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The growth of a planar crack through a heterogeneous brittle material is investigated using a discrete cubic
lattice of springs with distributed spring toughnesses and lattice Green’s functions to determine crack propa-
gation. The toughness, or stress required to grow an initial crack, is found to be a stochastic quantity and
depends on the width of the distribution. For narrow distributions, the toughness is less than the thermody-
namic value and is controlled by the nucleation of kinks at low toughness reg@i@akest linky which then
grow laterally in an unstable manner. For broad distributions, the average toughness approaches the thermo-
dynamic value, with some specific configuration having greater values, and is controlled by high toughness
regions pinning a rough crack front. The rough crack front exhibits nontrivial scaling with crack width and a
“strongest-link” behavior that differs from the usual weak-link behavior found in weakly disordered materials.
Materials with broad distributions are also less sensitive to small preexisting defects. The difference in tough-
ness between narrow and broad distributions is only about 10%; that is much smaller than suggested by similar
studies on 8@ materials and demonstrates the very important role played by geometry-dimensionality in this
problem. One implication of these results is that toughness in complex or heterogeneous materials does not
stem from simple disorder in toughnesses; more complex and microstructure-specific mechanisms such as
microcracking and grain bridging must occ{80163-1827)01218-4

I. INTRODUCTION Recent studies of the mechanics of disordered materials
have focused on either effective continuum models or dis-
Most engineered materials and advanced composites haeeete numerical models. The discrete models utilize springs
heterogeneous microstructures, and such disorder cdn a lattice; the springs are assigned various mechanical
strongly influence crack propagation and material failureproperties(stiffness, strength, thermal expansid¢a create a
Standard analyses of crack propagation and failure, are, hovdisordered microstructure, and the stress-strain response is
ever, based on concepts strictly appropriate for homogeneoten simulated numericalf/® Interesting behavior has been
materials. The most celebrated of these analyses is theund for materials with large disorder amdb preexisting
Griffith result for ideal brittle materials, which predicts defects: failure occurs by the nucleation and growth of crack-
that the unstable growth of a planar crack of lengthuder like defects, with extensive nonlinear stress-strain behavior
perpendicular uniform tension initiates at the stressprior to failure. However, the mechanical properties of real
o=K,./(mc)*? whereK,. is the material toughnessThe brittle materials are often controlled by precisely the initial
toughness is an intrinsic material property,.=(yE)Y?  cracklike defects missing in the problems studied to date.
with E the Young’'s modulus anet the surface energy of the The “ductile-like” behavior found in the highly disordered
materials. The extension of the Griffith result to a heterogematerials, which stems from extensive damage initiation and
neous material as simple as a polycrystalline ceramic witlstable growth of fairly small cracks, may not persist in the
various crystallite orientations and/or grain boundary enerpresence of large initial defects. Most previous studies have
gies is not obvious. The Griffith result assumes self-similaralso been on one- and two-dimensioi2D) systems, and
crack growth, which does not necessarily occur in disorderegleometry-dimensionality can play a crucial role in crack
materials, and the use of an average surface engrgy-  growth of heterogeneous systems. Toughness, or resistance
guires that all crack growth occur in a stable manner and sof a material to growth of a large preexisting crack, and the
represents an upper, thermodynamic, bound on the averag@fluences of geometry and dimension have rarely been stud-
toughness over extended amounts of crack growth. Experied theoretically in heterogeneous materidlsSophisticated
mentally, it is well established that the toughness of manytechniques for following planar crack growth ind3have
polycrystals, even in cubic ceramics which do not exhibitbeen developed, but only toughness in ordered composite
thermal-expansion anisotropy and “grain bridging” tough- materials has been studied to d4fEhe major issue studied
ening, is larger than in single crystalé related observation here of fracture toughness in disordered materials has not
is the “trapping” of initially sub-grain-size cracks by the been investigated previously despite its prime importance in
microstructure as the small cracks grow to sizes larger thanearly all applications of brittle materials.
the grain size of the material. While qualitative descriptions Here, we specifically investigate the toughness of disor-
of the “trapping” have invoked local variations in fracture dered three-dimensional brittle materials by explicity mea-
energy? and some work on pinning by tough inclusions hassuring, via simulation, the stress required to grow a planar
been carried out? the understanding of this phenomenon iscrack through a disordered material. We demonstrate that
incomplete. both the toughness and nature of crack growth depend on the
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extent of the disorder. For small or weak disorder, the crack
front stays essentially planar and crack growth is initiated by
the weakest regions along the crack front and is followed by
unstable lateral crack growth. The toughness is then less than
the thermodynamic average. For large or strong disorder the
crack front evolves in a stable manner, and becomes rough as
it is “pinned” by the tougher regions at the crack front. The
rough crack front is caused by advance of the crack into the =
H H H Y 111 UL
less-tough regions ahead of it, gnd t'hIS. creates additional ~<—CRACK —»
stress concentrations on the lagging pinning elements. How- Ll Ly
ever, for sufficiently large disorder, the tougher regions can e
withstand such stress concentrations, and the toughness ap- C
proaches the thermodynamic value. The strongly disordered
materials inhibit unstable crack growth, and also make the FiG. 1. Schematic of the cubic spring network in the plane of
material resistant, or insensitive, to small-scale defects. Thge crack.
differences in average toughness between weak and strong
disorder are fairly small, in contrast to the implications of the scale of the heterogeneity in the real materials as a first
previous 2D result3® Our results clearly demonstrate the attempt at understanding the material behavior.
importance of geometry and dimensionality in determining  Since real planar cracks in nominally isotropic materials
resistance to crack growth and also indicate that disordetend to remain planar and exhibit limited amounts of out-of-
alone is not sufficient to generate substantial tougheningplane deflectior{iexcept during unstable fast fracture, which
Real heterogeneous complex ceramics must be toughened Rynot considered herét is not unreasonable to neglect the
other specific mechanisms such as grain bridging and micrqgeometric disorder in favor of the toughness disorder. Hence,
cracking. here we consider planar crack growth only; slight geometric
The remainder of this paper is organized as follows. Indisorder can be partially accounted for by projecting its ef-
Sec. Il, we describe the model brittle material used here anfkcts onto the crack plane. The restriction to planar crack
the computational aspects of simulating crack growth ingrowth is also necessary because we do not have the com-
these systems. In Sec. lll, we present results for the tougtputational ability to allow the crack to wander out of the
ness as a function of the disorder and lateral crack width, anglane. However, the study of 2D planar crack growth in a 3D
discuss simple analytic models which quantitatively accountlastic medium, is a major advance over nearly all previous
for the behavior in the weak-disorder regime. Section IVstudies on 2D systems with 1D cracks.
contains further discussion, an investigation of the sensitivity The model brittle material studied here is thus a cubic
of the disordered materials to initial defects, and further gentattice of elastic springs which is infinite in the direction
eral implications of our findings. (the axis of tensile loading infinite in the x direction (the
direction of crack growthwith reflection symmetry about
x=0, and periodic in thez direction (the width L of the
Il. PLANAR CRACK GROWTH MODEL crack. The initial cubic spring lattice consists of two types
The physical problem of interest here is the growth of a0f springs connecting the various nodes, with npdes labeled
crack through a heterogeneous brittle material, which mighPY theirx,y, andz coordinated, m, andn, respectively, and
be a polycrystalline material having crystal orientation-node displacements labeled hy . Springs of tensile
dependent fracture energies, a polycrystal with varyingstiffnessE connect nodes along the axis, i.e., the force
grain-boundary energies-toughnesses which fails transgran@long they axis in the spring connected to nodes),n and
larly, or an intimate composite mixture of materials with |.M+ 1.0 is E(U; my 10— U mn). Pure shear springs of stiff-
varying interfacial energies. In each case, the heterogeneif§essu connect neighboring nodes in thez plane so that,
is in both geometry and toughness-energy, and the charactdfr instance, the force along tlyeaxis associated with nodes
istic length scale for variations in the disorder is the grainl,m,n andl+1mn is u(U+1mn—U mn). Node displace-
size of the material. To fully represent a 3D multiphase maments are confined to thedirection only for simplicity. The
terial with a complex crack shape is a daunting computageneral elastic model described above is thus recognized as
tional task, and some simplification of the microstructure isthe Rosenstock-Newell model introduced several decades
necessary. Here, we represent the heterogeneous materiala@®? Here we us€E= u, which can be modified if desired.
a discrete cubic lattice of springs. Each spring represents a TO measure toughness, an initial planar crack of length
particular grain or grain boundary in the material and can bet ¢ aroundx=0 and spanning the width is first inserted
assigned propertie$modulus, strength-toughnésslosely  into they=0 plane by setting the spring moduli to zero in
corresponding to the actual material and its heterogeneityghe firstc “rows” (strips of L springs perpendicular to the
Springs with zero modulus correspond to failed springs and axis, see Fig. JLof springs. The remaining springs in the
are thus effectively cracks or parts of a larger crack. They=0 plane are assigned strengthgsmaximum supportable
mapping of the microstructure onto such a spring model gerforceg randomly chosen from a preselected distribution
erates a well-defined discrete mechanical system with a cor(s). Tensile point forced-,,, are then applied across the
trollable “microstructure.” A finer mesh of spring elements nodes ak=0 only. For such a center loaded crack, the force
is desirable for more detail in the stress fields but becomeB at the crack tigx=c is FocFapp/cl’2 and decreases as the
much less computationally efficient, and so we discretize orcrack extends so that additional force must be applied to
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continue crack growth. Growth thus occurs in a stable mandirectly related to the force on the spring at the breaking
ner, and this loading is analogous to the double cantilevepoint. Specifically, for a number a various crack front geom-
beam and compact tension test geometries used to measutsies, we have measured the released potential er@rgy
toughness in real materials. For a given fokcg,, the local after spring breaking and find th&= 1.54f ;> wheref;, is the
forcesf; on all of the unbroken springs in the=0 plane force on the spring prior to breaking. The factor of 1.54 is
ahead of the existing crack are calculated using a latticaccurate to within+1% for a wide range of crack geom-
Green's-function techniqu¥~'?> We then focus on the etries. Hence, although we have assigned a local stresgth
springs only along the crack front, defined as any intacto each spring, this is equivalent to assigningdemension-
springs that are near neighbors of broken springs. At théess local surface energy;=1.54s to that same spring.
crack front, the local forcd; on springi represents the in- Taking fracture to occur when the local for€ereaches the
tensityK; of the square-root singularity of the stress field thatvalue s; is therefore equivalent to taking fracture to occur
would exist in a continuum of the same shape around springthen the energy release ra@ reaches the local surface
i. For springs not on the crack front, the forces do not repenergyy;. For our particular model, then, we have an ex-
resent a stress-intensity factor: there is no crack tip to proplicit relationship between a local force condition for failure
vide the underlying physical origin for the divergence. Forand an energy condition for failure. Below, we consider dis-
any spring along the crack front with>s; the local strength  tributions of spring strengths described by soRis). As

is exceeded and the spring is then “broken” by changingP(s) is changed to maintain a fixed mean valuespfthe
that E; to zero, and the crack grows. Once any new springsnean value of the surface energy does change because it is
have been broken at a given applied force, the local forcethe second moment of the strength distribution. The appro-
f; are recalculated for the new crack shape and further cradfriate averagédimensionlesstoughness for a giveR(s) is
growth is considered. If no springs hafte>s; then the crack thus the square root of the average surface energy,

exists in a stable mechanical equilibrium state. The applied

force F,pp is then increased such that exactly one more — ) v2

spring along the crack front satisfiés=s;, and that spring K= f s°P(s)ds 1)

is then broken. By this algorithm, the evolution of the crack

front shape versus applied forégp, can be monitored. This value is the “thermodynamic” fracture toughness to

The toughness is measured by the applied féigg re-  which our results must be compared.
quired to advance the planar crack forward by one spring
across the entire width of the crack. Thus, one complete
“row,” or width of initially intact material, has failed. This
measure is consistent with the conceptual picture of tough- A. Results

ness in which a strip of material well ahead of the crack is /o apply the modeling approach described above to

failed, removed from the far field, and then pasted onto th(=st d K tion th h ; ;
back of the crack, thereby advancing the crack forward bydigtriyblftri?ﬁs g{?ﬁsggrﬁn fough materials with toughness

the width of the strip. In disordered materials, the diffuse
crack front varies as the crack grows forward but stays

Ill. TOUGHNESS VERSUS DISORDER

roughly constant in length, so that the damage zone ahead of P(s)= i 1_V_V<S<1+ V_V

the crack is a “near-tip process zone” that does not interfere W 2 2 )
with the conceptual cutting and pasting picture of advancing

the crack. To compare various disordered systems, we nor- =0 otherwise,

malize the forceF,,, required to extend the crack by the
corresponding vaIuEgppneeded in the homogeneous systemsuch that the distribution width i%V(0<W<2) and the
(all local strengthss;=1). mean strength is always unity. This is the same distribution
The alert reader will recognize that the crack growth, orused by Khanget al. to study the fracture of 2D square lat-
spring breaking, criterion used here is a stress-force criterioriices in the absence of any initial defetishanget al.found
That is, local failure occurs when a spring force reacheghat for smallW the material failed by unstable growth of a
some preassigned critical value. Fracture should be detesmall nucleated crack whereas f&f=2 the material could
mined as the point at which the elastic energy that is releaseslistain a finite fraction of damage prior to failuvé=2 was
when the spring breaks equals the surface engrggquired  then coined “ductile-like” and “tough” in the sense that the
to break the spring. This is the fundamental thermodynamievork of fracture(area under the stress-strain cyrweas en-
concept of fracture introduced by Griffith. Only years laterhanced, although actual fracture toughness was not consid-
was it shown that this fracture condition corresponds preered. Here, we consider the 3D case of the model studied by
cisely to one based on a critical stress intensity faétpr  Khanget al.in the presence of the large initial crack, and can
=(yE)'? so that stress intensity can be used as a fracturthus assess whether or not materials with broadly distributed
criterion in homogeneous systems. Stress-based criteria adesorder W=2) have enhanced fracture toughness. Since
rarely used in theoretical mechanics and should be avoidedlamage out of the crack plane is prohibited, however, our
although to date such a criterion has been used almost excltesults are not a precise generalization of the Khanhgl.
sively in spring network models of fracture with @opriori results to 3D. To properly assess toughening, we must com-
justification>® In the present discrete elastic system, how-pare the measured failure forces to tdénensionlessther-
ever, the “strain energy release rat&', or decrease of elas- modynamic toughness of E¢l) which, for the distributions
tic energy upon failure of a spring, turns out to be essentiallygiven by Eq.(2), is
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FIG. 2. Probability of failure vs normalized
strength for various values of disorder variable
W and crack width. (—, L =20; ----, L =40; ----,
L=100; -, L=200. Note: the data for
W=0.25 have been shiftedown by —0.05 for
clarity.

Cumulative Probability

08 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

(3)  tween weak disorder and strong disorder is about 25%.
Figure 3 shows the average strength results of Fig. 2 but

now normalized by the thermodynamic toughngss. (3)].

The weakly disordered materials still exhibit toughnesses be-

low the thermodynamic toughness, while the strongly disor-

sults do not depend om (identical results withc=8 and 40 dered materials W=2.0) show average toughnesses ap-
have been obtaingdEach increment of crack growth is a . ; . . 9 ug P
roaching, with increasing crack widthL, the

single measure of the toughness that depends on the predt%weermod namic value. Some confiaurations We=2.0 ex-
configuration of local toughnesses. So, many increments ibit touy hnesses eiceedin thegthermod nami.c average
crack growth must be studied and a statistical distribution o 9 9 Y 9

toughnesses must be considered. This is an unappreciatgalye’ Whi(.:h i_s physical_ly allowed when clusters of tougher
point: in a heterogeneous material the toughness itself is permgi?f;)gﬁéén i:]etéﬁgfﬁeggeggtxgg;\e \?V?;II: ' é\::grztgflzisd’
statistical quantity and not a “material property” as in a 9

i . 0 o )
homogeneous material. Results for the normalized force tgtrong disorder is only about 10%. This is a main result of

: . . our work.
grow the crack in various heterogeneous materials are shown

P : T Figure 4a) shows the crack growth process for
in Fig. 2 as a cumulative probability distribution, for values ,, . . L
of W=0.25, 0.5, 1.0, and 2.0, and for sample widthsLof W=0.25. Growth occurs by single-kink formation just ahead

—20, 40, 100, and, foW=2.0 only, 200. Evidently, the of the crack at the very weakest heterogeneity followed by

. . unstable lateral crack growth. The unstable lateral crack
strength of weakly heterogeneous material¥<(0.5) is oo .
: rowth indicates that the thermodynamic average toughness
rather lower than the average strength, and is very narrowl

distributed around 0.88. In contrast, the strength for the mosftrIII not be attained. Figure(®) shows a portion of the crack

heterogeneous materidM=2.0) is greater than the average ont for W= 2 just after the crack advance: the crack front is

and more broadly distributed around 1.10, with some conEjncfuse and rough, and at some points extends 4 or 5 ele-

ments ahead of the initial crack line but is pinned at a few

W2)1/2 figurations as strong as 1.20. The difference in strength be-

We start with an initial crack size af=15 (15 rows of
initially broken springg which is large enough that the re-

100 ————7+——— 7T (b)
? « L=2001
D r 4
] L=100
095 | * —
BT L=40 |
& o L=20 |
k-1
S
= A _
g 0.90 . B
z ? 8
N
| H
P R T T U S NN SN ST ST S SO TN S TR S S WU S WY
085 0.0 0.5 1.0 15 20 2.5
Disorder width W

FIG. 4. Schematic of the crack advance sequence in two cases:
(a) weak disordefW=0.25 in which kink nucleation leads to un-

FIG. 3. Average normalized toughness vs disorder wilftfor stable lateral crack growtlih) strong disordefW=2.0) where the
various crack widthg.. crack front is diffuse and pinned by a few strong heterogeneities.
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key points by tough heterogeneities. The crack grows very TABLE I. Predicted maximum ledge length,,, and associated
stably by a failure of one, or just a few, springs at a time.failure strengttt as a function of disorder widt/ and crack width
Such stable crack growth drives the toughness toward the. Also shown is the minimum forcE; needed to grow a crack
thermodynamic average. It should also be noted that in onl{ast the toughest heterogeneity encountered along the crack front;
two particular realizations was complete failure of row 16When F<Fc;, crack extension further ahead of the crack must
(just ahead of the initial crack at row JL&ctually preceded ©ccur prior to full crack advance.

by complete failure in row 17; thus the pinning sites are

essentially never disconnected from the crack front and no W L Cmax F Feri
“bridges” are formed. The extent of damage growth ahead 4 40 15 0.84 0.77
of the crack, as measured by the number of broken springs 100 1.6 0.83
N, just after crack advance divided by the crack witthis 05 40 20 0.85 0.80
precisely zero foMWW=0.25 but forW=2.0 depends explic- 100 23 0.83
ity on the sample widti_ as, roughly,N,/L«0.59.%2 for 0.75 40 57 0.90 0.88
20<L<200. This indicates that there is no intrinsic lateral ' 100 3_'5 0..88 '
scale for the fluctuation in the crack front, at least up_to 1.00 40 32 0.97 0.96
=200. The details of this apparent “roughening transition” 100 4'2 0'94 '
with increasing disorder will be studied further in a future 150 40 3'5 1'11 112
publication. Accompanying the transition from a flat to a ' 100 5'1 1'09 '
rough crack interface is aarrowing of the distribution of ' '
toughnesses with increasing system gigee Fig. 2 which 2.00 40 3.7 1.27 1.28
occurs by elimination of the low-strength tail of the distribu- 100 56 124
tion. 200 6.9 1.22

B. Analytic analysis —(1-WI2)]/W of sites along the crack front that are weaker

Here, we rationalize some of the results found in thethanF' The number of ledges of lengthalong the width

simulations presented above through simple analytic consicJT s then

erations similar to those used by Khaaga!. in their 2D N(c)=L(1-p)?p°. (5)
study. We analyze the probabilities of failure around the ) ] o

likely largest cluster of breaks just ahead of the main crackl N€ largest ledgens, in the widthL satisfies

expected at any applied force. The analysis is quantitatively N(Crra) =1 6)
accurate for weak disorder where the damage prior to failure m
is limited. and the two neighboring lateral springs then have stress con-

The brittle behavior at smalW (and observed for centrations of at Ieasf;cmax. The weaker of the two neigh-

W=0.25) can be understood quite well because it is conporing springs, taking into account that these surviving sites
trolled by a simple defect configuration. For a sufficiently must be stronger thal, has a typical strength of

wide crack(largel ), the weakest heterogeneity in the row in

front of the crack has a streng#t+ 1—W/2 and so fails at a s=F+[(1+W/2)—F]/3. W)

normallged Iopal(crr?lck tip force F:.l_W/Z' The two lat- The weaker neighbor will then fail, on average, when
eral neighboring sites then experience an increased force

(1+ n,)F, where 71 is a stress concentration factory( s=F(1+ 7 )>F+[(1+W/2)-F]/3. (8
=0.11 for the cubic lattice withe/u=1.0). The weaker of ma

the two neighbors has a typical strength ofW/6 and If this failure event ispresumedo lead to unstable lateral
hence fails immediately if (£W/2)(1+ 5,)>(1—W/6). growth, then the measured strength is the minimum value of
Failure of this second spring along the crack front then genF that satisfies these conditions. Solving E@8—(8), using
erally precipitates unstable continued growth of the initialthe stress concentration factorg~0.25—-0.14/c%’ mea-
“kink” into a “ledge,” followed by complete failure along sured for this lattice andE/w value, yields predicted
the width. Rearranging the above inequality, we find that astrengthd= versusW andL as shown in Table I. The results
perfectly brittle regime of failure is expected for agree well with the simulations at smalléf, and are con-
sistent with the trend thd increases with increasingy for
W>0.5. There is also a predicted slow decrease in strength

W<37,/(1+1.57,)=0.285 ) with increasing width., which cannot be clearly observed in
the simulations.
and the measured strengthks=1—W/2. This result is in The above argument is an underestimate of the failure
excellent agreement with the observed brittle behavidat stress if damage is confined to the row of springs immedi-
=0.25. ately ahead of the crack front because the ledge stress con-

For values ofW above the perfectly brittle limit, the very centration 7. approaches a maximum value, rather than
first break along the crack front does not cause immediatgrowing unbounded. Hence the presumed instability will not
failure. Some finite damage occurs prior to the lateral instaalways lead to complete failure across the entire width. In
bility. To understand the strength versWéin this regime, the extreme case, consider the impingement of two long
consider applying a forc& and failing the fractionp=[F  ledges with a lone site remaining in between. That site ex-
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periences a stress concentrationszef0.557 and hence will in any disordered materialsee Fig. 3. However, any real
definitely fail, completing the advance of the crack, only if material will have initial distributed cracklike defects. Even
F(1+0.557)<1+WI/2. If the F estimated from the analysis in an otherwise homogeneous materli<0), these defects
of Egs. (5)—(8) above is less than this value &%=(1  will provide the “kinks” along the crack front necessary to
+W/2)/1.557 then the unstable fallure assumption use@yrive brittlelike failure at reduced stresses, roughly- (1
above cannot hol_d. The'value Bt is also shown in Table +7,)"1=0.90 in the present model. We thus expect re-
l, and a comparison with the strength estimate from EqSqyced toughnesses for all weakly heterogeneous materials
(5)—(8) shows that the “imperfect” brittle regime persists up (W=<0.5). Conversely, the highly disordered material is
to aboutwW=1.0. _ _ much less sensitive to such defects: the tougher heterogene-
For W=1.0, failure simply cannot occur without Some jties can efficiently pin many various configurations of the
evolution of the crack beyond the first row of springs prior to ¢rack front. To explicitly demonstrate the differing sensitivi-
failure. Such further advance of the crack generates ingeg to defects, we have studied crack growth in materials

creased stress concentrations along the lagging crack frofjith a small 2.5% volume fraction of initial randomly dis-
and tends to drive failure. However, the increased stress CoRipyted breakgcracks” or “porosity” ). For the homoge-

centrations associated with advance of the crack are not, apgoys materiaW=0, the average toughness is measured
parently, sufficient to significantly reduce the strength belowy pe 0.905 as compared to the thermodynamic toughness

the simple predicted value. One reason for this is that th“f‘<_=0.975 which arises because a fraction 0.025 of sites have
diffuse growth of the crack redistributes stress predominantl;&ero strer;gth So for smally, toughness is controlled by the

aheadof the advancing crackthis is the reason that the Spreexis:ting defects which form ready-made kinks at the
stress concentration factor at the edge of a ledge reache cfhck front and precipitate failure below the average tough-

Ilr?:estrrgixmaysg dérqfea“'tragv'es z;rsgl;(;rl}gntsfogttr;e k_)e:rz]i\gor I”é ess. FoW=2.0, the measured average normalized tough-
g a gime WS. giv PPl ass is 0.98, which is essentially identical to the average

:_:,hthe spemﬂcrijlztrlbuftlon Oli S%”ng strer;]gtﬁdﬁs)feﬂs]tab- i ormalized thermodynamic toughness of 0.975, so that the
IS eks ar:j an;p I Ie 0 (Trz:_c ? vatr;]cel a ef;] 0 'dthe Ifntlhl oughness remains only slightly below the average thermo-
crack and a typical correlation length along the width o edynamic toughness. Hence, there is roughly a 25% strength

crack(e.g., a sine wave fTO”t with am.plitudbc anq lateral itterence and 10% toughness difference between all weakly
wavelength)). The amplitude establishes a typical stress(W<O 5) and strongly W~2) disordered materials

concentration factor at the lagging, or pinning, sites. The In light of the present results showing small toughness

pinning sites are, by definition, strong enough to WithStan.ddifferences between weak and strong disorder, the role of

this stress concentration and the crack is stable. Increas'%mplexity in enhancing toughness in ceramic microstruc-
the applied stress further allows the crack to break throug res must go beyond purely modest heterogeneity effects.

thewea_kerpinning sites, thereby increasing th? Wavel_ength Mechanisms such as grain bridging or controlled micro-
correlation length along the crack front but not increasing th%racking are necessary to provide enhanced toughness. Grain

amplitude appfec'ab'.V- This advance _only wgal_dy 'n.creaseﬁridging occurs in polycrystals when some grains do not fail
the stress concentrations on the remaining pinning sites. Thg

remaining pinning sites generally remain intact, and thus fur- S the crack passes completely around theifhe bridging

t ied load red to ind further depinni g?rains remain in the wake of the crack front and exert closure
erappiied loads are required 1o induce further depinning, o5 on the crack faces that counteract the applied forces
and crack advance.

o . and lead to enhanced macroscopic toughness. Crack bridgin
The consequences of the above qualitative picture are se ’ g ging

| Bei trolled by the st S i . ¥an be viewed, within the context of the present model, as a
eral. being controlied by the stronger pinning Sites, a wi erparticular case of a disordered material in which most of the
crack (larger L) allows for more strong pinning sites and

corespondingly possibly larger toughness. Mareover, rains have the average toughness while the bridging grains

: 4 i ; ave a much larger effective toughnéeffective because of
wider crack, viewed as a series of narrower subsections, do?ﬁe role played by interface debonding, for examplEhe

not com.pletely qdvance .due to failure of one or a few V‘.’eaharger toughness is sufficiently large that the crack front by-
subsections—it is still pinned by the stronger _subsectlon asses the bridging grains and leaves them intact for some
The c_rack advgnce thus follows a strongest-llnk l:)eh"’“”odistance behind the crack front. Toughening by this “very
wherein grovythuls controlle_d by the strong™ sections alo_ng strong disorder” mechanism is significant, both in real poly-
the front. This “strongest-link” behavior is consistent with rystalline materiaf$ and in models using the same discrete

tr;]gﬁobslgrxgtlon that dthgt;oyghness dlst_glz#tga n I’lllal‘I.'OV\{[.S an@Iastic representation of the microstructure employed Here.
Sflths slg ky ulpwar tv'\;l fltrrl]cr%astlr_\g \t’Y' y e_|c;n|na |gn The toughening studied here, where the local toughnesses
ot the weaker lower tail of the distribution, as evidenced in ary over a limited range and no bridging phenomenon

Fig. 2. Itis also consistent with the observation that the tota rises, may be operating in grain-bridged material but its

damageN, /L prior to failure has a nontrivial and increasing effects may be masked by the larger toughening imparted by

scaling WiFh the crack Wigth' Thﬁsi.e k“sétr.ongestr;link” fea- the grain bridging. However, disorder can also play a key
tures are in contrast to the weak-link-driven phenomenony, e 5in the formation and efficacy of such bridges. This is

and decreasing damage with increasing volume, usually ol; ost clearly evident in fiber-reinforced ceramics where fiber

served in weakly disordered brittle systems. breaks occur out of the plane of the crack, driven by the
stochastic distribution of fiber strengths, and create fiber
“bridges” which resist further crack growth. We have re-

For a perfect homogeneous materil£0) we of course cently modeled toughening in such fiber-reinforced materials
do obtain the thermodynamic toughness, which is larger thansing similar Green’s-function modet$™ As the distribu-

IV. DISCUSSION



11 276 W. A. CURTIN 55

tion in fiber strengths becomes broader, the fiber bridgingial heterogeneity affects material toughness in nonintuitive
stresses become larger because fiber breaks occur furtheays. First, toughness is not a pure material parameter and is
from the crack plane. Furthermore, these bridging stresses statistical quantity. Second, two regimes of behavior exist:
are the only source of enhanced toughening and hence higheeak disorder having toughness below the average thermo-
toughness is associated with greater spread in the fibetynamic value and having planar crack fronts; and strong
strength distributiort® In keeping with the results here, the disorder with toughness approaching the thermodynamic
distribution of fiber strengths in the actual crack plane doewalue and a rough crack front. Third, planar cracks in three
not contribute to the toughening of the material to any ap-dimensions evolve in a unique manner and cannot be studied
preciable extent. These results also indicate that inclusion adpproximately by linear cracks in two dimensions. Fourth,
crack growth or damage out of plane can make contributionand most important, the magnitude of the toughness differ-
to toughening in systems with elongated microstructures. ence is not large, so that heterogeneous or distributed tough-
The present work does demonstrate the general impomnesses do not provide an effective toughening mechanism.
tance of geometry and dimensionality in modeling crackFuture work using the present model will be aimed(iat
growth problems. In a 2D system with a 1D crack, a toughmesh refinement in which more detailed microstructure is
heterogeneity completely impedes crack growth. The measverlayed onto the spring networkij) specific studies of
sured toughness follows precisely the high-toughness regiopolycrystalline metal and intermetallic fracture, for which
of the toughness distribution and leads to a prediction ofealistic grain-boundary distributions and toughnesses are
toughness much higher than the average. In a 3D systemow being established, andii) investigation of time-
with a planar crack, the crack can grow around individualdependent degradation of disordered materials, where the
tough elements and ultimately overcome the high toughsensitivity of damageates to local stress intensities may
nesses by a correspondingly high stress concentration factbave large effects on the magnitudes and distributions of
but at lower macroscopic applied loads. The measuretifetimes of heterogeneous materials.
toughness is much lower than in 2D, barely attaining the
thermodynamic average, although we find that the tougher
regions do pin the crack and control crack growth to some
extent. Our results show that misleading and perhaps overly The author thanks the National Science Foundation, Divi-
optimistic results can be obtained by studying problems irsion of Materials ReseardiMaterials Theoryfor support of
lower dimensions. this work under Grant No. DMR-9420831, and Dr. Robb
In summary, we have explicitly demonstrated that mate-Thomson and Professor Z. Suo for illuminating discussions.
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