, and again there is good quantitative agreement w
the simulations with essentially no adjustable parameter
the theory.9

During the rapid-growth period exhibited in Fig. 4
smaller clusters can continue to grow but they are not n
essary to complete the failure. For increasing system s
NT the onset of rapid growth occurs at earlier times, and
there is less other damage and interactions of the lar
cluster with the smaller clusters can be neglected for la
system sizes.

IV. FAILURE TIME SCALING
IN THE AVALANCHE REGIME

A. Scaling of the mean

In the percolation regimeh<2, there is no size depen
dence of the mean failure time or damage at failure. No
the size dependence in the avalanche regimeh.2 evident
from the form of Eqs.~13! or ~17!, although it is apparent in
Figs. 3 and 4. The evolution of modulus, strain, and failu
time distribution can be calculated directly from Eq.~13! and
then Eqs.~3!–~7!, but this does not provide any physic
insight into the factors and events which actually control
time-to-failure and its distribution versus sizeNT andh. Nor
does it provide guidance for any observed scaling behav
In addition, one would like to identify any signature of in
cipient failure so as to anticipate failure in any one samp
and one would like such a signature to have the same
andh dependence as the failure time itself. Thus it is nec
sary to analyze the predicted damage evolution more c
fully to clearly extract the origin of the size scalings.

In the avalanche regime~h.2!, one single large ‘‘crack’’
ultimately controls the failure and so we focus on the typi
largest cluster, denoted previously asc* . The nature of the
long-time solution Eq.~16! to Eq. ~13! stems from the fact

FIG. 4. Growth of typical largest clusterc* versus time, for
h54 andNT5104, 106. The solid lines are full numerical resul
dashed lines are the approximate result. Also shown is demarc
line for short-time/long-time crossover, determined byact/c51.
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that when a crack reaches a sufficient size~as yet unknown!
it tends to propagate without any ‘‘supply’’ from smalle
crack sizes. We apply this notion to the typical largestc*
crack that ultimately causes failure. We would like to det
mine the time, denotedt* , at which the largest crackc*
emerges from the distribution of smaller cracks and starts
avalanche process. We show below that establishing the
t* then leads to a determination of the size scaling of b
the failure timetf and its distribution. Two key steps enab
us to identifyt* and obtain a relationship betweent* and
tf : ~1! a simplified analytic solution for the largest crac
c* (t) as a function of time in the avalanche regime, and~2!
the criterion thatt* is the time at which the largest crac
emerges from the small-crack/short-time solution forN(c,t).

To follow the evolution of the largest crack, we take th
definition of c* (t) from Eq. ~7! and differentiate with re-
spect to time to obtain

2
dc*

dt
N~c* ,t!1 (

c5c*

`
dN~c,t!

dt
50. ~19!

The sum can be rewritten, using Eq.~13!, to give

dc*

dt
5ac* S ac*21N~c*21,t!

ac*N~c* ,t! D , ~20!

where the rhs has been multiplied and divided byac* .
Strictly in the avalanche regime, we can then use the lo
time solution of Eq.~16! to obtain

dc*

dt
5ac* . ~21!

The driving equation is that for a single crack growing a
rate proportional to its size. This demonstrates that the la
est crack in the avalanche regime does grow independe
of the supply of smaller cracks. The evolution of Eq.~21!
can now be integrated starting from a sizec at some timet
and ending at the known final value ofc*5L at the failure
time tf . For the case of square-root stress-enhancem
[ac5z(111/z)hch/2], one obtains the result

c* ~t!5LS 11
z~111/z!h~h/221!~t f2t!

L12h/2 D 1/12h/2

.

~22!

This expression for the largest crackc* versus time is com-
pared to the full solutions, obtained from Eqs.~13! and ~7!,
in Fig. 4 for the case ofh54 andNT5104,106. In Fig. 4, the
c*2t plane is divided by the lineac* t/c*51 corresponding
to the two regimes of short times/small cracks and lo
times/large cracks. Equation~22! is an excellent approxima
tion to the exact result in the entireac* t/c*.1 ~the upper
right in the Fig. 4!. As discussed above,c* must be in this
regime for the avalanche to occur; ifc* is in the short-time
regime then self-sustaining growth cannot occur. The time
which c* ~t! crosses into the long-time/large-crack regime
postulated here to be the avalanche onset timet* , and is
obtained from the simultaneous solution of Eq.~22! and the
condition

ac* t/c*51. ~23!

ion
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The result is

t*5~122/h!t f1
2

hz~111/z!hLh/221 , ~24!

with the second term being vanishingly small for large s
tem sizes. The associated critical cluster size at this poin
denotedĉ5c* (t* ). This result is equivalent to assumin
that as soon as the largest crack reaches the sizeĉ, it leaves
the short-time regime and grows forward to failure, acco
ing to Eq.~22!, in a timetf2t* . The large L limit of Eq. (24)
also implies that the size scaling of the real failure timetf is
then identical to that of the onset timet* . This is a main
result of this paper.

The relationship betweent* andtf is interesting, but we
do not have any expression for either of the two indep
dently. A major advantage of working with thet* identified
here is that, being on the border of the short-time regime,
can use the analytic short-time solutions forN(c,t). We ob-
tain the scaling oft* with system size by using the shor
time solution Eq.~14! for N(c,t), settingN( ĉ,t* )51, and
solving this simultaneously with Eq.~23! (a ĉt* / ĉ51)
yields, using Stirling’s approximation along the way, t
critical cluster size

ĉ5
ln~NT!

h/221
2
ln~z~111/z!h!

h/221
1 ln~A2p!2

1

2

h/211

h/221
ln~ ĉ!,

~25!

where the size scaling is essentially controlled by the fi
term. The associated onset timet* then simply

t*5
ĉ

a ĉ
}@ ln~Nt!#

12h/2, ~26!

where only the dominant scaling is exhibited. Then, by E
~24!, the failure timetf scales similarly tot* . We have thus
derived analytic expressions for the failure timetf , the onset
or precursor timet* , and the critical cluster size cˆ that
begins the avalanche. These are main results of this pa
and clearly demonstrate the size-scaling of the failure p
cess deriving from the underlying rate law of Eq. (1).

In the work of Phoenix and Tierney~PT!, the timet* was
postulated to be the failure time, in essence, and then
used their asymptotic short-time results which are ident
to our short-time results to obtain scalings forĉ andt* that
are identical to the scalings obtained above.11 The validity of
taking t* as a good approximation to the failure time w
supported by exact calculations on a system of sizeNT510
andh520. Our results demonstrate that the failure time d
scale liket* and that there is a fixed difference betweent*
andtf . For the case studied by PT, we predict the differen
to be 10%, which is in good agreement with the differen
exhibited in PT.11 The range of applicability of the scaling
found by PT was previously unknown, and PT expected th
asymptotic results to break down below abouth510. The
analysis here indicates that the scalings are actually ap
priate down to the transition pointh.2, with the recognition
that the difference betweent* andtf grows to be significant.

All of the scaling behavior is predicted to be algebraic
the logarithm of the system size. However, since the ex
nenth /221 can be large, the decrease in failure time can
-
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very evident even over modest increases in system size.
appearance of the particular exponenth/221 explicitly dem-
onstrates that the value ofh52 is the critical value for the
transition to the avalanche regime for square-root stress
centrations. Forh52, there is no predicted size dependen
and in factt* is never attained.

The predicted critical crack sizeĉ initiating the avalanche
grows only very slowly with system size, and decreases w
increasingh. Thus, for largerh and moderate system size
the value of ĉ is not large. Our neglect of cluster-cluste
interactions and our limitation of the cluster shapes to a q
silinear form are supported by the fairly small values ofĉ
predicted by Eq.~25! ~for h54 andNT5106, ĉ'11 and for
NT5108, ĉ'13 while forh58 andNt5106, ĉ'4!. In other
words, large multiply branched clusters are not respons
for the onset of failure.19

B. Failure time distributions

Equations~24! and~26! prescribe the characteristic failur
time tf , at which point the failure probability is 0.632@see
Eqs. ~6! and ~9!#. Of importance for reliability is the distri-
bution of failure times around the characteristic time, and
size scaling of that distribution. We discuss approaches
obtaining this distribution below.

Since the characteristic failure timetf is determined by
the formation of the criticalĉ cluster att* , we postulate that
the failure time distribution is controlled by the probabili
of appearance of the sizeĉ crack vs time. Theĉ cluster may
appear earlier than, or later than, the typical timet* , but
once formed we postulate that it grows to failure in the fix
time tf2t* . The cumulative probability of forming a sizeĉ
cluster versus time is, from Eq.~6!,

P~ ĉ,t!512exp„2NTR~ ĉ,t!…, ~27!

and at timet* the probability is 0.632. The correspondin
probability of complete failure~probability of finding a crack
of sizec5L versus timet! is then obtained by arigid shift of
this cumulative probability forward in time by the amou
tf2t* :

P~L,t!5PS ĉ,t2
2

h
t f D , ~28!

where tf refers to the typical failure time in a system o
linear sizeL so thatP(L,t f)50.632. The failure time distri-
bution determined from the full numerical results of Eq.~13!
is shown in Figs. 5~a! and 5~b! along with the values ob-
tained by a rigid shift of Eq.~28!, and the agreement is quit
good. Over the middle range of the probability distributio
the failure is controlled by the appearance of theĉ cluster. At
lower probabilities, there is some deviation and the predic
probability of failure is not conservative, which drives us
consider improved descriptions shortly.

Using the short-time solutionR( ĉ,t)'N( ĉ,t)}t ĉ, the
failure probability from Eqs.~27! and~28! is Weibull in form
with the critical sizeĉ as the Weibull modulus:

P~ ĉ,t!512e2~t/t* !ĉ ~29a!

and
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12 046 55W. A. CURTIN AND H. SCHER
P~L,t!512expF2S t2~2/h!t f
~122/h!t f

D ĉG1/2. ~29b!

Phoenix and Tierney also predicted the above Weibull d
tributions based on the asymptotic/short-time limit.11 Tierney
further improved the analysis to obtain better Weibull dis
butions for the low-probability tail.12,13For a Weibull distri-
bution of modulus ĉ, the coefficient of variation~c.o.v.
5standard deviation divided by the mean! is closely

FIG. 5. Probability of failure versus time. The solid line is th
full numerical result; short dashed line is the probability of obta
ing cluster of sizeĉ versus time; long-dashed line is the probabil
of size ĉ rigidly shifted by 2tf /h. ~a! h54, NT5104; ~b! h54,
NT5106; ~c! h58, NT5104.
-

-

approximated by 1.2/ĉ. From Eqs.~29a! and ~29b! we see
that the mean is shifted by a constant factor whileĉ stays the
same, and hence the c.o.v. for the failure time distribution

c.o.v.;
1

ĉ
;

h/221

lnNT
, ~30!

where only the dominant scaling is shown. The c.o.v.
creases weakly with sizeNT , and in a manner that isinde-
pendentof h. At fixed size, the c.o.v. increases with increa
ing h because the material is much more sensitive
fluctuations in the damage at largerh. Hence, at higherh the
failure simultaneously becomes more abrupt~t*→tf! and
less predictable.

Further refinements in estimating the failure time distrib
tion are subtle. Weak-link scaling concepts are not stric
applicable here: failure in a subvolume of material does
immediately cause failure in the entire volume because
crack spanning the subvolume must still grow across
remaining cross section to fail the entire volume. A relatio
ship between failure distributions of different size syste
can be derived, however, which leads to a new more accu
form for the probability distribution. First, note that the fai
ure probability of Eq.~6! involvesNT andR(c,t). From the
differential equations forN(c,t) and the definition ofR(c,t),
we also see thatR(c,t) does not involve the system siz
explicitly or implicitly. Hence, we can uniquely relate th
probability distributions of different size systems throu
their commonR(c,t).

Let the probability of finding a crack of sizec in volume
Ni bePi(c,t). The probability of failure of a sizeN1 system
is thenP1(L1 ,t) whereL15N 1

1/2, as usual. Solving Eq.~6!
with c5L1 for R(L1 ,t) in terms of P1(L1 ,t), and then
using thisR(L1 ,t) in Eq. ~6! for a system size ofN2, we
obtain the probability distribution for the occurrence of anL1
crack anywhere in a volumeN2 as

P2~L1 ,t!512@12P1~L1 ,t!#N2 /N1. ~31!

This result is an upper bound to the actual failure distribut
for sizeN2, i.e.,P2(L2 ,t)<P2(L1 ,t).

Now, if L1 is larger than the critical sizeĉ2 required for
rapid growth of the dominant crack in theN2 volume, then
the L1 cluster will grow to sizeL2 precisely following the
large-cluster growth of Eq.~21!. The time to fail the sizeN2
system is thus a timeDt1→2 longer than the timet to form
theL1 cluster, where

Dt1→25E
L1

L2 dc*

ac*
5

1

z~111/z!h~h/221!

3F 1

L1
h/2212

1

L2
h/221G . ~32!

The failure probability of sizeN2 then satisfies

P2~L2 ,t!5P2~L1 ,t2Dt1→2!

512@12P1~L1 ,t2Dt1→2!#
N2 /N1, ~33!

which exactly relates the failure distribution of sizeN2 to
that of the smaller sizeN1.

The relation Eq.~33! can now be used to find the failur
distribution P1(L1 ,t) from the characteristic failure time

-
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for larger systems, which are accurately known from E
~24!–~26!. Specifically, suppose we know the characteris
failure timet2 for sizeN2, i.e.,

P2~L2 ,t2!50.632, ~34!

for all system sizesN2.N1 . Inverting Eq.~33! at time t2
then gives the failure probability for sizeN1 at time
t22Dt1→2 as

P1~L1 ,t22Dt1→2!5120.368N1 /N2. ~35!

So, given a timet at which we wantP1(L1 ,t), we first find
the sizeN2 such thatt5t22Dt1→2 and then use thisN2 on
the rhs of Eq.~35! to obtain the probability. For smal
probabilities/largeN2 we can carry this through analyticall
because forN2@N1 the time shiftDt1→2 becomes indepen
dent ofN2. Using the scaling of Eq.~26! for the failure time
t2 we thus have

t5t22Dt1→25D~ lnN2!
12h/22Dt1→2 , ~36!

and solving forN2 yields

N25expF S t1Dt1→2

D D 1/~12h/2!G ~37!

whereD is some constant. Substituting Eq.~37! into Eq.~35!
then yields

P1~L1 ,t!512expF2N1expS 2S t1Dt1→2

D D 1/~12h/2!D G .
~38!

The failure probability is thus of thedouble-exponential form
with an additional shiftDt1→2 dependent on the sizeN1.
This result is valid for short times~i.e., somewhat smalle
than the characteristic failure time for sizeN1! corresponding
to large N2 , N2@N1 , but with the weak restriction tha
ĉ2,L1 . The only real approximations used in obtaining E
~38! is the scaling relation of Eq.~26! and the approximate
N2 independence of the time shift in Eq.~31!. In Fig. 6 is
shown a test of the scaling predicted by Eq.~38!. Specifi-

FIG. 6. Scaling of failure probabilityP vs timet ~NT5104 and
h54,8! as calculated from Eq.~14!, which from Eq.~39! should be
linear if plotted as ln@lnNT2ln„ln~12P!…# vs @~t1Dt!/tf #. The pre-
dicted slope is~12h /2!21, which is close to the calculated value
each case.
.
c

.

cally, we have plotted ln@ln N12ln„2ln~12P!…# vs
ln@~t1Dt1→2!/tf# for N15104 andh54,8. According to Eq.
~38!, the plot should then be a straight line of slop
~12h/2!21; the data in Fig. 6, whereP is obtained from Eq.
~13! andDt122 from Eq.~32!, is nearly linear and essentiall
confirms the predicted double-exponential scaling ove
wide range of probability. The slope forh54 is slightly
lower than the predicted value of21, but is still nearly lin-
ear. Equation~38! is a great improvement over the simp
Weibull ansatz of Eqs.~27!–~29! in the low-probability tail,
although the simple Weibull captures the essence of
probability distribution. The double-exponential form h
been shown to be the appropriate distribution function
static failure problems, but it is also accepted that dist
guishing between a Weibull form and a double-exponen
can be difficult unless a very broad range of sizes or stre
~here, times! are investigated.20

V. DISCUSSION

We have discussed a model to capture what we believ
the essence of the complex time-dependent failure driven
nucleated damage. We have found subtle relationships
tween the macroscopically measured failure time, failu
time distribution, critical cluster size, and the underlyin
nonlinear driving factorh and system size. The details of th
predicted scalings will be fully compared to numerical sim
lations in the companion paper, but the trends in behavior
very consistent with previous simulation results.

The present damage model and analysis also predi
failure probability consistent with the empirical Colema
model.4 The Coleman model describes the failure probabi
versus time and applied stresss as

P~s,t !512expH 2F E
0

t dt8

t0
S s

s0
D bG r* J , ~39!

wheret0, s0, b, andr* are parameters. Under constant stre
this simplifies to

P~s,t !512expH 2S s

s0
D br* S t

t0
D r* J . ~40!

The present results for the onset of failure aroundt* can be
written in dimensional form following from Eq.~29a! as

P~ t !512expH 2S t

t* D
ĉJ . ~41!

But since t* implicitly depends on applied stress we ca
write more generally

P~s,t !512expH 2S s

s0
D h ĉS t

t0*
D ĉJ , ~42!

wheret0* is the onset time at some reference stresss0. The
final failure probability of Eq.~29b! adopts a similar form. A
comparison of Eqs.~40! and~42! shows them to be identica
with the association ofr*5ĉ andb5h. If the applied stress
changes with time, the effect on the present model is
speed up or slow down the damage evolution proportion
but the progression of damage does not otherwise chang
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shown in the Appendix. Hence, the present results are
consistent with the full Coleman model of Eq.~39!. In con-
trast to the Coleman model, however, the present model
underlying damage-rate parametersA andh which then lead
to predicted~size-dependent! quantities t0* and ĉ at some
applied stresss0.

The present model is also consistent with the lin
Monkman-Grant relationship.5 Specifically, the minimum
creep rate in the present model is«̇ at short times, where
only isolated clusters are formed. So, with«;1/E(t);1
1(b/NT)(cc

2N(c,t) we have «̇min;dN(1,t)/dt at short
times and hence«̇min;a051/As app

h . The failure time ist f
5t fAs app

h wheretf is a pure dimensionless number. Thu

«̇mint f5t f , ~43!

which is the Monkman-Grant relationship between creep
and failure time.

A major conceptual approximation in the present work
the neglect of linking of smaller clusters to form larger clu
ters. Such linking could cause the formation of a critic
crack at much earlier times than predicted here, and mo
the scalings. We have previously considered linking in
case of a one-dimensional system~z52! where two clusters
of sizesc,c8 separated by a single intervening site are
lowed to link by a stress concentrationsc,c8 which may be
quite enhanced relative to the isolated crack stress con
trations. Here, we consider only the short-time limit wi
linking and show that the time dependence for formation o
size c crack still scales withtc. Specifically, considering
Eqs.~A1!–~A6! in Ref. 18 and considering the limit of sma
numbers of clusters~short times! leads to the differentia
equations

dN~c,t!

dt
5ac21N~c21,t!1

1

2 (
c851

c22

ac2c821,c8N~c8,t!

3N~c2c821,t! c>3, ~44!

whereac2c821,c85sc2c821,c8
h is the linking rate for clusters

of sizesc2c821 andc8. The first term on the rhs of Eq
~44! is the simple single-step growth term while the seco
term is due to all of the possible linking steps that can fo
a size c cluster. The solution to Eq.~44! is of the form
N(c,t)5 f ct

c where the coefficientf c satisfies the recursion
relation

f c5
1

c S ac21f c211 (
c851

c22

ac2c821,c8 f c2c821f c8D c>3.

~45!

The effect of the linking changes the prefactor of the pow
law but not the form of the scaling.

In the most extreme case, one-half of the stress carrie
the two clusters could be shed onto the one intervening
so that

ac2c821,c85S c21

2 D h

. ~46!

Numerical evaluation of the coefficientsf c then shows the
following behavior for varioush. For h50, the coefficients
become much larger and the exact 12d percolation solution
is regained, as shown in Ref. 18. Forh52, the coefficients
so
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are slightly larger by a factor of approximately 110.03c,
which has almost no effect on the overall scaling behavio
the location of the transition to avalanche behavior. F
h54, the coefficients are larger by 2–3 % independent oc,
while for h58 the coefficients are larger by only 0.1%, aga
independent ofc. The modifications to the coefficients thu
have negligible effects on the overall scaling behavior of
failure. Some details of the precise evolution such as ac
failure time and the timet* will be changed very slightly in
magnitude, but the scalings predicted in this paper are
pected to be quite accurate. These results are consistent
the analysis of Phoenix and Tierney, who also derived
recursion relation of Eq.~45! by a different approach.

As mentioned earlier, the problem of damage evolut
studied here has been previously considered in detail
Phoenix and Tierney~PT!,11 Tierney,12,13 and Kuo and
Phoenix14 for the one-dimensional case of linear clusters~z
52!. PT provided exact recursions relations for the failu
time distributions of increasing system sizes but the rec
sions were not easily extendable to large systems. They
performed asymptotic analyses for largeh and short times,
and obtained results forR(c,t) andP(c,t) analogous to our
short-time results of Eq.~14! and showed that the linking
processes can be neglected at early times, as suggested
by our Eq.~45!. These workers then demonstrated that
envelope formed by the absolute lower bounds of the en
family of P(c,t) c51,2,3. . . formed an apparently rapidly
convergent function 12exp„2Ŵ(t)… for the failure probabil-
ity, with eachP(c,t) a Weibull function. The accuracy o
the functionŴ(t) was validated by comparison to an exa
calculation of the trueW(t) on a system of sizeNT510 and
h520, as noted earlier. This agreement led PT and other
proposeŴ(t) as an accurate estimate to the true failure d
tribution, and to use the short-time/asymptotic results to
rive scalings for the key quantitiest* andĉ. PT anticipated a
possible breakdown in these scalings for smallerh, but our
results suggest otherwise. We have proceeded differently
have obtained many similar results by using the short-ti
limits as well. The important differences with the work of P
are~i! we have considered smallh and shown a transition to
percolationlike behavior,~ii ! we have demonstrated a spec
relationship between the true failure time and the timet* so
that the scaling oft* is appropriate to failure,~iii ! we have
demonstrated the applicability of the asymptotic results
essentially allh.2, and ~iv! we have proposed a differen
analytic form for theW(t) function @Eq. ~38!#. Our results,
where different than PT, are thus very complementary to t
extensive work.

We have also recently uncovered a short paper in
Russian literature by Gotlibet al. which addresses the gen
eral problem discussed here.21 ‘‘Kinetic equations’’ similar
to Eq. ~13! were derived for the evolution of the cluste
distribution, and the short-time solution was explicitly pr
sented. In addition, these authors proposed a condition u
which the short-time solution becomes invalid, and pos
lated that the largest cluster at this time would then gr
sequentially across the specimen to failure. The condition
crossover from the short-time regime to a growth regime
identical to the condition Phoenix and Tierney used for fa
ure, but Gotlibet al. also recognized the key presence of
additional time increment for growth to failure. Concept
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ally, the ideas of Gotlibet al. are thus very similar to thos
put forth here and in our earlier work. Here, however,
demonstrate explicitly the transition in failure behavior ve
sus the nonlinearityh, and also how the onset of unstab
~avalanche! growth begins around a characteristic timet* .
We then use the short-time approximation for the cluster s
distribution, but only to obtain the size scalings. Our resu
for the probability distribution of the failure time were als
unanticipated in the work of Gotlibet al.

The model discussed here is a time-dependent analo
the static fracture models developed to describe failure
systems with heterogeneously distributed static fract
strengths.22 Both types of models neglect long-range intera
tions and focus only on the growth of existing clusters, or
formation of new clusters. In the time-dependent probl
studied here the heterogeneity is self-generated by the
lution of the damage itself, and there is no heterogeneity
the local failure rates. Furthermore, failure in the pres
problem is not instantaneous but rather stems from the o
of an accelerating growth process. This latter aspect ma
the present problem somewhat more tractable than the t
independent problems, where there is an actual frac
threshold.

A particularly important result of the present work is th
identification of a precursor onset timet* that presages fail-
ure. The macroscopic conditions~strain, strain rate, etc.! pre-
vailing aroundt* will be the subject of further investigatio
to determine if the onset of avalanche failure can be ide
fied macroscopically. Such an identification may be difficu
but represents a critical step toward understanding reliab
and failure avoidance in real materials.

In a companion paper we perform extensive numer
simulations on the present damage problem, and compar
results of those simulations to the analytic model predicti
discussed here. The overall results show that, with a mo
cation to the stress concentration factors to match thos
the discrete model used in the simulations, one obtains q
titative agreement between theory and ‘‘experiment’’ for a
solute failure times, general nature of the failure mode,
scaling of the failure times. This detailed comparison s
ports the approximations made in the analytic model a
provides confidence that similar concepts can be applie
more complex and heterogeneous time-dependent fa
processes.
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APPENDIX: INCLUSION OF AVERAGE
CLUSTER INTERACTIONS

Since the rates of damage formation depend sensitively
the local stresses, interactions which increase the lo
stresses will, at the very least, accelerate the damage pro
Here, we discuss how to account for cluster interactions in
average, or mean-field manner. Note that as the damage
cumulates, the elastic modulusE~t! decreases@Eq. ~3!#. This
modulus decrease is a reflection of the averageincreasing
stress born by the remaining undamaged sites, even tho
the externally applied stress is fixed atsapp. To fold back this
average increasing stress into the damage accumulation
cess, one can envision that there is aneffectiveexternally
applied stresssapp

eff ~t! acting on the entire system at timet.
This effective stress, reflectingaveragecluster interactions,
is simply

sapp
eff ~t!5sappE~0!/E~t!. ~A1!

Since this effective stress is applied to all undamaged s
equally, it does not effect the distribution of damage, only
the time required to attain any prescribed level of damag
affected. Sincesapp

eff ~t!>sapp, the rate of damage accumula
tion is accelerated by including interactions. To demonstr
this formally, we rewrite Eq.~11! by replacingsapp by
sapp
eff ~t!. Defining a new time incrementdt̃ as

dt̃5Fsapp
eff ~t!

sapp
Gh

dt, ~A2!

we can rewrite Eq.~13! in terms of the new time variablet̃
as

dN~c,t̃ !

dt̃
5ac21N~c21,t̃ !2acN~c21,t̃ !, ~A3!

which is identical to Eq.~13! with t replaced byt̃. Thus the
cluster distributionN(c,t) obtained at timet without aver-
age interactions is attained at an earlier timet̃ in the pres-
ence of interactions:

N~c,t!no interactions5N~c,t̃ ! interactions ~A4!

with

t̃5E
0

t

dt8F sapp

sapp
eff ~t9!G<t. ~A5!

In terms of the examples forc shown in Fig. 4, only the
times indicated in the figures are modified by including t
average interactions.
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