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Abstract. By using the canonical dual transformation developed recently,

we derive a pair of canonical dual problems for 0-1 quadratic programming
problems in both minimization and maximization form. Regardless convexity,
when the canonical duals are solvable, no duality gap exists between the primal
and corresponding dual problems. Both global and local optimality conditions
are given. An algorithm is presented for finding global minimizers, even when
the primal objective function is not convex. Examples are included to illustrate
this new approach.

1. Introduction. In this paper, we consider a simple 0-1 quadratic programming
problem in the following form:

(P) : min / max

{

P (x) =
1

2
xT Qx− fT x | x ∈ Xa

}

, (1)

where x and f are real n-vectors, Q ∈ R
n×n is a symmetrical matrix of order n and

Xa = {x ∈ R
n | 0 ≤ xi ≤ 1, i = 1, 2, ..., n} ∩ In. (2)

with In = {x ∈ R
n| xi is an integer, i = 1, 2, ..., n}. Since the Q matrix in

the objective function P (x) can be indefinite, we use the notation “min/max” to
indicate that we are interested in finding both minimizers and maximizers.
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Integer programming and quadratic programming problems appear naturally in
system science and engineering with wide applications [16, 1]. Our primal problem is
a very simple version. Nevertheless, it still possesses the main difficulties in integer
programming problems, namely, the 0-1 integer requirement results in combinatorial
complexity and the nonconvexity of the object function complicates the finding of
a global solution (see [12, 13]). Classical dual approaches [14, 15] may suffer from
having potential duality gaps.

The goal of this paper is to explore the potential of using the recently developed
canonical duality theory [2] to characterize the solutions of our primal problem and
design a solution procedure for finding global optimizers. The canonical duality
theory was originally developed for handling general nonconvex and/or nonsmooth
systems. It is composed mainly of a canonical dual transformation and an associated
triality theory. The canonical dual transformation may convert some nonconvex
and/or nonsmooth primal problems into smooth canonical dual problems without
generating any duality gap, while the triality theory provides hints to identify both
global and local extremum solutions. The canonical duality theory has shown its
potential for global optimization and nonconvex nonsmooth analysis [3, 4, 6, 7].
Comprehensive reviews of the canonical duality theory and its applications for finite
and infinite dimensional systems can be found in [5, 10].

The rest of this paper is arranged as follows. In Section 2, we show that the
canonical dual transformation can lead our nonconvex 0-1 programming problem to
a pair of dual problems in the continuous space with zero duality gap. Then a set of
KKT solutions to the primal problem are obtained. The extremality conditions of
these KKT solutions are explicitly specified in Section 3 using the associated triality
theory. Some examples are given in Section 4 to illustrate this new approach.
Finally, we present an algorithm for finding a global solution to large scale 0-1
quadratic programming problems in Section 5. Some concluding remarks are made
in the last section.

2. Canonical dual approach. For easy manipulation, we first consider the min-
imization problem and rewrite our primal problem (P) as

(Pmin) : min

{

P (x) = W (x) +
1

2
xT Qx− fT x | x ∈ In

}

, (3)

where W (x) is an indicator of the box constraints 0 ≤ xi ≤ 1, i = 1, 2, ..., n,
defined by

W (x) =

{

0 if 0 ≤ xi ≤ 1, i = 1, 2, ..., n,
+∞ otherwise.

(4)

By the standard canonical dual transformation (see [2, 4, 7]), we introduce a non-
linear transformation (i.e. the so-called geometrical mapping) y = Λ(x) ∈ R

n with
yi = xi(xi − 1) and let

V (y) =

{

0 if y ≤ 0 ∈ R
n,

+∞ otherwise.
(5)

Clearly, we have W (x) = V (Λ(x)). Thus, the primal problem (P) can be written
in the following canonical form [4, 7]:

(Pmin) : min

{

P (x) = V (Λ(x)) +
1

2
xT Qx− fT x | x ∈ In

}

. (6)
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According to the Fenchel transformation, the sup-conjugate V ♯ of the function
V (y) is defined by

V ♯(σ) = sup
y∈Rn

{yT
σ − V (y)} =

{

0 if σ ≥ 0 ∈ R
n,

+∞ otherwise.

Since V (y) is a proper closed convex function over R
n
− := {y ∈ R

n| y ≤ 0}, we
know that

σ ∈ ∂V (y) ⇔ y ∈ ∂V ♯(σ) ⇔ V (y) + V ♯(σ) = yT
σ. (7)

The pair of (y, σ) is called a generalized canonical dual pair on R
n
− × R

n
+ as

defined in [2, 3]. By the definition of sub-differential, it is easy to verify that the
canonical duality relations of (7) are equivalent to

y ≤ 0, σ ≥ 0, yT
σ = 0.

In particular, if σ > 0 then the complementarity condition yT
σ = 0 leads to

y = 0, and consequently x ∈ Xa. Thus, for our 0-1 integer program, the dual
feasible space is an open convex cone

S♯ = {σ ∈ R
n | σ > 0}.

Following the idea of [11], we let X = R
n and replace V (Λ(x)) in equation (6) by

the Fenchel-Young equality V (Λ(x)) = Λ(x)T
σ − V ♯(σ). Then the so-called total

complementary function Ξ(x, σ) : X × S♯ → R associated with the problem (Pmin)
can be defined as below

Ξ(x, σ) = Λ(x)T
σ − V ♯(σ) +

1

2
xT Qx − fTx.

By the definition of Λ(x) and V ♯(σ), we have

Ξ(x, σ) =
1

2
xT Qd(σ)x − xT (f + σ), (8)

where

Qd(σ) = Q + 2Diag (σ)

and Diag (σ) ∈ R
n×n ia a diagonal matrix with σi, i = 1, 2, ..., n, being its diagonal

elements. Thus, for any given σ ∈ S♯, the canonical dual function P d(σ) can be
defined by Ξ(x̄, σ) with x̄ being a stationary point of Ξ(x, σ) with respect to x ∈ X .
Notice that the total complementary function Ξ(x, σ) is a quadratic function of
x ∈ X and for any given σ ∈ R

n such that detQd(σ) 6= 0, Ξ(x, σ) has a unique
stationary (critical) point x = [Qd(σ)]−1(f + σ). Thus, on the dual feasible space
Sa

♯ ⊂ S♯ defined as

Sa
♯ := {σ ∈ R

n | σ > 0, detQd(σ) 6= 0},

the stationary solution of Ξ(x, σ) over x ∈ X happens at x = [Qd(σ)]−1(f + σ)
with a value of

P d(σ) = −
1

2
(f + σ)T Q−1

d (σ)(f + σ). (9)

Now, we use the notation

sta{h(x) | x ∈ X},
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to represent the task of finding stationary points of a given function h(x) with
respect to x ∈ X . The canonical dual problem for our primal problem (Pmin) can
be proposed as follows:

(Pd
♯ ) : sta

{

P d(σ) = −
1

2
(f + σ)T [Qd(σ)]−1(f + σ) | σ ∈ Sa

♯

}

. (10)

The following theorem characterizes a key primal-dual relationship:

Theorem 1. The canonical dual problem (Pd
♯ ) is perfectly dual to the primal prob-

lem (Pmin) in the sense that if σ̄ is a critical point of P d(σ) and σ̄ > 0, then the
vector

x̄ = [Qd(σ̄)]−1(f + σ̄) (11)

is a KKT point of (Pmin) and

P (x̄) = P d(σ̄). (12)

Proof. By introducing the Lagrange multiplier vector γ ∈ R
n to relax the inequality

constraint σ > 0 in Sa
♯ , the Lagrangean function associated with the total comple-

mentary function Ξ(x, σ) defined by (8) becomes

L(x, σ; γ) = Ξ(x, σ) + γ
T
σ.

Then the KKT conditions of the primal problem (P) become

∂L

∂x
= Qd(σ̄)x̄ − (f + σ̄) = 0, (13)

∂L

∂σ
= x̄ ◦ [x̄ − e] + γ = 0, (14)

γ ≤ 0, σ̄ > 0, γ
T
σ̄ = 0, (15)

where e is an n-vector of all ones and the notation s ◦ t := (s1t1, s2t2, . . . , sntn)
denotes the Madamard product for any two vectors s, t ∈ R

n. The first condition
leads to x̄ = [Qd(σ̄)]−1(f + σ̄). The complementary condition γ

T
σ̄ = 0 in (15)

shows that if σ̄ > 0, then the Lagrange multiplier γ = 0. Consequently, the second
condition leads to the integer requirement

x̄ ◦ (x̄ − e) = 0. (16)

Replacing x̄ by [Qd(σ̄)]−1(f + σ̄) in (16) we have

[Qd(σ̄)]−1(f + σ̄) ◦
(

[Qd(σ̄)]−1(f + σ̄) − e
)

= 0,

which is exactly the critical point condition of ∇P d(σ̄) = 0. This proved that if
σ̄ > 0 is a critical point of P d(σ), the vector x̄(σ̄) defined by (11) is a KKT point
of the primal problem (Pmin).

Moreover, the equation (16) implies ȳ = Λ(x̄) = 0. This leads to V (ȳ) = 0 by
(5). Since σ̄ > 0, we also have V ♯(σ̄) = 0. Therefore,

Ξ(x̄, σ̄) = Λ(x̄)T
σ̄ − V ♯(σ̄) +

1

2
x̄T Qx̄− x̄T f

=
1

2
x̄T Qx̄ − x̄T f = P (x̄).
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On the other hand,

Ξ(x̄, σ̄) =
1

2
x̄T Qd(σ̄)x̄ − x̄T (f + σ̄)

=
1

2
x̄T (f + σ̄) − x̄T (f + σ̄)

= −
1

2
x̄T (f + σ̄) = P d(σ̄).

This completes the proof.

�

Now let us consider the maximization of the problem (P) by letting

(Pmax) : max

{

P (x) = −W (x) +
1

2
xT Qx − fTx | x ∈ In

}

, (17)

In this case, we take the canonical function (5) in the form of

V (y) =

{

0 if y ≤ 0,
−∞ otherwise,

(18)

then it is a proper closed concave function with the following Fenchel inf-conjugate

V ♭(σ) = inf
y∈Rn

{yT
σ − V (y)} =

{

0 if σ ≤ 0,
−∞ otherwise.

Dual to S♯, we let
S♭ = {σ ∈ R

n | σ < 0}.

Then the corresponding generalized complementary function Ξ(x, σ) : X ×S♭ → R

can be written as

Ξ(x, σ) = Λ(x)T
σ − V ♭(σ) +

1

2
xT Qx − fTx,

=
1

2
xT Qd(σ)x − xT (f + σ). (19)

Parallel to what we did before, we can define another canonical dual problem for
the primal problem (P) as follows:

(Pd
♭ ) : sta

{

P d(σ) = −
1

2
(f + σ)T [Qd(σ)]−1(f + σ) | σ ∈ Sa

♭

}

, (20)

where

Sa
♭ := {σ ∈ R

n | σ < 0, detQd(σ) 6= 0}.

Moreover, the following result follows:

Theorem 2. The canonical dual problem (Pd
♭ ) is perfectly dual to the primal prob-

lem (Pmax) in the sense that if σ̄ is a critical point of P d(σ) and σ̄ < 0, then the
vector x̄(σ̄) = [Qd(σ̄)]−1(f + σ̄) is a KKT point of (Pmax) and

P (x̄) = P d(σ̄). (21)

The proof of this theorem parallels to the proof of the theorem 1.

Observation 1. Theorems 1 and 2 show that by using the canonical dual trans-
formation, the discrete integer problems (Pmin) and (Pmax) can be converted re-
spectively into continuous dual problems (Pd

♯ ) and (Pd
♭ ), a critical point solution

of ∇P d(σ̄) = 0 with either σ̄ > 0 or σ̄ < 0 provides a KKT point of x̄(σ̄) as
defined by (11) for the 0-1 quadratic programming problem (P). The inequality of
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detQd(σ) 6= 0 in the dual feasible spaces Sa
♯ and Sa

♭ is essentially not a constraint

as indicated in [7]. Actually, the singularity detQd(σ) = 0 plays an important role
in nonconvex analysis [8].

However, the KKT conditions are only necessary conditions for local minimizers
to satisfy for nonconvex programming problems. To identify a global minimizer
among all KKT points x̄(σ̄) remains a key task for us to address in the next section.

3. Global and local optimality conditions. In order to study the extremality
conditions for both local and global optimal solutions, by combining the properties
associated with the pair of the canonical dual problems, we introduce the following
four sets for consideration:

S+
♯ = {σ ∈ R

n| σ > 0, Qd(σ) is positive definite}, (22)

S−
♯ = {σ ∈ R

n| σ > 0, Qd(σ) is negative definite}, (23)

S−
♭

= {σ ∈ R
n| σ < 0, Qd(σ) is negative definite}, (24)

S+
♭

= {σ ∈ R
n| σ < 0, Qd(σ) is positive definite}. (25)

Then we have the following result on the global and local optimality conditions:

Theorem 3. Let Q be a symmetrix matrix and f ∈ R
n. Assume that σ̄ is critical

point of P d(σ) and x̄ = [Qd(σ̄)]−1(f + σ̄).
(a) If σ̄ ∈ S+

♯ , then x̄ is a global minimizer of P (x) over Xa and σ̄ is a global

maximizer of P d(σ) over S+
♯ with

P (x̄) = min
x∈Xa

P (x) = max
σ∈S

+

♯

P d(σ) = P d(σ̄). (26)

(b) If σ̄ ∈ S−
♯ , then x̄ is a local minimizer of P (x) over Xa if and only if σ̄ is

a local minimizer of P d(σ) over S−
♯ , i.e., in a neighborhood Xo × So ⊂ Xa × S−

♯ of

(x̄, σ̄),

P (x̄) = min
x∈Xo

P (x) = min
σ∈So

P d(σ) = P d(σ̄). (27)

(c) If σ̄ ∈ S−
♭

, then x̄ is a global maximizer of P (x) over Xa and σ̄ is a global

minimizer of P d(σ) over S−
♭ with

P (x̄) = max
x∈Xa

P (x) = min
σ∈S

−

♭

P d(σ) = P d(σ̄). (28)

(d) If σ̄ ∈ S+
♭ , then x̄ is a local maximizer of P (x) over Xa if and only if σ̄ is

a local maximizer of P d(σ) over S+
♭ , i.e., in a neighborhood Xo × So ⊂ Xa × S+

♭ of
(x̄, σ̄),

P (x̄) = max
x∈Xo

P (x) = max
σ∈So

P d(σ) = P d(σ̄). (29)

Proof. (a) Notice that the canonical dual function P d(σ) is concave on S+
♯ . For a

critical point σ̄ ∈ S+
♯ , it must be a global maximizer of P d(σ) on S+

♯ . By the fact

that for any given σ ∈ S+
♯ , the complementary function Ξ(x, σ) is convex in x and
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concave in σ, the critical point (x̄, σ̄) ∈ Xa × S+
♯ is a saddle point of Ξ with

P d(σ̄) = max
σ∈S

+

♯

P d(σ)

= max
σ∈S

+

♯

min
x∈Rn

Ξ(x, σ) = min
x∈Rn

max
σ∈S

+

♯

Ξ(x, σ)

= min
x∈Rn

{

1

2
xT Qx − fTx + max

σ∈S
+

♯

{

n
∑

i=1

(x2
i − xi)σi

}}

= min
x∈Xa

P (x).

The last equation in the above expression is obtained because the following result
of linear programming

max
σ∈S

+

♯

{

n
∑

i=1

(x2
i − xi)σi

}

=

{

0 if x ∈ Xa,
∞ otherwise.

leads to the canonical function V (Λ(x)), which has a finite value in the open domain
S+

♯ if and only if x ∈ Xa. Then Theorem 1 assures (26).

(b) For σ̄ ∈ S−
♯ , the matrix Qd(σ̄) = Q + 2 Diag (σ̄) is negative definite. In

this case, the total complementary function Ξ(x, σ) is a so-called super-critical
function (see [2]). It is locally concave in both x ∈ R

n and σ ∈ S−
♯ . By the super-

Lagrangian duality developed in [2, 6], if (x̄, σ̄) is a critical point of Ξ(x, σ), then in
a neighborhood Xo×So ⊂ R

n×S−
♯ of (x̄, σ̄) the following super-Lagrangian duality

relation holds:

min
x∈Xo

max
σ∈So

Ξ(x, σ) = min
σ∈So

max
x∈Xo

Ξ(x, σ). (30)

Since for each σ ∈ So ⊂ S−
♯ , the total complementary function Ξ(x, σ) is locally

concave in x ∈ Xo, we have

max
x∈Xo

Ξ(x, σ) = P d(σ), ∀σ ∈ So ⊂ S−
♯ .

On the other hand, if Xo is a subset of Xa, then

max
σ∈So

Ξ(x, σ) = P (x), ∀x ∈ Xo ⊂ Xa.

Thus, the equality (30) leads to (27).
The proof of statements (c) and (d) are parallel to that of (a) and (b), respec-

tively, using Theorem 2. �

Several observations can be made here:

Observation 2. When the integer constraints in Xa is relaxed, the problem (P) be-
comes the following quadratic minimization problem with box constraints as studied
in [7]:

(Pbox) : min / max

{

P (x) =
1

2
xT Qx − xT f | 0 ≤ x ≤ 1

}

. (31)

Its canonical dual problem is

(Pd
box) : sta

{

P d(σ) | σ ∈ R
n, detQd(σ) 6= 0

}

. (32)

The following result follows immediately:
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Corollary 1. If σ̄ is a critical point of the problem (Pd
box), then the vector

x̄ = [Qd(σ̄)]−1(f + σ̄) (33)

is a KKT point of (Pbox) and

P (x̄) = P d(σ̄). (34)

Moreover, if σ̄ ≥ 0 and Qd(σ̄) is positive definite, then x̄ is a global minimizer
of the problem (Pbox); if σ̄ ≤ 0 and Qd(σ̄) is negative definite, then x̄ is a global
maximizer of the problem (Pbox).

Observation 3. Theorem 3 says that when the matrix Qd(σ) = Q + 2Diag (σ)
is positive-definite, the canonical dual problem in equation (26) is a concave maxi-
mization problem over a convex open domain S+

♯ . In general, for any given f ∈ R
n,

if the matrix Q is “principal diagonal dominated” such that, for any given σ ∈ S+
♯ ,

the vector f +σ falls in the column space of Q+2Diag (σ), then the canonical dual
problem could have a unique global maximizer σ̄ ∈ S+

♯ . This leads to a global min-
imizer of the primal problem. However, if Q is not principal diagonal dominated,
then for certain given f ∈ R

n, the canonical dual feasible domain S+
♯ could become

empty. In this case, we can always choose a sufficiently large parameter α > 0 such
that Q + αI ≻ 0 and replace f by f + 1

2αe due to the fact that 1
2αx ◦ x = 1

2αx.

In many applications, the canonical dual solutions σ̄ could locate on the boundary
of S+

♯ , i.e. det Qd(σ̄) = 0. In this case, the primal problem may have more than

one global minimizers. According to the generalized canonical duality theory (see
equation (5.83) in [3]), the canonical dual problem should be replaced by

(Pd
g ) : max

{

P d(σ) = −
1

2
(f + σ)T [Qd(σ)]+(f + σ) | ∀ σ ∈ S+

g

}

, (35)

where [Qd(σ)]+ represents the Moore-Penrose generalized inverse of Qd(σ) and the
canonical dual feasible space S+

g is defined as

S+
g = {σ ∈ R

n| σ > 0, Qd(σ) � 0}.

Since the geometrical mapping Λ(x) is a quadratic operator, the quadratic func-
tion 1

2x
T Qd(σ)x is the Gao-Strang complementary gap function. According to

the general theory developed in [11], if σ̄ is a KKT point of (Pd
g ), the vector

x̄ = [Qd(σ)]+(f + σ̄) is a global minimizer of P (x) on Xa. Detailed study on
this generalized canonical dual problem is given in [9].

In case Q = Diag (q), a diagonal matrix with qi, i = 1, 2, ...n, being the diagonal
elements, the criticality condition of ∇P d(σ̄) = 0 leads to 2n dual critical solutions

σ̄i =
1

2
{−qi ± (qi − 2fi)} or equivalently, σ̄i = −fi or fi − qi, i = 1, 2, . . . , n.

(36)
Notice that qi + 2(−fi) = qi − 2fi when σ̄i = −fi, and qi + 2(fi − qi) = 2fi − qi

when σ̄i = fi − qi. Therefore, if q 6= 2f , then Qd(σ̄) must be invertible for such σ̄.
Moreover, one of such Qd(σ̄) is positive definite, another one is negative definite,
and the rest 2n − 2 are indefinite. Each of these dual solutions provides a primal
solution

x̄ = Q−1
d (σ̄)(f + σ̄) =

{

fi + σ̄i

qi + 2σ̄i

}

. (37)

This leads to the next result.
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Theorem 4. For a 0-1 quadratic programming problem with any given q ∈ R
n such

that Q = Diag (q) and 2f 6= q, if

σ
♯ = {max{−fi, fi − qi}}, (38)

σ
♭ = {min{−fi, fi − qi}}, (39)

and

x♯ = Q−1
d (σ♯)(f + σ

♯), (40)

x♭ = Q−1
d (σ♭)(f + σ

♭), (41)

then the following statements hold:
(a) If σ

♯ > 0, then x♯ is a global minimizer of P (x) over Xa.
(b) If σ

♭ > 0, then x♭ is a local minimizer of P (x) over Xa.
(c) If σ

♭ < 0, then x♭ is a global maximizer of P (x) over Xa.
(d) If σ

♯ < 0, then x♯ is a local maximizer of P (x) over Xa

Proof. Notice that the larger λi is, so is qi + 2λi. Since qi + 2λi is either qi − 2fi

or 2fi − qi, by the assumption of q 6= 2f , σ
♯ must correspond to the case with a

positive definite Qd(σ
♯). Similarly, we know Qd(σ

♭) is negative definite.
Theorem 3 then implies that (a) If σ

♯ > 0, then σ
♯ ∈ S+

♯ and x♯ is a global

minimizer of P (x) over Xa; (b) If σ
♭ > 0, then σ

♭ ∈ S−
♯ and x♭ is a local minimizer

of P (x) over Xa; (c) If σ
♭ < 0, then σ

♭ ∈ S−
♭ and x♭ is a global maximizer of P (x)

over Xa; and (d) If σ
♯ < 0, then σ

♯ ∈ S+
♭ and x♯ is a local maximizer of P (x) over

Xa. �

4. Examples. In this section, we use some examples to illustrate the theorems
developed in the previous sections.

4.1. One-dimensional problems. For n = 1, we have the following primal prob-
lem

min / max

{

P (x) =
1

2
qx2 − fx | x ∈ {0, 1}

}

. (42)

It is a concave minimization problem for q < 0. Its canonical dual problem becomes

sta{P d(σ) = −0.5(f + σ)2/(q + 2σ) | q + 2σ 6= 0}. (43)

The criticality condition

∂P d(σ)

∂σ
= −

(f + σ)(q + 2σ) − (f + σ)2

(q + 2σ)2
= 0

has two real roots σ1 = −f and σ2 = f − q.
Take it as an example with q = −1, f = 0.5 such that q 6= 2f . Then σ♯ =

max{−f, f − q} = 1.5 > 0 and σ♭ = min{−f, f − q} = −0.5 < 0. Using x̄ =
(f + σ̄)/(q + 2σ̄) results in

x♯ = 1, x♭ = 0.

By Theorem 4 we know that x♯ = 1 is a global minimizer since σ♯ = 1.5 ∈ S+
♯ , and

x♭ = 0 is a global maximizer since σ♭ ∈ S−
♭ . It is easy to verify that

P (x1) = −1 = P d(σ1) and P (x2) = 0 = P d(σ2).

The graph of P d(σ) is shown in Fig. 1. We can see that the canonical dual function
P d(σ) is strictly concave for σ > −q/2 = 0.5.
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Figure 1. Graphs of P d(σ) : Concave for σ > 0.5 and convex for
σ < 0.5

4.2. Two-dimensional problems. Consider the instance with

P (x) =
1

2
(x1, x2)

(

q11 q12

q21 q22

) (

x1

x2

)

− (f1x1 + f2x2), (44)

and

P d(σ) = −
1

2
(f1 + σ1, f2 + σ2)

(

q11 + 2σ1 q12

q21 q22 + 2σ2

)−1 (

f1 + σ1

f2 + σ2

)

. (45)

We focus on three interesting cases.
Case 1. (Q is negative definite). Let q11 = −7, q22 = −2, q12 = q21 = 1. The

eigenvalues of Q are q1 = −7.19 and q2 = −1.8. For f1 = −3 and f2 = −2, the dual
function P d(σ) has four critical points:

σ̄1 = (4, 3), σ̄2 = (3, 2), σ̄3 = (4, 0), σ̄4 = (3,−1).

By the fact that σ̄1 ∈ S+
♯ , we know that it is a global maximizer of P d(σ) over S+

♯

and x̄1 = (1, 0) is a global minimizer of P (x). Since both σ̄2 and σ̄3 lead to an
indefinite matrix Q + 2Diag (σ̄), x̄2 = (0, 0) and x̄3 = (0, 1) are local KKT points.
For σ̄4 = (3,−1), Q+2Diag (σ̄4) is negative definite but σ̄4 does not belong to S−

♯

or S−
♭

. In fact, the corresponding solution x̄4 = (1, 1) is a saddle point. It is a local
minimizer in the x-direction, while a local maximizer in the y-direction. We have

P (x̄1) = −0.5 < P (x̄2) = 0 < P (x̄3) = 1 < P (x̄4) = 1.5

Case 2. (Q is indefinite.) Let q11 = 2, q22 = −2 and q12 = q21 = 1. Then the
eigenvalues of Q are q1 = 2.2361 and q2 = −2.2361. For f1 = 0.5, f2 = 1, the dual
function P d(σ) has four critical points:

σ̄1 = (0.5, 3), σ̄2 = (−2.5, 2), σ̄3 = (−0.5, −1), σ̄4 = (−1.5, 0).

By the fact of σ̄1 ∈ S+
♯ , we know it is a global maximizer of P d(σ) over S+

♯ and

x̄1 = (0, 1) is a global minimizer of P (x). Moreover, σ̄2 and σ̄3 lead to an indefinite
matrix Qd(σ̄), while σ̄4 leads to a negative definite Qd(σ̄). However, σ̄4 is not in
S−

♯ or S−
♭ . The solution x̄4 = (1, 0) is still a global maximizer of P (x) though.

Finally, we have

P (x̄1) = −2 < P (x̄2) = −0.5 < P (x̄3) = 0 < P (x̄4) = 0.5
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Case 3. (Q is not principal diagonal dominated). Let q11 = 1, q22 = −2, q12 =
q21 = 9 and f1 = 1, f2 = 1. The dual function P d(σ) has four critical points:

σ̄1 = (8, 3), σ̄2 = (0, 8), σ̄3 = (−1,−1), σ̄4 = (−9,−6)

Notice that σ̄1, σ̄2, σ̄3 lead to an indefinite matrix Qd(σ̄) whereas σ̄4 lead to a
negative definite Qd(σ̄). Since σ̄4 < 0, Theorem 3 indicates that it is the global
minimizer of P d(σ) over S−

♭
, while the corresponding x̄4 = (1, 1) is the global

maximizer over Xa. To verify that σ̄4 is indeed a global minimizer, we found that
σ̄4 is an interior point of S−

♭ and it is the unique critical point. Moreover, the

Hessian matrix of P d(σ) at σ̄4 is positive definite. To verify that x̄4 is the global
maximizer, we use the grid method to find that

P (x̄1) = −2 < P (x̄2) = −0.5 < P (x̄3) = 0 < P (x̄4) = 6.5

4.3. Three-dimensional problems. Let

Q =





−22 9 1
9 −140 6
1 6 −80



 , f =





−2
−6
−1



 . (46)

Notice that Q is a negative definite matrix with eigenvalues at −141.25, −79.466
and −21.281. There are eight primal 0-1 solutions shown as below:

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

P (x) 0 -39 -64 -97 -9 -47 -64 -96

The corresponding dual solutions are:

σ1 2 3 11 12 20 19 11 10
σ2 6 12 134 128 15 21 125 119
σ3 1 79 7 73 2 78 8 72

P d(σ) 0 -39 -64 -97 -9 -47 -64 -96

The eigenvalues for Q + 2Diag (σ) are listed below:

eig.val1 -129.41 -116.98 -66.193 1.2895 -111.61 -98.905 -64.214 -2.8068
eig.val2 -77.359 -15.221 -0.62461 65.29 -75.038 16.67 -0.7274 62.976
eig.val3 -17.232 78.203 128.82 117.42 18.651 76.235 110.94 99.83

neg.def. indef. indef. p.def. indef. indef. indef. indef.

From the tables, we see that σ̄1 = (2, 6, 1) ∈ S−
♯ and σ̄4 = (12, 128, 73) ∈ S+

♯ .

The corresponding x̄1 = (0, 0, 0) is the maximum integer solution and x̄4 = (0, 1, 1)
is the minimum integer solution. Actually, x̄1 is a local minimizer of P (x) over a
subregion [0, 0.01] × [0, 0.01] × [0, 0.01] ⊂ Xa. Also notice that the Hessian matrix
of the dual objective function is

∇2P d(σ) = −(I − 2Diag (x(σ)))[Qd(σ)]−1(I − 2Diag (x(σ))).

where x(σ) = [Qd(σ)]−1(f +σ). Since Qd(σ̄1) is negative definite, ∇2P d(σ̄1) must
be positive definite. This implies that σ̄1 is a local minimizer of P d(σ) over S−

♯ .
Thus Theorem 3 is explained.
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5. Algorithm for large scale problems. Theorem 3 tells us that, if S+
♯ is not

empty, the solution σ̄ of the canonical dual problem

max
σ∈S

+

♯

P d(σ) (47)

leads to a global minimizer x̄ = Q−1
d (σ̄)(f + σ̄) of the primal problem (P). In this

case, since the canonical dual function P d(σ) is concave on S+
♯ , the problem can

be solved by any commonly used nonlinear programming methods.
Notice that the the inverse of the Hessian matrix for P d(σ),

[∇2P d(σ)]−1 = −(I − 2Diag (x(σ)))−1Qd(σ)(I − 2Diag (x(σ)))−1,

is particularly simple because (I − 2Diag (x(σ))) is a diagonal matrix. It is then
reasonable to apply Newton’s method for solving the canonical dual problem. We
may choose

σ
♯ = {max{−fi, fi − qii}}

where qii is the ith diagonal element of Q as the initial point to start Newton’s
method. The algorithm will then stop at one of the 2n dual critical points. For a
minimization problem, if the termination point happens to reside in S+

♯ , then The-
orem 3 assures that its corresponding primal solution must be the global minimizer.
Similar situation can be developed for the maximization problem and we leave it to
the readers.

Here we propose using Newton method to solve the canonical dual for the mini-
mization problem.

Algorithm.

Step 0 (Initialization): Let σ
♯ = {max{−fi, fi − qii}} where qii is the ith diagonal

element of Q. Also let k = 0, σ0 = σ
♯ and choose δ > 0.

Step 1 (Newton steps to maximize P d(σ) = −
1

2
(f + σ)T Q−1

d (σ)(f + σ)):

Compute the corresponding primal solution:

x(σk) = Q−1
d (σk)(f + σk);

the gradient vector of P d(σ):

∇P d(σk) = x(σk) ◦ [x(σk) − e];

and the inverse Hessian:

[∇2P d(σk)]−1 = −(I − 2Diag (σk))−1Qd(σk)(I − 2Diag (σk))−1.

Step 2 (Stopping rule and purification):
If ‖∇P d(σk)‖∞ < δ, stop the algorithm. Round the current x solution to the

nearest integer vector and report the rounded solution. (Note that a zero gradient
of ∇P d(σk) means the same as each component of x(σk) being either 0 or 1.)
Step 3 (Newton iteration): Update

σk+1 := σk − [∇2P d(σk)]−1∇P d(σk);

k := k + 1;

Go to Step 1.
Using the Newton method incorporating the purification (rounding) strategy

in Step 2, we can solve large quadratic integer programs. We implemented the
algorithm in Matlab 7.4 and run with a Pentium M 1.6 GHz CPU and 1.25GB
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RAM. Here we show three examples. The first one has 10 variables and the others
have 25.

For the case with 10 variables,

Q =

































384 12 −10 −8 17 33 34 −46 5 −14
12 370 13 −10 6 −9 77 26 −27 9
−10 13 −208 88 10 −29 −18 8 −23 −4
−8 −10 88 490 −72 8 −57 −66 112 79
17 6 10 −72 214 11 13 −21 21 −43
33 −9 −29 8 11 −168 31 35 0 −27
34 77 −18 −57 13 31 252 −17 26 15
−46 26 8 −66 −21 35 −17 232 18 −8
5 −27 −23 112 21 0 26 18 −236 14

−14 9 −4 79 −43 −27 15 −8 14 −208

































; (48)

f = [−10,−33,−16,−70,−50,−48,−19,−22,−11,−20].

The proposed algorithm took 6 iterations in 0.701 cpu seconds to obtain a dual
critical solution

σ̄ = (24, 19, 248, 357, 49, 176, 73, 75, 234, 205),

which corresponds to the primal 0-1 solution

x(σ̄) = (0, 0, 1, 0, 0, 1, 0, 0, 1, 1).

It can be easily verified that σ̄ ∈ S+
♯ is indeed the only element in S+

♯ . By Theorem

2, the primal solution x(σ̄) is a global minimizer of the 0-1 quadratic programming
problem. A complete enumeration over 210 = 1024 possible solutions taking 0.16023
cpu seconds on the same machine confirms that x(σ̄) is truly a global minimum
solution.

To show that the proposed algorithm does work effectively, we randomly choose
a case with 25 variables. The matrix Q ∈ R

25×25 is shown on the next page and

f = [ 76.9,−12.4, 126,−230,−81,−411, 108, 403,−509, 461, 117,−100,

365,−303, 484,−453,−425,−472,−299, 141, 335,−69, 28.4,−105,−240]T.

To solve the primal problem directly, it took Matlab more than 27 cpu minutes
to complete a total of 33, 554, 432 enumerations. The optimal integer solution is

x̄ = (1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0)

with a corresponding dual critical solution

σ̄ = (89.4, 12.4, 111, 230, 83, 412, 117.5, 389, 511, 469.5, 101.5, 97,

372.5, 312, 487.5, 454, 423, 472, 301, 113, 327.5, 64, 17.9, 104, 244).

Our Newton method took 0.015 second to find the dual optimal solution which falls
in S+

♯ . In fact, the initial dual feasible solution σ
♯, when converted to its primal

correspondence, is already very close to the optimal integer solution. Therefore, a
simple purification leads to the desired solution.

Another example has 25 variables with matrix Q ∈ R
25×25 shown on a separate

page and

f = [−10, 33, 16,−7,−50, 48, 19, 22, 11, 20, 11, 26,

−33, 5, 23, 18,−8, 12, 42, 29,−37, 29, 36,−3, 17]T.
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
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
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






















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−11.5 1 −2 0 −2 −1 −1 −1 0 −1 0 2 1 1 2 0 −2 0 −1 2 −1 −1 0 1 0

1 7 0 0 1 1 0 0 −1 0 0 −1 0 1 −1 0 1 1 0 2 −1 0 −1 −1 0

−2 0 13 −2 2 0 1 0 −2 0 1 −1 0 1 1 −2 0 −1 1 2 −2 −1 1 −2 1

0 0 −2 13 0 1 0 1 1 −1 0 −1 2 2 1 −1 −1 0 0 −1 1 0 −1 2 −1

−2 1 2 0 −10.5 0 0 −2 1 2 1 −1 0 0 1 0 −1 −1 1 0 1 −1 −1 0 2

−1 1 0 1 0 −11 0 1 0 2 1 1 0 −1 2 0 0 0 0 −2 −2 0 0 0 1

−1 0 1 0 0 0 −10.5 −117 26 15 −2 −2 1 2 1 1 0 1 −2 2 −2 −1 0 1 1

−1 0 0 1 −2 1 1 11 1 2 1 −2 0 −1 −1 −1 1 0 0 1 −1 0 1 2 1

0 −1 −2 1 1 0 1 1 12 2 1 1 0 1 0 −2 0 0 1 0 −1 1 0 0 1

−1 0 0 −1 2 2 0 2 2 −10.5 0 −1 −1 2 1 0 0 1 −2 1 1 0 −1 0 0

0 0 1 0 1 1 −2 1 1 0 11.5 1 0 2 2 0 0 −2 2 2 −1 0 1 −2 −1

2 −1 −1 −1 −1 1 −2 −2 1 −1 1 15.5 −1 1 0 2 0 0 0 2 0 1 −1 1 2

1 0 0 2 0 0 1 0 0 −1 0 −1 −8.5 0 0 0 0 0 0 1 −1 0 0 0 −2

1 1 1 2 0 −1 2 −1 1 2 2 1 1 15 0 1 0 0 0 1 2 −1 −2 −1 0

2 −1 1 1 1 2 1 −1 0 1 2 0 0 0 −11.5 2 −1 2 2 1 0 0 1 0 1

0 0 −2 −1 0 0 1 −1 −2 0 0 2 0 1 2 −13 −2 1 0 −1 1 −1 1 1 0

−2 1 0 −1 −1 0 0 1 0 0 0 0 0 0 −1 −2 9 −2 0 −1 1 −1 0 2 2

0 1 −1 0 −1 0 1 0 0 1 −2 0 0 0 2 1 −2 8.5 1 1 0 0 −2 −1 −2

−1 0 1 0 1 0 −2 0 1 −2 2 0 0 0 2 0 0 1 13 2 −1 0 1 2 −1

2 2 2 −1 0 −2 2 1 0 1 2 2 1 1 1 −1 −1 1 2 14 2 0 0 0 1

−1 −1 −2 1 1 −2 −2 −1 −1 1 −1 0 −1 2 0 1 1 0 −1 2 12.5 −2 0 −1 2

−1 0 −1 0 −1 0 −1 0 1 0 0 1 0 −1 0 −1 −1 0 0 0 −2 9 0 0 1

0 −1 1 −1 −1 0 0 1 0 −1 1 −1 0 −2 1 1 0 −2 1 0 0 0 7.5 0 0

1 −1 −2 2 0 0 1 2 0 0 −2 1 0 −1 0 1 2 −1 2 0 −1 0 0 −11 −2

0 0 1 −1 2 1 1 1 1 0 −1 2 −2 0 1 0 2 −2 −1 1 2 1 0 −2 12.5


















































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


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2146 22 -10 -8 17 33 34 -46 5 -14 23 81 -101 -61 31 18 -64 80 15 -58 -37 46 -83 42 -17

22 1624 13 -10 6 -9 77 26 -27 9 -40 -33 97 -44 29 -80 32 92 103 129 -61 214 79 -38 13

-10 13 -2044 88 10 -29 -18 8 -23 -4 -138 22 -110 -51 -45 11 -92 14 -57 25 169 -309 145 -95 158

-8 -10 88 2630 -72 8 -57 -66 112 79 186 160 91 -94 -52 194 257 -86 -315 -168 107 163 -98 141 183

17 6 10 -72 -1670 -101 13 -21 -21 -43 229 -143 124 65 22 -133 -88 59 106 32 -10 -22 135 -4 -194

33 -9 -29 8 -101 -2274 81 135 -30 -27 -280 -46 301 224 120 69 13 192 -19 35 -121 -6 48 322 -16

34 77 -18 -57 13 81 2238 -117 26 15 -43 176 -68 -89 118 174 198 361 -120 156 25 99 -27 137 -108

-46 26 8 -66 -21 135 -117 1660 18 -8 69 -36 251 29 16 130 55 -90 78 24 128 -116 27 -195 107

5 -27 -23 112 -21 -30 26 18 2246 14 44 -40 81 159 -266 211 235 171 -102 54 77 7 33 -34 107

-14 9 -4 79 -43 -27 15 -8 14 -1684 -95 212 -246 14 32 191 -117 53 20 194 224 -6 -29 44 78

23 -40 -138 186 229 -280 -43 69 44 -95 1430 163 21 303 -88 11 61 -94 106 72 65 41 -58 187 -85

81 -33 22 160 -143 -46 176 -36 -40 212 163 -2934 -138 75 171 -292 317 139 94 -172 -213 150 31 4 -26

-101 97 -110 91 124 301 -68 251 81 -246 21 -138 -2640 -43 -85 180 172 17 73 47 111 -106 -115 48 3

-61 -44 -51 -94 65 224 -89 29 159 14 303 75 -43 -1964 70 100 -98 41 -119 34 121 12 74 -30 -13

31 29 -45 -52 22 120 118 16 -266 32 -88 171 -85 70 1900 66 -1 -47 -241 -9 73 10 142 129 37

18 -80 11 194 -133 69 174 130 211 191 11 -292 180 100 66 2896 107 33 0 92 -22 -85 272 -300 124

-64 32 -92 257 -88 13 198 55 235 -117 61 317 172 -98 -1 107 -2810 -297 60 -142 0 210 0 -27 166

80 92 14 -86 59 192 361 -90 171 53 -94 139 17 41 -47 33 -297 2254 -98 -73 46 28 16 8 -118

15 103 -57 -315 106 -19 -120 78 -102 20 106 94 73 -119 -241 0 60 -98 2014 128 12 0 -14 115 -20

-58 129 25 -168 32 35 156 24 54 194 72 -172 47 34 -9 92 -142 -73 128 -1950 74 -63 121 0 17

-37 -61 169 107 -10 -121 25 128 77 224 65 -213 111 121 73 -22 0 46 12 74 2104 -222 97 58 -30

46 214 -309 163 -22 -6 99 -116 7 -6 41 150 -106 12 10 -85 210 28 0 -63 -222 -2300 0 384 0

-83 79 145 -98 135 48 -27 27 33 -29 -58 31 -115 74 142 272 0 16 -14 121 97 0 2064 224 196

42 -38 -95 141 -4 322 137 -195 -34 44 187 4 48 -30 129 -300 -27 8 115 0 58 384 224 2634 68

-17 13 158 183 -194 -16 -108 107 107 78 -85 -26 3 -13 37 124 166 -118 -20 17 -30 0 196 68 -1884


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
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Our Newton method took 2 iterations in 0.08 cpu second to obtain the following
correct solution:

x̄ = (0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1).

It is interesting to note that the dual critical solution

σ̄ = (−138, 394, 2440, 702, 1980, 1974, 436, 406, 532, 1649, 281, 2709,

2603, 1750, 299, 346, 2461, 43, 224, 1972, 140, 2469, 570, 717, 1728)

corresponding to x̄ is not in S+
♯ , since σ̄ contains one negative component. Yet, the

proposed algorithm still found the optimal solution.
Our computational experience further indicates that the proposed algorithm in-

deed converges very fast. When S+
♯ is non-empty, since the canonical dual problem

is a concave maximization problem over a convex open feasible space, the proposed
algorithm surely works very well. However, when S+

♯ is empty, no theorem guaran-
tees that the canonical dual problem is concave. As a result, the proposed algorithm
may or may not find a global minimizer. According to our observations, the solv-
ability is highly related to the structure of Q matrix and the vector f . In general, the
proposed algorithm works well with those Q matrix being “diagonally dominated”
(i.e.,|qii| ≫

∑

j 6=i

qij) while it works poorly for those Q matrix being “nondiagonally

dominated” (i.e., |qii| ≪
∑

j 6=i

qij).

6. Concluding remarks.

1. We have successfully constructed a pair of canonical dual problems for the
0-1 quadratic programming problems. No duality gap exists in this dual approach.
Some optimality conditions for both local and global optimizers have been given
based on the triality theory. We have also proposed an algorithm to handle large
scale problems with S+

♯ or S−
♭

being nonempty.

2. It is possible to construct an example such that the four regions S+
♯ ,S−

♯ ,S+
♭ ,S−

♭

are simultaneously empty. For example, let

Q =





100 9 10
9 120 3
10 3 −140



 and f =





−10
10
−1



 . (49)

The primal 0-1 solutions are listed below:

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

P (x) 0 -69 50 -16 60 1 119 63

The dual information is given as follows:

σ1 10 20 19 29 -110 -120 -119 -129
σ2 -10 -7 -110 -113 -1 2 -119 -122
σ3 1 139 4 136 11 129 14 126

P d(σ) 0 -69 50 -16 60 1 119 63

The eigenvalues for Q + 2Diag (σ) are given in the following table:
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eig.val1 -138.42 103.76 -132.59 -106.34 -129.14 -140.68 -143.71 -160.53
eig.val2 96.549 129.48 -100.13 128.6 -109.25 116.88 -118.73 -121.88
eig.val3 123.87 150.76 138.72 161.74 118.39 125.81 -105.56 112.42

indef. p.def. indef. indef. indef. indef. neg.def. indef.

Since there is no dual solution whose components are entirely positive or entirely
negative, the four regions that we defined in Theorem 2 are empty. However, Qd(σ̄2)
is positive definite, so ∇2P d(σ̄2) is negative definite and σ̄2 is a local maximizer of
P d(σ). The corresponding x̄2 = (0, 0, 1) is the minimum integer solution. On the
other hand, σ̄7 is a local minimizer of P d(σ) whose corresponding x̄7 = (1, 1, 0) is
the maximum integer solution.

3. A fundamental question to ask is about the properties of Q and f that ensure
the non-emptiness of S+

♯ ,S−
♯ ,S+

♭ ,S−
♭ . So far we have no luck to get a complete

characterization. This could be a topic for future research.
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