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Abstract. We consider the mathematical formulation, analysis, and the numerical solution of
a time-dependent optimal control problem associated with the tracking of the velocity of a Navier–
Stokes flow in a bounded two-dimensional domain through the adjustment of a distributed control.
The existence of optimal solutions is proved and the first-order necessary conditions for optimality are
used to derive an optimality system of partial differential equations whose solutions provide optimal
states and controls. Semidiscrete-in-time and fully discrete space-time approximations are defined
and their convergence to the exact optimal solutions is shown. A gradient method for the solution
of the fully discrete equations is examined, as are its convergence properties. Finally, the results of
some illustrative computational experiments are presented.

Key words. optimal control, Navier–Stokes equations, finite elements, fluid mechanics

AMS subject classifications. 35B40, 35B37, 35Q30, 65M60

PII. S0036142997329414

1. Introduction. The purpose of the velocity tracking problem is to steer, over
time, a velocity field to a given target velocity field. In this paper, we consider controls
that act as a distributed body force; the state of the system, i.e., the velocity and pres-
sure fields, is the solution of an initial-boundary value problem of the Navier–Stokes
system of partial differential equations that models the evolution of viscous, incom-
pressible flows. The cost or objective functional is a quadratic functional involving
the state and the control variables; the functional measures, in an appropriate norm,
the distance between the flow velocity and the target velocity fields, and through a
penalty term, also measures the cost of control. Thus, the minimization of the func-
tional is used to both drive the flow towards the target flow and to limit the cost of
control.

Several treatments of similar optimal control problems can be found in the litera-
ture, most notably in [1], [5], [6], and [7]. Our work differs from these in that we use a
different functional that we show does a better job of tracking the target velocity field;
also, compared to previous authors, we use general, e.g., nonseparable, controls and
weaker hypotheses on the domain. The numerical treatment of the velocity tracking
problem is also an outstanding problem and other algorithms have been proposed.
For example, a quasi-optimal control has been studied in [12] and [13].

In this paper, we will formulate the problem in a convenient and precise math-
ematical way; then, we will prove the existence of optimal controls and characterize
optimal controls by deriving the first-order necessary conditions associated with the
problem. We then examine semidiscrete-in-time and fully discrete in space and time
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1482 M. D. GUNZBURGER AND S. MANSERVISI

finite element based approximations of solutions of the optimality system and develop
a gradient algorithm for the solution of the discrete equations. A frontal method for
assembling and solving the finite element system is used.

The plan of the rest of the paper is as follows. In section 2, we will treat the contin-
uous optimal control problem. In section 3 and section 4, we will analyze semidiscrete
and the fully discrete approximations, respectively. In section 5, a gradient method for
the solution of the fully discrete optimal control problem is presented and analyzed.
Finally, in section 6, the results of some computational experiments are presented.

2. The optimal control problem.

2.1. Notation and formulation of the optimal control problem. Let Ω
be a bounded open set. We shall use the standard notations for the Sobolev spaces
Hm(Ω) with norm ‖ · ‖m (H0(Ω) = L2(Ω) and ‖ · ‖0 = ‖ · ‖) and their vector-valued
(R2-valued) counterparts for which we use the same notation. Let Hm

0 (Ω) denote the
closure of C∞

0 (Ω) under the norm ‖ · ‖m and H−m(Ω) be the dual space of Hm
0 (Ω).

Also, we define

L2
0(Ω) =

{
p ∈ L2(Ω) :

∫
Ω

p d�x = 0

}
.

For details concerning these spaces, see, e.g., [2] or [8]. We introduce the solenoidal
spaces

V(Ω) = {�u ∈ C∞
0 (Ω) : ∇ · �u = 0},

V (Ω) = {�u ∈ H1
0 (Ω) : ∇ · �u = 0},

W (Ω) = {�u ∈ L2(Ω) : ∇ · �u = 0} .
The spacesW (Ω) and V (Ω) are the closures of V(Ω) in L2(Ω) andH1

0 (Ω), respectively.
The dual space of V (Ω) is denoted by V (Ω)∗ while the dual of W (Ω) can be identified
with itself. Given T , we introduce the notation Lp((0, T );X) for the temporal-spatial
function spaces defined on (0, T )× Ω with the norm

‖�u‖Lp((0,T );X) =

(∫ T

0

‖�u‖pXdt
)1/p

.

In order to define a weak form of the Navier–Stokes equations, we introduce the
continuous bilinear forms

a(�u,�v) = 2ν

2∑
i,j=1

∫
Ω

Dij(�u)Dij(�v)d�x ∀�u,�v ∈ H1(Ω),(2.1)

b(�v, q) = −
∫

Ω

q�∇ · �vd�x ∀q ∈ L2
0 ∀�v ∈ H1(Ω) ,(2.2)

where Dij(�u) = (∂ui/∂xj + ∂uj/∂xi)/2, and the trilinear form

c(�w; �u,�v) =

2∑
i,j=1

∫
Ω

wj

(
∂ui
∂xj

)
vid�x ∀�w, �u,�v ∈ H1(Ω) .(2.3)

In (2.1), ν denotes the inverse of the Reynolds number whenever the variables are
appropriately nondimensionalized. A weak formulation of the Navier–Stokes problem
is given by
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1483

given �g ∈ H−1(Ω), find (�u, p) ∈ H1
0 (Ω)× L2

0(Ω) satisfying〈
∂�u

∂t
,�v

〉
+ a(�u,�v) + c(�u; �u,�v) + b(�u, p) = 〈�g,�v〉 ∀v ∈ H1

0 (Ω),(2.4)

b(�u, q) = 0 ∀q ∈ L2
0(Ω)(2.5)

with initial velocity �u0,
where 〈·, ·〉 denotes the duality pairing between H1

0 (Ω) and H
−1(Ω). Since �u ∈ H1

0 (Ω),
we see that we have homogeneous boundary conditions for �u.

Let us define the operators A : H1
0 (Ω) → H−1(Ω), B : H1

0 (Ω) → L2
0(Ω), and

C : H1
0 (Ω)×H1

0 (Ω) → H−1(Ω) in the usual way (see [8]):

〈A�u,�v〉 = a(�u,�v) ∀�u,�v ∈ H1
0 (Ω),

〈C(�w)�u,�v〉 = c(�w; �u,�v) ∀�u,�v, �w ∈ H1
0 (Ω),

(q,B�v) = b(�v, q) ∀�v ∈ H1
0 (Ω) ∀q ∈ L2

0(Ω),

〈B∗q,�v〉 = b(�v, q) ∀�v ∈ H1
0 (Ω) ∀q ∈ L2

0(Ω) ,

where B∗ denotes the dual operator and where (·, ·) denotes the inner product in
L2(Ω). Since the boundary conditions are homogeneous Dirichlet boundary condi-
tions, we can choose the test function in (2.4) to belong to V (Ω) and then the linear
form b(�v, p) vanishes. As a result, we have that (2.4) can be expressed in the form

d�u

dt
+A�u+ C(�u)�u = �g , �u ∈ V (Ω) .(2.6)

Every function in D′(Ω) orthogonal to V(Ω), which is dense in V (Ω), can be written
as a gradient of some p in D′(Ω). The equivalence with the classical problem is now
clear. For details concerning the notation employed and the properties of the bilinear
and trilinear forms one may consult, e.g., [8], [9], or [14].

We shall consider only target velocity fields �U ∈ Uad, where Uad is defined by

�U = �U(t, �x) ∈ C([0, T ];H2(Ω)),

�∇ · �U(t, �x) = 0 ∀�x ∈ Ω,

�U(t, �x) = 0 ∀�x ∈ Γ,

�F�U (t, �x) ∈ L∞((0, T );L2(Ω)) ,

(2.7)

where �F�U = �Ut−ν∇2�U+(�U ·�∇)�U. The divergence free constraint and the homogeneous
boundary condition for the target velocity field are not necessary for the mathematical
treatment of the problem, but they are assumed in order to give a physical meaning
to the target flow.

Let �g ∈ L2((0, T );L2(Ω)) denote the distributed control. Given T , we define the
functional

J (�u,�g) =

∫ T

0

∫
Ω

(
α

2
|�u− �U |2 + β

2
|�g|2

)
d�xdt+

γ

2

∫
Ω

|�u(T )− �U(T )|2d�x .(2.8)

The minimization of the
∫ T

0

∫
Ω
|�u − �U |2d�xdt term is the real goal of the velocity

tracking problem, which is to keep the solution �u close to �U over (0, T ) × Ω. The
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1484 M. D. GUNZBURGER AND S. MANSERVISI∫ T

0

∫
Ω
|�g|2d�xdt term is introduced in order to bound the control function and to prove

the existence of an optimal control. The
∫
Ω
|�u(T, �x) − �U(T, �x)|2d�x term is necessary

in order to keep the solution �u close to �U near the time T. This term is not included
in previous studies of the velocity tracking problem; its omission results in poorer
performance of the optimal control.

The set of all admissible solutions is denoted by Aad and is defined as follows.

Given Ω, T , �u0 ∈ V (Ω), and �U ∈ Uad, then (�u,�g) is said to be an ad-
missible element if �u ∈ L2(0, T );H1

0 (Ω)), �g ∈ L2((0, T );L2(Ω)), the
functional J (�u,�g) is bounded, and there exists a p ∈ L2(0, T );L2

0(Ω))
such that (�u, p,�g) satisfies (2.4) and (2.5).

With this notation, the formulation of the optimal control problem is given by

given Ω, T , �u0 ∈ V (Ω), and �U ∈ Uad, find (�u,�g) ∈ Aad such that

J (�u,�g) ≤ J (�w,�h) ∀ (�w,�h) ∈ Aad .

2.2. Existence of an optimal control solution. We recall that if Γ is Lips-
chitz continuous, �g ∈ L2((0, T );H−1(Ω)), and �u0 ∈W (Ω), then solutions of (2.4) and
(2.5) satisfy �u ∈ C([0, T ];W (Ω)) ∩ L2((0, T );V (Ω)) and �ut ∈ L2((0, T );H−1(Ω)).
If Γ ∈ C2, �u0 ∈ V (Ω), and �g ∈ L2((0, T );W (Ω)), then �u ∈ C([0, T ];V (Ω)) ∩
L2((0, T );H2 ∩H1

0 ) and �ut ∈ L2((0, T );W (Ω)). See, e.g., [4] or [14].
We prove the existence of a solution of the optimal control problem when Ω is an

open bounded domain with a Lipschitz continuous boundary Γ.
Theorem 2.1. Given �u0 ∈ V (Ω) and �U ∈ Aad, then there exists a solution

�g ∈ L2((0, T );W (Ω)) and �u ∈ C([0, T ];W (Ω))∩L2((0, T );V (Ω)) of the optimal control
problem.

Proof. As the admissible set is bounded and not empty, e.g., (�u, 0) ∈ Aad, let �gn
be a minimizing sequence for the optimal control problem and set �un = �u(�gn). The
sequence {�gn} is bounded in L2((0, T );W (Ω)) and the corresponding solution �un is
bounded in C([0, T ];W (Ω))∩L2((0, T );V (Ω)). This follows from well-known existence
theorems for solutions of the unsteady Navier–Stokes equations; see [14]. As Hilbert
spaces are reflexive, every ball is weakly compact and thus there exist a pair (�u,�g)
and a subsequence of (�un, �gn) that converges weakly to (�u,�g). We abuse the notation
and write again that

�gn → �g in L2((0, T );W (Ω)) weakly,

�un → �u in L2((0, T );V (Ω)) weakly,

�un → �u in L∞((0, T );W (Ω)) weak− ∗ .

Now, the pair (�u,�g) satisfies the Navier–Stokes equations (2.4) and (2.5) and minimizes
the functional. In fact, by the lower semicontinuity of the functional in (2.8) we have

J (�u,�g) ≤ lim inf
n→∞ J (�un, �gn) .

Besides, an a priori estimate (see [4] or [14]) for �u in a fractional time order Sobolev
space yields, in our case, that �un converges strongly to �u ∈ L2((0, T );V (Ω)). Now, we
consider the weak Navier–Stokes system given by (2.6) with state �un and control �gn.
Let �w be in V(Ω) and ψ(t) be a continuously differentiable function on (0, T ) with
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1485

ψ(T ) = 0. We multiply (2.6) by ψ(τ)�w and then integrate by parts with respect to τ
to obtain

−
∫ T

0

(�un, ψ
′(τ)�w)dτ + ν

∫ T

0

a(�un, ψ(τ)�w)dτ +

∫ T

0

c(�un; �un, ψ(τ)�w)dτ

= (�u0, ψ(0)�w) +

∫ T

0

(�gn, ψ(τ)�w)dτ .

We can pass to the limit inside the linear and the nonlinear terms. In fact, if �un
converges to �u in L2((0, T );V (Ω)) weakly and L2((0, T );W (Ω)) strongly, then, for
any �z ∈ C1((0, T );D(Ω)), we have

lim
n→∞

∫ T

0

c(�un; �un, �z(τ))dτ =

∫ T

0

c(�u; �u, �z(τ))dτ ;(2.9)

see [14]. If ψ = φ ∈ D(0, T ), the pair (�u,�g) satisfies the Navier–Stokes equation (2.6)
in the distributional sense. Since V(Ω) is dense in V (Ω), then this is still true for any
�w in V (Ω) by a continuity argument.

2.3. First-order necessary condition. We shall show that the optimal solu-
tion must satisfy the first-order necessary condition. By studying the case in which the
Gâteaux derivative vanishes we can get a possible candidate solution for the optimal
control. Now, it is very useful to state here some results concerning the differentia-
bility of the operator C. The proof of this lemma can be found in [1].

Lemma 2.2. Let c(�w; �u,�v) be the trilinear form defined in (2.3) and let C(�w)�u
denote the corresponding operator. Then,

(i) c(�w; �u,�v) has the following properties ∀�w, �u,�v ∈ V (Ω) :

c(�w; �u,�v) = −c(�w;�v, �u),
c(�w; �u, �u) = 0,

|c(�w; �u,�v)| ≤ ‖�w‖1‖�u‖1‖�v‖1,

|c(�w; �u,�v)| ≤ √
2‖�w‖1/2‖∇�w‖1/2‖∇�u‖‖�v‖1/2‖∇�v‖1/2 ;

(2.10)

(ii) given �u ∈ V (Ω), C(�u)�u is a differentiable form from V (Ω) into V ∗(Ω) and

C ′(�u)�b = C(�u)�b+ C(�b)�u ∀�b ∈ V (Ω) ;(2.11)

(iii) the adjoint C ′∗ of C ′, defined by c′(�a;�b,�c) = (�b, C ′∗(�a)�c), is given by

(C ′∗(�a)�b,�c) =
∫

Ω

2∑
i,j=1

cj

(
∂ai
∂xj

bi − ai
∂bj
∂xi

)
d�x .(2.12)

By using this lemma, we are now ready to state and prove the existence of the
Gâteaux derivative. It is useful to remark that the Gâteaux derivative makes sense
whenever one is able to prove the uniqueness of the solution of the Navier–Stokes
system. In the time-dependent, two-dimensional case, this is possible.

Theorem 2.3. Let �u0 ∈ V (Ω). The mapping �u = �u(�g) from L2((0, T );L2(Ω)) to

L2((0, T );V (Ω)), defined as the solution of (2.6), has a Gâteaux derivative (D�u/D�g)·�h

D
ow

nl
oa

de
d 

05
/2

7/
14

 to
 1

28
.1

73
.1

25
.7

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



1486 M. D. GUNZBURGER AND S. MANSERVISI

in every direction �h in L2((0, T );L2(Ω)). Furthermore, w̃(h) = (D�u/D�g) · �h is the
solution of the problem

w̃t + νAw̃ + C(�u(�g))w̃ + C(w̃)�u(�g) = �h,

w̃ ∈ V (Ω),

w̃(t, �x) = 0, �x ∈ Γ,

w̃(0, �x) = 0, �x ∈ Ω .

(2.13)

Moreover, w̃ ∈ L∞((0, T );W (Ω)) ∩ L2((0, T );V (Ω)).

Proof. Let �g and �h be given in L2((0, T );W (Ω)) and let �u�g and �u�g+s�h denote the

solutions of (2.6) with right-hand sides �g and �g + s�h, respectively. We need to prove
the following result:

lim
s→0

(‖�u�g+s�h − �u�g − sw̃(�h)‖L2((0,T );V )

|s|

)
= 0 .(2.14)

We set ũ = (�u�g+s�h − �u�g)− sw̃(�h) so that ũ is the solution of the evolution equation

dũ

dt
+ νAũ+ C(�u�g+s�h)�u�g+s�h − C(�u�g)�u�g − C ′(�u�g)sw̃ = 0,

ũ ∈ V (Ω),

ũ(t, �x) = 0, �x ∈ Γ,

ũ(0, �x) = 0, �x ∈ Ω .

(2.15)

Let �k ∈ H−1(Ω) be defined by

�k = C(�u�g)�u�g + C ′(�u�g)(�u�g+s�h − �u�g)− C(�u�g+s�h)�u�g+s�h ;(2.16)

then, (2.15) can be rewritten as

dũ

dt
+ νAũ+ C ′(�u�g)ũ = �k,

ũ ∈ V (Ω),

ũ(t, �x) = 0, �x ∈ Γ,

ũ(0, �x) = 0, �x ∈ Ω .

(2.17)

In order to estimate the norm of ũ, we take the scalar product of the first equation
in (2.17) with ũ, integrate over Ω, and use part (ii) of Lemma 2.2 in order to obtain

d

dt
‖ũ‖2 + ν‖∇ũ‖2 + c(ũ; �u�g, ũ) = (�k, ũ) .

By using standard techniques and the fourth inequality in part (i) of Lemma 2.2 we
have ∫ T

0

‖ũ‖2
1dt ≤ C1

∫ T

0

‖�k‖2
V ∗dt .
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1487

Now we need to evaluate the right-hand side term above. By taking the scalar product
of (2.16) with �v ∈ H1

0 (Ω), we have

| < �k,�v > | = |(C(�u�g+s�h)�u�g+s�h, �v)− (C(�u�g)�u�g, �v)− (C ′(�u�g)û, �v)|
= |c(�u�g+s�h, �u�g+s�h, �v)− c(�u�g, �u�g, �v)− c(�u�g, û, �v)− c(û, �u�g, �v)|
= |c(û, û, �v)| ≤ |c(û, �v, û)| ≤ K‖û‖‖∇û‖‖�v‖1 ,

where û = �u�g+s�h − �u�g. Hence, we obtain∫ T

0

‖ũ(t)‖2
1dt ≤ C

∫ T

0

‖û‖2‖û‖2
1dt .(2.18)

To estimate the norm of û in L2((0, T );V (Ω)), we again set û = �u�g+s�h − �u�g so that

dû

dt
+ νAû+ C(�u�g)û+ C(û)�u�g + C(û)û = s�h,

û ∈ V (Ω),

û(t, �x) = 0, �x ∈ Γ,

û(0, �x) = 0, �x ∈ Ω .

We then easily obtain

d

dt
‖û‖2 + ν‖∇û‖2 + c(û; �u�g, û) = s(�h, û) .

Again, by using standard techniques and the fourth inequality of part (i) of Lemma
2.2, we obtain that û ∈ L∞((0, T );W (Ω)) (in fact, from the Gronwall inequality we
obtain ‖û‖ ≤ sC(t) , where C(t) is bounded) and∫ T

0

‖û‖2
1dτ =

∫ T

0

‖�u�g+s�h − �u�g‖2
1dτ ≤ C1|s|2

∫ T

0

‖�h‖2dτ .

From the last two results and (2.18) we obtain the estimate∫ T

0

‖ũ(t)‖2
1dt ≤ C4|s|4,

from which our claim follows. From the regularity of �h it follows that w̃ ∈ L∞((0, T );
W (Ω)) ∩ L2((0, T );V (Ω)).

For a variation �h ∈ L2((0, T );L2(Ω)), the Gâteaux derivative in the direction �h
of the solution of the Navier–Stokes system (2.6) has been denoted by w̃ and we now
know it satisfies (2.13). The latter system can be written in the form

w̃t + ν∇2w̃ + (w̃ · ∇)�u+ (�u · ∇)w̃ +∇q̃ = �h,

w̃ ∈ V (Ω),

w̃(t, �x) = 0, �x ∈ Γ,

w̃(0, �x) = 0, �x ∈ Ω .

(2.19)

The Gâteaux derivative gives useful information about the sensitivity of the system
at a particular point �u in a particular direction �h, but complete information requires
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1488 M. D. GUNZBURGER AND S. MANSERVISI

one to solve (2.19) for every possible direction �h. Fortunately, in order to minimize
the functional we need only an integral over all these directions which can more easily
be obtained through the solution of a single adjoint equation. To see this, we will
need the following result.

Lemma 2.4. Given �u0 ∈ V (Ω) and �U ∈ Uad. Let �h be given in L2((0, T );L2(Ω))

and let w̃(�h) be defined through (2.13). For every �h2 ∈ L2((0, T );L2(Ω)), we have∫
Ω

[ŵw̃]T0 d�x+

∫ T

0

∫
Ω

�h2w̃(�h)d�xdt =

∫ T

0

∫
Ω

ŵ(�h2)�hd�xdt,

where ŵ is the solution of the adjoint problem

−ŵt + νAŵ + C ′∗(�u(�g))ŵ = �h2,

ŵ ∈ V (Ω),

ŵ = 0 ∀�w ∈ Γ,

ŵ(T, �x) = �wT (�x) .

(2.20)

Proof. The integral on the right-hand side contains �h which can be evaluated by
(2.13); then we can proceed by integration by parts. We note that the integration
by parts is fully justified by the regularity properties of the quantities involved. In
the following, we also use the fact that the operator A is self-adjoint (see [4]) and the
adjoint operator of C ′(�ug) is C ′∗(�ug) so that∫ T

0

∫
Ω

ŵ(�h2)�hd�xdt =

∫ T

0

∫
Ω

ŵ (w̃t + νAw̃ + C ′(�u�g)w̃) d�xdt

=

∫ T

0

∫
Ω

w̃ (−ŵt + νAŵ + C ′∗(�u�g)ŵ) d�xdt+
∫

Ω

(ŵw̃)|T0 d�x

=

∫ T

0

∫
Ω

ĥ2w̃(�h)d�xdt+

∫
Ω

(ŵw̃)|T0 d�x .

It is easy to show that the Gâteaux derivative of the functional J (�u(�g), �g), defined
in (2.8), should vanish at the optimal solution and that the optimal control �g must
be proportional to the solution of a particular adjoint system.

Theorem 2.5. Given �u0 ∈ V (Ω) and �U ∈ Uad. If (�u,�g) is an optimal pair, then
we have

�g = − 1

β
�w ,(2.21)

where �w is the solution of the particular adjoint problem

−�wt + ν∇2 �w + (∇�u)T �w − (�u · ∇)�w +∇q = α(�u− �U),

�w ∈ V (Ω),

�w(t, �x) = 0, �x ∈ Γ,

�w(T, �x) = γ(�u(T )− �U(T )), �x ∈ Ω ,

(2.22)

and �g ∈ L∞((0, T );W (Ω)) ∩ L2((0, T );V (Ω)).
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1489

Proof. Let (�u,�g) be an optimal pair. We compute the Gâteaux derivative of the

functional J (�u(�g), �g) in the direction of �h, where �u(�g) is the solution of (2.6). Then,
Lemma 2.4 completes the proof. We have

DJ (�u(�g), �g)

D�g
· �h =

∫ T

0

∫
Ω

(
α(�u− �U)

(
D�u

D�g
· �h

)
+ β�g · �h

)
d�xdt

+

∫
Ω

γ(�u(T, �x)− �U(T, �x))

(
D�u

D�g
· �h

)
(T, �x)d�x

=

∫ T

0

∫
Ω

(
α(�u− �U)w̃ + β�g · �h

)
d�xdt+ γ

∫
Ω

(�u(T )− �U(T ))w̃(T )d�x

=

∫ T

0

∫
Ω

(�w + β�g) · �h d�xdt ,

where �w is the solution of the adjoint system (2.20). Now, from the definition of the
optimal control problem, if (�u,�g) is an optimal solution and the Gâteaux derivative of

the functional exists, the latter must be zero for all directions �h ∈ L2((0, T );L2(Ω)).
Thus, ∫ T

0

∫
Ω

(�w + β�g) · �h d�xdt = 0 ∀�h ∈ L2((0, T );L2(Ω)) .

By the completeness of the Hilbert space, we obtain (2.21). The regularity of �g follows
from the regularity properties of �w.

2.4. The optimality system. Thus, in order to obtain the solution of our opti-
mal control problem we have to solve, for �u ∈ L2((0, T );H1

0 (Ω)), p ∈ L2((0, T );L2
0(Ω)),

�w ∈ L2((0, T );H1
0 (Ω)), and r ∈ L2((0, T );L2

0(Ω)), the Navier–Stokes system{ 〈�ut, �v〉+ νa(�u,�v) + c(�u; �u,�v) + b(�v, p) = (�g,�v) ∀�v ∈ H1
0 (Ω),

b(�u, q) = 0 ∀q ∈ L2
0(Ω) ,

(2.23)

with initial velocity �u(0, �x) = �u0(�x), the adjoint system
−〈�wt, �v〉+ νa(�w,�v) + c(�w; �u,�v) + c(�u; �w,�v) + b(�v, r)

= α(�u− �U) ∀�v ∈ H1
0 (Ω) ,

b(�w, q) = 0 ∀q ∈ L2
0(Ω) ,

(2.24)

with final condition �w(T, �x) = γ(�u(T )− �U(T )) and

�w = −β�g .(2.25)

The above systems of equations are a weak formulation of the system

�ut − ν∇2�u+ (�u · �∇)�u+ �∇p = �g,

�∇ · �u = 0,

−�wt + ν∇2 �w + (∇�u)T �w − (�u · ∇)�w + �∇r = α(�u− �U),

�∇ · �w = 0,

�g + β �w = 0
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1490 M. D. GUNZBURGER AND S. MANSERVISI

with the same corresponding final and initial conditions and with homogeneous bound-
ary conditions.

We note that �g and �u belong to L∞((0, T );W (Ω))∩L2((0, T );V (Ω)) for all finite
positive values of α, β, and γ.

3. Semidiscrete-in-time approximations.

3.1. Semidiscretization in time of the optimality system. In order to
compute the solution discussed in the previous section we need to discretize this
problem in time and in space. In this section, we deal with the time discretization.

Let σN = {tn}Nn=0 be a partition of [0, T ] into equal intervals ∆t = T/N with
t0 = 0 and tN = T . For each fixed ∆t (orN) and for every quantity q(t, �x) we associate
the corresponding set {q(n)(�x)}Nn=0 and a continuous piecewise linear function qN =
qN (t, �x) such that qN (tn, �x) = q(n)(�x) for all n = 0, 1, . . . , N. We will denote with
bold letters q the vector (q(1), q(2), . . . , q(N)) of the discrete time components. Also,
the space XN will be denoted as X. On this partition we define the discrete target
velocity as �U (n)(�x) = �U(tn, �x) for n = 0, 1, . . . , N whenever �U ∈ Uad. The state
variables �u(n) ∈ H1

0 (Ω) and p(n) ∈ L2
0(Ω) are constrained to satisfy the semidiscrete

Navier–Stokes equations

1

∆t
(�u(n) − �u(n−1)) + νA�u(n) + C(�u(n))�u(n) +B∗p(n) = �g(n),

B�u(n) = 0,(3.1)

�u(n)(�x) = 0, �x ∈ Γ,

for n = 1, 2, . . . , N , with initial velocity �u(0) = �u0(�x) ∈ V (Ω). This represents a back-
ward Euler time discretization. Optimality is achieved by means of the minimization
of the discrete functional

JN (u,g) =
α∆t

2

N∑
n=1

‖�u(n) − �U (n)‖2

+
β∆t

2

N∑
n=1

‖�g(n)‖2 +
γ

2
‖�u(N) − �U (N)‖2 .

(3.2)

Of course, if ∆t tends to zero, this functional tends to the corresponding continuous
functional (2.8). The semidiscrete-in-time approximate optimal control problem is
then given by

given ∆t = T/N, �u0 ∈ V (Ω), and �U ∈ Uad, find (�u,p, �g) in H1
0(Ω)×

L2
0(Ω)× L2(Ω) such that (�u,p, �g) is the solution of (3.1) and the cost

functional (3.2) is minimized.

We note that in this formulation the value of �g(0) is not involved and can be
arbitrarily chosen as an extension of the corresponding continuous linear function
�gN (t, �x) in C((0, T );L2(Ω)).

3.2. Existence and consistency for the semidiscrete optimal control
problem. If �g belongs to L2(Ω), then the existence of solutions of the semidiscrete-
in-time optimal control problem can be proved. This fact is an easy consequence of
the definition of the optimal control problem and the boundedness of the functional.

Lemma 3.1. Let ∆t = T/N, �u0 ∈ V (Ω), and �U ∈ Uad. If (�u, �g) denotes a
solution of the semidiscrete optimal control problem, then there exists a constant C
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1491

independent of ∆t such that

N∑
n=1

‖�g(n)‖2∆t ≤ C and

N∑
n=1

‖�u(n)‖2∆t ≤ C .(3.3)

Hence we have that �gN ∈ L2((0, T );L2(Ω)) and �uN ∈ L2((0, T );W (Ω)) for all N.
Proof. If (�u, �g) is a solution of the semidiscrete-in-time optimal control problem,

then JN (�u(�g), �g) ≤ JN (�u(0),0). From this inequality we have

α∆t

2

N∑
n=1

‖�u(n) − �U (n)‖2 +
β∆t

2

N∑
n=1

‖�g(n)‖2 +
γ

2
‖�u(N) − �UN‖2 ≤ JN (�u(0),0) ≤ C1

so that the first bound in (3.3) immediately follows. Also, since
∑N

n=1 ‖�u(n) −
�U (n)‖2∆t ≤ C ′, the second bound in (3.3) follows from the triangle inequality.

Now we can state and prove the existence of solutions of the semidiscrete-in-time
optimal control problem in an open bounded domain Ω with Lipschitz-continuous
boundary Γ.

Theorem 3.2. Given ∆t = T/N, �u0 ∈ V (Ω), and �U ∈ Uad. Then, there exists
(�u,p, �g) in V(Ω)× L2

0(Ω)× L2(Ω) such that (�u,p, �g) is the solution of (3.1) and the
cost functional (3.2) is minimized.

Proof. Given N , let {�gk}∞k=1 be a minimizing sequence in L2(Ω). Using the
well-known theorem concerning semidiscrete-in-time approximations of the Navier–
Stokes equations (see [14]), we find that the corresponding sequence �uk is uniformly
bounded in V(Ω). Now, we can extract a weakly convergent subsequence and show
that this subsequence converges to the solution of the optimal control problem in the
semidiscrete approximation. We can write

�g
(n)
k → �g(n) in W (Ω) weakly,

�u
(n)
k → �u(n) in V (Ω) weakly

for n = 1, 2, . . . , N. By using the fact that the injection of V (Ω) into L2(Ω) is com-
pact, the second subsequence converges strongly. The lower semicontinuity of the
functional in (3.2) allows the pair (�u, �g) to minimize the functional. Since we can
pass to the limit in the linear and the nonlinear terms, there exists p(n) ∈ L2(Ω) such
that (�u(n), p(n), �g(n)) also satisfies the Navier–Stokes system (3.1). In fact, since �uk

converges to �u strongly in L2(Ω), then, for any �z ∈ [V(Ω)]N , we have
lim
k→∞

c(�uk; �uk,�z) = c(�u; �u,�z) .

Since [V(Ω)]N is dense in V(Ω), this is still true for any �w in V(Ω) by a continuity ar-
gument. This allows us to pass to the limit in the semidiscrete equation and complete
the proof.

We can prove the convergence of our semidiscrete optimal control problem.
Theorem 3.3. Given ∆t = T/N, �U ∈ Uad, and �u0 ∈ V (Ω). For ∆t → 0

(N → ∞) the solution {(�u(n), �g(n))}Nn=1 of the semidiscrete-in-time optimal control
problem tends to the solution (�u,�g) of the corresponding continuous optimal control
problem.

Proof. Let �u′(n) = (�u(n) − �u(n−1))/∆t, and let �u′N denote the corresponding
piecewise linear function. The sequences {�uN}∞N=1, {�gN}∞N=1, and {�u′N}∞N=1 are
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1492 M. D. GUNZBURGER AND S. MANSERVISI

uniformly bounded in L2((0, T );V (Ω)) ∩ L∞((0, T );W (Ω)), L2((0, T );L2(Ω)), and
L2((0, T );V ∗(Ω)), respectively. This follows from Lemma 3.1 and from the well-
known theorems for semidiscrete approximation of the Navier–Stokes equations (see
Lemmas III.4.4, and III.4.6 in [14].) Hence, from these sequences we can extract
subsequences such that

�uN → �u L2(0, T, V (Ω)) weakly,

�uN → �u L∞(0, T,H(Ω)) weak-*,

�gN → �g L2(0, T, L2(Ω)) weakly,

d�u(N)

dt
→ �u′ L2(0, T, V ∗(Ω)) weakly .

(3.4)

Let H((0, T );n,m;V, V ∗) = {�v ∈ Ln((0, T );V ) : �v′ ∈ Lm((0, T );V ∗)}. Since
V (Ω) ⊂ W (Ω) ⊂ V ∗(Ω), where V and V ∗ are reflexive and the injections are con-
tinuous and V (Ω) ⊂ W (Ω) is compact from the Sobolev imbedding theorem, then
the injection from H((0, T ); 2, 2, V, V ∗) into L2((0, T );W ) is compact. Hence, if a se-
quence �u(k) converges weakly in L2((0, T );V (Ω)) and �u′(n) in L2((0, T );V ∗(Ω)), then
�u(k) converges strongly in L2((0, T );W (Ω)). A proof of this theorem can be found in
[14]. As a consequence of this compactness theorem, the convergence of the sequence
{�uN}∞N=1 is strong in L

2((0, T );W (Ω)). Now we can pass to the limit in the system of
equations and in the functional. The linear terms do not give problems. Using the fact
that the sequence converges weakly in L2((0, T );V ) and strongly in L2((0, T );W ), we
can pass to the limit in the nonlinear term; see (2.9). Thus, for N → ∞, the solu-
tion of the semidiscrete optimal control problem solves the continuous optimal control
problem.

3.3. First-order necessary conditions. In this subsection we derive the first-
order necessary conditions. We use a different approach to that used for the continuous
problem.

Let B1 and B2 denote the following sets:

B1 = H1
0(Ω)× L2

0(Ω)× L2(Ω),

B2 = H−1(Ω)× L2
0(Ω) .

We define the nonlinear mappings M : B1 → B2 as M(�u,p, �g) = (�f , z) if and only if

1

∆t
(�u(n) − �u(n−1), �v) + νa(�u(n), �v) + c(�u(n), �u(n), �v)

+b(�v, p(n)) = (�g(n) + �f (n), �v) ∀�v ∈ H1
0 (Ω) for n = 1, 2, . . . , N,

b(�u(n), q) = (z(n), q) ∀ q ∈ L2
0(Ω) for n = 1, 2, . . . , N,

�u(n) = 0 on Γ for n = 1, 2, . . . , N,

�u(0) = �u0(�x) ∈ V (Ω)

(3.5)

and N : B1 → R ×B2 as N(�u,p, �g) = (a,�f , z) if and only if( JN (�g, �u)− JN (ĝ, û)

M(�u,p, �g)

)
=

(
a

(�f , z, �b)

)
(3.6)
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1493

with ĝ ∈ L2(Ω) and û ∈ H1
0(Ω). Thus, the constraint in the semidiscrete-in-time

optimal control problem can be expressed as M(�u,p, �g) = (�0,0) and the optimal
control problem itself can be reformulated as

find (û, p̂, ĝ) and a ≤ 0 such that the equation N(�u,p, �g) = (a,�0,0)
is satisfied ∀�g ∈ L2(Ω).

Since we are looking for minimum points, it is natural to define the directional
derivatives M ′(�u,p, �g) and N ′(�u,p, ĝ) of these nonlinear operators. Given (�u,p, �g),

we define the linear operatorsM ′(�u,p, �g) : B1 → B2 asM
′(�u,p, �g) ·(w̃, r̃, h̃) = (f , z)

if and only if

1

∆t
(w̃(n) − w̃(n−1), �v) + νa(w̃(n), �v) + c(w̃(n), �u(n), �v)

+c(�u(n), w̃(n), �v) + b(�v, r̃(n)) = (f
(n)

+ h̃(n), �v)

∀�v ∈ H1
0 (Ω) for n = 1, 2, . . . , N ,

b(w̃(n), q) = (z(n), q) ∀q ∈ L2
0(Ω) for n = 1, 2, . . . , N ,

w̃(n) = �0 on Γ for n = 1, 2, . . . , N ,

w̃(0) = �0

(3.7)

and N ′(�u,p, �g) : B1 → R ×B2 as N ′(�u,p, �g) · (w̃, r̃, h̃) = (a, f , z) if and only if (JN )′(�u, �g)) · (w̃, r̃, h̃))

M ′(�u,p, �g) · (w̃, r̃, h̃))

 =

(
a

(f , z)

)
.(3.8)

Now we have to prove that these operators are well-defined and relate them to the
minimum of the functional.

Lemma 3.4. Given ∆t = T/N, �u0 ∈ V (Ω), and �u ∈ H1
0(Ω). Then, we have

(i) the operator M ′(�u,p, �g) is onto B2;
(ii) the operator N ′(�u,p, �g) has closed range in R ×B2.
Proof. We set
νã(w̃(n), �v) = νa(w̃(n), �v) +

1

∆t
(w̃(n), �v) ∀�v ∈ H1

0 (Ω) for n = 1, 2, . . . , N ,

(f̃ (n), �v) = (f
(n)

, �v) +
1

∆t
(w̃(n−1), �v) ∀�v ∈ H1

0 (Ω) for n = 1, 2, . . . , N .

Then, (3.7) can be rewritten as

νã(w̃(n), �v) + c(w̃(n), �u(n), �v) + c(�u(n), w̃(n), �v)

+b(�v, r(n)) = (f̃ (n) + h̃(n), �v) ∀�v ∈ H1
0 (Ω) for n = 1, 2, . . . , N ,

b(w̃(n), q) = (z(n), q) ∀q ∈ L2
0(Ω) for n = 1, 2, . . . , N ,

w̃(n) = �0 on Γ, for n = 1, 2, . . . , N ,

w̃(0) = �0 .

(3.9)
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1494 M. D. GUNZBURGER AND S. MANSERVISI

Note that since f̃ (n) ∈ H−1(Ω) whenever f
(n) ∈ H−1(Ω), the result (i) follows if it

can be shown that (3.9) has a solution (w̃, r̃, h̃) ∈ B1 ∀(f̃ , z) ∈ B2. Since (3.9) is
a steady-state system, one can prove this by applying the methods of [10] and [11].
However, we note that it is clear that the operator M ′(�u,p, �g) is onto because, for

every w̃ ∈ H1
0(Ω) and �u ∈ H3/2(Ω)∩H1

0(Ω), we can set, in (3.9), h̃ = w̃ ·∇�u ∈ L2(Ω).
Now, the existence of a solution w̃ ∈ H1

0(Ω) for the resulting system can be proved

∀ f̃ ∈ H−1(Ω) and z ∈ L2
0(Ω) by applying standard methods.

For (ii), we note that the operatorM ′(�u,p, �g) belongs to L(B1,B2) and therefore
its kernel is a closed subspace. We recall that a linear functional f on a Banach space
can have either the range of f equals {0} or {R}. Thus, N ′(�u,p, �g) acting on the kernel
of M ′(�u,p, �g) is either identically zero or onto R. Let X,Y, Z be Banach spaces and
A : X → Y and B : X → Z be linear continuous operators. If the range of B is closed
in Z and the subspace A ·Ker(B) is closed in Y, then, if we define C : X → Y ×Z by
Cx = (Ax,Bx), the range of C is closed in Y × Z. Applying this result we have that
the range of N ′(�u,p, �g) is a closed set.

If (û, p̂, ĝ) denotes an optimal solution, the operator N ′(û, p̂, ĝ) cannot be onto
R × B2; this in turn implies a first-order condition. (In fact, N ′(�u,p, �g) cannot be
onto for any (�u,p, �g) ∈ B1, but we do not need so general a result here.) In the
next theorem, we prove this and write out the first-order necessary condition. In the
following theorem, 〈f ,g〉 = ∑N

i=1〈f (n), g(n)〉 denotes a duality pairing for functions
defined with respect the discrete time grid.

Theorem 3.5. Given ∆t = T/N and �u0 ∈ V (Ω). If (û, p̂, ĝ) ∈ (H1
0(Ω)× L2

0(Ω)×
L2(Ω)) is a solution of the semidiscrete-in-time optimal control problem, then we have

(i) the operator N ′(û, p̂, ĝ) is not onto R ×B2 ;
(ii) there exists a nonzero Lagrange multiplier (�w, r) ∈ H1

0(Ω)× L2
0(Ω) satisfying

the Euler equations

(JN )′(û, ĝ) · (w̃, r̃, h̃)−
〈
(�w, r),M ′(û, p̂, ĝ) · (w̃, r̃, h̃)

〉
= 0

∀(w̃, r̃, h̃) ∈ H1
0(Ω)× L2

0(Ω)× L2(Ω) ,
(3.10)

where 〈·, ·〉 denotes the duality pairing between B2 and B∗
2.

Proof. The operatorN ′(û, p̂, ĝ) cannot be onto. If it were, by the implicit function
theorem, we would have that there exists a solution, which is different from the optimal
solution, that minimizes the functional for every small neighborhood of (û, p̂, ĝ). This
contradicts the hypothesis that (û, p̂, ĝ) is an optimal solution.

For (ii), we note that from Lemma 3.4, the range of N ′(û, p̂, ĝ) is a closed set and
from part (i) this range is a closed proper subspace of R×B2. Then, the Hahn–Banach
theorem implies that there exists a nonzero element of R×B∗

2 = R×H1
0(Ω)×L2

0(Ω)
that annihilates the range of N ′(û, p̂, ĝ), i.e., one can find a (a, �w, r) ∈ R ×B∗

2 such
that 〈

(a, f , z) , (a, �w, r)
〉
= 0 ∀ (a, f , z) ∈ Ran(N ′(û, p̂, ĝ)) ,(3.11)

where a �= 0 since this solution is nontrivial (M ′(û, p̂, ĝ) is onto). (In (3.11), 〈· , ·〉
denotes the duality pairing between R × B2 and R × B∗

2 and Ran(N ′(û, p̂, ĝ)) the
range of N ′(û, p̂, ĝ).) We may, in fact, set a = −1 and then (3.10) follows from (3.11)
and the definition (3.8) of N ′(�u,p, �g).

3.4. The optimality system. We can rewrite the first-order necessary condi-
tion (3.10) as a system of partial differential equations. Solutions of this system are
also solutions of the semidiscrete-in-time optimal control problem.
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1495

Theorem 3.6. Given ∆t = T/N and �u0 ∈ V (Ω). Let (�u,p, �g) ∈ H1
0(Ω)×L2

0(Ω)×
L2(Ω)) denote a solution of the semidiscrete-in-time optimal control problem. Then,
we have

β�g(n) = −�w(n−1) for n = 1, 2, . . . , N ,(3.12)

where (�w, r) ∈ H1
0(Ω)× L2

0(Ω) satisfies



− 1

∆t
(�w(n) − �w(n−1), �v) + νa(�v, �w(n−1)) + c(�v, �u(n), �w(n−1))

+c(�u(n), �v, �w(n−1)) + b(�v, r(n−1)) = α(�u(n) − �U (n), �v)

∀�v ∈ H1
0 (Ω) for n = 1, , . . . , N ,

b(�w(n−1), q) = 0 ∀ q ∈ L2
0(Ω) for n = 1, . . . , N ,

�w(n−1) = �0 on Γ for n = 1, . . . , N ,

�w(N) = γ(�u(N) − �U (N)) .

(3.13)

Proof. From (3.2) and (3.7), the first-order necessary condition (3.10) is equivalent
to

α

N∑
n=1

(
(�u(n) − �U (n)), w̃(n)

)
∆t+ γ

(
(�u(N) − �U (N)), w̃(N)

)
+ β

N∑
n=1

(
�g(n), h̃(n)

)
∆t

−
N∑

n=1

[ 1

∆t
(w̃(n) − w̃(n−1), �w(n−1)) + νa(w̃(n), �w(n−1)) + c(w̃(n), �u(n), �w(n−1))

+c(�u(n), w̃(n), �w(n−1)) + b(�w(n−1), r̃(n))− (h̃(n), �w(n−1)) + b(w̃(n), r(n−1))
]
∆t = 0

∀ (w̃, r̃, h̃) ∈ B1 = H1
0(Ω) × L2

0(Ω) × L2(Ω). One easily sees, using w̃(0) = 0 (see
(3.7)), that

N∑
n=1

(w̃(n) − w̃(n−1), �w(n−1)) = −
N∑
i=1

(w̃(n), �w(n) − �w(n−1)) + (w̃(N), �w(N)) .

Combining the above equations and choosing w̃(n) = 0 and r̃(n) = 0 ∀ n, one easily
finds that

N∑
n=1

∫
Ω

(β�g(n) + �w(n−1), h̃(n)) d�x .

As the variations h̃(n) are independent in L2(Ω), we obtain (3.12).

Choosing w̃(n) = 0 and h̃(n) = 0 leads, in a similar manner, to b(�w(n), q) = 0 for
all q ∈ L2

0(Ω).
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1496 M. D. GUNZBURGER AND S. MANSERVISI

Finally, choosing r̃(n) = 0 and h̃(n) = 0 yields(
γ(�u(N) − �U (N))− �w(N), w̃(N)

)
−∆t

N∑
n=1

[
− 1

∆t
(w̃(n), �w(n) − �w(n−1)) + νa(w̃(n), �w(n−1))

+c(w̃(n), �u(n), �w(n−1)) + c(�u(n), w̃(n), �w(n−1))

+b(w̃(n), r(n−1))− α
(
(�u(n) − �U (n)), w̃(n)

)]
= 0

from which the remaining equations in (3.13) follow.
Thus, in order to solve the semidiscrete-in-time optimal control problem, we have

to solve the semidiscrete Navier–Stokes system (3.1), which can be expressed as

1

∆t
(�u(n) − �u(n−1), �v) + νa(�u(n), �v) + c(�u(n); �u(n), �v)

+b(�v, p(n)) = (�g(n), �v) ∀�v ∈ H1
0 (Ω) ,

b(�u(n), q) = 0 ∀q ∈ L2
0(Ω) ,

�u(n) = 0 on Γ ,

�u(0) = �u0 in Ω ,

the semidiscrete adjoint system (3.13), and the optimality condition (3.12).

4. Fully discrete time-space approximation.

4.1. Preliminaries. We consider only conforming finite element approxima-
tions. Let Xh ⊂ H1

0 (Ω) and Sh ⊂ L2(Ω) be two families of finite dimensional
subspaces parameterized by h that tends to zero. We let Sh

0 = Sh ∩ L2
0(Ω). We

make the following assumptions on Xh and Sh.
(a) Approximation properties: there exists an integer l and a constant C, inde-

pendent of h, �u and p, such that for 1 ≤ k ≤ l we have

inf
�uh∈Xh

‖�uh − �u‖1 ≤ Chk‖�u‖k+1 ∀�u ∈ Hk+1(Ω) ∩H1
0 (Ω) ,(4.1)

inf
ph∈Sh

‖p− ph‖ ≤ Chk‖p‖k ∀p ∈ Hk(Ω) ∩ L2
0(Ω) .(4.2)

(b) The inf-sup condition or LBB condition: there exists a constant C ′, indepen-
dent of h such that

inf
0 �=qh∈Sh

sup
0 �=�uh∈Xh

b(�uh, qh)

‖�uh‖1‖qh‖ ≥ C ′ > 0 .(4.3)

The condition (4.3) ensures the stability of solutions of the discretized Navier–Stokes
system.

In order to preserve the antisymmetry of the trilinear form c(�u;�v, �w) on the finite
element spaces, we introduce the modified trilinear form (see [14])

c̃(�u;�v, �w) =
1

2
{c(�u;�v, �w)− c(�u; �w,�v)} ∀ �u,�v, �w ∈ H1(Ω) .
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1497

We can recall some useful formulas and inequalities that hold in a two-dimensional
domain Ω:

c(�u;�v, �w) = c̃(�u;�v, �w) ∀ �u ∈ H1
0 (Ω) ∩W (Ω) ∀�v, �w ∈ H1

0 (Ω),

{
c̃(�u;�v, �w) = −c̃(�u; �w,�v) ∀ �u,�v, �w ∈ H1

0 (Ω) ,

c̃(�u;�v,�v) = 0 ∀ �u,�v ∈ H1
0 (Ω)

(4.4)

and (see [14])

{ |c̃(�u;�v, �w)| ≤ K1‖∇�u‖ · ‖�v‖L4(Ω)‖∇�w‖ ∀ �u,�v, �w ∈ H1
0 (Ω) ,

|c̃(�u;�v, �w)| ≤ K2‖�u‖ 1
2 ‖∇�u‖ 1

2 ‖∇�v‖‖�w‖ 1
2 ‖∇�w‖ 1

2 ∀ �u,�v, �w ∈ H1
0 (Ω) .

(4.5)

We remark that the second inequality in (4.5) is true in the framework of the con-
forming finite element approximation and only in the two-dimensional case (see [14]).

4.2. Formulation of the fully discrete optimal control approximation.
Let σN = {tn}Nn=0 be a partition of [0, T ] into equal intervals ∆t = T/N with t0 = 0
and tN = T . For each fixed ∆t (or N) and for every quantity q(t, �x), we associate the

corresponding set {q(n)
h }Nn=1. We will denote the vector (q

(1)
h , q

(2)
h , . . . , q

(N)
h ) as qh and

the space Y N as Y. We also define the continuous piecewise linear function �qNh (t, �x)
by the conditions �qNh (tn, �x) = qh(tn, �x) ∀ n = 0, 1, 2, . . . , N .

Given ∆t = T/N , �g ∈ L2(Ω) and �u0 ∈ V (Ω), (�uh,ph) is called a generalized

solution of the time-space discretization of the Navier–Stokes system if u
(n)
h ∈ Xh

and p
(n)
h ∈ Sh

0 and (u
(n)
h , p

(n)
h ) satisfy the system of equations

1

∆t
(�u

(n)
h − �u

(n−1)
h , �vh) + νa(�u

(n)
h , �vh) + c̃(�u

(n)
h ; �u

(n)
h , �vh)

+b(�vh, p
(n)) = (�g(n), �vh) ∀�vh ∈ Xh(Ω) ,

b(�v
(n)
h , qh) = 0 ∀ qh ∈ Sh

0 (Ω)

(4.6)

for n = 1, 2, . . . , N with initial velocity �u
(0)
h = πh�u0(�x).

The discrete functional used in the optimal control problem is given by

JN
h (�uh, �gh) =

α∆t

2

N∑
n=1

‖�u(n)
h − �U (n)‖2

+
β∆t

2

N∑
n=1

‖�g(n)‖2 +
γ

2
‖�u(N)

h − �UN‖2 .

(4.7)

The formulation of the fully discrete optimal control problem is given by

given ∆t = T/N , �u0 ∈ V (Ω), and �U ∈ Uad, find (�uh,ph, �gh) in
Xh(Ω)×Sh

0 (Ω)×Sh(Ω) such that (4.6) is satisfied and the cost func-
tional (4.7) is minimized.
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1498 M. D. GUNZBURGER AND S. MANSERVISI

The existence and the convergence of solutions of the fully discrete optimal control
problem can be proved in the same way as for the semidiscrete case if we limit our
analysis to conforming finite elements approximations. We can state that the solution
(�uh, �gh) of the fully discrete optimal control problem tends to the optimal control
solution (�u, �g) of the continuous problem as ∆t → 0 (N → ∞) and h → 0. The well-
known corresponding theorems for the full space-time discretization of the Navier–
Stokes equations can be found in [14]. The necessary optimality condition can be
found using the same techniques as those used in [10], which are essentially the same
as were used for the semidiscrete case. For error estimates, one can refer to [10], [12],
and [14]. Finally, for completeness, we can state the theorem that gives the control
as a solution of an adjoint problem.

Theorem 4.1. Let �u0 ∈ V (Ω), �U ∈ Uad, and ∆t = T/N. If (�uh, �gh) is a solution

of the fully discrete optimal control problem, then we have �g
(n)
h = − 1

β �w
(n−1)
h ∀ n =

1, 2, . . . , N. For n = 0, 1, . . . , N , the functions �w
(n)
h ∈ Xh are the solution of the

adjoint problem

− 1

∆t
(�w

(n)
h − �w

(n−1)
h , �vh) + νa(�vh, �w

(n−1)
h ) + c̃(�vh; �u

(n)
h , �w

(n−1)
h )

+c̃(�u
(n)
h ;�vh, �w

(n−1)
h ) + b(�vh, r

(n−1)
h )

= α(�u
(n)
h − �U (n), �vh) ∀�vh ∈ Xh(Ω),

b(�w
(n−1)
h , qh) = 0 ∀qh ∈ Sh

0 (Ω)

(4.8)

for n = 1, 2, . . . , N along with the terminal condition �w
(N)
h = γ(�u

(N)
h − �U (N)).

5. A gradient method. We now consider a gradient method for solution of the
fully discrete optimal control problem. Due to the forward-in-time nature of the state
equations and the backward-in-time nature of the adjoint equations, any practical
algorithm would involve a split of the optimality system into two parts. Thus, the
fully discrete system consists of

(a) the Navier–Stokes system: for n = 1, 2, . . . , N , �u
(n)
h ∈ Xh, p

(n)
h ∈ Sh

0 , and

1

∆t
(�u

(n)
h − �u

(n−1)
h , �vh) + νa(�u

(n)
h , �vh) + c̃(�u

(n)
h ; �u

(n)
h , �vh)

+b(�vh, p
(n)
h ) = (�g

(n)
h , �vh) ∀�vh ∈ Xh(Ω) ,

b(�u
(n)
h , qh) = 0 ∀ qh ∈ Sh

0 (Ω)

(5.1)

with initial velocity �u
(0)
h = πh�u0(�x);

(b) the adjoint system: for n = 1, 2, . . . , N , �w
(n−1)
h ∈ Xh, r

(n−1)
h ∈ Sh

0 , and

− 1

∆t
(�w

(n)
h − �w

(n−1)
h , �vh) + νa(�vh, �w

(n−1)
h ) + c̃(�vh; �u

(n)
h , �w

(n−1)
h )

+c̃(�u
(n)
h ;�vh, �w

(n−1)
h ) + b(�vh, r

(n−1)
h )

= α(�u
(n)
h − �U (n), �vh) ∀�vh ∈ Xh(Ω) ,

b(�w
(n−1)
h , qh) = 0 ∀qh ∈ Sh

0 (Ω)

(5.2)
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1499

with terminal condition �w
(N)
h = −γ(�u(N)

h − �U (N)).

The optimal control variable �g
(n)
h is related to the adjoint velocity �w

(n)
h by �g

(n)
h =

1
β �w

(n−1)
h . In the gradient algorithm, we invoke this relation only after convergence is

achieved.

Let JN
h (k) = JN

h (�uh(k), �gh(k)), where JN
h (·, ·) is given by (4.7) and k is the iter-

ation counter of the gradient algorithm. In the algorithm, τ will denote a prescribed
tolerance used to test for the convergence of the functional. The gradient algorithm
proceeds as follows.

(a) initialization:
(i) choose τ and �gh(0); set k = 0 and ε = 1;
(ii) solve for the starting velocity field �uh(0) from (5.1) with �gh = �gh(0);
(iii) evaluate JN

h (0);
(b) main loop:

(iv) set k = k + 1;
(v) solve for �wh(k) from (5.2) with �uh = �uh(k − 1);
(vi) set �gh(k) = �gh(k − 1)− ε (β�gh(k − 1)− �wh(k)) ;
(vii) solve for �uh(k) from (5.1) with �gh = �gh(k);
(viii) evaluate JN

h (k);
(ix) if JN

h (k) ≥ JN
h (k − 1), set ε = .5ε and go to (vi); otherwise, continue;

(x) if |JN
h (k) − JN

h (k − 1)|/|JN
h (k)| > τ , set ε = 1.5ε and go to (iv);

otherwise, stop.

The bulk of the computational costs are found in the backward-in-time solution of
the discrete adjoint system in step (v) and the forward-in-time solution of the discrete
state system in step (vii).

The convergence property of the gradient algorithm is given in the following result.

Theorem 5.1. Let (�uh(k), �wh(k),ph(k), rh(k), �gh(k)) denote the kth iterate of
the gradient algorithm and let (�uh, �wh,ph, rh, �gh) denote the solution of the fully
discrete optimality system (5.1) and (5.2). Then, for ∆t sufficiently small there exists
a ball B in L2((0, T );Xh) whose radius depends on α, β, and γ, such that if �gh(0) ∈ B,
then

(�uh(k), �wh(k),ph(k), rh(k), �gh(k)) → (�uh, �wh,ph, rh, �gh) as k → ∞ .

Proof. First, recall the following classical result; see, e.g., [3]. Let X be a Hilbert
space with norm ‖ · ‖ and inner product 〈·, ·〉. Let J (·) be a real-valued functional on
X. Suppose that J (·) is of class C2, that it has a local minimum at a point g ∈ X,
and that there exist two real numbers c1 and c2 and a ball B ⊂ X centered at g such
that ∀ δg1, δg2 ∈ X and ∀ g̃ ∈ B we have that

J ′′(g̃)(δg1, δg2) ≤ c1‖δg1‖‖δg2‖ and ‖δg1‖2c2 ≤ J ′′(g̃)(δg1, δg1) ,(5.3)

where J ′′(g̃)(δg1, δg2) is the bilinear form associated with the second derivatives of
J (·). Then, the gradient algorithm converges, for any g0 ∈ B, to g.

Now, for our setting, let ∆t = T/N . Then, for each g̃h ∈ L2((0, T );Xh), the
second Frechet derivative of JN

h (ũh(g̃h), g̃h) is given by

D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g2h) = α∆t

N∑
n=1

∫
Ω

w̃
(n)
1h · w̃(n)

2h d�x
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1500 M. D. GUNZBURGER AND S. MANSERVISI

+β∆t

N∑
n=1

∫
Ω

δ�g
(n)
1h · δ�g(n)

2h d�x+ γ

∫
Ω

w̃
(N)
1h · w̃(N)

2h d�x(5.4)

+α∆t

N∑
n=1

∫
Ω

(�u
(n)
h − �U

(n)
h ) · z̃(n)

h d�x+ γ

∫
Ω

(�u
(N)
h − �U

(N)
h ) · z̃(N)

h d�x ,

where ũ
(n)
h ∈ Xh is the solution of ũ

(0)
h = πh�u0(�x) and

1

∆t
(ũ

(n)
h − ũ

(n−1)
h , �vh) + νa(ũ

(n)
h , �vh) + c̃(ũ

(n)
h ; ũ

(n)
h , �vh)

+b(�vh, p
(n)
h ) = (g̃

(n)
h , �vh) ∀�vh ∈ Xh(Ω) ,

b(ũ
(n)
h , qh) = 0 ∀ qh ∈ Sh

0 (Ω)

(5.5)

for n = 1, 2, . . . , N , the first variations w̃
(n)
1h ∈ Xh and w̃

(n)
2h ∈ Xh are solutions of

w̃
(0)
ih = �0 and

1

∆t
(w̃

(n)
ih − w̃

(n−1)
ih , �vh) + νa(w̃

(n)
ih , �vh) + c̃(w̃

(n)
ih ; ũ

(n)
h , �vh)

+c̃(ũ
(n)
h ; w̃

(n)
ih , �vh) + b(�vh, r̃

(n)
ih ) = (δ�g

(n)
ih , �vh) ∀�vh ∈ Xh(Ω) ,

b(w̃
(n)
ih , qh) = 0 ∀ qh ∈ Sh

0 (Ω)

(5.6)

for n = 1, 2, . . . , N and for i = 1, 2, respectively, and the second variation z̃
(n)
h ∈ Xh

is the solution of z̃
(0)
h = �0 and

1

∆t
(z̃

(n)
h − z̃

(n−1)
h , �vh) + νa(z̃

(n)
h , �vh) + c̃(z̃

(n)
h ; ũ

(n)
h , �vh) + c̃(ũ

(n)
h ; z̃

(n)
h , �vh)

+b(�vh, s̃
(n)
h ) = −c̃(w̃(n)

1h ; w̃
(n)
2h , �vh)− c̃(w̃

(n)
2h ; w̃

(n)
1h , �vh) ∀�vh ∈ Xh(Ω) ,

b(z̃
(n)
h , qh) = 0 ∀ qh ∈ Sh

0 (Ω)

(5.7)

for n = 1, 2, . . . , N .

Let w̃
(n)
h ∈ Xh be the solution of the adjoint system w̃

(N)
h = −γ(ũ(N)

h − �U (N))
and 

− 1

∆t
(w̃

(n)
h − w̃

(n−1)
h , �vh) + νa(�vh, w̃

(n−1)
h ) + c̃(�vh; ũ

(n)
h , w̃

(n−1)
h )

+c̃(ũ
(n)
h ;�vh, w̃

(n−1)
h ) + b(�vh, r

(n−1)
h )

= α(ũ
(n)
h − �U (n), �vh) ∀�vh ∈ Xh(Ω) ,

b(w̃
(n−1)
h , qh) = 0 ∀qh ∈ Sh

0 (Ω)

(5.8)

for n = 1, 2, . . . , N . Then, combining (5.4), (5.7), and (5.8), we have that

D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g2h) = α∆t

N∑
n=1

(w̃
(n)
1h , w̃

(n)
2h )
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1501

+β∆t

N∑
n=1

(δ�g
(n)
1h , δ�g

(n)
2h ) + γ(w̃

(N)
1h , w̃

(N)
2h )(5.9)

−∆t
N∑

n=1

(
c̃(w̃

(n)
1h ; w̃

(n)
2h , w̃

(n−1)
h ) + c̃(w̃

(n)
2h ; w̃

(n)
1h , w̃

(n−1)
h )

)
.

Let �gh be the initial guess in the ball B of radius ξ, i.e., ‖�gh− g̃h‖ = ρ ≤ ξ. Now,
we have to show that there exists a ξ such that ∀ ρ ≤ ξ, (5.3) is satisfied for some c1
and c2.

Without any restrictions on ∆t we have

‖ũ(n)
h ‖1 ≤ C(‖g̃h − �gh‖+K) .(5.10)

From (5.6), if ∆t has been chosen in an appropriate way, we can obtain the estimate

‖w̃ih‖1 ≤ f1(‖�gh − g̃h‖)‖δ�gih‖(5.11)

for i = 1, 2 and where f1(·) is a continuous function. To see this, first note that (5.6)
results in (

1− 2K4∆t‖ũ(n)
h ‖2

1

)
‖w̃(n)

ih ‖2 − ‖w̃(n−1)
ih ‖2

+2∆t(ν − 2ε)‖w̃(n)
ih ‖2

1 ≤ 2∆tK3‖δ�g(n)
ih ‖2

(5.12)

or

G(n)‖w̃(n)
ih ‖2 − ‖w̃(n−1)

ih ‖2 + 2∆t(ν − 2ε)‖w̃(n)
ih ‖2

1 ≤ 2∆tK3‖δ�g(n)
ih ‖2 ,(5.13)

where

G(n) = 1−∆t(2K4‖ũ(n)
h ‖2

1) .(5.14)

We note that (5.12) is true for every ∆t, but if

∆t ≤ 1

2K4C2(‖g̃h − �gh‖+K)2
,(5.15)

then G(n) > 0 and thus(
n∏

k=1

G(k)

)
‖w̃(n)

ih ‖2
0 + 2∆t(ν − 2ε)

n∑
m=1

(
m−1∏
k=1

G(k)

)
‖w̃(m)

ih ‖2
1

≤ 2∆tK3

n∑
m=1

(
m−1∏
k=1

G(k)

)
‖δ�g(m)

ih ‖2 ,

(5.16)

where for n = 0,
∏n−1

k=1 G
(k) ≡ 1. If (5.15) holds, then G(n) > 0 so that

m−1∏
k=1

G(k) ≤ e−2∆tK4

∑m−1

k=1
‖ũ(k)

h
‖2
1 ≤ 1,

n∏
k=1

G(k) > 0,
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1502 M. D. GUNZBURGER AND S. MANSERVISI

and

∆t(ν − 2 ε)
n∑

m=1

(
m−1∏
k=1

G(k)

)
‖w̃(m)

ih ‖2
1 ≤ ∆tK3

n∑
m=1

‖δ�g(m)
ih ‖2 = K3‖δ�gih‖2 .(5.17)

Now, if ∆t satisfies the more restrictive condition

∆t ≤ 1

4K4C2(‖g̃h − �gh‖+K)2
,(5.18)

then

m−1∏
k=1

G(k) ≥ e−4∆tK4

∑m−1

k=1
‖ũ(k)

h
‖2
1 ≥ e−4∆tK4

∑N

k=1
‖ũ(k)

h
‖2
1 = e−4K4‖ũh‖2

1

so that, from (5.17),

‖w̃ih‖2
1 ≤

(
K3

(ν − 2ε)∆t
e4K4‖ũh‖2

1

)
‖δ�gih‖2 .

Combining with (5.10), we have that (5.11) holds if (5.18) holds. Note that the time
step restriction (5.18) does not involve the spatial grid size h.

In the same manner, from (5.8), we can obtain the estimate

‖�wh‖1 ≤ αf2(‖�gh − g̃h‖) ,(5.19)

where f2(·) is a continuous function.
Then, using (5.11) and (5.19) in (5.9), we have that for some constant K > 0

|D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g2h)|

≤
(
β +

(
α+ γ + αKf2(‖�gh − g̃h‖)

)
f2
1 (‖�gh − g̃h‖)

)
‖δ�g1h‖‖δ�g2h‖

(5.20)

and

|D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g1h)|
≥

(
β − αKf2(‖�gh − g̃h‖)f2

1 (‖�gh − g̃h‖)
)
‖δ�g1h‖2 .

(5.21)

Now, from the continuity of f1 and f2 we have that for every positive ε there exists a
ξ > 0 such that if ‖g̃h −�gh‖ ≤ ξ then f1(‖�gh − g̃h‖) ≤ ε and f2(‖�gh − g̃h‖) ≤ ε. This
yields

|D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g2h)|

≤
(
β +

(
α+ γ + αKε

)
ε2 )

)
‖δ�g1h‖‖δ�g2h‖ ≤ c2‖δ�g1h‖‖δ�g2h‖

and

|D2JN
h (ũh(g̃h), g̃h)(δ�g1h, δ�g1h)| ≥ (β − αKε3) ‖δ�g1h‖2 ≥ c2‖δ�g1h‖2,

where

c1 = β + (α+ γ + αKε)ε2 and c2 = β − αKε3 .
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VELOCITY TRACKING FOR NAVIER–STOKES FLOWS 1503

If ε is chosen such that β−αKε3 ≥ 0 then there exists a ξ such that ∀ ‖�gh−g̃h‖ = ρ ≤ ξ
(5.20) and (5.21) imply the inequalities in (5.3) with ∆t ≤ 1

4K4 C2 (ξ+K)2 .

Remark 5.2. As noted in the proof, the restriction on the time step ∆t does not
depend on the spatial grid.

Remark 5.3. The restriction on the time step ∆t is a necessary condition and
not sufficient for determining the radius of the ball. Therefore, a given ∆t cannot
determine the radius of the ball which is determined by the functions f1 and f2 if the
prescribed time step is used to solve the first variation equations.

6. Computational experiments. We consider a unit square domain Ω =
(0, 1) × (0, 1) ⊂ R

2. We assume that the time interval [0,1] is divided in equal inter-
vals of time ∆t = 1/N . The Taylor–Hood pair of finite element spaces is used on a
rectangular mesh, i.e., the finite element spaces are chosen to be continuous piecewise
biquadratic polynomials for the velocity and continuous piecewise bilinear polynomi-
als for the pressure. The mesh size is h and calculations with varying mesh sizes have
been performed. All the vector plots are normalized by the maximum values.

6.1. Example 1. We are interested in the convergence history with respect to
all the parameters involved so that a simple stationary target velocity �U = (U, V ) is
chosen, where

U(x, y) = 10
d

dy
(φ(x)φ(y)) and V (x, y) = −10 d

dx
(φ(x)φ(y))

with

φ(z) =
(
1− cos(0.8πz)

)
(1− z)2 .

Note that �U is divergence free.

6.1.1. Velocity tracking evolution. We first examine an example of control
for the initial velocity

u0(x, y) = −10U(x, y) and v0(x, y) = −10V (x, y) .

We set ∆t = 0.0125, h = 1/16, α = 1, β = 0.0001, and γ = 0.5.
The evolution is given in Figures 6.1.1–6.1.1. The controlled fluid is depicted on

the left and the desired flow on the right. Observe that we start with a high energy
flow that rotates in the direction opposite direction to that of the target flow. Also
observe that we can divide the evolution into four distinct phases:

(i) decreasing the magnitude: at the beginning the control does not act on the
shape of the flow but on the magnitude;

(ii) changing the shape: at the bottom of Figure 6.1.1, we have a rapid change in
shape; the change occurs so quickly that it is difficult to track it even with small time
steps;

(iii) matching the target flow: the control changes shape and magnitude in order
to match the target flow (at the top of Figure 6.1.1); at t = .25 we achieve a near
perfect match;

(iv) tracking the velocity: the control keeps tracking the target flow; the effect of
control in this steady phase is excellent and improves near t = T = 1.

Figure 6.3 shows the error ‖�u− �U‖ between the controlled flow �u and the target

flow �U and the norm of the control ‖�g‖.We see the error rapidly goes to zero and that
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Fig. 6.1. Test 1. Controlled (first and third columns) and target (second and fourth columns)
flows at t = 0 and .05 (first row), t = .1 and .125 (second row), t = .15 and .163 (third row), t = .169
and .175 (fourth row), and t = .181 and .187 (fifth row).

the control works hard, i.e., its norm is relatively large, at the beginning in order to
steer the controlled flow to the target flow and then, after a good match is achieved,
its norm remains relatively constant and small. Near t = T = 1, the control strength
increases in order to minimize the term in the functional that is evaluated at t = T .

6.1.2. Dependence on β and γ. We now examine the effects of changes in
the parameters β and γ. The initial velocity is set to zero. In Figure 6.4, we show
the error ‖�u− �U‖ between the controlled flow �u and the target flow �U and the norm
of the control ‖�g‖ for different values of β. Starting from the top in the upper figure,
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Fig. 6.2. Test 1. Controlled (first and third columns) and target (second and fourth columns)
flows at t = .193 and .2 (first row), t = .212 and .225 (second row), t = .25 and .3 (third row), and
t = .5 and 1 (fourth row).

we have β = 0.01, 0.001, 0.0001, and 0.00001. The corresponding curves in the lower
figure can be identified as running from bottom to top along the vertical axis. The
value of γ for these calculations is held constant at 0.5. The time step ∆t is again
0.0125 and h = 1/16. We note that the controlled flow matches the target flow very
well for values of β < 0.001. The reduction of the error in the tracking phase near
t = T = 1 is accompanied by a reduction of the error in the matching phase near
t = 0 when β decreases. The norm of the control agrees with the intuitive behavior
of the error. For low values of β, the control resembles a delta function at t = 0 plus
the body force generated by the target velocity �U.

From the results for different values of γ, we see the importance of the term in
the functional evaluated at t = T . In Figure 6.5, we see the error ‖�u− �U‖ between the

controlled flow �u and the target flow �U for γ = 0.5, 0.1, and 0.01. For small values
of γ, the controlled flow tends to wander far from the target flow near t = T. This is
not acceptable or desirable. This effect is more pronounced if β is small. Generally,
effecting good control requires small values of β; however, if γ is also small, the error
near t = T could be greater than that near t = 0 and thus the tracking performance
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Fig. 6.3. Test 1. Error ‖�u− �U‖ (top) and control norm ‖g‖ (bottom).

of the control is not acceptable. As expected, the control �g approaches zero at t = T
when γ goes to zero so that, in that limit, the error near t = T is not controllable.
The conclusion that can be reached from these observations is that the term in the
functional evaluated at t = T is necessary for good control. A good choice for γ is
about 0.5 for most values of β.
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Fig. 6.4. Test 1. Error (top) and control norm (bottom) for different β.

6.1.3. Dependence on h and T . In Figure 6.6, we see the error ‖�u − �U‖
between the controlled flow �u and the target flow �U for h = 1/8, 1/12, and 1/16. The
initial velocity has been chosen to be zero and β = 1/3000, γ = 0.5, and ∆t = 0.0125.
Because of the simple form of the target velocity, good spatial accuracy is achieved in
all these cases. Some differences are visible around t = T = 1 since this point is very
sensitive to the discretization. On the bottom of Figure 6.6, we have the error for
different values of T (T = 1 (a), T = 2 (b), and T = 4 (c)) for β = 0.001 and γ = 0.1.
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Fig. 6.5. Test 1. Error (top) and control norm (bottom) for different γ.

It seems that changes in the value of the final time T does not affect the time history
of the state or control in the overlapping time intervals.

6.2. Test 2. The target velocity �U for this test is a solution of the Stokes system
with zero initial velocity and body force �f = (f1, f2) given by

f1 = a(0.4, x, y)− e−2ta(0.6, x, y) and f2 = b(0.4, x, y)− e−2tb(0.6, x, y) ,
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Fig. 6.6. Test 1. Error ‖�u− �U‖ for different h (top) and T (bottom).

where

a(z, x, y) = 10
dψ(z, x, y)

dy
, b(z, x, y) = −10dψ(z, x, y)

dx
,

and

ψ(z, x, y) =
(
1− cos(4πzx)

)
(1− x)2

(
1− cos(4πzy)

)
(1− y)2 .
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Fig. 6.7. Test 2. Error ‖�u− �U‖ (top) and control norm ‖g‖ (bottom).

The resulting target velocity is a superposition of two flows: a vortex at the center
of the domain with large radius and another vortex with small radius centered in the
lower left corner. Each of these flows prevails at different times of the evolution. We
set α = 1, β = 1/5000, γ = 0.5, ∆t = 0.025, and h = 1/16.

The initial velocity for the controlled flow is

u0(x, y) =
(
cos(2πx)− 1

)
sin(2πy),
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Fig. 6.8. Test 2. Controlled (first and third columns) and target (second and fourth columns)
flows at t = 0 and .1 (first row), t = .2 and .3 (second row), t = .4 and .5 (third row), t = .6 and .8
(fourth row), and t = .9 and 1 (fifth row).

v0(x, y) = −(
cos(2πy)− 1

)
sin(2πx) .

Figure 6.7 shows the error ‖�u− �U‖ between the controlled flow �u and the target flow
�U and the norm of the control ‖�g‖. We can see the error reduces. The evolution is
given in Figure 6.2. The controlled fluid is on the left and the target flow is on the
right. We can see that by t = 0.5 we reach a near perfect match. Again, the control
works hard at the beginning in order to steer the controlled flow to the target flow
and subsequently remains flat. Near t = T , the control strength again increases in
order to reduce the error.
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