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Abstract. We provide a unifying projection-based framework for structure-preserving interpo-
latory model reduction of parameterized linear dynamical systems, i.e., systems having a structured
dependence on parameters that we wish to retain in the reduced-order model. The parameter de-
pendence may be linear or nonlinear and is retained in the reduced-order model. Moreover, we are
able to give conditions under which the gradient and Hessian of the system response with respect to
the system parameters is matched in the reduced-order model. We provide a systematic approach
built on established interpolatory Ho optimal model reduction methods that will produce parameter-
ized reduced-order models having high fidelity throughout a parameter range of interest. For single
input/single output systems with parameters in the input/output maps, we provide reduced-order
models that are optimal with respect to an Ha ® L2 joint error measure. The capabilities of these
approaches are illustrated by several numerical examples from technical applications.
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1. Introduction. Numerical simulation has steadily increased in importance
across virtually all scientific and engineering disciplines. In many application areas,
experiments have been largely replaced by numerical simulation in order to save costs
in design and development. High accuracy simulation requires high fidelity math-
ematical models which in turn induce dynamical systems of very large dimension.
The ensuing demands on computational resources can be overwhelming and efficient
model utilization becomes a necessity. It often is both possible and prudent to pro-
duce a lower dimension model that approximates the response of the original one to
high accuracy. There are many model reduction strategies in use that are remark-
ably effective in the creation of compact, efficient, and high fidelity dynamical system
models. Such a reduced model can then be used reliably as an efficient surrogate to
the original system, replacing it as a component in larger simulations, for example, or
in allied contexts that involve design optimization or the development of low-order,
fast controllers suitable for real time applications.

Typically, a reduced-order model will represent a specific instance of the physi-
cal system under study and as a consequence will have high fidelity only for small
variations around that base system instance. Significant modifications to the physical
model such as geometric variations, changes in material properties, or alterations in
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boundary conditions generally necessitate generation of new reduced models. This
can be particularly onerous in design optimization where parameters are changed in
each optimization cycle. Since the generation of a high fidelity reduced model may be
comparable in expense to a (brief) simulation of an instance of the original full-order
model, the benefits of model reduction will be fully realized only if the parametric
dependence found in the original dynamical system can be preserved in some fashion
within the reduced model. This is the goal of parameterized model reduction (PMOR):
generate a reduced-order dynamical system retaining functional dependence on impor-
tant design parameters and maintaining high fidelity with respect to the response of
the original dynamical system, throughout the range of interest of design parameters.

Many design optimization approaches use surrogate models that are constructed
using response surface modeling or Kriging [34, 33, 45]. These techniques are flexible
and broadly applicable; they can be efficient for uncertain, unstructured, or empiri-
cally based models, but generally cannot exploit fully the character of time-dependent
processes generated by an underlying dynamical system. PMOR is an approach that
attempts to take direct account of structure in the underlying dynamical system cre-
ating the response data. It can be expected to produce more efficient and accurate
models than general purpose approaches that provide ad hoc fits or regressions to
observed input/output responses.

PMOR is at an early stage of development. Currently, there are developments
based on multivariate Padé approximation [5, 12, 14, 15, 17, 18, 19, 27, 26, 37, 38, 41,
49]. These methods differ in the way moments are computed (implicitly vs. explic-
itly) and in the number of (mixed) moments that are matched. Approaches based on
explicitly computed moments suffer from the same numerical instabilities as analo-
gous methods for model reduction of nonparameterized systems. Implicit approaches
appear to provide a robust resolution of these difficulties, at least for low dimensional
parameter spaces. Moment-matching/interpolation properties can be proved (see,
e.g., [18, 12, 49, 27]) analogously as for standard moment-matching methods such as
Padé-via-Lanczos [16, 20]. Existing proofs appear either to be restrictive regarding
the number of parameters or structure of dependence (e.g., only one additional pa-
rameter and linear parametric dependence in [49]; parameters only in some of the
defining matrices in [49, 12, 27]), or they are formulated in terms of series expansions
and term-by-term matching of moments. Explicit moment matching is conceptually
simple (if painful), and indeed, [6] considers a framework of parametric dependence
that is quite general; this approach could be extended also to the situations we con-
sider. However, such approaches have led to strategies that are then based on explicit
moment computation (e.g., [12, 6]) and so may again be susceptible to numerical
instabilities as mentioned above, which could be further exacerbated in large scale
settings. Note that to the extent that multi-input/multi-output (MIMO) cases have
been considered at all in parameterized settings, full transfer matrix interpolation
properties have been pursued, and these approaches also rapidly become infeasible
already with modest input/output dimensionality.

In contrast to this, we aim at a broadly applicable implicit interpolation frame-
work that is capable of treating parameter dependence in all matrices defining the
parameterized system, possibly involving nonlinear parameter functions. Our ap-
proach allows for a numerically robust implementation and can handle an arbitrary
number of interpolation points. We investigate here some first ideas in the direction
of optimal selection of interpolation points. For this, we utilize algorithmic ideas for
Ho-optimal model reduction developed for nonparameterized linear systems in [25].
For the MIMO case, this requires tangential Hermite interpolation. To the best of our
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knowledge, this has not been considered in the literature thus far, and so we detail the
use of tangential interpolation to match values of the transfer function and its gradi-
ent with respect to parameters. We also show that, as in standard moment-matching
approaches, higher-order tangential interpolation is possible—this is demonstrated
for the Hessian of a parametrized transfer function. This in turn may have interest-
ing applications when using the reduced-order model as a surrogate in optimization
methods, but this passes beyond the scope of this work.

Other PMOR approaches include interpolation of the full transfer function (see
[3]) and reduced basis methods (see, e.g., [2, 22, 28, 32, 39]). Reduced-basis methods
are successful in finding an information-rich set of global ansatz functions for spatial
discretization of parameterized partial differential equations (PDEs). In the setting we
consider here, we do not necessarily assume that a PDE is provided; we start instead
from a parameterized state-space model. This is the case, e.g., when computer-aided
engineering (CAE) tools for automatic model generation are used. In this situation,
the spatial discretization of the PDE is performed inside the CAE tool and reduced
basis methods are not directly applicable.

We lay out our basic problem setting, define notation, and describe precisely in
what sense our model reduction methods are structure-preserving in section 2. In
section 3, we review aspects of interpolatory model reduction in standard (nonparam-
eterized) settings that are useful for us, focusing especially on the selection of inter-
polation points that lead to optimal reduced-order models. In section 4, we derive an
interpolation-based approach to PMOR that is closely associated with rational Krylov
methods developed by Grimme [24] and earlier work by Villemagne and Skelton [13].
As noted in these works, interpolation properties are governed by the range and coker-
nel of a (skew) projection associated with the model reduction process. Remarkably,
similar conditions govern the matching of gradient and Hessian information of the
system response with respect to the system parameters. Efficient numerical methods
built on previously known #Hs optimal model reduction methods are introduced in
section 5, and we describe in section 5.1 how to find optimal parameterized reduced-
order models for a special case of a parameterized single input/single output (SISO)
system. The efficiency of the derived numerical algorithms for PMOR is illustrated
using several real-world examples from microsystems technology in section 6.

2. Problem setting. Consider a multi-input/multi-output (MIMO) linear dy-
namical system parameterized with v parameters p = [p1,...,p,]T € R”, presented
in state space form as

o) E(pg X(0) = A)X(0) + BRI,

where E(p), A(p) € R™", B(p) € R™*™ and C(p) € R“”*™. Our framework allows
parameter dependency in all system matrices. Without loss of generality, assume the
parametric dependence in the system matrices of (2.1) has the following form:

E(p)=Eo+e1(p)E1 + -+ enm(p)En,

A(p) = Ao+ filp)Ar + -+ fu(p)Ans,
(p) = Bo +91(p)B1+ - + gnm(p)Bus,

(p) =Co + h1(p)C1+ -+ har(p)Cr.

We assume throughout that (2.1) is stable for all parameter choices p considered.

(2.2)

Q ®
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The parameter dependence encoded in the functions ej, f;, gj, h; may be linear or
nonlinear, but is assumed smooth enough to allow for approximation by interpolation.

The representation (2.2) is not unique; there may be many ways in which one may
express system matrices, E(p), A(p), B(p), and C(p) in such a form, and the number
of terms, M, as well as the particular parameter functions e, f;, g;, h; may vary with
the representation that one chooses. A desirable choice should produce as few terms
as possible (M as small as possible) for reasons we describe below; the methods we
propose will be most advantageous when M < n. Note also that the actual number
of terms appearing may vary among the matrices E(p), A(p), B(p), and C(p).

A general projection framework for structure-preserving PMOR can be described
as follows: suppose that (constant) matrices V., W,. € C™*" are specified with r < n
and rank(V,) = rank(W,.) = r and define an associated reduced system (see, e.g.,
[18, 12, 17, 27, 49]):

Ef’(p) X, (t) =A, (p) Xy (t) + Br(p) u(t),
v (t) = C,.(p) x,-(t) with x,.(0) =0,

(2.3) where E,(p) = WXE(p)V,, A.(p)=WIA(p)V,,
B.(p) = W;/B(p), and C,(p)=C(p)V,

)
The parametric dependence of the original system (2.1) is retained in the reduced
system (2.3) in the sense that

E.(p) = WIE)V, +ei(p)WIE,V, + - +en(p)WIENV,,
(2.4) A.(p)=WIAV, + fi(P)WIAV, + - + fu(Pp)WIALV,,

B.(p) =W/By + a(pWiB1 + - + gu(p)W; By,

Cr(p) =CoV: + m(P)C1V: + -+ + hu(P)CuVy,

which is evidently structurally similar to (2.2). Once the matrices V, and W, are
specified, all the constituent matrices, WX E,V,, WI'A, V.., WI'B,, and C,V, for
k =0,...,M contributing to E,(p), A,.(p), B,(p), and C,.(p) can be precomputed,
and this corresponds to the offfine portion of the method. Although the order, r,
of the dynamical system (2.3) is an obvious focus in judging the cost of using the
reduced system, the size of M, as a measure of the complexity of the representation
(2.2), may become a factor since for every new choice of parameter values, the cost
of generating E,.(p), A-(p), B, (p), and C,(p) obviously grows proportionally to M.

Whenever the input u(¢) is exponentially bounded—that is, when there is a fixed
v € R such that [ju(t)| ~ O(e??), then x(t) and y(¢) from (2.1) and x,(¢) and y,(t)
from (2.3) will also be exponentially bounded, and the Laplace transform can be
applied to (2.1) and (2.3) to obtain

(2.5) (s,p) = C(p) (s E(p) — A(p))~ B(p) (),
(2.6) r(5,p) = Co(p) (sEr(p) — Ar(p)) " B, (p)ti(s),

where we have denoted Laplace transformed quantities with ~. We define parameter-
ized transfer functions accordingly:

(2.7) H(s,p) = C(p) (sE(p) — A(p)) ' B(p)
and
(28) Hr(sa p) = Cr(p) (S Er(p) - Ar(p))71 Br(p)
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The quality of the approximation y,.(s,p) = y(s,p) is tied directly to the quality of
the approximation H, (s, p) ~ H(s,p). The quality of this approximation in general,
and interpolation properties in particular, depend entirely on how the matrices V.
and W, are selected.

There is substantial flexibility in choosing V, and W,.. We do require that both
V., and W, have full rank but it is not necessary to require that either WXV, or
WTE(p)V, be nonsingular. Note that if E(p) is nonsingular, then H(s, p) is a strictly
proper transfer function and one may wish H,.(s,p) to be strictly proper as well—
leading to the requirement that E,.(p) = WX E(p)V, be nonsingular as well. This can
be thought of as an interpolation condition since under these circumstances H,. will
interpolate H at infinity: lims_o H(s) = lims_ o H,.(s) = 0 (facilitating, in effect,
a good match between true and reduced-order system response at high frequencies).
Although we allow V,. and W, to be complex in order to simplify the discussion, in
most circumstances V, and W, can be chosen to be real so (2.3) represents a real
dynamical system.

3. Interpolatory model reduction. To make the discussion largely self-con-
tained, we briefly review the basic features of interpolatory model reduction for non-
parameterized systems. Consider a full-order (nonparameterized) dynamical system
described by

(3.1) Ex(t) = Ax(t) + Bu(t), y(t)=Cx(t),  withx(0)=0,

where A, E € R™" B € R™™ and C € R**" with the associated transfer function
H(s) = C(sE — A)"!B. We seek a reduced system with state-space form

(3.2) E, x.(t) = A, x:(t) + B,y u(t), y.(t)=C,x.(t), with x,.(0) =0,

and associated transfer function, H,(s) = C,.(sE, — A,)"!B,., where A, E, € C"*",
B, € C"™*™, C, € C™", and r < n, are such that y,(t) approximates y(t) well. We
adopt the projection framework described above, specifying matrices V,. € C"*" and
W, € C™*", such that rank(V,) = rank(W,) = r, which then determine reduced
system matrices E, = WF;FEVT, A, = WZAVT, B, = WF;FB, and C, = CV,.

Interpolatory model reduction is an approach introduced by Skelton et al. in [13,
52, 53|, which was later placed into a numerically efficient framework by Grimme [24].
Gallivan, Vandendorpe, and Van Dooren [21] developed a more versatile version for
MIMO systems, a variant of which we describe here and then adapt to parameterized
systems: Starting with a full-order system as in (3.1) and selected interpolation points,
0k, in the complex plane paired with corresponding left and right directions ¢ € ct
and by € C™, we produce matrices V,, € C"*" and W, € C™*" that define a
reduced-order system (3.2) in such a way that the reduced transfer function, H,.(s),
is a Hermite interpolant of the full-order transfer function, H(s), at each oy along
both left and right directions:

(33) C?H(O’l) = CZTHT(O'i), H(O’Z)bl = HT(O'i)bi, and
ClTH/T(O'l)bZZC;TH/(O'Z)bZ fori:l,...,r.

H'(0) here denotes the first derivative of H(s) with respect to s evaluated at o. Since

the matrix-valued function, H,(s), consists of rational functions in s, (3.3) describes

a rational interpolation problem. The following theorem gives elementary subspace

criteria forcing interpolation.

THEOREM 3.1. Let o € C be such that both c E— A and o E,. — A, are invertible.
IfbeC™ and c € C* are fived nontrivial vectors, then
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(a) if (@ E — A)"'Bb € Ran(V,), then H(c)b = H,(0)b;
(b) if (cTc (0E— A)_l)T € Ran(W,), then ¢TH(o) = ¢TH,(0); and

T
(c) if both (¢ E — A)"'Bb € Ran(V,) and (cTc (0B — A)*l) € Ran(W,),
then c’H'(0)b = cTH/(0)b.
Theorem 3.1 makes the solution of (3.3) straightforward. Given a set of distinct
shifts {o}}_,, left-tangent directions {cy};_, C C*, and right-tangent directions
{bir};—; € C™, construct full-rank matrices V,. and W, such that

(3.4) Ran(V,) D span {[(c1E — A)"'Bby,..., (0c,E — A)"'Bb,|}
and
(3.5) Ran(W,.) D span { [(ch(UlE — A)_l)T7 e (ch(arE — A)_l)T] } .

If o;E, — A, is nonsingular for each i = 1,...,r, then the reduced system H,(s) =
C,(sE, — A,)"'B, defined by A, = WTAV,, E, = WIEV,, B, = W!B, and
C, = CV, solves the tangential interpolation problem (3.3). In [4], Beattie and
Gugercin showed how to solve the tangential interpolation problem posed in (3.3) for
a substantially larger class of transfer functions—those having a coprime factorization
of the form H(s) = C(s)K(s)"'B(s) with B(s), C(s), and K(s) given as meromor-
phic matrix-valued functions. This generalization lays the foundation of our present
developments for parametrized model reduction described here.

The fidelity of the final reduced-order model must always be of central concern
and clearly the selection of interpolation points and tangent directions becomes the
main factor in determining success or failure. Until recently, selection of interpolation
points was largely ad hoc. Recently however, Gugercin, Antoulas, and Beattie [25]
showed an optimal shift selection strategy that produces reduced-order systems that
are optimal Hy approximations to the original system. An optimal Hs approximant
to the system H(s) is a system H,.(s) of reduced order, r, which solves

. 1 [t 2 1/2
Hrglsl“gble”H_HrHH27 where  ||H|,,, := <% /700 ||H(zw)HFdw> ,
and | - ||r denotes the Frobenius norm of a matrix.

The set over which the optimization problem is posed, the set of all stable dy-
namical systems of order no greater than r, is nonconvex, so obtaining a global min-
imizer is at best a hard task, and indeed, it can be intractable. One moves instead
toward a more modest goal and generally seeks “good” reduced models that sat-
isfy first-order necessary optimality conditions, in principle allowing the possibility
of having a local minimizer as an outcome. Many have worked on this problem;
see [7, 29, 31, 36, 40, 44, 50, 51, 55]. Interpolation-based Ho optimality conditions
were developed first by Meier and Luenberger [40] for SISO systems. Analogous Hz
optimality conditions for MIMO systems have been placed within an interpolation
framework recently in [10, 25, 46]. This is summarized in the next theorem.

THEOREM 3.2. Suppose H,(s) = C.(sE, — A,)"'B, minimizes |H — H,||3,
over all (stable) rth-order transfer functions and that the associated reduced-order
pencil sE,. — A, has distinct eigenvalues {Xz}le Let y! and x; denote left and
right eigenvectors associated with /N\l so that A,x; = ;\iETxi, YiA, = E\iy;‘Er, and
yiE,x; = 6;5. Define ¢; = C,x; and B;‘F =y/B,.
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Then the residue of ﬁr(s) at XZ is matriz-valued and rank one: res[ﬁr(s),xi] =
¢;bl. We can write H,(s) = >._, ﬁéib?. Then, fori=1,...,r,

2

H(—\)b; = H.(—X\)b;, € H(—X;) =& H,(—\,),
(3.6) and &TH'(=X)b; = ¢TH.(=\)b;.

That is, first-order conditions for Hy optimality can be formulated as tangential
interpolation conditions at reflected images of \; through the origin.

Evidently, the H, optimal interpolation points and associated tangent directions
depend on knowledge of the reduced-order system and so will not be available a
priori. An iterative algorithm was introduced in [25], called the Iterative Rational
Krylov Algorithm (IRKA), built on successive substitution. Interpolation points used
for the next step are chosen to be the reflected images of reduced-order poles for
the current step: o <— —\ for eigenvalues, \;, of the pencil A\E,. — A, associated with
reduced matrices of the current step. The tangent directions are corrected in a similar
way, using residues of the previous reduced model successively until (3.6) is satisfied.
A brief sketch of IRKA is described in Algorithm 3.1.

From steps 3(d) and 3(e), one sees that upon convergence, the reduced transfer
function will satisty, (3.6), first-order conditions for Ho optimality. The main compu-
tational cost involves solving 2r linear systems at every step to generate V,. and W,..
Computing the left and right eigenvectors y; and x;, and eigenvalues, X\;(A,, E,), of
the reduced pencil AE,. — A, is cheap since the dimension r is small.

ALGORITHM 3.1. MIMO Hs OPTIMAL TANGENTIAL INTERPOLATION METHOD.

1. Make an initial r-fold shift selection: {o1,...,0.} that is closed under con-
Jugation (i.e., {o1,...,00} = {071,...,0,} viewed as sets) and initial tan-
gent directions by, ..., b, and ¢1,...,¢C,, also closed under conjugation.

2.V, = [(alE —A)"'Bby,...,(0,E — A)"'Bb, }

T
w7 — [(leC(al E-A)N . @CoE-A) } .
3. while (not converged)
(a) A, = WTAV,, E, = WIEV,, B, = W?B, and C, = CV,.
(b) Compute A,x; = NE,x; and y; A, = \y;E, with y;E,x; = §;;
where yi and x; are left and right eigenvectors associated with ;.

(c) 0; < —\i, bl < y!B, and ¢; + C,x;, fori=1,...,r.
() V, = [(alE —A)"'Bby,....(0,E — A)"'Bb, } .
(

T
e) WT = [(E"{C(al E-A)Y .. ECo.E-A)Y }
4. A, =WTAV,, E, = W/EV,, B, = W/B, C, = CV,.

4. Interpolatory model reduction of parameterized systems. We are able
to extend the results of the previous section in a natural way to an interpolation frame-
work for applying PMOR to the parameterized system (2.1)—(2.2) in order to produce
a parameterized reduced system (2.3)—(2.4). In addition to the basic interpolation
conditions for the transfer function as in (3.6), we develop conditions that also will
guarantee matching of both the gradient and Hessian of the transfer function with
respect to the parameters. Our framework allows parameter dependency (linear or
nonlinear) in all state-space quantities.
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THEOREM 4.1. Suppose o € C and p € C” is such that both o E(p) — A(p)
and o E.(p) — A.(p) are invertible. Suppose b € C™ and ¢ € C* are fired nontrivial
vectors.

41)  (a) If (cE(p) — A(p))”"B(p)b € Ran(V,), then H(o,p)b = H, (s, p)b.
( (

—1 T
(42)  (b) If ("C(B) (0 E(p) ~ A(p) ') €Ran(W,),

then ¢T'H(o,p) = c'H,.(0,p).

Proof. Define A(s,p) = sE(p) — A(p) and A,(s,p) = sE.(p) — A.(p) =
WZA(s,p)V,, and consider the (skew) projections

P.(5,p) = V. A,.(5,p) "WLA(s,p) and Q,(s,p) = A(s,p)V, A, (s,p) "WZ.

Define f(s,p) = A(s,p) 'B(p)b and g”(s,p) = c'C(p)A(s,p)~t. Then observe
that the hypotheses of (4.1) means f(c,p) € Ran(P ( ,p)) and thus

H(o,p)b — H,(0,p)b = C(p) (1 - P,(0,p)) £(0,p) =
proving (a). Analogously, the hypotheses of (4.2) means g(c, p) L Ker(Q,(c,p)) and
"H(0,p) — <"H,(0,p) = 8" (0,p) (I - 2,(0,p)) B(p) = 0,
vielding (b). O

Next, we show how to construct an interpolatory reduced-order model whose
transfer function not only interpolates the original one, but which also forces matching
of parameter-gradient values.

THEOREM 4.2. Assume the hypotheses of Theorem 4.1. Suppose, in addition,
that E(p), A(p), B(p), and C(p) are continuously differentiable in a neighborhood of
p. Then both cTH(o,p)b and c'H,.(o,p)b are differentiable with respect to p in a
neighborhood of p as well.

If both (o E(p) — A(p))~ 1B(|3)beRan(V)
and (<7C(p) (7B(B) ~ A)) ") € Ran(W,),
(4.4) then Vpc' H(o, p)b = Vpc' H, (0, p)b.

(4.3)

From Theorem 3.1, these conditions also guarantee that ¢’ H'(o,p)b = ¢’ H.(c,p)b
(where again, ' denotes differentiation with respect to the frequency parameter, s).

Proof. Fix an arbitrary nontrivial direction n = [ny,...,n,]7 € C” and denote
the associated directional derivative as

n- Vp—ana(zl

i=1

Note that for all s and p at which P, and Q, are continuous, we have: Ran((n - Vp)
P.(s,p)) C Ran(P,(s,p)) and Ker ((n - Vp)Q,(s,p)) D Ker (Q,.(s,p)). Thus

(4.5) (I=2:(s,p)) [(n-Vp)Pr(s,p)] = 0 and [(n- Vp)Q,(s,p)] (I - Q:(s,p)) = 0.

As a consequence,

(n-Vp) [(I—-9r(s,p)) A(s,p) (I = Pr(s,p))] = (I = Q(s,p)) [(m- Vp)A(s, p)] (I — Pr(s,p)).
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Observe that
¢"H(s,p)b — ¢"H,(s,p)b = g" (s,p) (I = 2.(s,p)) A(s,p) (I - P.(s,p)) £(5, P)-

Thus, we may calculate a directional derivative and evaluate at s = ¢ and p = p:

pP=p
— [(n- V)" (0,p)] (L — 2.(0,p)) A(0,p) (1 — P, (0. §)) £(c, )
+ g7 (0,p) (I - 2,(0.p)) [(n - Vp)A(o,p)] (I - P, (0,)) (01 p)
+ g7 (0,p) (1—2,(0.)) A(0.p) (I - P, (0,p)) [(n - Vp)£ (07, p)]

The hypothesis of (4.3) implies f(o,p) € Ran(P,.(o,p)) and g(o,p) L Ker(Q,(o,p))
so (n-Vp) [¢"H(o,p)b — ¢ H,(o,p)b] ‘P:f) = 0. Since n was arbitrarily chosen the
conclusion follows. O

Notice that for SISO systems (where tangent directions play no role), we create
a parameterized reduced system, H,.(s,p); not only is it a Hermite interpolant (with
respect to frequency) to H(s,p) at (o, p) but the p-gradients of H, and H also match
at (o,p). Furthermore, we can guarantee this additional matching for essentially
no greater cost and without computing the p-gradient of either H,(s,p) or H(s,p).
This is a significant feature with regard to sensitivity analysis [11]: notice that the
parameterized reduced-order model may be used to compute parameter sensitivities
more cheaply than the original model and will exactly match the original model
sensitivities at every parameter interpolation point, p. See also [30, 48] for recent
methods that use sensitivity data and PMOR type methods.

There are also interesting consequences for optimization with respect to p of ob-
jective functions depending on H(s, p) (or on the output y(s,p) for a fixed input u).
Under natural auxiliary conditions, reduced-order models satisfying the conditions
(4.3) of Theorem 4.2 will lead to, in the terminology of [1], first-order accurate ap-
proximate models for the objective function and this feature is sufficient in establishing
robust convergence behavior of related trust region methods utilizing reduced-order
models as surrogate models.

In the context of optimization, the next obvious question is under what conditions
will a reduced-order model retain the same curvature or Hessian information with
respect to parameters as the original model?

THEOREM 4.3. Assume the hypotheses of Theorem 4.2 including (4.3) and sup-
pose that E(p), A(p), B(p), and C(p) are twice continuously differentiable in a
neighborhood of p. Then cTH(o,p)b and cTH,(o,p)b are each twice continuously
differentiable at p.

(a) Let {niny,...,n,} be a basis for C¥ with related quantities

fi(0,p) = (ni - Vp) (¢ E(p) — A(p)) 'B(p)b and
g/ (0,p) = (n; - Vp) c"C(p) (7 E(p) — A(p)) "

(4.6) If either {fi,f2,....f,} C Ran(V,)
(4.7) or {g1,82,...,8,} C Ran(W,.),
then Vglc"H(o,p)b] = V[c" H, (0, p)b].
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(b) Let n be a fized nontrivial vector in C* and suppose that
(n-Vp)(cE(p) — A(p))”' B(p)b € Ran(V,) and
(n-Vp) (" CB) (E(p) ~ A(B)) ") € Ran(W,).
(4.8) Then  Vjlc"H(o,p)b]n = Vg[c"H, (0, p)b]n

Proof. Let n = [n1,...,n,]T and m = [my,...,m,]T be arbitrary vectors in C”
and consider the composition of the associated directional derivatives:

(m-Vp)(n- Wp) [CTH(U, p)b —c"H. (o, p)b] ’p:p =m" Vp[c"H(o,p)b — c"H,(0,p)b]n

Using (4.5), one may calculate

[ - ?T(Sa p))
+ (I —Q:(s,p)) [(m - Vp)(n - Vp)A(s, p)] (I - P:(s,p))
— (I=9,(s,p)) [(n- Vp)A(s,p)] [(m - Vp)P,(s,p)]

Then with (4.3), one finds
m” V[c"H(, p)b — ¢"H, (0, p)b] n
= [[(m - Tp)e C(p)A(s,p) ] - (T = 2,(s,p)) A5, B) (I = Py(s,P))
[(n- Vp)A(s,p) " () ]
+ [0 Vp)e" C(p)A(s.p) '] - (T — Q. (5.p)) Als. p) (I~ Py (s,p)) -
[(m - Vp)A(s, p)~ 1B< pbl]|

If (4.6) holds, then both vectors (m- Vp).A(s,p) " 'B(p)b and (n- Vp)A(s,p) 'B(p)b
are in Ran(P,.(o,p)), leading to the conclusion of (a), since m and n could be arbi-
trarily chosen. A similar argument holds if (4.7) is true.

If the hypotheses of (b) hold, then observe that

m” Vjle” H(o,p)b — ¢ H, (0, p)b] n = 0,

independent of how m is chosen, which then yields the conclusion (4.8). O

A generic implementation of PMOR using interpolatory projections as described
in Theorem 4.1 is provided in Algorithm 4.1, where we continue to use the notation
A(s,p) := sE(p) — A(p) as we have above. Note that the number of interpolation
frequencies, K, and the number of interpolation points for parameter vectors, L, needs
to be chosen a priori; the total model order is (nominally) r = LK.

If we were to attempt interpolation of the full transfer function using the same
interpolation points, we would need

N1 ,
Ran(V,) D span {A(Ui7p(ﬂ)) B(p(]))}'
i=1,.., K
j=1,. L

Ran(V,) could thus have dimension as large as mLK, and there exist many applica-
tions where the system input dimension m indeed is rather large, perhaps on the order
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ALGORITHM 4.1. PMOR WITH INTERPOLATORY PROJECTIONS.

1. Select “frequencies” o1,...,0x € C, parameter vectors pP), ... p») e RY,
left tangent directions {c11,...,¢1,1,€C21,...,CK, 1} C C*, and right tangent
directions {blla R ,bl,L, boy, ... 7bK7L} ccm.

The order of the reduced model will be r = K - L.

2. Compute a basis {v1,...,v,} for

A\ 1 .
V.= span {A (ai, p(j)) B(p(j))bij} .
j K

j=T,..,
3. Compute a basis {w1,...,w,} for
, -
W, = span {(cz;-C(p(j)).A (Ui,p(J)) ) } .

i=1,....K

j=1,...,L
4. Set V. :=[vy,...,v,] and W, := [wq,...,W,].
5. (Pre)compute from (2.4): A,.(p) = WLXA(p)V,, E.(p) = WIE(p)V,,

B.(p) = WI'B(p). C.(p) = C(p) V..

of hundreds, leading then to a forbiddingly large reduced-order dimension. Tangential
interpolation by contrast is more frugal in its use of interpolation information. For
full matrix interpolation, every interpolation point adds m columns to V., while for
tangential interpolation each interpolation point will add only a single column.

Certainly, the performance of the procedure depends strongly on the choice of
interpolation data. A first refinement of this basic approach is to compute frequency
points for a fixed selection of parameter vectors that are locally optimal with respect
to Ha error measures using the IRKA as in [25]. Choosing both the frequency and
the parameter interpolation data as well as the tangent directions in an optimal way
will be discussed in the next section.

5. An Ho-based approach to parameterized model reduction. Algo-
rithm 4.1 will produce a parameterized reduced-order model that interpolates the
original system in the tangent directions b; and ¢! at the (complex) frequency o; and
parameter values, |3j. In many problem scenarios, there will be a natural choice of
parameter vectors that will be representative of the parameter ranges within which
the original system must operate. Sometimes designers will specify important param-
eter sets in the neighborhood of which reduced-order models should be particularly
accurate. In other cases, the physics of the problem will provide some insight to where
parameters should be chosen. In all these circumstances, the choice of interpolation
data for parameter vectors has been made, leaving open the question of how best to
choose the frequency interpolation data. We will give a heuristic approach to resolve
this problem using methods for nonparameterized systems that can yield optimal Ho
frequency interpolation points.

Given a full-order parameterized system H(s, p), suppose L different parameter
vectors {p(l), e p(L)} are selected as parameter interpolation points. For each p(*,
define H® (s) = H(s,p®). For eachi = 1,..., L, H® can be viewed as a (nonparam-
eterized) full-order model and we may apply Algorithm 3.1 to each H(*)(s) to obtain
an Ho optimal reduced-order model (say, of order r;) and corresponding projection
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subspaces V(W € R™ " and W ¢ R™ " Let r = 1 +7r9+---+rr. We concatenate
these matrices to get

V.=V, v@ | vE e R and W, = [WD, W@ W] e RPXT

This leads to the final parameterized reduced-order model, H,.(s, p), as in (2.3). Note
that the H, (s, p) will not be an sy optimal system approximation to H(s, p) for any
parameter choice although it contains L smaller Hs optimal submodels that can be
recovered by truncation of H, evaluated at each of the L given parameter vectors.
In any case, H, still interpolates H at all parameter choices. A brief sketch of the
method is given in Algorithm 5.1. Notice that the exact interpolation properties would
be lost if we were to use a truncated SVD in step 4; even so, linear dependencies are
removed only up to thresholds associated with machine precision. The construction of
truncation matrices is similar to the trajectory piecewise approximation methods sug-
gested in [43, 47]. Effectiveness of this algorithm is illustrated with several numerical
examples in section 6.

ALGORITHM 5.1. PIECEWISE Ho OPTIMAL INTERPOLATORY PMOR.

1. Select L parameter vectors {p™M),p™, ... pM}
and reduction orders {ri,ro,...,r1}.

2. For eachi=1,2,...,L
Define the ith system instance: H® (s) = H(s,p?) and apply the optimal
Ho reduction of Algorithm 3.1 to H® (s), constructing interpolating spaces
of dimension r; spanned by VO and W,

3. Concatenate VW and W@ for i = 1,... L to obtain the final projection
matrices V, and W,. of dimension r=ry+---+rp:

V.=V, v@  vB] and W, =W w®  w

4. Use an SVD or rank-revealing QR factorization to remove rank-deficient
components from V, and W,..
The final parameterized reduced model is determined by V, and W, from (2.3).

The situation becomes harder if we have no a priori knowledge of particular
parameter values that are important but instead have perhaps only information about
allowable parameter ranges within the parameter space. There are methods to address
this difficulty. One possible approach is the so-called greedy selection algorithm of
Bui-Thanh, Willcox, and Ghattas [8]. Even though the final reduced-order model of
[8] proves to be a high quality approximation, the optimization algorithm that needs
to be solved at each step could be computationally expensive, possibly prohibitively
so. Another strategy for an effective and representative choice of parameter points in
higher dimensional parameter spaces (for example, say, with ¥ = 10) comes through
the use of sparse grids [9, 23, 54]. This approach is based on a hierarchical basis
and a sparse tensor product construction. The dimension of the sparse grid space is
of order O(2"n"~1) compared to the dimension of the corresponding full grid space
given by O(2""). See [3, 42] for other approaches to parameterized model reduction
using sparse grids.

Heuristics such as these can provide effective choices for interpolation points.
However, in the absence of compelling heuristic choices there is value in considering
approaches that can lead to optimal parameter selection points that are chosen so as
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to minimize error measures appropriate to parameterized systems. We consider this
problem below and provide a solution for SISO systems having a specific parameter
dependence.

5.1. Optimal interpolation for special SISO parameterizations. In the
particular case that H(s,p) is a SISO system with the parametric dependence oc-
curring solely in C(p) and B(p), we are able to produce reduced-order systems that
are optimal with respect to a composite error measure that is an Lo error relative to
parameters and Hs error relative to the system response. To illustrate, we consider a
simple two-parameter case for a system having the form

(5.1) H(s,p) =" (p) (sE~A) " b(g),
with ¢(p) = ¢co + pci1 and b(g) = by + ¢ by,
where p = [p, ¢/ and 0 < p, ¢ < 1. This setting can be generalized in many directions
but serves to illustrate the main points.
Denoting D = [0, 1] x [0, 1], define a norm for systems having the form (5.1):

+oo
(52) 1 Bocim 5= [ [ [ 160 dA@) do.

Obviously other choices for D and other measures aside from Lebesgue measure dA(p)
are possible (e.g., p and ¢ can be random variables jointly distributed according to
dA(p)). We seek an optimal reduced-order parameterized model, H, (s, p), having the
same form as H(s,p),

(53) ﬁr(sa p) = (c07r +pcl7r)T(5Er - Ar)il(bO,r + qur)a

such that

(54) HH - HTH'H2®£2(D) = Hngg‘lble ”H - HTH'H2®L'2(D)'
for all peD

THEOREM 5.1. Let H(s,p) be given as in (5.1) and let D = [0,1] x [0,1]. Define
the auxiliary MIMO transfer function:

(5.5) H(s) = [co,c1]” (sE = A) ™" [bo, b].
Then || H||3,5c,(p) = ILTH L3, where

1 0
L- [ P } .
2 23
In particular, the norm we have defined on Ho ® Lo(D) for the parameterized

system H(s,p) is equivalent to a (weighted) MIMO Ha norm for H(s).
Proof. Observe that

(5.6) H(s.p) = 1A% | ) |-

Substitute this expression into (5.2), rearrange the integrand, and note that L is the
Cholesky factor of

/01[61]][Lq]dq=/ol{ﬂ[1,p]dp=[

=LL”. 0

= =
Wl N
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Although the model system we consider in (5.1) has a parameter range restricted
to p = [p,q)7 € D, interpolation is well-defined for parameter values outside of D.
Indeed, parameter interpolation will be well-defined even for p = oo or ¢ = oc:
consider for nonzero (but finite) p, ¢ the interpolation condition,

1 4 1
H(o,p) =pq <];CQ + c1> (cE —A)™! (abg + bl)

T
1 1
pq <];CO,T‘ + Cl,r) (UET - Ar)71 (abO,r + bl,r) - HT(O', p)v

and then let p or ¢ (or both) approach co. We interpret the interpolation condition

H(o,[p,q]) = Hy(0,[p, q]) for such extended complex values for p = [p, ¢ as follows:
e H(o,[00,q]) = H.(0,[00,q]) with ¢ fixed and finite is interpreted as

C,{(UE — A)fl(bo + qbl) = C{T(UET — Ar)fl(b(),r + (]bl,r);

( )

e H(o,[p,o0]) = H.(0,[p,o0]) with p fixed and finite is interpreted as
(co +pe1) (0E — A)~'by1=(co,r + pc1,+)(0E, — A;) " 'by
e H(o,[00,0]) = Hy (0, [00,00]) is interpreted as

cl(ocE - A)"'b; = c{r(oEr —A,) by,
Similar extensions can be made for derivative interpolation conditions.

Theorem 5.1 shows that the least-squares error measure in the Ha ® L£2(D) norm
for the SISO parametric system is indeed a MIMO H, norm for a nonparameterized
linear system. This means we can solve the parametric Ho ® L2(D) optimization
problem (5.4) by solving an equivalent nonparameterized MIMO Hy optimization
problem which we know how to solve using Theorem 3.2 and Algorithm 3.1. This
leads to the following result.

THEOREM 5.2. Let H(s,p) be given as in (5.1). Suppose a parameterized reduced-
order model H,(s,p) of the form (5.3) minimizes |H — H.|l3,00.(p) over all (stable)
rth-order transfer functions and that the associated reduced-order pencil sE, — A, has
only simple eigenvalues {\;}i_,. Then there are optimal frequency shifts, {—X\;}i_,,
and optimal parameter interpolation vectors, {p;}i_; such that

H(=Xi,p;) = Ho(=XiBi)s  H'(=Xi,B;) = HL(=Xi,By),
(5.7) and  VpH(~Xi.B) = VpH,(~ 3. :)
fori=1,....r (! denotes differentiation with respect to the freque@cy parameter, ).

Proof. Define a reduced-order MIMO system associated with H,.:

H,(s) = [cor c1r] (sE, —A) " by, by,

Analogously to (5.6), we have H,(s,p) = [1,p] F(s) (4]
Since H,(s,p) minimizes the Hy @ Lo(D) error from the original system H (s, p),

we find an equivalent weighted Ho approximation problem:

HLT:}CL - LT:}CTL”'Hz =|[H - ﬁr""'lz@ﬁz = i mln HH - HTH'H2®£2
-~ is stable
= e ILTHCL ~ LI L,

Thus, LTﬂTCT(s)L is an Ho optimal reduced-order approximation to the associated
MIMO system LT3(s)L. Since the reduced-order pencil sE, — A, has only simple
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eigenvalues, LTfJTCT(s)L has a partial fraction expansion,

~ r 1~
LT3, (s)L =Y ——=¢b!,
=15~ Ai

with Ei,gi € C% for i = 1,...,r. This reduced-order MIMO system must satisfy
tangential interpolation conditions that are necessary consequences for Hsy optimality:
LT3 (—-X;)Lb; = LT3, (—\;)Lb;,
STLTH (=)L = e LK, (—\)L,
(5.8) and &7 LTH (—\;)Lb; = &7 LT9C.(—X;)Lb;
(" denotes differentiation with respect to the frequency parameter, s).
Define for i =1,...,r,

(5.9) & L" = [, ;] and Lb; = [ o } ;

K2

and associated optimal parameter values:
(5.10) pi=ca;/u; and ¢ = B;i/v;.
For p; # 0 and v; # 0, we may simplify (5.8) as

v H (=) { ql } = 130 (=) { ql } ,
pi [1,pi) H(=Xi) = i [1,pi] (= Ni),  and

<1 -~

wivi [1,p4] [f}f/(—)\i)} [ , } = piv; [1,pi) {:}{T(_/\i)} [ 0 ] ;
which leads immediately to the conditions (5.7). If either p; = 0 or v; = 0 (or both),
then either p; or ¢; (or both) could take the value oo and the interpolation conditions
(5.8) are equivalent to interpolation conditions given above for extended complex

values of parameter values. a

ALGORITHM 5.2. OPTIMAL INTERPOLATION FOR SISO PARAMETERIZATIONS
WITH H(s,p) = (C0~—|—pC1)T (sE—A)"" (by +gby).

1. Construct H(s) as in (5.5) and L as in Theorem 5.1.

2. Apply Algorithm 3.1 to find an Ha optimal rth-order approzimant to
LTH(s)L. Let ¢; and by, fori = 1,...,r denote the resulting optimal left
and right tangent directions, respectively. Also, let X; denote the resulting
reduced-order poles.

Compute p; and q; fori=1,...,r using (5.9), (5.10).

4. Construct V,. and W, as in lines 24 in Algorithm 4.1 using p; = [p:, ¢i]*
as optimal parameter interpolation points, o; = —Xi as frequency interpo-
lation points, ¢; and b; as left and right tangent directions fori=1,...,r.

The final optimal parameterized reduced-order model is determined from (2.3).

©w

Note that the optimal parameter interpolation points p;, = [p;, ¢;]7 in Theorem 5.2

are not necessarily contained in D, although if f]r(s, [0,0]) is a minimal realization,
then at least all of them can be guaranteed to be finite.
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The definitions in (5.9) and (5.10) will be used in Algorithm 5.2 for the com-
putation of an optimal parameterized reduced-order SISO system having the special
form (5.3). Using the results of Theorem 5.2, Algorithm 5.2 first converts the SISO
parameterized model reduction problem in Hs ® Lo(D) to an equivalent (nonparam-
eterized) MIMO Hs model reduction problem. Algorithm 3.1 provides frequency
interpolation points and tangent directions. Optimal parameter interpolation points
are then recovered using (5.9) and (5.10), yielding in the end an optimal parameter-
ized reduced model for the original problem with respect to the Ho ® L2(D) norm. To
the best of our knowledge, this is the first interpolatory parametric model reduction
approach that jointly chooses frequency and the parameter interpolation points to
minimize an associated system theoretic error norm.

6. Numerical examples.

6.1. Convection-diffusion flow. We consider a convection-diffusion equation
on the unit square Q = (0,1)%:

X (1,6) = Ax(1,) + p- Vx(6,6) + BEu(t), €€, 1€ (0,00),

with homogeneous Dirichlet boundary conditions x(¢,&) = 0, £ € 99.

The parameter vector p = [p1, p2]’ determines convective transport in both coor-
dinate directions, whereas the function b(-) is the characteristic function of the domain
where the input function u(-) acts.

We discretize the convection-diffusion equation with finite differences to obtain a
parameterized linear system in state-space form:

(6.1) X(t) = (Ao + prAr +p2A2)x(t) + Bu(t),  y(t) = Cx(1),

with Ag, A1, Ay € R¥00X400 B ¢ RI0%1 5nd € e R0, We assume B = e (first
unit vector) and C = e’ (all ones). The parameter range considered is p1,p2 € [0, 1].

In this example, the physics of the problem does not provide particular insight
to what parameter values might be important. The range of parameter values we
consider keep the behavior of the system diffusion-dominated, so we don’t take into
account the possible desirability of changing the discretization for different parameter
values so as to maintain an upwind bias in the discretization. Motivated by sparse-
grid point selection in two dimensions, we use the following level-1 sparse-grid points,
p = [p1,p2]?, to discretize the parameter space:

p =[0.5,05]", p® =0,0.5]", p® = [1,0.5]", p™® =[0.5,0", p? = [0.5,1]".

We further simplify this selection by removing the p®*) and p(®) due to symmetry of the
problem. Hence, our parameter set becomes {p(*), p(»), p®®}. We apply Algorithm 5.1
with r; = ry = rg = 4 for p(9, i = 1,2, 3; the final parameterized reduced-order system
as defined in (2.3) has dimension r = 12.

A good parameterized reduced-order model needs to represent the full parame-
terized model with high fidelity for a wide range of parameter values; certainly not
just for those values chosen as the interpolation parameters. To illustrate the quality
of our parameterized reduced-order models, we evaluate the full-order model, H(-, p),
varying parameter values, p = [p1, p2], across the full parameter range [0,1] x [0,1],
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and compute

||H(7 p) - HT(? p)“'Hz

(6.2) the relative Hy error at p = and
(-, p)ll3,
||H(7 p) - HT(? p)”’;‘-[
(6.3) the relative Hoo error at p = =
(P4

The corresponding mesh plots of relative error are shown in Figures 6.1 and 6.2.
With a model of order r = 12, the maximum relative H, errors and Hs errors are,
respectively, 5.21 x 1073 and 1.86 x 1073. In terms of either error measure, the
reduced-order model is accurate to an order of at least 1073, and we are able to
capture the full-order dynamics accurately throughout the whole parameter range.

Relative H2 error

log (I'H —H_IL, /L H L)

0
Py 0 P,

F1G. 6.1. Example 6.1 with v = 2: relative Ho error as p1 and p2 vary.

Relative H_ error
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FiG. 6.2. Example 6.1 with v = 2: relative Hoo error as p1 and p2 vary.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/27/14 to 128.173.125.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2506 U. BAUR, C. BEATTIE, P. BENNER, AND S. GUGERCIN

Next, we add a third parameter pg to the model (6.1) in order to vary the diffusion:
(6.4) x(t) = (poAo + p1A1 + p2As) x(t) + Bu(t), y(t) = Cx(t).

The diffusion coefficient py varies in [0.1,1] and becomes the crucial parameter for
smaller values in that range. Hence, we weight our parameter selection as follows.
The problem approaches the previous case as pg increases to 1. Thus, we keep the
same choice for p; and ps as above for pg = 0.8 and add three more choices for p;
and py for the case pg = 0.1. Overall, our parameter selection for p = [pg, p1, p2]”
becomes

pM) =10.8,0.5,0.5]", p? =10.8,0,0.5", p® =[0.8,1,0.5]T,
p® =10.1,0.5,0.5]", p® =J0.1,0,1]7, p© =[0.1,1,1]".

As in the two parameter case, we apply Algorithm 5.1 by reducing the order at
parameter values p(¥, i = 1,...,6, using My optimal frequency interpolants with
orders 11 = ro = r3 = 3 and r4 = r5; = 16 = 4. To illustrate the performance of
the reduced-order model, we fix pg at a specific value, vary the parameters p; and po
over the full parameter space [0,1] x [0, 1], and compute relative Hoo error (6.3) and
relative Hs error (6.2) at each grid point. We choose the values pg = 0.1 and pg = 0.5.
Note that pg = 0.5 is not in the parameter selection set. The error plots for pg = 0.1
are shown in Figures 6.3 and 6.4. As in the two-parameter case, the reduced models
approximate the full-order dynamics accurately. The resulting maximum relative H o,
error and relative Hy error for po = 0.1 are 2.66 x 1073 and 2.13 x 1073, respectively.

Relative H2 error for Py = 0.1

log (INH - H 11, /1T H1L)

Fia. 6.3. Ezample 6.1 with v = 3: relative Ha error as p1 and p2 vary.

To better illustrate the quality of the approximation attained, we provide in
Figure 6.5 amplitude Bode plots for H(s,p), H,(s,p), and for the error system
H(s,p) — H.(s,p) using three different choices of [py,p2] values keeping pg = 0.1
fixed. The behavior of the reduced model is indistinguishable from that of the full-
order model across the full parameter range.

The errors over the full range of p; and p, are even smaller with pg = 0.5, as can
be seen in Figures 6.6 and 6.7. The maximum relative H ., error and relative Hsy error
are, respectively, 3.62 x 107* and 1.44 x 107%, i.e., one order of magnitude smaller
than for py = 0.1.
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Relative H__ error for Py = 0.1

s | %
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34 A\
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log (I'H —H Il /11 H1I)

P, 0o

Py

Fic. 6.4. Ezample 6.1 with v = 3: relative Hoo error as p1 and p2 vary.

Amplitude Bode Plots of H(s) and Hr(s)
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F1G. 6.5. Ezample 6.1 with v = 3: the amplitude Bode plots as p1 and p2 vary (with po = 0.1).

6.1.1. Comparison with other model reduction approaches. To illustrate
the superiority of our piecewise Hs optimal approach as described in Algorithm 5.1,
we compare it with assorted generic interpolatory model reduction methods where
the interpolation points do not have the (local) Ha optimality that Algorithm 5.1
produces. We proceed as follows: For the same parameter sets as above, {p(i)}?zl,
we obtain the projection matrices V(¥ and W) using the frequency interpolation
points that are used to initiate the optimal Hs reduction process at each p(?. In ef-
fect, we apply only one-step interpolatory model reduction as opposed to the iterative
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Relative H2 error for p, =05

log (IH —H_1L, /Il H L)

F1a. 6.6. Example 6.1 with v = 3: relative Ha error as p1 and p2 vary.

Relative H_ error for p, =05

I
H
s

log (ITH=H_1II_/ITH1)

|
=
7

F1G. 6.7. Example 6.1 with v = 3: relative Hoo error as p1 and p2 vary.

Ho-optimal (IRKA) process. This is what one would do in a generic interpolation
setting by choosing some interpolation points and obtaining the reduced model. We
have concatenated V(¥ and W@ for i = 1,..., L as Algorithm 5.1 does and then
obtained the corresponding parameterized reduced model. For comparison, we cal-
culate the error at the same grid points used before by fixing py at 0.1 and display
the resulting relative Hs errors and relative Ho, error in Figures 6.8 and 6.9. The
maximum relative H., errors and relative Ho errors are, respectively, 4.98 x 107!
and 2.19 x 10!, Note that these relative errors are two orders of magnitude higher
than those obtained by the piecewise Hy optimal approach that we propose. This
illustrates clearly the importance of optimal s shift selection in our algorithm. It
is useful to note that we have initialized Algorithm 5.1 with the same interpolation
points, and IRKA (Algorithm 3.1) adjusted these points iteratively without any user
intervention, yielding in the end very accurate parameterized reduced models. Since

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/27/14 to 128.173.125.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INTERPOLATORY PROJECTION METHODS 2509

Relative H2 error for P, = 0.1

log (I'H ~H_ Il /1 H1l)

F1G. 6.8. Ezample 6.1 (v = 3) without optimal Ha shift selection: relative Ha error.

Relative H_ error for Py = 0.1

log (1 H~H_II_/IIHII)

Py Py

Fic. 6.9. Ezample 6.1 (v = 3) without optimal Hao shift selection: relative Hoo error.

the IRKA iteration generally converges very quickly (see [25]), the additional sparse
linear systems that must be solved do not significantly increase cost, yet additional
iterations increase the accuracy of the reduced model by two orders of magnitude.
Next, we compare our piecewise Ho optimal method with an approach where
balanced truncation is used to reduce the order at each parameter set, p(). Towards
this goal, we chose a reduced order of four at each parameter value and obtained
corresponding V() and W for i = 1,...,6. Then as before, we concatenate the
subspaces obtained by balanced truncation to form a final parameterized reduced-
order model; since it is similar in structure to our piecewise Ho optimal method,
we call this “piecewise balanced truncation.” (Note that this approach differs from
the hybrid interpolation balanced truncation method described in [3].) For a fixed
po = 0.1, the maximum relative H o, error calculated on the same grid for p; and ps
is 6.10 x 10~3; the maximum relative Hs error is 4.91 x 1073. Plots for the relative
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Relative H2 error for Py = 0.1
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FiG. 6.10. Ezample 6.1 (v = 3) with piecewise balanced truncation: relative Ho error.

Relative H_ error for Py = 0.1

log (IH—H_II_/ITHII)

F1G. 6.11. Ezample 6.1 (v = 3) with piecewise balanced truncation: relative Hoo error.

Ho error and relative H, error are shown in Figures 6.10 and 6.11, respectively. We
note that both errors are somewhat higher than the results obtained by the proposed
approach in section 5. This result is not surprising. Even though V(¥ and W) are
the balancing subspaces at the parameter values p(¥), once they are concatenated,
the resulting reduced-order model is no longer balanced even when evaluated at the
parameter set p(¥. On the other hand, if V(O and W) are interpolating spaces that
are obtained by forcing interpolation at some interpolation points {o};, for the
parameter set described by p(?), even after the subspaces are concatenated, the final
reduced-order parameterized model would still interpolate the original model at the
same interpolation points {o; }," ; for the parameter set p. In short, our piecewise
Ho optimal algorithm has two important properties. First, due to the interpolatory
structure, the final parameterized reduced-order model interpolates the original one
even after the subspaces augmented. Second, the interpolation points at each param-
eter set are chosen in an Ho optimal way yielding accurate reduced-order models.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/27/14 to 128.173.125.76. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

INTERPOLATORY PROJECTION METHODS 2511

To more thoroughly compare the two approaches, we used many different values
for 71,79, ..., ¢ at the corresponding parameter values p(¥ and computed the corre-
sponding reduced-order models both by balanced truncation and by IRKA, producing
projection subspaces V() and W) . The final reduced-order parameterized systems
are obtained as in (2.3) and their quality is compared by computing the maximum
relative Ho error and Ho error again varying p; and ps over the full parameter range
of [0,1]. The results are tabulated in Table 6.1. In this table, the oo entries indicate
that some unstable reduced-order models were encountered for some choices of p;
and ps. The table shows that except for cases where the approach using balanced
truncation results in unstable reduced-order models, both approaches are compara-
ble yielding similar quality reduced-order models. Note that in the PMOR approach
combining balanced truncation and interpolation [3], the computation of unstable
systems is avoided. Unfortunately, the method of [3] does not provide a reduced-
order model in parameterized state-space form for more than one parameter. As we
are focusing here on structure-preserving methods, we provide comparisons only with
structure-preserving balancing-based methods such as described above.

6.2. Thermal conduction in a semiconductor chip. We consider now a
model representing thermal conduction in a semiconductor chip described in [35]. An
important requirement for a compact and efficient model of thermal conduction in
this context is that it should allow flexibility in specifying boundary conditions in
order to allow independent designers to evaluate how changes in the environment can
influence the temperature distribution in the chip. The thermal problem is modeled
as homogeneous heat diffusion with heat exchange occurring at three device interfaces
modeled with convection boundary conditions. These conditions introduce film coef-
ficients, p1, p2, and ps, describing the heat exchange on the three device interfaces.
Discretization leads to a system of ordinary differential equations

3
Ex(t) = <A +° piAl) x(t) + Bu(t), y(t) = Cx(t),
=1

R4257X4257 and A € R4257X4257 R4257X4257

where E € are system matrices, A; €
i =1,...,3, are diagonal matrices arising from the discretization of the convection
boundary condition on the ith interface, and B € R*?7 and C € R7%7; je.,
the system has a single input and seven outputs. The range for each parameter
is the interval [1,10%]. Four important parameter vectors in [1,10%]® are given in
Table 6.2 below: We use two of them p() = [10%,10% 1] and p® = [1,1,1]7 and
apply Algorithm 5.1 as follows: In step 2, we reduce the order of the systems to
r1 = 8 and 7 = 7 using Algorithm 3.1; i.e., projection subspaces V(@) e R*?57%"i 4pd
W) e R1257X" were computed for i = 1,2. We concatenate these matrices to build
the final projection matrices

3

Vr _ [V(l), V(Q)] c R4257X15 and Wr _ [W(l), W(Q)] c R4257X15.

Having removed the rank-deficient components from V, and W,., our final parame-
terized reduced-order model has order r = 14 and is given by

3
WIEV,%,(t) = (WTT AV, + ) pinAin> x,(t) + WIBu(t),

i=1

yvr(t) = CV,.x,(t).
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TABLE 6.1

H, : Piecewise Ha optimal reduced model; Hy, : Piecewise balanced truncation reduced model.

Case: A B C D | E F G i T 7
a - 0 1 0 1 0 0 1 1 2 2
mm. o 1 1 0 0 1 0 0 1 2 2
o @ 3 0 T 0 0 0 i T T i 2
-~ T4 il il 2 2 2 2 2 2 2 2
R po T T 2 2 2 2 2 2 2 2
T 6 i i 2 2 2 2 2 2 2 2
Total dim 7 : H, /Hpy | 4/4 6/6 5/5 77 77 77 77 8/7 9/9 12/12
Max. rel. H, 2.85E-1 9.54E -2 1.21E-1 4.30E-2 | 4.65E-2 4.04E -2 3.91E-2 3.72E -2 5.23E-2 1.81E-2
Hoo-err. Hy. 4.32E -2 [e'e) 2.11E-2 | 2.26E-2 | 2.29E-2 | 2.57TE-2 | 2.29E-2 | 2.51E-2 1.28E-2 )
Max. rel. H, 1.25E-1 T.7T9E-2 | 9.39E-2 | 4.23E-2 | 4.54E-2 | 3.94E-2 | 4.28E-2 | 2.43E-2 | 3.76E-2 1.49E -2
\Iwuoww. H.vai 9.89E -2 [e'e] 3.91E-2 1.39E-1 1.28E-1 1.73E-1 1.41E-1 1.03E-1 1.27E-2 o
[ Case: K 13 M | N 9] P Q R S T
j.n - 1 1 1 1 2 0 1 1 2 3
mm. o 0 1 1 2 2 0 1 2 2 3
o ® T3 0 0 1 1 2 0 1 2 3 3
- T4 3 3 3 3 3 4 4 4 4 4
R P 3 3 3 3 3 1 1 1 1 1
@ 6 3 3 3 3 3 1 1 1 1 1
Total dim. v : H, /Hp, | 10/10 | 10/11 | 11/12 | 12/13 | 14/13 | 12/12 | 14/15 | 16/16 | 16/16 | 17/17
Max. rel. H, T7T.66E-2 | 7.84E-2 | 7.64E-2 1.34E-2 1.16E-2 | 3.65E-2 1.46E-2 | 8.53E-3 | 2.12E-2 | 2.66E-3
Hoo-err. Hy . 00 00 0o oo 4.01E-2 | 1.41E-2 | 9.95E-3 | 1.74E-2 | 1.51E-3 | 6.10E-3
Max. rel. H, 3.22E-2 3.23E-2 3.23E-2 6.54E -3 1.09E-2 1.74E-2 8.92E-3 | 4.46E-3 1.09E-2 2.13E-3
Ho-err. Hy. ) ) [e'e} ) 2.19E -2 1.00E-2 | 4.91E-3 | 9.11E-3 | 8.05E-3 | 4.91E-3

dydeslo/sfeuinol/Bio we s mmm/:dny 8s :1yB1IAdoo Jo ssusol| INVIS 01 108fgns uonnquisIpsy "9/ 'GZT"€LT'8ZT 01 ¥T//2/S0 pepeojumod
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TABLE 6.2
Ezample 6.2: parameter vectors (with p3 =1).

pD [ p®@ [ p® | p@
p1 || 10% 1 10 10%
p2 || 10% 1 107 | 10
P3 1 1 1 1

To illustrate the quality of this reduced-order model, we fix p3 = 1 and vary both
p1 and pp between 1 and 10%. For each mesh point (i.e., for each triple of parameter
values in this range), we compute both the corresponding full-order model and the
reduced-order model; and evaluate the relative Ho, errors. The resulting mesh plot
of Hoo errors is given in Figure 6.12. The maximum relative H., error is 2.16 x 1072,
The parameterized reduced model H, (s, p) has system order smaller than 4% of the
original system order, yet is able to maintain high fidelity and a small relative error
of around 2% or less over the full range of variation of p; and ps.

Relative H_ error for Py = 1

re

\

%
%

—H Il _/IIHI

log (Il H

log (p,) 0 o log (p,)

FiG. 6.12. Example 6.2: relative Hoo error as p1 and p2 vary.

In Figure 6.13, we give amplitude Bode plots for H(s,p), H,(s,p), and for the
error system H(s, p) — H, (s, p) using three different choices of [p1, p2] values keeping
p3 = 1 fixed. Once again, the reduced model almost exactly replicates the full-order
model across the full parameter range.

6.2.1. Comparison with piecewise balanced truncation. As in the previ-
ous example, we present a comparison between our piecewise Ho optimal approach
and piecewise balanced truncation that concatenates the projection matrices that are
obtained by using balanced truncation for the fixed parameter vectors p(*) and p(®).
To give an overall picture, we use many different combinations of r; and r, values
and then compute maximum relative H., errors encountered while varying p; and
p2 over the full parameter range of [1,10%]. The results are tabulated in Table 6.3,
where oo corresponds to encountering some unstable reduced-order models while pq
and py vary. One obvious conclusion is that the proposed Hs-based method consis-
tently yields results that are as accurate as those obtained by the balancing-based
approach. Note that the error values are computed using the H., norm. Hence, the
proposed Ho-based approach yields accurate reduced-model not only in the Hs norm
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Amplitude Bode Plots of H(s) and Hr(s)
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Fi1G. 6.13. Ezample 6.2: The amplitude Bode plots as p1 and p2 vary (with pg =1).

TABLE 6.3
H, : Piecewise Ha optimal reduced model; Hy, : Piecewise balanced truncation reduced model.

Cases: A B C D E F G
dim. 1 4 5 6 7 7 6 3
at p) [Ty 7 5 7 7 5 6 7
Total dim: r 6/6-8 9/9 9/10 | 10/11 | 10/12 | 11/12 | 14/14
Hr/Hbal
Max. rel. H, 1.87 E-1 6.69 E-2 | 9.75 E-2 | 829 E-2 | 6.88 E-2 | 3.50 E-2 | 2.16 E-2
Hoo-err. Hy., [oe} 265 E-2 | 523 E-2 | 5.09 E-2 | 4.73 E-2 | 247 E-2 | 4.56 E-2

but also in the Hs norm. This is not surprising since the optimal s method de-
scribed in Algorithm 3.1 for nonparameterized systems is known to yield both good
Hoo performance and M, performance; see [25].

6.3. Optimal SISO parameterized model reduction example. We illus-
trate here the approach introduced in section 5.1. A full-order model of the form (5.1)
represents the evolution of the temperature distribution on a plate as described by the
heat equation. A model of order 197 is obtained by a finite difference discretization.
The vectors by and by + by could be interpreted as the spatial distribution of two
heat sources. As the parameter ¢ varies from 0 to 1, the input shifts from one heat
source distribution bg to the other by + by. Similarly, the vectors ¢y and cg + ¢1 can
represent temperature sensing profiles so that as the parameter p varies from 0 to 1,
the sensing profile shifts from ¢y to ¢y + c;.

We minimize the Ha ® Lo(D) error between the full-order and the reduced-order
transfer functions as shown in Theorem 5.2 by applying Algorithm 5.2. The corre-
sponding MIMO nonparameterized systems in line 2 of the algorithm are reduced to
order r = 10 by H, optimal model reduction in Algorithm 3.1. The resulting optimal
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frequency shifts, {—5\1'}17:1, and optimal parameter interpolation vectors, {ﬁ(i)}le are
given below:

"l
) =a)
pi qi
0.0152 0.559 0.344
0.142 0.246 0.351
0.416 ~0.516 0.359
0.862 0.454 0.337
0.102 0.620 0.310
0.184 0.549 0.385
0.419 0.512 0.366
28.9 0.349 0.319
7.24 —21.10 | 0.435 +10.0404 | 0.406 — 20.0778
7.24+01.10 | 0.435 —20.0404 | 0.406 +¢0.0778

Relative H, error

-15 " -Hz_2
s ﬁM I'../ ,
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@

log (IH—H, 1L, /Il H1l,)

|
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o
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y

Fic. 6.14. Ezample C: relative Ha error as p1 and p2 vary.

An interesting observation is that even though both parameters p and ¢ are contained
in the interval [0,1], some of the optimal parameter values lie outside this region;
indeed some of the optimal points are even compler. This example is a perfect il-
lustration of the fact that the best parameter selection does not necessarily lies in
the parameter range; i.e., one can obtain a better performance by including complex
parameter points or at least parameter values outside the region of interest. The
10th-order optimal parameterized reduced-order model yields an extremely satisfac-
tory relative Ho ® Lo(D) error of 7.54 x 1074,

To show the superiority of this optimal selection for the introduced Ha ® L2(D)
measure, we compare the results with those obtained by the Hs-based method in
Algorithm 5.1; i.e., we choose [0,0]7, [0,0.5]T, [0.5,0]7 and [1,1]7 as parameter vec-
tors, use Ho optimal reduced-order models at each parameter set, and then combine
the resulting subspaces together. The resulting reduced-order model of order r = 10
leads to a relative Ha ® L2(D) error of 2.09 x 10~2. Even though this is a satisfactory
relative error, the result using the optimal points is two order of magnitudes better,
illustrating the superiority of the Ho ® L2(D) optimal point selection.

Even though the Hs ® L2(D) optimal approach does not minimize the Ho error
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at every point in the parameter range, we compare the quality of the derived results
by computing the relative Ho error (6.2) over the full parameter range. The results
are shown in Figure 6.14. The Ha ® L2(D) optimal approach yields much smaller
Ho-errors for most of the grid points with a maximum error of 2.04 x 1072, On the
other hand, the maximum Hs-error due to Algorithm 5.1 is 2.09 x 1072,

7. Conclusions. We have introduced a unifying projection-based framework for
structure-preserving interpolatory model reduction of parameterized linear dynami-
cal systems. Analogous to the nonparameterized case, we provide conditions under
which the transfer functions of original and reduced-order model coincide in given
directions at interpolation points in the parameter domain. Furthermore, we give
conditions under which the gradient and Hessian of the system response model with
respect to the system parameters is matched by the reduced-order response model.
A systematic approach built on established interpolatory Hs-optimal model reduc-
tion methods is provided that produces parameterized reduced-order models having
high fidelity throughout a parameter range of interest. For single input/single out-
put systems with parameters in the input/output maps, we offer an approach that
yields reduced-order models that are optimal with respect to an Ho ® Lo joint error
measure. The capabilities of these approaches are illustrated by several numerical
examples from technical applications.
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