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ABSTRACT 
 
Knowledge of the indoor propagation of sound has many important applications 
including acoustic prediction in homes, office buildings, stores, and schools, and the 
design of concert halls, auditoriums, classrooms, and factories. At low frequencies, 
interior acoustics are analyzed with the wave equation, but significant computational 
expense imposes an upper frequency limit. Thus, energy methods are often sought for 
high frequency analysis. However, conventional energy methods are significantly limited 
by vast simplifications or computational costs. Therefore, new improvements are still 
being sought. 

The basis of this dissertation is a recently developed mathematical model for interior 
acoustics known as the acoustic diffusion model. The model extends statistical methods 
in high frequency acoustics to predict the spatial distribution of acoustic energy in the 
volume over time as a diffusion process. Previously, solutions to the acoustic diffusion 
model have been limited to one dimensional (1-D) analytical solutions and to the use of 
the finite element method (FEM). 

This dissertation focuses on a new, efficient method for solving the acoustic diffusion 
model based on a boundary element method (BEM) solution using the Laplace transform. 
First, a Laplace domain solution to the diffusion model is obtained using the BEM. Then, 
a numerical inverse Laplace transform is used to efficiently compute the time domain 
response. The diffusion boundary element-Laplace transform solution (BE-LTS) is 
validated through comparisons with Sabine theory, ray tracing, and a diffusion FEM 
solution. All methods demonstrate excellent agreement for three increasingly complex 
acoustic volumes and the computational efficiency of the BE-LTS is exposed. 

Structural coupling is then incorporated in the diffusion BE-LTS using two methods. 
First, a simple transmission coefficient separating two acoustic volumes is implemented. 
Second, a structural power flow model represents the coupling partition separating 
acoustic volumes. The validation of these methods is successfully performed in an 
example through comparisons with statistical theory, a diffusion FEM solution, ray 
tracing, and experimental data. 

Finally, the diffusion model and the BE-LTS are shown to possess capabilities beyond 
that of room acoustics. The acoustic transmission through a heat exchanger, acoustic 
foam, and mufflers is successfully modeled using the diffusion BE-LTS and compared to 
experimental data. 
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1 

Chapter 1: Introduction 

1.1 Research Overview 
The indoor propagation of sound, referred to as architectural acoustics or room acoustics, is an 

important branch of acoustics to study and understand. Humans spend much of their time 

indoors, whether at home, at work, or in school, so it comes as no surprise that noise is 

commonly experienced inside. Room acoustics has been studied for many years; traditional 

mathematical models include the wave equation, geometrical acoustics, and statistical analysis. 

Typical interior acoustic analysis methods are summarized in the flowchart in Figure 1.1. New 

improvements are still being made in its study today, particularly in the mid to high frequency 

range. 

 
Figure 1.1: Typical methods of interior acoustic analysis. 

 

Sound is created when small disturbances in the average air pressure propagate through the 

air as waves. Therefore, the most fundamental mathematical model of sound propagation is 

given by the three dimensional acoustic wave equation. The wave equation is a partial 

differential equation which can be solved analytically for only very simple room geometries 

(Kinsler et al., 2000). The wave equation in any room more complex than a simple geometric 



2 

volume must be solved numerically using methods like the Finite Element Method (FEM), the 

Boundary Element Method (BEM), or the Finite Difference (FD) technique. Whether it is 

performed analytically or numerically, the solution to the acoustic wave equation is very 

computationally intensive, thus only applicable at low frequencies. 

 

Predicting sound indoors is also commonly carried out using techniques in geometrical 

acoustics, e.g. the image source method (Allen and Berkley, 1979) or ray tracing (Farina, 1995). 

However, the physics are simplified using these techniques by treating sound waves as rays 

which is not physically correct, especially at low frequencies. Though at higher frequencies, 

sound waves do exhibit ray-like behavior. Although accurate prediction of indoor sound is 

possible with these techniques, they typically require a significant number of computations, i.e. 

splitting the source into a very large number of rays or using an extreme number of image 

sources. Also, geometrical acoustics relies heavily on input acoustic properties of materials, e.g. 

absorption and scattering coefficients, which are inherently difficult to measure and vary 

depending on the frequency of the sound. Most commonly, measurements are made in 

conjunction with the use of geometric acoustic techniques to determine these material properties 

and accurately predict sound indoors. 

 

Statistical analyses are also common methods of predicting indoor acoustics. In these 

analyses, only the sound energy is examined and it is assumed to be uniform throughout the 

room. Therefore, these techniques are only useful at high frequencies when there are no effects 

of individual resonant modes, if the spatial distribution of sound is unimportant, and in only 

certain types of rooms (Bies and Hansen, 2003). The types of rooms are restricted to relatively 

small rooms in which the reflective surfaces are not too distant from one another and no 

dimension of the room is so large that air absorption becomes important (Bies and Hansen, 

2003). One room example which violates these restrictions is a long, flat room which requires 

alternative analysis. 

 

More recently, statistical analyses have been extended to remove the uniform distribution 

restriction. In 1997, Picaut et al. proposed a new approach to room acoustics based on diffusion 

theory, introducing an acoustic diffusion coefficient. The idea is based on the analogue of the 
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scattering of acoustic energy in a room to the motion of a particle in a gas colliding with other 

particles as in classical diffusion theory as demonstrated in Figure 1.2. 

 
(a) 

 

 

(b) 

 
Figure 1.2: Motion of a (a) ray of acoustic energy propagating in a room and (b) gas particle colliding with other 

particles demonstrating the analogue of acoustic diffusion to classical particle diffusion (Picaut et al., 1997) [fair 

use]. 
 

The original diffusion equation for room acoustics is then obtained given by 
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where , tr  is the energy density at position r  and time t . The diffusion coefficient is 
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cD  with the mean free path, , the average distance the particle travels between two wall 

collisions or a sound wave travels between two wall reflections, given by 4 r
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volume, rV , and surface area, rS . The attenuation coefficient is 
4
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 with c  being 

the speed of sound in air and  being the uniform room absorption coefficient. Throughout this 

dissertation, a bold variable denotes a vector quantity. Assuming a uniform sound energy density 

in the room, the acoustic diffusion equation reduces to the equation used for statistical acoustic 

analysis. The diffusion model and variations will be discussed in detail later in this dissertation. 

 

The research discussed above has shown that the acoustic diffusion model is a promising tool 

that will provide accurate and more efficient solutions than its more commonly used counterparts 
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for room acoustics. However, there are several areas where diffusion model research is still 

needed. First, not many methods have been used to solve the acoustic diffusion equation and its 

variants for complex geometries. In the research mentioned, solutions to the equation have been 

limited to one-dimensional (1-D) analytical solutions or to the use of the FEM and FD 

techniques for three-dimensional (3-D) solutions. Second, other than fairly limited pieces of 

work, no research has been focused on coupling the transmission of sound through structural 

components to the indoor propagation of sound. Third, the diffusion model has only been applied 

to room acoustics, but diffuse fields exist in other areas of practical engineering importance. 

Thus, the diffusion model does have potential applications outside of room acoustics which have 

not been demonstrated. This dissertation addresses these current shortcomings in this research 

field. 

 

1.2 Research Objectives and Original Contributions 
The proposed research focuses on three of these new aspects: solving the acoustic diffusion 

equation, specifically using the BEM in conjunction with the Laplace transform, coupling the 

structural transmission of sound to the acoustic diffusion equation for room acoustics, and to 

demonstrate this new tool in problems of practical engineering importance. The objectives of the 

research are as follows: 

 Develop a new efficient, accurate numerical solution to the acoustic diffusion model for 

interior acoustics using the BEM and techniques for the numerical computation of the 

inverse Laplace transform. This new solution method is referred to as the diffusion 

Boundary Element-Laplace Transform Solution (BE-LTS). Previously, the acoustic 

diffusion model has only been solved using 1-D analytical techniques, the FEM, and the 

FD technique. Also, the new method must be validated and the computational efficiency 

advantage investigated and demonstrated. 

 Link indoor sound radiation to sound transmission through structural components for the 

prediction of the sound field in multiple acoustic volumes coupled by common structural 

components. Two methods are investigated using the new diffusion BE-LTS. First, 

simple coupling through a structural transmission coefficient (which has been examined 

using a FEM solution to the diffusion model) is implemented. Second, a more complex 
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coupling using a structural power flow model is implemented. This has never been 

considered in conjunction with the diffusion model. 

 Demonstrate the robustness of the acoustic diffusion model to make accurate predictions 

in interior volumes other than rooms. As discussed previously, diffuse acoustic fields 

exist in other areas of practical engineering importance. The diffusion model and the BE-

LTS are demonstrated to possess advantages at mid to high frequencies in the analysis of 

acoustic transmission through tube bundle heat exchangers and expansion chamber 

mufflers.  

 

The acoustic diffusion model has the potential to become a powerful tool for interior acoustic 

predictions if a new, efficient, and accurate method of solution, such as the BE-LTS, is 

demonstrated to the research community. The BEM is a natural choice for many acoustic 

problems requiring numerical methods. Using this method, a discrete mesh of only the bounding 

surfaces of the acoustic volumes using two-dimensional (2-D) elements is required. This is 

advantageous in terms of computing requirements because most often, other numerical methods 

like the FEM or the FD method require extremely large discrete meshes of the entire acoustic 

media using 3-D elements. This advantage is demonstrated schematically in Figure 1.3. 

 
(a) 

 

(b) 

 

Figure 1.3: Large 2-D acoustic problem with example (a) boundary and (b) finite element meshes. 
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The coupling of the room acoustics of multiple rooms by common structural components is 

an aspect that is often ignored or primitively included in common methods of predicting the 

room acoustics. This new improvement is applied to the acoustic diffusion model. Previously, 

only simple coupling techniques have been used in conjunction with the acoustic diffusion 

model, i.e. through a known transmission coefficient which ignores the structural physics 

occurring in the coupling partition. Using a structural power flow model, the vibration can be 

analyzed as a system coupled with the acoustic volumes. 

 

The method developed in this dissertation can be used in many other applications. A few are 

described here. Recently, NASA has expressed interest in the development of software which 

can predict the response inside commercial or residential structures exposed to incident sonic 

booms over a large frequency range. To this end, researchers at Virginia Tech have devised 

software capable of performing these predictions (Remillieux et al., 2009; Corcoran et al., 2012). 

 

At low frequencies, coupled structural and acoustic modal models are used to compute the 

vibro-acoustic response (Remllieux et al., 2009). The structural modes are computed with the 

FEM, while the acoustic modes are computed analytically. Exterior pressure loading excites the 

structure into vibration which, in turn, excites the interior acoustic cavity. At low frequencies, it 

is important to include the forcing on the structure due to the interior acoustic modes which are 

also modeled. Due to computational restrictions, the low frequency model is typically effective 

only at frequencies below 200 to 300 Hz. 

 

At high frequencies, analytical methods with simplifying assumptions are used to compute 

the transmission loss (TL) of building components. The transmitted acoustic waves are used as 

the input to a commercial ray tracing software package to compute the interior acoustic radiation 

(Corcoran et al., 2012). This high frequency model is expected to cover the frequency range from 

300 Hz to 6000 Hz. The diffusion BE-LTS could be used as an alternative to ray tracing at these 

frequencies. In this application, the method offers a couple of noticeable advantages. First, the 

diffusion model has been shown to be significantly more computationally efficient than ray 

tracing (Valeau et al., 2006). Second, boundary sources (such as the acoustic radiation from the 

interior surfaces of a vibrating structure excited by a sonic boom) can be explicitly modeled in 
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the diffusion BE-LTS, whereas ray tracing requires point sources. To accurately represent a 

vibrating surface using ray tracing, a distribution of point sources is necessary which costs 

computational efficiency and/or accuracy. Ray tracing is a conventional method in room 

acoustics that has been validated in many different cases and will provide valuable comparisons 

to the BE-LTS of the acoustic diffusion equation. 

 

Obviously, the BEM solution to the acoustic diffusion equation could be applied as a module 

of this software to predict the indoor radiation of the sonic boom noise. One of the methods to 

predict the indoor radiation which is currently under investigation is the use of commercial ray 

tracing software packages which will provide valuable comparisons to the BE-LTS of the 

acoustic diffusion equation. 

 

As stated previously, it is expected that this model is capable of predictions in problems other 

than room acoustics. The acoustic field inside mufflers and silencers becomes diffuse quickly 

even at relatively low frequencies. The diffusion model is likely to be able to describe the 

acoustic field within and the transmission loss (TL) or insertion loss (IL) of these devices.  

 

Many other applications for this research could be imagined as there are virtually no limits to 

the size, type, or location of the volume of interest. For example, the analysis of noise in and 

vibration of vehicle cabins is another potential application. This powerful, efficient numerical 

solution of the acoustic diffusion equation can replace or be used in conjunction with more 

common methods of room acoustics predictions such as room acoustics software packages or 

finite element packages. 

 

1.3 Dissertation Organization 
This dissertation is structured in the following manner as shown in Figure 1.4. First, a literature 

review is presented in Chapter 2. This includes a section on the discussion and derivation of the 

important acoustic quantities, energy density and intensity, and the relationship between them. 

Then, other existing acoustic energy models including Sabine theory, geometrical acoustics 

(image source method and ray tracing), and acoustic radiosity are reviewed. In the final section 
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of the chapter, the acoustic diffusion model, the foundation of this dissertation, is discussed in 

detail. 

 

The new, acoustic diffusion BE-LTS is described in Chapter 3. The chapter begins with the 

Laplace transform method used to derive the integral equation. Then, the BEM is applied to 

obtain a matrix equation which can be solved for the energy density on the boundary. Finally, the 

energy at a point in the volume is computed using the energy density on the boundary. 

 

Chapter 4 is concerned with methods of computing the numerical inverse Laplace transform. 

To convert the Laplace domain results at a point of interest into the physical time domain, a 

numerical inversion must be applied. Three methods are examined: exponential expansion, 

Legendre polynomial expansion, and trigonometric expansion. They are then compared and 

applied to complete the formulation of the BE-LTS to the diffusion model. 

 

The diffusion BE-LTS developed in Chapters 3 and 4 is validated in Chapter 5. Validation is 

carried out through comparison of the BE-LTS with Sabine theory, ray tracing, and a FEM 

solution to the diffusion model. Three aspects are considered: convergence in the numerical 

technique, accuracy of the method, and computational efficiency. 

 

Structural coupling included with the diffusion BE-LTS is discussed in Chapter 6. Two 

methods are investigated and validated in this chapter. In the first method, multiple acoustic 

volumes separated by a partition are coupled through a simple transmission coefficient. In the 

second method, a power flow model is used to model the vibration of the partition itself. Forcing 

and radiation of the partition is incorporated through the coupling boundary conditions. 

 

Finally, Chapter 7 discusses practical applications of the diffusion BE-LTS. As the rest of the 

dissertation is mainly applied in room acoustics, this chapter presents other practical engineering 

examples which can be analyzed with the diffusion BE-LTS. The examples include the acoustic 

transmission through a tube-bundle heat exchanger and the transmission through an expansion 

chamber muffler. 
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Figure 1.4: Flow chart of dissertation organization showing the main chapters and important sections.. 
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Chapter 2: Literature Review of Energy Methods in 

Acoustics 

Since the research topic is an energy method, a review of energy related methods used in 

acoustics is presented here. Acoustic intensity and energy density relations are derived with 

respect to common energy methods in the first section. The second section uses these relations to 

discuss the fundamental relations in the most common energy methods used in acoustics. Finally, 

the acoustic diffusion models and its variations and improvements are discussed in detail. 

 

2.1 Basic Acoustic Energy Derivations 
In this section, theoretical aspects of different energy models for acoustics, i.e. acoustic diffusion 

and radiosity, will be derived and discussed. First, important acoustic quantities related to energy 

is derived for spherical waves. Then, an energy balance is performed to derive 3-D acoustic 

energy models. Finally, different relationships between acoustic variables are considered 

resulting in popular forms of acoustic energy models. 

 

It is important to understand where the acoustic energy quantities come from since they are 

the variables of interest in energy analysis methods. Specifically, acoustic energy density and 

intensity are presented and derived. Acoustic energy density is the field variable in the research 

on the diffusion model presented here. It is defined as the total amount of energy (kinetic and 

potential) carried by a sound wave per unit volume of fluid. Intensity is the primary variable of 

interest in another new, promising energy method, radiosity. Intensity is a vector which describes 

the rate of transmission of acoustic energy through a unit of surface area (normal to the vector). 

The relationship between intensity and energy density is key in the derivation of any energy 

method and it is also discussed in this section. The most important equations are boxed. 

 

The fundamental physical model for the propagation of sound is the acoustic wave equation 

given by 
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where tp ,r  is the acoustic pressure at position ,r  and time t , c  is the speed of sound. For 

spherical waves, as shown in Figure 2.1, the acoustic wave equation can be rewritten in spherical 

coordinates as 
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Figure 2.1: Spherical waves propagating from a point source in a 3-D free field. 

 

The acoustic pressure takes the complex form of 

, expAp t i t ikr r
r

 2.3 

where A  is the unknown amplitude of the wave and k  is the acoustic wavenumber. The particle 

velocity of the spherical wave is given by (Kinsler et al., 2000) 

,
, 1 .

p tit
k c

r rv r
r r

 2.4 

where  is the density of the fluid medium. For periodic wave, the acoustic intensity, I r , can 

be found using (Kinsler et al., 2000) 

*1 Re , ,
2

p t tI r r v r 2.5 
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where Re  denotes taking only the real part and *  a complex conjugate. Substituting eq. 2.4 

into eq. 2.5 gives 

21 Re 1 ,
2

i p t
c k

rI r r
r r

2.6 

which reduces to 

21 ,
2

p t
c

rI r r
r

. 2.7 

Substituting eq. 2.3 into 2.7 gives 
2

2
1 .
2

A
c

rI r
rr 2.8 

The acoustic energy density, r , is defined by the sum of the kinetic and potential energy 

density and can be written (Kinsler et al., 2000) 
2
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Substituting eqs. 2.3 and 2.4 into eq. 2.9 gives 
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Reducing the bracketed term yields 
2
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Since the energy is dependent only on the distance from the source, the gradient of the energy 

density is given by 

.
r rr

r r
 2.12 

Substituting eq. 2.11 into eq. 2.12 gives 
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Carrying out the differentiation gives the gradient of the energy density as 
2

3 22 2

2 11 .
A

c k
rr
rr r

 2.14 

Next, a spherical shell volume centered at the source of width r  with total energy E  is 

considered as shown in Figure 2.2. 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Energy balance on spherical shell volume centered at a point source drawn in 2-D for simplicity. 

 

The total energy in this volume, E , is described by 

,
, ,in out

E t
W t W t

t
r

r r  2.15 

where inW  is the power flowing into the volume and outW  the power flowing out. Rewriting the 

power in terms of intensity gives 

22,
4 4 .

dE t
t d
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r
 2.16 

Multiplying out all terms in brackets gives 

r  E  

inW  

outW  
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or 

2 2 2,
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where rO  represents all terms on the order of r  or higher. Ignoring these higher order 

terms, eq. 2.18 becomes 
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4 .

dE t
t d

I rr
r r
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Equation 2.19 can be converted to energy density using 

0
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Substituting eq. 2.19 into eq. 2.20 gives 
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where 24shellV r r . Substituting the volume of the spherical shell gives 

, dt
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 2.22 

or 

,
.

t
t
r
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This is the basic acoustic energy balance equation from which all other acoustic energy 

models can be derived. 

 

In this dissertation, results are typically presented as a sound pressure level (SPL), a more 

widely used quantity. The SPL, pL , is computed from the acoustic energy density with 
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2.2 Review of Acoustic Energy Models 
Energy models are a common simplification in the study of acoustics when the wave equation is 

impractical to solve. This commonly occurs in complex 3-D geometry requiring numerical 

solutions and either the size of the problem is large (e.g. outdoors or in large volumes) or high 

frequency calculations are necessary. Considering the real, positive quantity of acoustic energy 

provides significant mathematical simplifications over the consideration of the coupled complex 

acoustic pressure and particle velocity. 

 

2.2.1 Sabine Theory 

The simplest of all acoustic energy methods relies on extreme assumptions to reduce 

complicated physics. Nevertheless, the theory is widely used as a first estimate before a more 

detailed analysis is attempted and is presented in this section. At sufficiently high frequencies 

when there is significant overlap from the individual modes that make up the overall acoustic 

response, the concept of a diffuse or reverberant acoustic field arises. A sound field in a volume 

is said to be diffuse when two conditions are met: 

1. The sound waves at any point in the volume arrive from all directions with equal 

probability and intensity. 

2. The intensity in the volume is the same at every position. 

If these assumptions are met and the absorption is uniform everywhere in the volume, a simple 

balance of acoustic power can be written. The rate of change of acoustic energy in the volume, 

/E t t , is written in terms of energy density as in 

v

E t t
V

t t
 2.25 

where vV  is the total volume of the volume. The rate at which energy is dissipated, aW , is 

4
v

a
S cW t . 2.26 

Given a supply of acoustic power, W , the energy balance in the volume is 
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Substituting eqs. 2.25 and 2.26 into eq. 2.27 gives a first order ordinary differential equation in 

terms of the energy density in the volume which is the basis for Sabine theory: 

4
v

v

t S cV W t
t

. 2.28 

The solution to eq. 2.28 is easily obtained as 

0
4 4 exp
v v S

W W tt
S c S c

 2.29 

where 0  is the initial energy density in the volume and 
cS
V

r

r
S

4  is the time constant. 

Equation 2.29 is often solved for either a supplied acoustic power without initial energy giving 

4 1 exp
v S

W tt
S c

 2.30 

or an initial energy density without a supply of acoustic power as in 

0 exp
S

tt . 2.31 

The main limitations of Sabine theory are the restricting diffuse field assumptions made to 

simplify complex physics. These assumptions often inhibit the accuracy of the theory. 

 

2.2.2 Geometrical Acoustics 

Techniques in geometrical acoustics are some of the most commonly used in the field of room 

acoustics. The ray tracing method is used later for comparisons with the newer energy methods 

in room acoustic examples. Two related geometrical acoustics methods are presented in this 

section for completeness. 

 

In the image source method, specular reflections from the surfaces of the volume are 

modeled by mirroring the source across the surfaces (Allen and Berkley, 1979). For a volume 

with six bounding surfaces, multiple orders of image sources can be created by mirroring image 

sources created across multiple surfaces consecutively. Higher order image sources represent 

reflections from multiple surfaces. The total response at a receiver is then calculated by summing 
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the response due to the direct radiated field of the source with the responses due to the fields 

generated by the image sources coherently. For a monopole source radiating sound at a 

frequency, , the pressure, P , at a receiver in a rigid room is 

1

exp
exp

4
n

n n

ikr
P i t

r
 2.32 

where nr  is the distance from the receiver to the thn  image source (Allen and Berkley, 1979). 

This can be easily extended for surfaces which absorb energy of incident waves (Allen and 

Berkley, 1979). The image source method becomes very computationally intensive very quickly 

if a large number of reflections contribute to the overall response. It is also difficult to include 

non-specularly reflecting surfaces and objects (Beranek and Vér, 1992). 

 

Probably the most conventional technique used in room acoustics is ray tracing due to its 

ability to model any arbitrary acoustic volume. The method consists of emitting a large number 

of rays (lines) or other 3-D geometric shapes (cones or pyramids) from a point source (Beranek 

and Vér, 1992) as shown in Figure 2.3. The shapes and their associated energy are then tracked 

as they propagate around the room accounting for specular and diffusely reflecting surfaces. 

Often, the image source framework is incorporated into a ray tracing algorithm to account for 

specular reflections (Farina, 1995). In this manner, an impulse response from a point source to a 

receiver in the volume can be constructed (Farina, 1995).  
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Figure 2.3: Schematic demonstrating basic idea behind the ray tracing method which tracks a large number of rays 

as they reflect around a room and are seen by a receiver to construct its impulse response. 

 

Usually, a “brute force” approach is necessary to ensure accurate results using ray tracing, 

i.e. the use of more rays, accounting for more reflections, finer or more time steps. These types 

of model revisions often come at a great computational expense. Knowledge of surface 

absorption and especially scattering coefficients without any measurement can also result in a 

challenge to implement ray tracing for a particular problem. 

 

2.2.3 Acoustic Radiosity 

A more recently developed energy method that has been implemented for the study of room 

acoustics is known as radiosity (Le Bot, 1998). This is a relatively new energy-based technique 

which has shown promise in mid to high frequency vibro-acoustic analysis. Although both are 

based on acoustic energy variables, radiosity and diffusion have differences which are discussed 

in this section. The derivation and a description of the technique are presented in this section for 

the reader interested in this alternative acoustic energy method. 

 

The basic idea behind this method is to represent a structural or acoustic energy field as the 

sum of sources (primary sources) and reverberant energy described by fictitious sources placed 

on the boundaries of the domain (secondary sources) as shown in Figure 2.4. The primary 
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sources are of known strength. The strengths of the secondary sources are determined by writing 

an energy balance at the location of each secondary source consecutively to create a system of 

integral equations which can be solved numerically. 

 

 
Figure 2.4: Schematic demonstrating basic idea behind the radiosity method which describes the energy field as the 

contribution of primary (real) sources and secondary (fictitious) sources. 

 

The development begins with the steady state energy balance at a point, r , in an arbitrary 

wave field, e.g. acoustic waves in a volume or bending waves in a plate, as in 

 diss injI r r r  2.33

where diss r  is the energy density dissipated due to travel through the point and inj r  is the 

energy density injected at the point. The derivation is general enough to apply to 1-D, 2-D, or 3-

D acoustic or structural wave fields. The energy dissipated is related to the energy density at the 

point through an attenuation coefficient, m , and the group velocity, gc , of the medium: 

diss gmcr r  2.34 

Assuming symmetric spreading from a point source located at 'r  in an isotropic media, the 

gradient of the intensity is 

1
1

1| ' ' | '
''

n
n

d
d

I r r r r I r r
r rr r

 2.35 
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where n  is the dimension of the medium, i.e. 1-D, 2-D, or 3-D. 

 

Dividing eq. 2.8 by eq. 2.11, it is shown that intensity can be written in terms of energy 

density in a free field as 
1

22

1 '| ' 2 ,
''

c t
k

r rI r r r
r rr r

. 2.36 

If 'k r r  is large, for example at high frequencies, eq. 2.36 can be approximated by 

'| ' , .
2 '
c t r rI r r r

r r 2.37 

 

The downside to representing the intensity through eq. 2.37 is that it is accurate for the direct 

field of the source, as shown in Figure 2.5. After a wave encounters a reflection, the intensity 

vector calculated with eq. 2.37 is in the wrong direction compared to the actual intensity vector. 

Thus, the radiosity method relies on placing fictitious sources on the boundary to represent 

reflected or diffracted waves and calculating the correct strength of these sources based on real 

sources and room surface properties (Le Bot, 1998). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic demonstrating the inability to represent the intensity vector as proportional to the energy 

density through eq. 2.37 outside of the direct field of the source. 
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At this point in the derivation of the radiosity method, it is assumed that the intensity vector 

is proportional to the energy density as in eq. 2.37: 

'| '
'gc r rI r r r

r r
. 2.38 

Thus, the energy balance at any point in the field (except at the point source) can be written by 

substituting eqs. 2.38 and 2.34 into eq. 2.33 

1
1

1 ' 0
''

n
n

d m
d

r r r r
r rr r

. 2.39 

The solution to this first order ordinary differential equation is  

| 'Gr r r . 2.40 

where 

1

exp '
| '

' n

m
G

r r
r r

r r
. 2.41 

Using eq. 2.38, 

| 'I r H r r  2.42 

where 

1

exp ' '| '
''

g n

m
c

r r r rH r r
r rr r

. 2.43 

 

Next, two principles are cited to continue the derivation of the radiosity method (Le Bot, 

1998). First, a linear superposition principle is used to state that the total energy at a point due to 

several propagating waves is simply equal to the sum of the energy in each wave. Second, 

Huygens principle which states that a diffracted wave field can be recreated as the sum of point 

sources is cited. The result is that the energy density at any point in the field can be written as a 

sum of direct, primary sources and indirect, secondary sources that make up the diffracted field. 

Primary sources are actual sources in the wave field and the secondary sources are fictitious 

sources placed on the boundaries to create a diffracted field. The result is 

' | ' ' ' | ', | ' '
V S

G dV f G dSr r r r r r r n r r  2.44 
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where 'r  are the strengths of the primary sources, 'r  are the strengths of the secondary 

sources, n  is the unit normal to the bounding surface, | ', 1f r r n  if the secondary sources 

are assumed to radiate sound in all directions (diffuse reflections), and 
'| ',
'

f r rr r n n
r r

 if 

the secondary sources reflect energy specularly. A similar equation can be written in terms of 

intensity as 

' | ' ' ' | ', | ' '
V S

dV f dSI r r H r r r r r n H r r . 2.45 

Now, the strengths of the secondary sources, 'r , located on the boundaries are solved 

using an energy balance technique. Considering an infinitesimally small hemispherical surface 

centered on one of the secondary sources, a power balance can be written as 

1emit dir difW W Wr r r r  2.46 

where emitW r  is the power radiated by the secondary source, dirW r  is the power radiated by 

the primary sources, and difW r  is the power radiated from all other secondary sources. The 

power emitted by the secondary source through a small angle of the hemispherical surface, d , 

can be written 

| ',emit gdW c f dr r r r n . 2.47 

Integrating over the entire hemispherical surface, S , gives the total power radiated by the 

secondary source as 

' | ', 'emit g
S

W c f dr r r r n . 2.48 

Carrying out the integration gives 

emit gW cr r  2.49 

where  is a constant dependent on the dimension of the field and | ',f r r n  (Le Bot, 1998). 

 

The acoustic power radiated by the primary sources and entering the small hemispherical 

surface can be written as a volume integral as 
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' | ' 'dir
V

W dVr r H r r n . 2.50 

Finally, the acoustic power radiated by all other secondary sources, entering the hemispherical 

surface can be written as a surface integral 

' | ', | ' 'dif
S

W f dSr r r r n H r r n . 2.51 

Substituting eqs. 2.49, 2.50, and 2.51 into 2.46 gives the integral equation forming the basis of 

the radiosity method in a single system: 

1 ' | ' ' ' | ', | ' 'g
V S

c dV f dSr r r H r r n r r r n H r r n  2.52 

The surface integral can be evaluated essentially using the BEM, i.e. discretization of bounding 

surfaces into elements and consecutive collocation at each node of the boundary mesh. The 

volume integral is evaluated usually using analytical techniques. The derivation continues to 

encompass coupled structural acoustic systems (Le Bot, 1998), but that will be discussed in a 

later structural coupling section. 

 

The difference between radiosity and the diffusion model is the following. Rather than 

imposing fictitious sources on volume boundaries, the acoustic diffusion model represents the 

intensity vector as being proportional to the energy density gradient. Dividing eq. 2.8 by eq. 2.14 

demonstrates that intensity can instead be written in terms of the gradient of the energy density 

as 
1

22

' 1| ' 1 ,
4 '

c
t

k
r r

I r r r
r r

2.53 

Equation 2.53 can be approximated by 

'
| ' ,

4
c

t
r r

I r r r 2.54 

if 'k r r  is large. Substituting eq. 2.54 into eq. 2.23 yields 

,
,

4
t c

t
t
r r

r  2.55 
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which states that the change in energy density over time is proportional to the Laplacian of the 

energy density. Considering a diffuse field in a volume with reflecting, absorptive boundaries 

and objects, eq. 2.55 can be transformed into the acoustic diffusion equation proposed by Picaut 

et al. (1997) which will be discussed in the next section. 

 

2.3 Acoustic Diffusion Model 
In this section, the acoustic diffusion model which forms the foundation for this research is 

discussed in detail. The acoustic diffusion model is a new energy method which describes a 

reverberant acoustic field as a flow (or diffusion) of acoustic energy. This concept is shown in 

Figure 2.6. At high frequencies, acoustic waves exhibit ray behavior; as shown in the figure, the 

buildup of many subsequent reflections of acoustic rays resembles concentrations of acoustic 

energy. 
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(a)

 
(b) 

 
Figure 2.6: Schematic demonstrating basic idea behind the acoustic diffusion model which models (a) the buildup 

of many reflections of acoustic rays as (b) the diffusion of reverberant acoustic energy. 

 

The discussion in this section is presented to convey the fundamentals of the method and the 

current state of the research surrounding the method. By describing the current state, the 

originality of the research presented later becomes clear. 
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2.3.1 Formal Derivation of the Acoustic Diffusion Model 

In 1997, Picaut et al. proposed a new approach for modeling room acoustics based on diffusion 

theory, introducing an acoustic diffusion coefficient. The formal derivation of the model first 

presented by Picaut et al. (1997) is discussed here for the interested reader. However, the 

proposed numerical solution in this dissertation does not rely on this derivation, only on the final 

diffusion equation in eq. 2.72. 

 

Picaut et al. (1997) first make the assumption that the scattering of particles of acoustic 

energy from the boundaries of a room is comparable to the motion of a particle in a gas colliding 

with other particles. For a basic review of diffusion theory, refer to Appendix A. 

 

The distribution of acoustic particles in the volume, , ,f tr v , is described as a function of 

position, r , velocity, v , and time, t . The energy density and flow, , tJ r , at any point in the 

volume at a specific time can be written in terms of integrals over the velocity of this distribution 

as in 

 , , ,t f t dVvr r v  2.56 

and 

 , , ,t f t dVvJ r v r v  2.57 

where Vv  is the 3-D velocity space. The acoustic particle distribution after a small time, dt , has 

passed can be rewritten as 

 , , , ,f t f dt t dtr v r v v . 2.58 

Equation 2.58 can be expanded as a Taylor series. Retaining only the first order terms gives 

 
, ,

, ,
f t

f t
t

r v
v r v . 2.59 

However, this equation neglects the acoustic particles scattered both into and out of the velocity 

space and the acoustic particles absorbed at the boundary. The scattering cross-section of the 

volume, sS , is given by 

 rs SS 1  2.60 

and the absorbing cross-section, aS , by 
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 ra SS . 2.61 

The total scattering area, tS , is given by 

 ast SSS . 2.62 

In the scattering of particles in a fluid, scattering objects are usually assumed to be spheres with a 

surface area equal to 24 RS f  and the cross-section is 4/fS . Applying this analogy to the 

scattering of acoustic particles from the surfaces of a volume, the surface density per unit 

volume, ft Sn , must be 

 rrft VSSn / . 2.63 

Moving from total surface area to cross-sectional area, this becomes 

 
r

r
tt V

SSn
4

. 2.64 

The mean free path between two collisions is then derived in this framework to give 

 
r

r

tt S
V

Sn
41  2.65 

in agreement with classical reverberant theory (Bies and Hansen, 2003). Considering acoustic 

particles entering and leaving the velocity space through scattering and absorption, eq. 2.59 

becomes 

 ',',
4

,,,,,,
vvr

v
vrvvrvvr dVtf

Sn
tfSSntf

t
tf st

ast . 2.66 

Now, the density function is expanded in powers of v  assuming that the angle-dependence is 

small to give 

 tttf ,
4

3,
4
1,, 2 rIv

v
rvr  2.67 

in which only first order terms are retained. Substituting eq. 2.67 into eq. 2.66 results in an 

equation that can be separated by terms that change sign when the direction of v  is reversed and 

those that do not. The terms that change sign give 

 t
nS

t
tt

,
3

, r
v

rI . 2.68 
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Considering that the acoustic particles will move at the speed of sound, cv , and substituting 

eq. 2.65 gives 

 tct ,
3

, rrI . 2.69 

The terms that do not change sign give 

 tSnt
t

t
at ,,3,

2 rvrIvv
v

r . 2.70 

Next, eq. 2.69 is substituted into eq. 2.70 and the result is averaged across all velocity directions 

in accordance with diffuse field theory. This gives 

 t
V
cStc

t
t

r

r ,
4

,
3

, 2 rrr . 2.71 

Defining a diffusion coefficient, D , and the coefficient which accounts for absorption, , gives 

the diffusion model derived by Picaut et al. (1997) 

 ttD
t

t ,,, 2 rrr
 2.72 

where 

 
3
cD  2.73 

and 

 c . 2.74 

 

2.3.2 Analytical Solutions of the Acoustic Diffusion Model 

The diffusion model in eq. 2.72 is amenable to closed form solutions for a 1-D problem (Picaut 

et al., 1997). For a 1-D volume without absorption, eq. 2.72 reduces to 

 2

2 ,,
x

txD
t

tx  2.75 

Using separation of variables, the general solution to eq. 2.75 can be derived as 

 
0

cossin,
n

Dt
nnnn

nexBxAtx  2.76 
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where nA , nB , and n , are constants to be determined from boundary and initial conditions. 

Consider an initial energy distribution, x0 , described by 

 
hx

hxE
x

,0
0,0

0  2.77 

where 0E  is a constant acoustic energy density. Taking into account rigid boundaries at 0x  

and Lx  and assuming the initial energy is concentrated in a very small space, Lh , eq. 2.76 

becomes 

 
1

2

22
0 expcos21,

n
t

L
Dn

L
xn

L
hEtx . 2.78 

If 2LDt , only the first term of the infinite sum is important and the solution reduces to 

 t
L

D
L
x

L
hEtx 2

2
0 expcos21, . 2.79 

More complex solutions are derived for the same volume with absorption and are expressed as 

an analytical steady state solution with an infinite sum and a decay solution in terms of the total 

energy integrated over the volume. For the case of an infinitely long 1-D volume, the diffusion 

model with absorption has an exact solution (Picaut et al., 1997). 

 

In the diffusion model, the diffusion coefficient, D , is the controlling parameter. Thus, the 

validity of the proposed diffusion coefficient, D , in eq. 2.73 was evaluated (Picaut et al., 1997). 

To this end, many different volume configurations were then simulated using the diffusion 

model, eq. 2.72, and a diffuse-field integral formulation for room acoustics proposed by Kuttruff 

(1973). The 56 volumes simulated range from dimensions of 70 x 10 x 10 m3 (with a mean free 

path of 9.33 m) to 40 x 4 x 4 m3 (with a mean free path of 3.81 m). An average diffusion 

coefficient of each volume is estimated from the slope of the decay of sound calculated with 

Kuttruff's integral method using eq. 2.19 at several receiver positions. The coefficient is plotted 

against the mean free path of the volume along with the diffusion model coefficient, eq. 2.73, 

reproduced in Figure 2.7. The percent difference of the Kuttruff integral method diffusion 

coefficient compared to the average value in the 70 x 10 x 10 m3 volume is also compared for 

several receiver locations in the paper and is reproduced in Figure 2.8. These figures show 

excellent agreement over the entire range of mean free path lengths studied in this paper for long, 
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skinny volumes. In this long, skinny volume, the diffusion coefficient does not deviate by more 

than 1 % from its mean value indicating that the constant coefficient derived in the diffusion 

model is appropriate. 

 
Figure 2.7: Average diffusion coefficients from many different volumes calculated with the use of Kuttruff's 

integral method for room acoustics and compared to the diffusion model's coefficient (Picaut et al., 1997) [fair use]. 
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Figure 2.8: Variation in the diffusion coefficients from the mean value in the 70 x 10 x 10 m3 volume calculated 

with the use of Kuttruff's integral method for room acoustics at several positions in the volume (Picaut et al., 1997) 

[fair use]. 

 

2.3.3 Reduction of the Diffusion Model to Sabine Theory 

A brief exercise is presented in this section to show that the acoustic diffusion model has a 

relationship to the more conventional Sabine theory. Specifically, the acoustic diffusion model 

can be viewed as a more general form of Sabine theory which is reduced exactly to the Sabine 

equations using simplifying assumptions. The originally derived form of the diffusion model 

(Picaut et al., 1997), eq. 2.72, including a constant source of acoustic power, W , at every 

position in the volume is given by 

 2,
, ,

v

t WD t t
t V
r

r r . 2.80 

Using the definition of the attenuation coefficient, , and the mean free path, this can be 

rewritten as 
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 2,
, ,

4
v

v v

t cS WD t t
t V V
r

r r . 2.81 

Next, consider the assumption that the acoustic intensity, thus energy density, at every position 

of the volume must be equal. This assumption eliminates any dependence on position in the 

volume and the term including the gradient of the energy density. Equation 2.81 becomes 

 
4

v

v v

t cS Wt
t V V

. 2.82 

Simple algebraic manipulation yields the first order ordinary differential equation from which the 

Sabine equations are derived: 

4
v

v

t cSV W t
t

 2.83 

 

2.3.4 Improvements to the Acoustic Diffusion Model 

Subsequent research to improve the acoustic diffusion model and key results are presented in this 

section. This is presented to review the existing research and demonstrate the current state of the 

acoustic diffusion model. 

 

One significant limitation of the original formal derivation is that the absorption must be 

uniform in the whole room. In a following paper, the same authors studied sound field prediction 

in long rooms including diffusely reflecting boundaries (Picaut et al., 1999b). In addition, they 

introduced a new parameter allowing the modeling of the distribution of absorption on the walls, 

the exchange coefficient, h . The exchange coefficient is frequently encountered in heat 

conduction to define the exchange of heat between the medium of propagation and the medium 

around. For applications in room acoustics, this coefficient characterizes the flow of energy at 

the boundaries. Thus, the normal intensity on the wall is expressed as (Picaut et al., 1999b) 

 , , ,t h t SI r n r r r . 2.84 

Using eq. 2.69, eq. 2.84 can be written as 

 SthtD rrr
n
r ,,,  2.85 

which is then used as an absorbing boundary condition which can vary for each surface of the 

room. 
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The acoustic diffusion equation is then modified by removing the absorption term since the 

absorption is incorporated at the boundary and is given by (Picaut et al., 1999b) 

 0,, 2 tD
t

t rr
 2.86 

with the boundary condition 

 SthtD rrr
n
r ,0,,  2.87 

if there is no energy flux in or out of the boundary other than that due to the absorption of the 

walls.  

 

Next, the exchange coefficient is determined considering an infinitely long, thin 1-D 

rectangular volume with a y zl l  cross section. The 1-D diffusion equation is given by 

 0,,
2

2

x
txD

t
tx . 2.88 

Now, the absorption of the walls is taken into account using the boundary condition which is 

 0,, txxhtxD
n

 2.89 

in 1-D. The loss of sound energy, dE , due to absorption of the side walls over a time dt  in a 

small section of the volume with width x  is 

 , , 2v y z
dE h x x t S h x x t l l x
dt

. 2.90 

where vS  is the bounding area of the volume in the small width, x . Performing an energy 

balance in this small volume using the concept of diffusion gives 

 
2

2

, ,
,v

c c

x t x t SS S D h x x t
t x x

 2.91 

where cS  is the cross-sectional area of the volume. Substituting the known geometric parameters 

gives 

 
2

2

2, ,
,y z

y z

l lx t x t
D h x x t

t x l l
 2.92 

Considering the original form of the diffusion model, eq. 2.72, 
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2 y z

y z

l l
h x

l l
. 2.93 

Substituting the definition of the attenuation coefficient, , gives 

 
2

4
y zv

v y z

l lS c x
h x

V l l
. 2.94 

If it is assumed that the room is very long, i.e. ,x y zl l ly z,l l,y zy , , then / 2 /v v y z y zS V l l l l  and the 

previous equation reduces to 

 
4

c x
h x . 2.95 

Several 1-D solutions were derived and compared to other theories and experimental data. 

For example, the analytical solution to a steady state problem in a 1-D finite long room is 

compared to experimental data measured in a 20.3 x 2.23 x 3.36 m3 corridor excited at one end 

by a gun shot. Schroeder’s method (1965) is employed to calculate steady state levels which are 

compared to the steady 1-D diffusion equation solution as reproduced in Figure 2.9 (Picaut et al., 

1999). The reverberation times calculated from a transient 1-D analytical diffusion solution are 

also compared to measured data in Figure 2.9 (Picaut et al., 1999). Very good agreement is 

demonstrated in each case. 
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(a) 

 
(b) 

 
Figure 2.9: Experimental validation of the (a) steady and (b) transient response of a long corridor computed using 

the diffusion model (Picaut et al., 1999) [fair use]. 

 

Billon et al. (2008b) and Jing and Xiang (2007) noticed that because the diffusion model 

reduces to the Sabine equation when the appropriate assumptions are made, eq. 2.95 is only valid 

for low absorption coefficients. In highly absorbent rooms, the Sabine absorption coefficient, , 
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is replaced by ln 1  in what is known as Eyring theory (Bies and Hansen, 2003). 

Making this adjustment in eq. 2.95 gives an alternate exchange coefficient (Billon et al., 2008b; 

Jing and Xiang, 2007): 

 
ln 1

4
c

h
r

r  2.96 

which is shown to possess significantly more accuracy for rooms with absorption higher than 

about 0.1. Jing and Xiang (2008) proposed another modification which eliminates the singularity 

in the Eyring absorption coefficient which provides even greater accuracy 

 
4 2 2
ch

r
r

r
. 2.97 

in the experiments they conducted in a small 1 x 1 x 0.2 m3 box. The box had surface absorption 

varying from 0.05 (wood) on some surfaces to 0.96 (acoustic foam) on others. The steady state 

and transient results obtained using a commercial FEM solver are shown for the three different 

exchange coefficients in Figure 2.10 for the 2 kHz octave band (results scaled up by a factor of 

8:1). The modified and the Eyring exchange coefficients tend to exhibit less error than the Sabine 

coefficient. 

 

 
 

 
 

Figure 2.10: Experimental comparison of the three different exchange coefficients in the 2 kHz octave band (Jing 

and Xiang, 2008) [fair use]. 
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Valeau et al. (2006) focused on the definition of the source term and boundary conditions in 

the acoustic diffusion equations. These equations are either 

 2,
, , ,

t
D t t f t

t
r

r r r  2.98 

for constant room absorption with source term, ,f tr , or 

 2,
, ,

t
D t f t

t
r

r r  2.99 

for varying absorption in the room each with their corresponding boundary conditions discussed 

previously. 

 

The source is defined in three ways, as a point source, a volume source, or a surface source. 

The volume source is defined on the assumption that a point source emitting some number of 

acoustic particles per second in the classical particle diffusion problem is comparable to an 

acoustic source of power, W t . Thus, the source term can be modeled as a point source with 

 , sf t W tr r r  2.100 

where sr  is the source position. If the source is defined in a sub-domain, sV , of volume v , the 

source term becomes  

 ,,
0,

s

s

W t
Vf t v
V

rr
r

. 2.101 

As for the surface source of power, W t , and surface area, ss , it can be expressed by modifying 

the boundary condition, equation 2.85: 

 
,,

,
0,

s
s

s

W t
St

D h t s
S

rr
r r

n
r

. 2.102 

where sS  refers to the domain of the surface source. 

 

To account for the direct field of a source in a steady state problem, Valeau et al. (2006) 

propose a simple correction as 
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210log /

4
p ref

s

WL c c pr r
r r

 2.103 

where W  is the steady state power of the source and r  is the steady state energy density. 

The addition of the direct field radiated by a monopole source is included in all results presented 

in this dissertation. 

 

An additional important point was introduced along with this study. The authors stated that 

the frequency dependence of the diffusion equation is accomplished through the absorption 

coefficient, . Therefore, the diffusion equation with appropriate boundary conditions must be 

solved multiple times to obtain results for multiple frequency bands. 

 

Some of the most recent developments in room acoustics concern the application of the 

diffusion theory to coupled rooms. In 2006, Billon et al. proposed a diffusion equation model to 

predict the sound field inside two rooms coupled through an aperture in steady and transient 

conditions. The model used was the diffusion equation discussed previously applied to three 

separate sub-volumes: sV  the source room subtracting the volume occupied by the physical 

source with bounding surface sS , rV  the receiving room with bounding surface rS , and ssV  the 

volume occupied by the acoustic source. The mean free path of each room, s  and r , are 

calculated separately replacing the aperture with a surface. This physical interpretation of this 

approximation is that the aperture area is small with respect to the room surfaces for each room 

so that the mean free path is unaffected by the open aperture. The proposed coupled diffusion 

model is 
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 2.104 

with boundary conditions, 
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,
, 0,
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, 2.105 

and initial conditions, 

 
0

,0 0,

,0 ,
s r

ss

V V

V

r r

r r
. 2.106 

where sD

 

and rD  are the diffusion coefficients calculated with their respective mean free paths.  

The coupling is very primitive as the separate volumes are basically combined into one volume 

which still incorporates the absorption by the coupling surface, but energy is free to travel across 

it. Still, very reasonable results were obtained comparing the FEM solution to the diffusion 

model with experiments in two classrooms coupled through an open door which are reproduced 

for the 4 kHz octave band in Figure 2.11 (Billon et al., 2006). 

 

 
 

Figure 2.11: Experimental validation of steady state and transient response of two classrooms coupled through an 

open door along a line passing through the coupling wall in the 4 kHz octave band (Billon et al., 2006) [fair use]. 

 

The same authors (Billon et al., 2008b) proposed a more sophisticated model for the steady 

diffusion in two rooms coupled through a partition wall. In this formulation, the geometry is 

defined by two room volumes, 1V  and 2V , their bounding surfaces without the partition surface, 

1S  and 2S , and the partition surface, 12S , with the source being located in room 1. A steady state 
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diffusion model is proposed where the diffusion equations are solved for each room volume with 

mixed-type boundary conditions on the room surfaces and a separate boundary condition based 

on the transmission loss of the partition on each side of the partition surface. The steady state 

diffusion equations are 

 
2

1 1 1

2
2 2 2

,

0,

D f V

D V

r r r

r r
 2.107 

where 1D  and 2D  are the diffusion coefficients of each room, and 1  and 2  are the energy 

densities in each room. The boundary conditions on the room bounding surfaces are 
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1 1 1 1
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 2.108 

where 1h  and 2h  are the exchange coefficients of the room surfaces. The boundary condition on 

the room 1 side of the partition surface is 

 1
1 12 1 2 12

1

,
4
cD h S

r
r r r

n
 2.109 

and 

 2
2 12 2 1 12

2

,
4
cD h S

r
r r r

n
 2.110 

on the room 2 side where is the 12h  exchange coefficient of the partition surface and  is the 

transmission coefficient. In order to solve this model, the transmission coefficient of the coupling 

partition must be known. This model was shown to agree with experimental data taken in terms 

of the average SPL in two coupled classrooms in an average sense from 125 to 8000 Hz. Both of 

these diffusion equation models proposed by Billon et al. (2006; 2008b) can be easily 

generalized to complex geometry and systems of any number of coupled rooms. 

 

A modification of the diffusion equation was proposed by Billon et al. (2008a) to account for 

atmospheric attenuation in very large rooms and/or at high frequencies. The modified diffusion 

equation is 



41 

 2,
, , ,

t
D t mc t f t

t
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where m  is the coefficient of atmospheric attenuation and the modified diffusion coefficient, D

, is given by 

 
m

DD
1

1
. 2.112 

 

Subsequently, a modification was proposed to account for scattering objects in a volume 

without explicitly modeling them (Billon et al., 2012). A mean free path, o , defined by the 

average distance an acoustic ray must travel before encountering one of the scattering objects is 

given by 

 1
o

o on S
 2.113 

where on  is the number of scattering objects per unit volume and oS  is the average cross-

sectional area, as opposed to surface area, of the scattering objects. The modified diffusion 

coefficient accounting for these objects, oD , is given by 

 
3

o o
o

o o

c DDD
D D

. 2.114 

where the variables without subscripts refer to the parameters in the empty volume. 

 

2.4 Summary 
Several methods were reviewed including the newer methods, radiosity and the acoustic 

diffusion model, which attempt to overcome the deficiencies of the more conventional 

techniques. The key difference in the way radiosity relates intensity and energy density to how 

they are related in the diffusion model was noted. While the radiosity method is based on the 

direct proportionality of intensity and acoustic energy density, the acoustic diffusion model uses 

the proportionality of intensity to the gradient of energy density. 

 

Significant detail behind the acoustic diffusion model, the foundation of this research, was 

presented including its formal derivation, relationship to Sabine theory, and the current state of 

acoustic diffusion research. The simple, 1-D analytical solutions and the 3-D solutions using 
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only the FEM and FD technique and limited investigation into structural coupling are noted 

deficiencies in the current state of diffusion research. The rest of this dissertation focuses on 

improving the solution technique and structural coupling of the acoustic diffusion model, new 

areas of research. The next chapter discusses a new BEM solution to the acoustic diffusion 

model using an efficient Laplace transform and inversion approach. 
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Chapter 3: Boundary Element-Laplace Transform 

Solution to the Acoustic Diffusion Model 

In this chapter, a new efficient method to solve the acoustic diffusion model is developed. The 

solution is based on the BEM and makes use of the Laplace transform and an efficient numerical 

inversion method. The boundary element-Laplace transform solution method (BE-LTS) is 

described schematically in Figure 3.1. 

 

3.1 Overview of the Proposed BE-LTS 
First, the Laplace transform of the acoustic diffusion model is derived. This equation describes 

the diffusion of acoustic energy in a volume in the Laplace domain. Then, the BEM is applied to 

calculate the acoustic energy by solving a linear system of equations at the nodes on the 

boundary of the volume. The boundary energy at these nodes is then used to consecutively 

compute the acoustic energy at points of interest in the volume. 

 

Both boundary energy and the energy in the volume are computed for the steady state case 

and at several discrete, real values of the Laplace variable. This is performed once per frequency 

band of interest as some of the parameters of the diffusion model can be considered functions of 

frequency. These include absorption coefficients, transmission coefficients, atmospheric 

attenuation coefficients, and possibly source and initial conditions. 

 

Thus, (Number of Frequency Bands) x (1 Steady State + Number of Discrete Laplace 

Variables) full BE solutions are required to obtain the transient energy density. Therefore, the 

computational efficiency can be greatly improved by decreasing the number of Laplace variables 

necessary. This is further discussed in Chapter 4 which discusses the selection of a numerical 

inverse Laplace transform method to calculate the time domain response from the Laplace 

domain. If only the steady state response is of interest, one BE solution is necessary per 

frequency band and the procedures discussed in Chapter 4 are unnecessary. 
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Figure 3.1: Schematic of the boundary element-Laplace transform solution (BE-LTS) of the acoustic diffusion 

model. 
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3.2 Boundary Integral Equation Derivation 
The development of the boundary integral equation begins with the room acoustic diffusion 

equation including atmospheric attenuation (Billon et al., 2008a), 

 2,
, , ,

t
D t mc t f t

t
r

r r r , 3.1

where t,r  is the energy density at any point, r , in the room at time, t ; D  is the acoustic 

diffusion coefficient given by 
1

3 1
cD

m
 with 4 v

v

V
S

 being the mean free path length of 

the room of volume, vV , and total surface area, vS ; c  is the speed of sound in air; 2  is the 

Laplacian operator; m  is the atmospheric attenuation coefficient;
 

tf ,r  is the acoustic source 

power per unit volume that the source occupies (Valeau et al., 2007). 

 

The boundary condition at the bounding surfaces of the volume, S , is given by 

 
,

, 0,
t

D h t S
r

r r r
n

 3.2 

where 
4 2 2
ch

r
r

r
 is the exchange coefficient on the bounding surface (Jing and 

Xiang, 2008), r  is the acoustic absorption coefficient of the surface, and n  is the unit 

normal vector to the surface S  which is defined to be positive outward to V . The arbitrary 

initial acoustic energy density distribution at time zero is denoted with
 

0,r . A schematic 

showing the room volume features with the notation used is given in Figure 3.2. Note that the 

schematic has been drawn with rectangular geometry for clarity, but the geometry in the 

theoretical formulation is arbitrary. 
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Figure 3.2: Schematic showing room volume features using the notation in the theoretical formulation. 

 

The next step towards developing a solution to the partial differential equation is taking the 

Laplace transform of eq. 3.1. Other methods exist to solve this problem such as direct numerical 

integration techniques, for example modeling using finite elements or finite differences. In both 

cases, the complete domain must be discretized and the problem must be integrated multiple 

times since the system parameters are a function of frequency. However, the Laplace transform 

method used in this paper will be seen to be a very efficient technique for solving the energy 

density distribution in the room rather than direct integration in the time domain. The Laplace 

transform of eq. 3.1 is 

 2, ,0 , ,s mc s D s F sr r r r  3.3 

where s  is the complex Laplace domain variable, ts ,, rr L  is the Laplace domain 

acoustic energy density, and tfsF ,, rr L  is the supplied acoustic power per unit volume 

of the source in the Laplace domain, and L  denotes the Laplace transform. Rearranging, eq. 

3.3 becomes 

 2 1, , ,0 ,s s mc s F s
D

r r r r . 3.4 

Similarly, the Laplace transform of the boundary condition, eq. 3.2, is 

 
,

, ,
s h

s S
D

r r
r r

n
. 3.5 

 

To formulate the boundary integral equation, the acoustic diffusion equation must be 

formulated in terms of its Green’s function, sG ,'| rr , which must be found for an infinite 
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spatial domain or free field. The Green’s function of the acoustic diffusion equation is the 

solution to the differential equation obtained by setting the supplied acoustic power density to a 

Dirac delta function, . This differential equation in the time domain is given by 

 2| ',1 | ', | ', '
g t mcg t g t t

D t D
r r

r r r r r r  3.6 

where tg ,'| rr  is the time domain Green’s function with the initial condition for eq. 3.6 as 

00,'| rrg .  

 

Taking the Laplace transform of eq. 3.6 and using the initial condition gives 

 2| ', | ', 's mc G s G s
D

r r r r r r . 3.7 

Rearranging eq. 3.7 yields 

 2 | ', | ', 's mcG s G s
D

r r r r r r . 3.8 

The 3-D Green’s Function which satisfies eq. 3.8 is given by (Butkovskiy, 1982) 

 
'1| ',

4 '

s mc
DG s e

r r
r r

r r
. 3.9 

Note that the atmospheric attenuation constant, m , is thus accounted for automatically in the 

Green's function of the model. This is another advantage of the current method over other direct 

numerical solutions. In the FEM or FD technique, an extra term, tmc ,r , is added to the 

differential equation which must be evaluated, eq. 3.1, increasing computation time. This 

disadvantage is compounded by the fact that the constant is typically a function of frequency. In 

the BE-LTS of the diffusion model, the attenuation is simply inherent in the Green's function 

without any extra integration required. 

 

Starting with the chain rule for differentiation, the Green’s function normal derivative can be 

written as 

 
n

rr
rr

rr
n
rr '

'
,'|,'| sGsG . 3.10 

Carrying out the derivative of the Green’s function with respect to the position vector gives 
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'| ', 1 1

' 4 ' '

s mc
DG s s mce

D
r rr r

r r r r r r
. 3.11 

The directional derivative of the position vector in the normal direction is then found to be 

 
'

''
rr

nrr
n

rr
. 3.12 

Substituting eqs. 3.11 and 3.12 into eq. 3.10 gives the Green’s function derivative sought as 

 
'| ', '1 1

4 ' ' '

s mc
DG s s mce

D
r rr r r r n

n r r r r r r
 3.13 

which is required later in the formulation. 

 

Next, applying the Green’s Second Identity to the functions s,r  and sG ,'| rr  gives 

(Stewart, 2003) 
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'
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S
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dSsGsssG
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rrr
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rrr

rrrrrr

 3.14 

where 
'V

dV  and 
'S

dS  represent integration over the room volume, V , and  the bounding 

surface, S , respectively, with respect to the unprimed spatial variable, r . Substitution of eqs. 3.4 

and 3.8 into eq. 3.14 gives 

 

'
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,'|,,,'|

,,'|0,,'|',1

S
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rrr
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Carrying out the volume integration of the term with the delta function and rearranging gives 

 

'
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,,'|10,,'|1,'

S

VV

dSsGsssG

dVsFsG
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D

s

n
rrr
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rrrrrrr
 3.16 

where  is computed using the property of the Dirac delta function (Lighthill, 1958), 
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', , '

, ' ', / 2, '
0, ' ,V

s V
s dV s S

V S

r r
r r r r r

r
. 3.17

Substituting the boundary condition, eq. 3.5, into eq. 3.16 gives 

 
' '

'

1 1', | ', ,0 | ', ,

| ',
, | ',

V V

S

s G s dV G s F s dV
D D

h G s
s G s dS

D

r r r r r r r

r r r
r r r

n

. 3.18 

 

Equation 3.18 is the most general integral equation form of the acoustic diffusion equation in 

the Laplace domain with the boundary condition given by eq. 3.5. Examining this equation, it 

can be seen that the acoustic energy density at any point in the domain, which includes the 

volume and its bounding surface, is equal to a sum of three integrals. The first volume integral 

accounts for the effect of the initial energy distribution in the domain. A practical case in which 

this information would be known is when the acoustic source is allowed to input power into the 

room until the steady state energy density distribution is reached. Then the source is turned off 

and the energy in the room is allowed to decay as would be the case of measurement of room 

reverberation time, 60T  (Bies and Hansen, 2003). 

 

The second volume integral represents the acoustic energy density due to the arbitrary 

supplied acoustic power per volume of the source. Although it is integrated over the volume, the 

source will rarely encompass the entire room volume. Most often the bounds of this integral will 

reduce to a sub volume, sV , such as a point, a surface, or a smaller volume. The last integral 

represents the diffusion of the acoustic energy density accounting for the shape of the volume 

which is obtained by integrating only over the bounding surface of the domain. 

 

To determine the steady state form of the boundary integral equation, the Final Value 

Theorem (FVT) is used. To this end, eq. 3.18 is multiplied by s  and the limit is taken as 0s  

giving 
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The FVT states that 

 
0

lim lim
t s

u t sU s  3.20 

where tu  is any function of time and sU  is its Laplace transform as long as both limits exist. 

Rearranging terms and using some properties of limits in eq. 3.19 gives 
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3.21 

Now, let 

 
0

lim , lim ,
t s

t s sr r r  3.22 

and 

 
0

lim , lim ,
t s

f f t sF sr r r  3.23 

where the overbar denotes a steady state quantity. Substituting eqs. 3.22 and 3.23 into eq. 3.21 

yields 
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Now, the steady state integral equation is obtained through simple evaluation of the remaining 

limits as 

 ' '

| ',01' | ',0 | ',0
s

s
V S

h G
G f dV G dS

D D
r r r

r r r r r r r
n

. 3.25 
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Comparing the steady state integral equation, eq. 3.25, to the Laplace domain integral equation, 

eq. 3.18, it can be seen that the application of the FVT causes several differences. First, the 

integration of the initial energy density distribution over the volume disappears, which makes 

physical sense as the steady state solution will not be affected by the initial state in the room. 

Second, the Green’s functions are all evaluated at 0s  due to the limits taken. Finally, only the 

steady state portion of the forcing function plays a role in the steady state energy density. 

 

Like all integral formulations, finding the energy density ', sr  or 'r  at a point 'r , 

either in the domain or on the boundary, in eq. 3.18 requires knowledge of the solution on the 

boundary (needed in the last integral), the boundary properties (absorption), the source power, 

and the initial condition for the energy density distribution. Thus, eq. 3.18 must be solved first by 

selecting 'r  on the boundary. 

 

3.3 Numerical Formulation of the Matrix Equations 
The surface integral in the integral equation can be solved numerically using the boundary 

element method. The transformation of the surface integral into an algebraic sum of nodal values 

using Gaussian quadrature is shown schematically in Figure 3.3. For the mathematical details 

behind the discretization of the boundary into isoparametric elements and element 

transformations, refer to Appendix B. This appendix provides every equation in detail necessary 

for the actual implementation of the BE-LTS and is presented there for the reader interested in 

using the method. 
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Figure 3.3: Numerical integration of the bounding surface in terms of a sum of nodal values of the energy density.  

 

Using some numerical integration technique for each node of each element of a BE mesh, eq. 

3.18 becomes 

 ' '

1 1

1 1', | ', ,0 | ', ,

',

s

s
V V

J I

ij ij
j i

s G s dV G s F s dV
D D

s C s

r r r r r r r

r
 3.26

where sij  is the energy density and sCij ,'r  is dependent on the Green's function and its 

normal derivative (given specifically in Appendix B) at the thi  node of the thj  element. This 
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equation is now evaluated for ' 'lr r  at the position of the thl  node where the mesh has a total of 

L  unique nodes. After some rearranging, eq. 3.26 becomes 

,
1 1 ' '

1 1| ', ,0 | ', ,
s

J I

l ij l ij l l s
j i V V

s s C s G s dV G s F s dV
D D

r r r r r r  3.27

where , ',l ij ij lC s C sr  and 2/1  as required by eq. 3.17. 

 

Now examining only the volume integrals evaluated at '' lrr  on the right hand side of eq. 

3.26, let 
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sV
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V
ll dVsFsG

D
dVsG

D
sB rrrrrr . 3.28 

The initial energy density distribution and supplied acoustic power are known for any given 

acoustic problem of interest. Since the Green’s function is also known, these volume integrals 

can be approximated fairly easily or solved accurately using some other numerical integration 

procedure. Without loss of generality, specific cases in which these integrals can be determined 

or approximated will be examined. 

 

3.3.1 Case 1: Uniform Distribution of Initial Energy Density 

In room acoustics, the reverberation time, 60T , of a room is important to characterize its 

acoustics. This parameter is measured or computed from the decay of sound in a room. This can 

be described using a known initial acoustic energy without a source and eqn. 3.28 becomes 

 
'

0,,'|1

V
ll dVsG

D
sB rrr . 3.29 

Since only the boundary can be integrated using a sophisticated numerical technique when 

applying the BEM, the value of this volume integral will be calculated in a simplistic way. 

Specifically, the total volume will be divided into discrete sub-volumes, vV , assigned a 

uniform initial energy density, 0,vv r , which gives 
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v
vvvlvl VsG

D
sB

1
0,,'|1 rrr  3.30 
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where the thv  sub-volume is centered at vr . A special case when the sub-volumes are all of equal 

volume, V , and the volume has a uniform initial energy, 0 , will be considered. In this case, 

eqn. 3.30 becomes 

 
vN

v
lvl sGV

D
sB

1
0 ,'|1 rr  3.31 

which can be easily implemented numerically. 

 

3.3.2 Case 2: Omnidirectional Point Sound Source 

If the initial acoustic energy density is zero everywhere in the volume, only the volume integral 

containing the source must then be evaluated. Equation 3.28 reduces to 

 
'

,,'|1

sV
sll dVsFsG

D
sB rrr . 3.32 

If the acoustic source is assumed to be an omnidirectional single point at sr , such as a speaker at 

low frequencies, the source term can be written as 

 stwtf rrr,  3.33 

where tw  is an arbitrary acoustic power as a function of time. Taking the Laplace transform 

and carrying out the volume integration of the source integral gives 

 sWsG
D

sB lsl ,'|1 rr  3.34 

where twsW L . If the point source is modeled as a step function at time t  with 

constant acoustic power, W , eq. 3.34 becomes 

 sG
sD

WesB ls

s

l ,'| rr . 3.35 

 

3.3.3 Case 3: Radiating Boundary 

An acoustic source located on the bounding surface of the domain or a portion of the bounding 

surface, sS , can be accounted for by modifying the boundary condition in eq. 3.5 to 
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where ,F sr  is now a distribution of acoustic power per unit area. The modified boundary 

condition can be used to describe either (a) a boundary excited into vibration causing acoustic 

radiation or (b) an external sound source transmitted through the boundary as shown in Figure 

3.4. 
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(a)

 
(b) 

 
Figure 3.4: Schematic of acoustic radiation from part of the bounding surface of a room due to (a) a vibrating 

boundary or (b) an external sound source transmitting through the surface. 

 

For the case of a vibrating boundary, time or frequency domain structural analysis of the 

structural partition excited by some known force, e.g. a rotating machine, can provide the 

partition's velocity response. From the velocity response and acoustic radiation properties of the 
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interior surface, the flow of energy, ,F sr , from the structural vibration to the acoustic volume 

can be computed. 

 

An acoustic power per unit area loading, ,extF sr , on the exterior side of the bounding 

surface or a portion of it as shown in Figure 3.4(b), can be represented with 

 , ,extF s F sr r r  3.37 

where r  is the known transmission coefficient of the partition. The transmission coefficient 

is the ratio of the transmitted to incident acoustic intensity. It can be a function of the direction of 

the exterior loading if it is known and can vary with position if the exterior loading covers 

multiple types of partitions. Substituting eq. 3.36 into eq. 3.16, the boundary integral equation 

becomes 
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For zero initial acoustic energy density eq. 3.28 becomes 
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If the surface source is uniformly distributed over the surface, eq. 3.39 reduces to 
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where F s  is the uniform power per area of the surface source. 

 

Equations 3.39 and 3.40 are convenient forms of the source integral because they can be 

numerically integrated using the existing boundary mesh and the same numerical integration 

procedure even for complex spatially distributed surface sources. 
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3.3.4 Boundary and Volume Energy Density Computation 

Now, the matrix form of the boundary integral equation is developed. Solving the matrix 

equation allows for the computation of the energy density on the boundary of the volume as 

shown in the second line in Figure 3.1. Then, the equation necessary to compute the energy 

density at points inside the volume using the boundary energy density is developed as shown in 

the third line of figures in Figure 3.1. 

 

Using eqs. 3.28, 3.32, 3.34, 3.35, 3.39, or 3.40 to evaluate sBl , eq. 3.26 becomes 

 ,
1 1

J I

l ij l ij l
j i

s s C s B s . 3.41

Next, the energy density and the values of sBl  at each node are arranged into vectors such that 

T
LL ssss 211Ψ  and  T

LL sBsBsBs 211B . Thus, eq. 3.41 

becomes a set of L  linear, algebraic equations in sl  given by 

 11 LLLL sss BΨA . 3.42 

The solution of this matrix equation provides the energy density at each node of the boundary 

mesh and can be used with shape functions to compute the energy density at any point on the 

boundary surface. The LL  matrix of coefficients, sA , is given by 
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where elJ  is the number of elements the thl  node belongs to in volume v ; the index, i , takes on 

only one value for each of these elements as each unique node will correspond to a single node 

of the thj  element. 

 

Note that the matrix and vectors of eq. 3.42 are all functions of the Laplace variable. 

Therefore, the linear system of equations can only be solved for discrete values of the Laplace 

variable, qs . Evaluating the matrix sA  and the vector sB  at qss  and solving eq. 3.42 

gives the energy density in the Laplace domain at the nodes of the mesh that bounds the volume 

for this value of the Laplace variable. Additionally, the exchange coefficient, h r , which 

depends on the absorption coefficients of the room surfaces, r , or the transmission 

coefficient, r , if an acoustic source is being transmitted from the outside are typically 

functions of frequency. Thus, eq. 3.42 on the boundary and eq. 3.26 in the volume must be 

solved a number of times for separate frequency bands with the appropriate absorption and 

transmission coefficients. 

 

After solving the matrix equation, eq. 3.42, for the energy density at each node on the 

boundary, 
1LqsΨ , eq. 3.26 can be subsequently solved for any point inside the domain in which 

it becomes 
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, 3.44

is repeated here for convenience where ' Vr , qij sC ,'r  is computed from numerical 

integration of the boundary mesh provided and qij s  is the energy density at the nodes of the 

boundary mesh. The energy density at any point, ' Vr , in the volume can be rewritten in 

matrix form with 

 
1

,',','
LqLLqqq sssBs ΨrCrr . 3.45
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Thus, the energy in the volume is obtained basically through simple, efficient matrix 

multiplication as opposed to the boundary energy which requires the inversion of the large 

matrix, qsA . Equation 3.45 can be solved consecutively for many points of interest in the 

volume. 

 

To obtain useful results in the time domain, the inverse Laplace transform of the energy 

density must be computed. However, the Laplace domain energy is known only at discrete 

values of the Laplace variable, so a numerical inverse Laplace transform must be used. Several 

candidate methods are investigated in this research and described in the next chapter. 
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Chapter 4: Numerical Inverse Laplace Transform 

This chapter is concerned with the computation of the inverse Laplace transform of the BE-LTS 

for the acoustic diffusion model. To obtain more useful results from the BE-LTS, the energy 

density in the Laplace domain, s,r , e.g. the solutions to eqs. 3.42 and/or 3.45, must be 

transformed to the time domain using 

 st ,, 1 rr L  4.1 

where 1L  denotes an inverse Laplace transform. Since s,r  is only known at discrete 

values of qs s , an analytical inverse transform does not exist. Many methods for computing the 

numerical inverse Laplace transform have been developed and studied (Davies and Martin, 

1979) and a few are discussed here with application to acoustic problems. These methods have 

been used for solving a variety of simple equations, e.g. a single ordinary differential equation. 

The application of these numerical inverse Laplace transforms to a partial differential equation 

solved with the BEM is unique to this research. 

 

The main goal of using the Laplace domain approach is to minimize the number of times that 

the matrix, qsA , is calculated and inverted as this is the most computationally expensive 

procedure in the BE-LTS. Each of the methods discussed assumes that the time domain function 

can be expanded as 
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q q q
q

t a p s tr  4.2 

where qa  is a coefficient computed from the Laplace domain function and ,q qp s t  is a function 

of both the Laplace variable value and time. The form of ,q qp s t  is dependent on the particular 

method. The Laplace transform of eq. 4.2 is 
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where , ,q q q qP s s p s tL . Evaluating 'qs s  where ' 1,2,...,q Q  allows for the 

calculation of qa . It is shown later that the computation of these coefficients in many cases 

requires a linear system of Q  equations to be solved for each point in the domain. 

 

The general process is shown in Figure 4.1 for the case of a buildup of energy and the decay 

of energy. For the buildup, functions of energy increasing at varying rates are subtracted from a 

large steady state energy. In the decay problem, decaying functions of energy with varying decay 

rates are simply added to compute an energy decay curve. 

 

(a) (b) 

 
Figure 4.1: Schematic demonstrating the numerical inverse Laplace transform using expansion methods for (a) the 

buildup and (b) the decay of energy density. 

 

In the following subsections, three numerical inverse Laplace transform methods are briefly 

described. Then, they are applied to the Sabine buildup and decay of acoustic energy density, 

which have known analytical solutions, eqs. 2.30 and 2.31. The Sabine theory solution for the 

buildup of acoustic energy in an initially undisturbed volume, eq. 2.30, and for the decay of 

acoustic energy from an initial uniform distribution, eq. 2.31, are repeated here: 

4 1 exp
v S

W tt
S c

 4.4 

and 



63 

0 exp
S

tt . 4.5 

The exponential expansion procedure is examined for the case of a 10 x 10 x 10 m3 volume with 

an absorption coefficient of 0.1. For the buildup problem, the source emits a power of 0.01 W. 

For the decay problem, the energy in the volume is initially 1.9 x 10-6 J/m3. This uniform cubic 

volume configuration is studied in greater detail in a subsequent section using the diffusion 

model. 

 

The Laplace transforms of eqs. 4.4 and 4.5 are 

4 1 1

v S

Ws
S c s s

 4.6 

and 

0

1 S

s , 4.7 

respectively. 

 

The inversion methods’ ability to reproduce the analytical solutions accurately using as few 

discrete values of the Laplace variable as possible is used to determine which to apply to the 

BEM solution to the acoustic diffusion model. It is very desirable to use as few discrete Laplace 

variable values for significant improvement in computational efficiency. This is because the full 

BEM procedure, i.e. setting up and solving eqs. 3.42 and/or 3.45, must be repeated once per 

frequency band for each additional discrete value required to compute the inverse Laplace 

transform. 

 

4.1 Exponential Expansion Method 
Based on the comparison of these methods by Davies and Martin (1979), the procedure proposed 

by Liggett and Liu (1983) will be discussed first. In this approach, it is assumed that the solution, 

t,r , can be expanded in a series as 
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where r  is the steady state value, Q  is the number of Laplace variable values, and qa  and qb  

are arbitrary constants to be determined. 

 

The assumed form of the solution is valid for any combination of initial energy and energy 

added to the system from some source. For the extreme case in which no energy is added to the 

system, 0r , which decays from an initial energy, the coefficients, qa , are mostly positive 

and the time domain function is formed from the sum of decaying exponentials. The opposite 

extreme case is one in which there is no initial energy and a source of energy provides a steady 

state value, 0r . In this case, the coefficients, qa , are mostly negative and the time domain 

function is computed by subtracting decaying exponentials from the steady state value. In a 

problem with both an initial energy and a source of energy, qa  are both positive and negative 

which forms a more complex time domain solution. 

 

The next step is to compute the coefficients qa  and qb  in the series of eq. 4.8. Taking the 

Laplace Transform of eq. 4.8 results in 
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Next, Q  discrete values of qb  are chosen so that 

 Qqsb qq ...,,2,1,  4.10 

are the values of the Laplace variable for which the energy density has been computed. These 

values can be chosen for an efficient numerical inverse Laplace transform using knowledge of 

the physical problem. It is shown later that one value of critical importance to the accurate, 

efficient calculation of the inverse Laplace transform can be estimated using the mean free path 

length of the volume. 

 

Substituting eq. 4.10 into eqs. 4.8 and 4.9 gives 
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and 
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respectively.  Notice that eqs. 4.4 and 4.5 are already in the form of eq. 4.11 and eqs. 4.6 and 4.7 

in the form of eq. 4.12 with 1/q Ss  and 1Q . 

 

Equation 4.12 represents a set of Q  algebraic equations which can be solved simultaneously 

for the values of qa . These equations can be written in matrix form as 

 1
1

,QQ Q
Q

r
S a Ψ r s

s
 4.13 

where T
QQ aaa ...,,, 211a , T

QQ sss ...,,, 211s , 
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and 
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Once eq. 4.13 is solved for the values of qa , eq. 4.11 is used to determine the acoustic energy 

density for any point in space as a function of time, t,r . Liggett and Liu (1983) recommend 

to use 125 Q  and that qs  are chosen as a geometric series as in 

 1
1sds q

q  4.16 

where d  is a constant real number. It is possible and shown later that less than five values can 

create an accurate time domain solution; this greatly improves the computational efficiency of 

the BE-LTS as discussed previously. The constant, d , is chosen based on the range of Laplace 
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variable values which are important to the time domain solution which are usually close to the 

critical value discussed previously, i.e. within a factor of two. 

 

4.2 Legendre Polynomial Expansion Method 
Papoulis (1956) proposed to expand the time domain function as a sum of Legendre polynomials 

in exp rt  as in 

1

0
2

Q

q

rt
qq ePat  4.17 

where qa  are unknown coefficients, 2qP  are the th2q  degree Legendre polynomials, r  is a 

constant parameter of the numerical inversion used to define the discrete values of the Laplace 

variable, ks , as 

1...,,1,0,12 Qkrksk . 4.18 

Taking the Laplace transform of eq. 4.17 and substituting eq. 4.18 gives 

0
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k q m
r s a

k m
. 4.19 

This equation represents a linear system of Q  equations with qa  as the unknowns. Interestingly, 

eq. 4.19 does not have to be solved simultaneously for all qa , but can be solved recursively. That 

is, setting 0k  results in one equation with one unknown, 0a . Consecutively increasing k  

results in only one additional unknown coefficient at a time. Thus, this method is more 

computationally efficient than the exponential expansion method presented in the previous 

section which requires creating a matrix of Laplace values and simultaneously solving a linear 

system of equations for the coefficients, qa . However, the number of Laplace values is generally 

a small number, i.e. less than ten, so this is not a major detriment to the exponential expansion 

method. 

 

4.3 Trigonometric Expansion Method 
Papoulis (1956) also proposed to expand the time domain function as a sum of trigonometric 

functions as in 
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1

0
12sin

Q

q

rt
q eqat  4.20 

where qa  are unknown coefficients, r  is a constant parameter of the numerical inversion used to 

define the discrete values of the Laplace variable, ks , as 

1...,,1,0,12 Qkrksk  4.21 

Taking the Laplace transform of eq. 5.1 and substituting eq. 5.3 gives 

2 1

0

2 2
2

1

k
k

k q
q

k k
r s a

k q k q
. 4.22 

This equation represents a linear system of Q  equations with qa  as the unknowns. As with the 

Legendre polynomial expansion method, eq. 4.22 does not have to be solved simultaneously for 

all qa , but can be solved recursively, one coefficient at a time. 

 

4.4 Application to Sabine Theory Solution 
In this section, the inverse Laplace transform of the Sabine theory solutions are computed 

numerically using the expansion methods discussed and discrete values of the exact solution. 

Initially, qs  are chosen assuming knowledge only of the order of magnitude of the single 

required exponential, 1/q Ss . When the numerical inversion method chosen is used with the 

BEM solution to the diffusion model, it is expected that only an order of magnitude estimate of 

the required exponential or exponentials is known. For the exponential inversion method, the 

first and last values are chosen such that 1 2s  and 8Qs  and the rest are chosen according to 

eq. 4.16. For the Legendre polynomial and trigonometric expansion, r  is chosen as 0.3. The 

number of values is varied from 1Q  to 30Q . 

 

The numerically calculated time domain solutions to the energy decay are shown for a subset 

of these values in Figure 4.2 to show the evolution of the solution as Q  is increased. For a single 

value of the Laplace variable, the exponential expansion procedure produces a curve based on a 

single exponential decay rate. In this case, the inverted solution is incorrect because the decay 

rate does not match the correct rate. Using only one value of the Laplace variable with the other 
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methods results in a horizontal line and is not plotted. Two values of the Laplace variable give 

the horizontal line slight curvature, but not enough to reproduce the decay in the Sabine solution. 

 
(a) 

 
(b) (c) 

 
Figure 4.2: Decay of SPL over three seconds from known Sabine theory solution using the (a) exponential 

expansion, (b) Legendre polynomial expansion, and (c) trigonometric expansion methods for increasing numbers of 

the Laplace variable. 

 

In general, more Laplace values increases the length of time for which the decay curve is 

accurate. Using exponential expansion, three values produces an accurate curve for one second, 

five values for two seconds, and seven values for almost three seconds nearly overlapping the 

exact solution. Expansion in Legendre polynomials gives an accurate curve to about half of a 

second using five values. Nine values produce an accurate curve to about two seconds and 

twelve values produces a curve accurate for three seconds. Seven Laplace values give an 

accurate solution to half of a second using trigonometric expansion. Thirteen and twenty values 
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produce accurate decay to about one and one and a half seconds. Trigonometric expansion, 

however, is unable to accurately reproduce the exact solution for the full three seconds. 

 

Each expansion method is now used to compute a three second long discrete time history of 

the energy density in the room consisting of 301 time steps. The energy density at each time step 

is compared to the exact solution to compute a percent error. This error is averaged for all time 

steps. The average percent error is plotted in Figure 4.3 for both the buildup and decay solutions 

using a logarithmic y-axis for increasing numbers of Laplace variable values. 

 
(a) 

 
(b) 

 

(c) 

 
Figure 4.3: Average percent error in energy density over three seconds from known Sabine theory solution using 

the exponential expansion numerical inversion method and order of magnitude knowledge of correct Laplace value. 

 

In general, the average error begins fairly low for 1Q  and decreases to some minimum 

error as Q  is increased. Further increase of Q  causes numerical instabilities in the methods 

which render inaccuracies. In the exponential expansion method, this error increases quickly and 
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levels off to some large amount on the order of 100 % for the buildup problem and 10000 % for 

the decay problem which is caused by the matrix, S , in eqs. 4.13 and 4.14 becoming effectively 

singular. For the energy buildup, the minimum error occurs using 7 values of the Laplace 

variable, but anywhere from 1 to 11 values gives an average error of less than 10 %. In the case 

of energy decay, 7 to 9 values gives less than 10 % error with the minimum at 8 values. 

 

Using the Legendre polynomial expansion, one Laplace value causes very large error, 

especially for the decay solution. The average error decreases to a minimum when 12 values are 

used. Then, the error increases at a constant rate as the method becomes unstable. 

 

For the energy buildup, the trigonometric expansion method is able to reproduce the exact 

time-domain solution to within 5 % average error using as few as three values of the Laplace 

variable. This error decreases very slowly to a minimum of 0.04 % average error using 20 

values. This method is unable to accurately reproduce the decay curve with a minimum of over 

4000 % average error using 20 values of the Laplace variable. 

 

When using less than about ten values of the Laplace variable, the exponential expansion 

provides the most accurate solution. When more than ten are used, the Legendre polynomial 

expansion is the most accurate. All three methods are capable of computing the inverse Laplace 

transform of the Sabine buildup solution accurately with only a few values of the Laplace 

variable. The trigonometric expansion method is unable to compute the inverse Laplace 

transform of the decay solution, but the other methods can do so accurately. 

 

The SPL's computed with the numerical computation of the inverse Laplace transform are 

compared to the exact solutions in Figure 4.4. As expected, the numerical curves overlap the 

exact solution almost perfectly, except in the decay computed with the trigonometric expansion 

method. 
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Figure 4.4: (a) Buildup and (b) decay of SPL using the exponential expansion numerical inversion method and (a) 

seven and (b) eight values of the Laplace variable spaced with order of magnitude knowledge of correct value. 

 

Now, the discrete values, qs , are chosen using the knowledge that only 1/q Ss  is needed 

to recreate the solution exactly. To this end, the first and last values are chosen such that 

1 1/ 2 Ss  and 2 /Q Ss  and the rest are chosen according to eq. 4.16 for the exponential 
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expansion method. Thus, there will be one value where 1/q Ss  whenever Q  is an odd greater 

than one. For the Legendre polynomial expansion, r  is selected to be one tenth of 1/q Ss . 

With the trigonometric expansion method, r  is selected to be one third of 1/q Ss . The 

average error of each method using these values is plotted in Figure 4.5.  

 
(a) 

 
(b) 

 

(c) 

 
Figure 4.5: Average percent error in energy density over three seconds from known Sabine theory solution using 

the exponential expansion numerical inversion method and exact knowledge of correct Laplace value. 

 

Using the exponential expansion, the average error is minimized in each solution using only 

the exact value of the Laplace variable necessary to create the solution. Extra, unnecessary 

exponentials simply introduce more error into the inverted solution. The error increases for even 

values of Q  when the exact exponential is no longer present; the error in these cases follows the 

same trend as Figure 4.3. 

 



73 

When less than six Laplace variable values are used with the Legendre polynomial expansion 

method, the error is essentially the same as the previous case with 3.0r . However, as soon as 

5Q  and SQs /1 , the error drops drastically to its minimum, 3 x 10-7 % in the decay and 8 x 

10-13 % in the buildup, which is almost an exact reproduction of the known solution. Subsequent 

increase in Q  simply introduces more error. Interestingly, Sr 10/1  is the only value which 

produces this effect in the inversion procedure. Any other value, even Sr /1 , produces a 

smooth error curve similar to Figure 4.3. 

 

Knowledge of the correct Laplace value gives an order of magnitude drop in average error 

when using more than three Laplace variable values with the trigonometric expansion method. 

At least four values are required to obtain this improvement because the exact Laplace variable 

value is not present in the inversion until this point. The minimum error is still obtained when 20 

values are used, so knowledge of the exact value does not improve the method in this aspect. 

 

The improvement in average error is about one order of magnitude for the calculation of the 

decay solution with trigonometric expansion. Using an even number of values offers even more 

improvement, in some cases, more than two orders of magnitude. Also, the minimum error is 

now obtained using only 18 values of the Laplace variable, fewer than are needed without 

knowing the exact Laplace variable value. However, the average error is still over 250 % 

indicating that the method is inadequate for reproducing the energy decay curve accurately. 

 

The number of values needed to obtain less than 10 % average error and less than 1 % 

average error is given in Table 4.1. The exponential expansion inversion is the best in the energy 

buildup case requiring fewer values than either of the other methods. With order of magnitude 

knowledge of the correct Laplace value, the trigonometric expansion requires fewer values to 

produce a solution within 10 % average error than the Legendre polynomial expansion, but needs 

more to be within 1 % average error. With exact knowledge of the correct value, the 

trigonometric expansion requires less Laplace variable values than the Legendre polynomial 

expansion. 
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In the case of energy decay, the exponential expansion method still requires fewer values of 

the Laplace variable than other methods, seven or eight with order of magnitude knowledge of 

the correct value and only one with exact knowledge. The Legendre polynomial expansion is 

able to produce accurate decay solutions using 10 or 11 values of the Laplace variable and only 

six with exact knowledge of the correct value. 

 
Table 4.1: Number of Laplace variable values needed to numerically invert the Sabine theory solutions to within 10 

% and 1 % error using order of magnitude or exact knowledge of the correct value. 

 Buildup 

(Order of Magnitude) 

Buildup 

(Exact) 

Decay 

(Order of Magnitude) 

Decay 

(Exact) 

Expansion Method 10 % 1 % 10 % 1 % 10 % 1 % 10 % 1 % 

Exponential 1 3 1 1 7 8 1 1 

Legendre Polynomial 4 6 3 5 10 11 6 6 

Trigonometric 3 8 2 4 --- --- --- --- 

 

Based on this comparison, the exponential expansion method is chosen to numerically invert 

the Laplace domain BEM solution to the acoustic diffusion model. Again, it is important for the 

efficiency of the method to require as few Laplace values as possible because a full BEM 

solution must be set up and solved for each discrete value in each frequency band. The 

exponential expansion method gives accurate solutions using very few values of the Laplace 

variable. In the next section, a method of selecting the discrete Laplace values in order to 

minimize the number required is discussed. 

 

4.5 Application to BE-LTS of the Diffusion Model 
Since the diffusion model is not a simple first order differential equation like Sabine theory 

discussed in the previous section, multiple values of the Laplace variable may be required to 

compute the numerical inverse Laplace transform. However, there is one critical Laplace 

variable which minimizes the number of values required. This section discusses the calculation 

and selection of that value for the uniform cubic volume used in the previous section. 
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Assuming uniform energy density in the volume and uniform absorption of the bounding 

surfaces, the Sabine model describes the decay of acoustic energy with eq. 2.31 repeated here for 

convenience: 

 
S

tt exp0  4.23 

where 
cS
V

r

r
S

4  is the volume time constant. Taking the Laplace transform of eq. 4.23 gives 

 .
/1
0

Ss
s  4.24 

The energy density in the Laplace domain computed with the BEM and averaged across about 

700 positions in the volume is plotted with the Sabine model in Figure 4.6. 

 
(a) 

 

(b) 

 
Figure 4.6: Laplace domain (a) energy density and (b) SPL using the Sabine analytical model and the acoustic 

diffusion model using increasingly refined grids for the integration of the initial condition in the cubic volume. 

 

In the Laplace domain, the energy density exhibits a backwards S-shaped curve. At low 

values of the Laplace variable, this curve levels off at a particular value as demonstrated by 

taking the limit of eq. 4.24 which gives 

 .lim 00 Ss
s  4.25 

The difference between the BEM solution and the Sabine model appears significant in energy 

density at these low values, but is less than 2 dB in terms of SPL. The different models come into 

closer agreement at mid to high values of the Laplace variable as the energy density decreases to 
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zero. This is also where the primary difference in numerical integration of the initial condition 

integral manifests as shown in the SPL. At high values of the Laplace variable, the use of less 

sub-volumes grants under-prediction of the energy density in the volume. 

 

Physically, low values of the Laplace variable represent the steady state energy which is 

shown by the fact that 1explim
0

st
s

. Any exponentials that decay with low values of the 

Laplace variable are essentially a flat line when compared with exponentials that decay with a 

higher value of the Laplace variable. On the other hand, high values of the Laplace variable 

represent the initial energy. Exponentials that decay with an infinite rate (a very high Laplace 

variable value) are basically vertical lines at zero time representing the initial energy. Further 

evidence of this is provided by examining the effect of refining the initial condition integral in 

which the energy converges to the Sabine prediction at these high values. 

 

Examining the Sabine model more closely, it is clear that only one value of the Laplace 

variable is used to describe the rate of exponential decay. That is, if eq. 4.23 is rewritten as 

 ,exp 10 tst  4.26 

then Ss /11 . Interestingly, substituting this value into eq. 4.24 gives 

 SS 05.0/1  4.27 

which is exactly half the energy as the Laplace variable goes to zero. This information is the key 

for the determination of the Laplace variable values necessary to accurately invert the Laplace 

domain solution. 

 

For the uniform cubic volume, the average Laplace variable at which the energy density is 

half of the energy density at very low values of the Laplace variable is 6.36. The value computed 

from eq. 4.27 is 5.15. Given that the domain of the transient region of the S-shaped curve is 

many orders of magnitude wide, eq. 4.27 provides a very close estimate of the correct value. 

 

Also, the minimum value computed from the BE-LTS is 6.21 and the maximum is of 6.45. 

Thus, the variation of this value between receivers in the volume is very small with a standard 

deviation of 0.04 (less than 1 % of the mean value). The value computed from eq. 4.27 is 5.15. 
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Therefore, most of the Laplace variable values are chosen around this value and in the range 

from 1 to 10. The validation of this method is given in the next chapter. 
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Chapter 5: Initial Validation of the BE-LTS for 

Acoustic Diffusion 

In this chapter, acoustic diffusion examples are considered to further examine the new BE-LTS 

method developed. Detailed comparisons are made with Sabine theory, ray tracing, and a FEM 

solution to the diffusion model for validation of the BE-LTS for acoustic diffusion. The ray 

tracing solutions and FEM solutions are computed with commercially available codes (Farina, 

1995; COMSOL, 2007). Three volumes of increasing complexity are considered: 1) a uniform 

cubic volume, 2) a realistic rectangular volume, and 3) an L-shaped volume. 

 

First, the volume configurations are described in terms of geometry, acoustic absorption, 

sources, and receivers. Three issues are then studied and discussed using the volume 

configurations: convergence of the numerical solution, accuracy of the numerical methods, and 

computational efficiency. 

 

5.1 Volume Configuration Descriptions 
In this section, the three volumes studied to provide the initial validation of the BE-LTS of the 

diffusion model are described. The three volumes, referred to as the uniform cubic volume, the 

realistic rectangular volume, and the L-shaped volume, are shown in Figure 5.1. The uniform 

cubic volume is selected because it accurately models the assumptions of Sabine theory which is 

then used as a baseline method of comparison. The realistic rectangular volume and L-shaped 

volume are used to demonstrate the capability of the diffusion model to adapt to more complex, 

realistic configurations for which analytical solutions do not exist. 

 

Each volume contains a monopole source, a receiver grid (for average results in the volume), 

and lines of receivers (to examine distributions of acoustic parameters). The grid of 728 receivers 

is shown explicitly in the uniform cubic volume (spaced every 1 m). The realistic rectangular and 

L-shaped volumes contain grids of 896 (spaced 0.3 m apart) and 1099 (spaced every 0.35 m) 

receivers, respectively. 
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(a)

 
(b) 

 

(c) 

 
Figure 5.1: Example problem schematics for the (a) uniform cubic volume, (b) realistic rectangular volume, and (c) 

L-shaped volume used for initial validation of the BEM solution to the acoustic diffusion equation showing 

geometry, surface type, and source location. 

 

The surface absorption coefficients for the volumes are plotted in Figure 5.2. Also, the ray 

tracing software used in this paper, Ramsete (Farina, 1995), automatically assumes an 

atmospheric absorption coefficient calculated by 

 
2

81.7 10
%

fm f  5.1 

where f  is the frequency (in Hz) and %  is the percent relative humidity. The relative 

humidity in the volume is selected to be 100 % to decrease the importance of the atmospheric 

attenuation, but it is included in all numerical calculations for valid comparisons. 
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(a)

 
(b) 

 

(c) 

 
Figure 5.2: Surface absorption coefficients (Bies and Hansen, 2003) in octave bands of the (a) uniform cubic 

volume, (b) realistic rectangular volume, and (c) L-shaped volume. 

 

The frequency bands (shown using symbols in Figure 5.2) under consideration vary for each 

case. Due to its uniform nature, the uniform cubic volume is only examined at a single 

frequency. This is sufficient in this case because the only frequency dependent parameter, the 

atmospheric attenuation, is set to be negligible at all frequencies. Frequency dependent results 

are examined for the other two configurations. 

 

In the steady state problems, the SPL in the volume due to a constant point source radiating 

acoustic power (sound power levels of 100 dB in the uniform cubic and L-shaped volumes, and 

96 dB in the realistic rectangular volume) is examined. Two different transient cases are 

considered using the three configurations: the decay from uniform acoustic energy in the uniform 
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cubic and realistic rectangular volumes and the buildup of acoustic energy in the L-shaped 

volume. The initial energies in the decay cases are computed with 

 0 4 / rW S c  5.2 

where W  is the source power of the steady problem and  is the area-weighted average 

absorption coefficient; this is the Sabine theory solution to the reverberant field of the steady 

problem. 

 

5.2 Convergence Studies of Numerical Solutions 
With any numerical method, convergence must be studied and obtained before the results of the 

method are meaningful. Numerical convergence is studied in detail for the uniform cubic volume 

and the realistic rectangular volume. The mesh refinement strategy used with the BE-LTS of the 

diffusion model is summarized in Figure 5.3 which shows the actual meshes of linear elements 

used to compute the solutions. Ellipses represent omitted meshes which continue in the same 

pattern as the previous. 
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(a)

 
(b) 

 
Figure 5.3: Boundary element mesh refinement used in the convergence study of (a) the uniform cubic volume 

and (b) the realistic rectangular volume. 
 

As mentioned previously, a FEM solution to the acoustic diffusion model is also calculated 

using the commercial software (COMSOL, 2007) for comparison with the BEM solution which 

is the only other numerical tool that has been researched with the acoustic diffusion model. This 

is valuable as the comparison is between different methods of solving the same model. For the 

steady state problem, the monopole source is modeled as a small spherical volume, 0.003 % of 

the total volume (Valeau et al., 2006). The acoustic diffusion model is given by (Valeau et al., 

2006) 
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with the same boundary conditions used previously given by eqn. 3.2. The FE meshes of the 3-D 

volume concentrate linear, Lagrange-type, tetrahedral elements in the small source volume that 

get larger as the position is moved towards the outer boundaries. The 3-D mesh and refinement 

strategy used in the convergence study of the steady state and transient problems are shown in 

Figure 5.4. 
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(a)

 
(b) 

 
Figure 5.4: Finite element mesh refinement used in the convergence study of (a) the uniform cubic volume and (b) 

the realistic rectangular volume. 
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To provide validation of the BEM solution to the diffusion model through comparison with a 

completely different numerical method commonly used in room acoustics, this problem is also 

solved using the commercial software, Ramsete (Farina, 1995). Ramsete uses a technique in 

which 3-D pyramids carrying acoustic energy are emitted from a small spherical source and 

tracked as a function of time through the volume, i.e. ray tracing. 

 

In Ramsete, the source is divided into 8 2n  pyramids where n  is a positive integer. To 

obtain a valid comparison to the diffusion model, all surfaces are considered purely diffusely 

reflecting. Since ray tracing is an inherently transient technique, the steady state is taken to be the 

solution after 3 seconds have passed. Refinement in the ray tracing solution requires division of 

the source into more rays. To study convergence, the division level is simply increased. To 

simulate the transient decay using ray tracing, a source is placed at the center of the volume. The 

resulting impulse response is backwards integrated to calculate the Schroeder decay curve 

(Schroeder, 1965) which is used for comparison with the energy diffusion models and Sabine 

theory. 

 

Convergence in the different numerical solutions is characterized as follows. The average 

energy density in the volume is compared to the previous discretization calculating a percent 

difference. For the steady state solution, the average steady state energy density is compared. 

The average energy density at the Sabine reverberation time is used to compare convergence in 

the transient solution. 

 

The results of the convergence study in the uniform cubic volume are plotted in Figure 5.5. 

First, the average steady state SPL is plotted against the number of degrees of freedom (DOF) of 

the numerical solution (this is the number of rays for the ray tracing solution) in Figure 5.5(a). 

The percent difference in average steady state energy density is plotted against the number of 

DOF in Figure 5.5(b). Convergence to within 2 % difference is obtained extremely quickly in the 

FEM solution with less than 500 DOF. The BE-LTS requires more refinements than the FEM to 

obtain a convergent solution but still converges quickly to within 2 % difference with only 2000 

DOF in the transient solution and about 1200 DOF in the steady solution. Ray tracing requires 

significantly more DOF to converge. Convergence to within 2 % difference is computed using 
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about 65000 pyramids in the steady state solution while only 10 % difference is obtained using 

2097152 rays in the transient solution. 
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Figure 5.5: (a) Average SPL and (b) percent difference in average energy density in the uniform cubic volume for 

increasingly refined numerical solutions plotted against the number of degrees of freedom of the solution. 

 

For the BE-LTS and FEM, the average steady state SPL is plotted against the number of 

elements per MFPL in Figure 5.6. This is done because the MFPL is the most relevant length 

scale in the acoustic diffusion model and provides a general guideline which can be applied to 

other problems. The transient BE-LTS converges to within 2 % difference using nine elements 

per MFPL, but needs less than seven for 2 % convergence in the steady solution. The transient 

FEM solution converges to within 2 % difference using about three elements per MFPL, while 

the steady FEM solution requires four. 
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Figure 5.6: Average (a) SPL and (b) energy density percent difference in the uniform cubic volume for increasingly 

refined meshes plotted against plotted against the number of elements per mean free path length. 

 

The results of a similar study in the realistic rectangular volume are summarized in Figure 

5.7. The number of elements per MFPL required for convergence to within 2, 5, or 10 % 

difference is plotted in Figure 5.7 for the steady state and transient solutions in the uniform cubic 

and realistic rectangular volumes. 

 

In the steady problems, the BEM consistently needs at least 2.5 elements per MFPL for 10 % 

convergence, 3 elements per MFPL for 5 % convergence, and 5 per MFPL for 2 % convergence 

which appears to demonstrate an exponentially increasing trend with lower convergence levels. 

The FEM, on the other hand, shows a linear trend but requires about one more element per 

MFPL for the smaller non-uniform rectangular volume than the larger uniform cubic volume 

which must be due to either the size of the volume or the varying absorption. 
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In the transient problem, the BEM demonstrates an exponentially increasing trend with level 

of convergence. However, the rate of increase is different depending on the volume. The FEM 

solution converges very quickly in this case requiring only about two elements per mean free 

path length for convergence to 2 % difference. The faster convergence in the transient compared 

to the steady problem in the FEM solution is likely due to the absence of the very small source 

volume which requires a significant number of elements to model. 

 
(a) 

 

(b) 

 
Figure 5.7: Number of elements per MFPL required for convergence of the numerical solutions to the diffusion 

model in (a) steady and (b) transient cases of the uniform cubic and non-uniform rectangular volumes. 

 

5.3 Accuracy of the Diffusion BE-LTS 
In this section, the accuracy of the BE-LTS is validated through comparison with other analysis 

methods. In the uniform cubic volume, the analytical Sabine solution is expected to be the most 

accurate because the configuration is designed to accurately model Sabine theory assumptions. 

No analytical solution exists for the more realistic volumes. However, Sabine theory is still used 

for comparisons with diffusion and ray tracing. Ray tracing is used exclusively for the 

comparisons in the L-shaped volume. First, the steady state SPL due to a source of acoustic 

power is examined in the three volume configurations. Then, the transient problems are 

examined. 

 

5.3.1 Steady State Comparisons 

The average SPL in the uniform cubic volume is given in Table 5.1 and in the realistic 

rectangular volume in Figure 5.8. Note that the divisions of the y-axis in Figure 5.8 are only 1 dB 
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to show the trend more clearly. In general, all three methods are in very close agreement. In the 

uniform cubic volume, the average SPL in the volume differs from Sabine theory by less than 1 

dB using the BE-LTS, less than 0.5 dB using the FEM, and only 1.2 dB using ray tracing. In the 

realistic rectangular volume, all methods agree mostly within 2 dB with the largest discrepancy 

between diffusion and ray tracing at low frequencies. The decrease in the last three octave bands 

which is not captured with Sabine theory is due to the air absorption (absent from Sabine theory) 

becoming significant. 

 
Table 5.1: Comparison in average acoustic energy density and SPL in the uniform cubic volume using different 

methods and Sabine theory as a reference. 

 
Method 

Average SPL (dB 

ref 20 x 10-6 Pa) 

Absolute 

Difference (dB) 

Sabine Theory 88.4 0 (reference) 

Diffusion BE-LTS 87.6 0.8 

Diffusion FEM 88.7 0.3 

Ray Tracing 87.2 1.2 

 

 

Figure 5.8: Steady state SPL averaged across all receivers in the realistic rectangular volume. 

 

The SPL along lines of receivers running through the center of the uniform cubic volume is 

plotted in Figure 5.9. Again, note the very small scales (1 dB/div and 0.5 dB/div). Both solutions 

to the diffusion model capture the trend of Sabine theory with high levels close to the source 

which monotonically decrease with distance from the source. However, this decrease is more 
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drastic for both solutions along both lines with exception of the FEM solution along the 

horizontal line which captures a nearly identical decrease. The ray tracing solution decreases 

with distance from the source to a point, then begins to increase as acoustic energy builds up 

close to the boundaries of the volume. This is a unique trend which is not captured by any other 

method used. The SPL computed with the ray tracing method is always below the Sabine SPL. 

 
 (a) 

 

(b) 

 
Figure 5.9: Steady state SPL in the uniform cubic volume with a source at the center of the volume at several points 

along (a) a horizontal line and (b) a diagonal line through the center of the volume. 

 

The steady state SPL along the steady receiver lines in the realistic rectangular volume is 

plotted for two octave bands, with the lowest and highest absorption (500 Hz and 16 kHz, 

respectively), in Figure 5.10. Overall, the results are very similar to those of the uniform cubic 

volume. Closer agreement with Sabine theory is obtained in the 500 Hz band with light 

absorption, which is one of the assumptions of Sabine theory. The two diffusion model solutions 

agree very closely in the 16 kHz band with heavy absorption and compare quite favorably to ray 

tracing as well. Larger discrepancies are demonstrated in this octave band when compared to 

Sabine theory. In each case, the slope of the SPL is steeper with the numerical methods than with 

Sabine theory, with the exception of the leveling off and subsequent increase demonstrated with 

ray tracing in the horizontal receiver line.  

 

Along the vertical lines, the slope is closer to linear with the numerical methods due to the 

distribution of absorption in the volume. The ray tracing no longer shows the buildup of energy 
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close to the highly absorbent ceiling. Sabine theory does not capture the effect of the varying 

absorption. All three numerical methods demonstrate very close agreement in each case. 

 

50
0 

H
z 

(a) (b) 

16
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H
z 

Figure 5.10: Steady state SPL in the non-uniform rectangular volume at several points along the (a) horizontal and 

(b) vertical steady receiver lines for the 500 Hz and 16 kHz bands. 

 

The steady state SPL distribution in the L-shaped room calculated using the diffusion BE-

LTS and ray tracing is plotted for comparison in Figure 5.11 for three octave bands. The 

difference in steady state SPL between the two methods obtained by subtracting the ray tracing 

SPL from the diffusion BEM is plotted in Figure 5.12 for the same octave bands. In the 125 Hz 

octave band, the overall level in the room is higher when using diffusion BE-LTS compared to 

ray tracing. The maximum difference (3.1 dB) occurs in the region hidden from line of sight of 

the source with the diffusion BEM predicting levels higher than ray tracing by 2.5 to 3 dB. The 

diffusion BEM predicts higher levels in this region even though edge diffraction is included in 
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the ray tracing calculation. Another region of discrepancy between the two methods is in a 

sphere surrounding the source of about a 1 m radius. 

 

The two methods match to within a 1.5 dB difference everywhere in the room in the 250 Hz 

octave band. In this case, the largest discrepancies occur in the corners of the room furthest from 

the source. The overall level in the room calculated by the BEM is lower than that computed by 

ray tracing in the 1 kHz octave band, the band with the lowest absorption. Again, the largest 

discrepancies occur in the corners of the room furthest from the source where the diffusion BEM 

predicts levels lower than ray tracing by about 2 dB. In summary, when the absorption in the 

room is low, the diffusion BEM predicts lower levels than the ray tracing method. When the 

absorption in the room is high, the diffusion BEM predicts higher levels than ray tracing. 

Overall, however, the steady state SPL results demonstrate very good agreement between the 

two methods. 
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Figure 5.11: Steady SPL throughout the horizontal mid-plane and two vertical surfaces of the L-shaped volume 

computed with the diffusion BE-LTS and ray tracing for the 125 Hz, 250 Hz, and 1 kHz octave bands. 
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(a) 

 
(b) 

 
(c) 

 
Figure 5.12: Steady SPL difference (diffusion BE-LTS SPL minus ray tracing SPL) throughout the horizontal mid-

plane and two vertical surfaces for the (a) 125 Hz, (b) 250 Hz, and (c) 1 kHz octave bands. 
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5.3.2 Transient Comparisons 

The SPL decay averaged across all receivers in the uniform cubic volume and realistic 

rectangular volume at each time step is plotted in Figure 5.13. Using the method to estimate the 

critical Laplace value, the numerical inverse Laplace transform is computed using three values of 

the Laplace variable. In the uniform cubic volume, these are the average value discussed in the 

previous chapter, 6.36, one value 25% below the average value and one value 25 % above the 

average. The BE-LTS solution demonstrates more curvature in the uniform cubic volume than 

the linear Sabine theory with a steep drop from 0 to 1 s. The FEM solution stays fairly linear but 

with a steeper slope than Sabine theory. The ray tracing solution agrees closely at the beginning, 

but develops a flatter slope than Sabine theory after 1.5 s. 

 

In the realistic rectangular volume, there is a significant discrepancy between ray tracing and 

the diffusion model with the diffusion model predicting a significantly steeper decay slope. 

Sabine theory, a model independent of either ray tracing or the diffusion model, agrees more 

closely with the diffusion model in both cases. The BEM solution gives a steeper decay slope 

than the FEM. It is unclear which method provides the most accurate solution, but the agreement 

between the diffusion model and Sabine theory gives evidence that they may be closer to reality. 



96 

U
ni

fo
rm

 C
ub

ic
 V

ol
um

e 

 

R
ea

lis
tic

 R
ec

ta
ng

ul
ar

 V
ol

um
e 

500 Hz 16 kHz 

Figure 5.13: Decay of SPL from a uniform initial acoustic energy distribution averaged across all receivers in the 

uniform cubic volume and realistic rectangular volume in the 500 Hz and 16 kHz bands. 

 

Next, the reverberation times in the uniform cubic and realistic rectangular volumes are 

calculated by the time taken for the SPL at each receiver to decay from the initial value by 60 

dB. An overall reverberation time averaged across all receivers is calculated for each method and 

is given in Table 5.2 for the uniform cubic volume and in Figure 5.14 for the realistic rectangular 

volume. In the uniform cubic volume, all three methods provide a very accurate reverberation 

time to within 100 ms. In the realistic rectangular volume, the reverberation times calculated 

with the diffusion model and Sabine theory agree quite closely, while ray tracing gives 

significantly higher values (especially for octave bands with low absorption). Most likely, the 

issue is related to the method used to model reverberant energy in the ray tracing software which 

does not create realistic decay for this type of energy (Farina, 2000). As with steady state SPL, 

the drop in reverberation time captured by the diffusion model and ray tracing at high 

frequencies does not appear in Sabine theory due to the lack of modeling air absorption. 
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Table 5.2: Comparison in average reverberation time in the uniform cubic volume using different methods and 

Sabine theory as a reference. 

 
Method 

Average Reverberation 

Time (s) 

Percent 

Difference (%) 

Sabine Theory 2.68 0 

Diffusion BEM 2.75 2.59 

Diffusion FEM 2.61 2.65 

Ray Tracing 2.73 1.76 

 

 

Figure 5.14: Reverberation time averaged across all receivers in the non-uniform rectangular volume. 

 

The reverberation time is plotted in Figure 5.15 for receivers along the same lines through the 

volume as in Figure 5.9. Note the y-axis scales of these plots are very small with 50 ms divisions 

to show the details of the distribution. The BE-LTS demonstrate significantly more variability in 

reverberation time than any other method. It varies along the horizontal receiver line, but appears 

to have an average value very close to the FEM solution. The BEM is relatively inaccurate at 

several positions on the diagonal line (as much as 0.3 s), but extremely accurate near the corners 

and center of the room (within 50 ms). This is due to inherent instability in the numerical 

Laplace inversion procedure. 

 

The FEM solution displays a very uniform trend (in agreement with Sabine theory), but 

consistently under-predicts the reverberation time by about 70 ms. Ray tracing predicts a fairly 

uniform reverberation time but decreases slightly towards the edges of the volume due to the 

build-up of energy demonstrated in the steady state problem. Nevertheless, it is very accurate 
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with less than 70 ms error in the worst cases towards the center of the volume and only about 35 

ms error towards the edges of the volume. 

 
(a) 

 

(b) 

 
Figure 5.15: Reverberation time in the uniform cubic volume at several points along (a) a horizontal line and (b) a 

diagonal line through the center of the volume. 

 

The reverberation times in the realistic rectangular volume for the 500 Hz and 16 kHz bands 

are plotted along the transient receiver lines in Figure 5.16. The diffusion models and Sabine 

theory demonstrate essentially uniform trends. Ray tracing appears to capture a more varying 

trend along either line. 
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Figure 5.16: Reverberation time in the non-uniform rectangular volume at several points along the (a) horizontal 

and (b) vertical transient receiver line for the 500 Hz and 16 kHz bands. 

 

The transient SPL in the L-shaped volume is plotted in Figure 5.17 for Receivers 1, 2, and 3 

for the 125 Hz and 1 kHz octave bands. In each case, the exponential increase is nearly identical 

between the BE-LTS and ray tracing methods with both sets of results reaching their respective 

steady state levels at about the same time. The role the absorption plays is evident as the three 

receivers reach steady state levels much quicker in the high absorption case in the 125 Hz octave 

band than in the low absorption case in the 1 kHz band. Each receiver reaches its steady state 

value at about the same time whether it is in direct line of sight with the source or not. 
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(a)

 

(b)

 
(c) 

 

(d) 

 
(e) 

 

(f) 

 
Figure 5.17: Transient sound pressure level in the L-shaped room calculated using the diffusion BE-LTS and ray 

tracing for the (a,c,e) 125 Hz and (b,d,f) 1 kHz at the position of (a,b) Receiver 1, (c,d) Receiver 2, and (e,f) 

Receiver 3. 

 

5.4 Computational Efficiency of Numerical Methods 
The total computation time for each solution method is timed using a desktop personal computer 

with an Intel Core i5 3 GHz quad-core processor and 8 GB of RAM. The BE-LTS to the 

diffusion model is written in the Fortran programming language. Thus, the computational 

comparisons are assumed to be valid because consistent programming languages, i.e. codes 
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compiled into an executable file and run, are used, e.g. Fortan and C++. Care is taken to ensure 

similar memory and processor states for each method through complete shutdown and boot up of 

the computer before each run. The computation times required to calculate the steady state 

solution in the uniform cubic volume are tabulated for each convergence level in Table 5.3. The 

number of DOF and error compared to the Sabine solution is also tabulated for comparison. 

 

The two different methods of solving the diffusion model, i.e. BE-LTS and FEM, have 

comparable computation times. The BE-LTS gives quicker solutions to lower levels of 

convergence while the FEM is faster when calculating the most convergent solution. While both 

diffusion solutions take only a fraction of a second to obtain a solution, ray tracing takes minutes 

or more. Clearly, the diffusion model is superior to ray tracing in terms of computational 

efficiency for this problem. 

 

Comparing numerical solutions with similar numbers of DOF (highlighted in green), a BE-

LTS with 2168 DOF takes almost five seconds to compute while a ray tracing solution with 2048 

DOF still takes over two minutes to compute (146 s). Examining solutions with similar error 

(highlighted in blue), the 5 % convergent steady BE-LTS and 10 % convergent steady ray tracing 

solution both exhibit 2.1 dB error compared to the Sabine solution. In this case, the BE-LTS 

takes 78 ms while the ray tracing solution requires 146 s to compute a solution. For steady 

solutions which both have about 1.5 dB error, the BE-LTS requires 0.36 s and ray tracing 1098 s. 
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Table 5.3: Comparison of computation times, number of degrees of freedom, and error for solutions in the uniform 

cubic volume to three different levels of convergence. 

  Steady Convergence Level Transient Convergence Level 

 Parameter 10% 5% 2% 10% 5% 2% 

Diffusion 

BE-LTS 

DOF (#) 152 296 866 56 602 2168 

Error (dB) 2.5 2.1 1.5 5.0 3.0 1.8 

Computation Time (s) 0.032 0.078 0.359 0.078 0.608 4.991 

Diffusion 

FEM 

DOF (#) 67 125 250 55 55 103 

Error (dB) 0.4 0.3 0.2 1.8 1.8 1.7 

Computation Time (s) 0.109 0.109 0.125 0.218 0.218 0.234 

Ray 

Tracing 

DOF (#) 2048 16384 65536 2097152 --- --- 

Error (dB) 2.1 1.4 1.2 1.3 --- --- 

Computation Time (s) 146 1098 4088 126861 --- --- 

 

The computation times and number of DOF required to obtain solutions to the three different 

convergence levels for ten octave bands in the realistic rectangular volume are tabulated in Table 

5.4 for each numerical method. In this volume, it is clear that the FEM is more efficient than the 

BE-LTS in almost every case due to the relatively small size, while they are both still 

comparable. Also, the BE-LTS has a greater computational efficiency expense for increased 

levels of convergence than the FEM. An obvious explanation for the superior efficiency of the 

FEM is unclear due to the black-box nature of the commercial FE software. The most likely 

explanation is that the FE software is a parallelized code capable of running computations on 

multiple processor cores while the BE-LTS code is not written in parallel and utilizes only one 

core of the quad-core processor used. 

 

The BE-LTS gains some computational efficiency advantage over the FEM in the 

significantly larger uniform cubic volume at lower levels of convergence as the FEM solution 

generally converges very quickly. Thus, the expected trend of greater computational efficiency 

from the BE-LTS as the size of the volume increases is demonstrated. 

 

Comparing the diffusion BE-LTS to ray tracing, the computation time of the BE-LTS is on 

the order of seconds compared to ray tracing which is on the order of minutes for lower levels of 

convergence and hours for the highest convergence level. Even for a similar number of DOF 
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(highlighted in green), the steady BE-LTS takes only 5 % of the computation time compared to 

ray tracing. However, considering transient solutions, a BE-LTS with 1442 DOF takes 30 s and 

ray tracing with 1024 DOF takes 113 s. Thus, the efficiency advantage of the BE-LTS in 

transient problems is slightly reduced. Still, the BE-LTS demonstrates significant computational 

efficiency advantage over ray tracing. 

 
Table 5.4: Comparison of computation times and number of degrees of freedom for solutions in the realistic 

rectangular volume to three different levels of convergence. 

  Steady Convergence Level Transient Convergence Level 

 Parameter 10% 5% 2% 10% 5% 2% 

Diffusion 

BE-LTS 

DOF (#) 252 362 1002 162 362 1442 

Computation Time (s) 1.87 2.66 5.78 1.71 4.06 30.09 

Diffusion 

FEM 

DOF (#) 131 211 272 100 100 128 

Computation Time (s) 1.09 1.24 1.41 2.34 2.34 2.50 

Ray 

Tracing 

DOF (#) 1024 8192 65536 1048576 --- --- 

Computation Time (s) 113 880 7703 126861 --- --- 
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Chapter 6: Acoustic Diffusion with Structural 

Coupling 

In this chapter, an investigation of acoustic volumes coupled to vibrating structural components 

(structural acoustics) using the BE-LTS method developed is presented. First, a review of 

common energy methods used in structural acoustic analysis is presented. Then, the BE-LTS to 

the acoustic diffusion model with structural coupling is presented for two cases: implemented 

through 1) a simple transmission coefficient and 2) a more sophisticated coupling using a 

structural power flow model. Finally, the two formulations are validated for the case of acoustic 

transmission from a uniform cubic volume to a similar uniform cubic volume through a partition. 

The validation is undertaken through comparison of the diffusion BE-LTS to the diffusion FEM 

solution, statistical energy analysis (SEA), ray tracing, and experimental data. 

 

6.1 Review of Current Structural-Acoustic Energy Models 
In this section, common energy models used in structural acoustic analysis are discussed. They 

are SEA, radiosity, and power flow models which form the basis of the energy finite element 

method (EFEM). Statistical energy analysis is used for validation of the BE-LTS to the diffusion 

model later in this chapter. The power flow models of vibrating structures are implemented in the 

BE-LTS of the diffusion model for acoustic volumes coupled to a structure. Radiosity and the 

EFEM are new methods for acoustic analysis which can be considered alternatives to the 

diffusion BE-LTS and are presented briefly to discuss their differences. 

 

6.1.1 Statistical Energy Analysis 

Perhaps the most common high frequency analysis method for problems which include both 

acoustic and structural systems is SEA. The method allows for the analysis of energy flow 

between coupled resonant structures and acoustic cavities and is described briefly in this section. 

 

Consider a subsystem (acoustic or structural) of resonant modes, all with equal energy, over a 

frequency band. Next, consider a similar subsystem coupled to the first forming a system as 

shown in Figure 6.1. 
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Figure 6.1: Schematic demonstrating statistical energy analysis. 

 

An expression for the power transmitted is derived assuming all the resonating modes in the 

frequency band transfer energy from one subsystem to the other similarly and that the modes 

between subsystems are uncorrelated. The analytical expression is based on the modal density of 

resonating modes and coupling loss factors which describe the transfer of power from dissimilar 

subsystems. 

Steady state power balances of the total energy in each subsystem are derived considering 

supplied, absorbed, and transmitted power. Then, an algebraic system of equations is formed 

from the power balance for each subsystem. The total energy in each subsystem is solved for 

giving a uniform value for each component subsystem. For a more detailed review and the 

derivation of the solution to two coupled volumes separated by a plate using SEA, refer to 

Appendix C. 

 

6.1.2 Radiosity 

The radiosity method (Le Bot, 1998) discussed previously is derived generally enough to be 

applied to any reverberant system, structural or acoustic of any dimension. For two coupled 

systems as shown in Figure 6.2, a power balance similar to that undertaken to determine the 

secondary source strength is written at a position on the common interface in terms of 

transmission and reflection coefficients which are assumed to be known. 
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Figure 6.2: Schematic demonstrating the radiosity method for coupled subsystems. 

 

Using the power balance over the small hemispherical volume as was done previously, the 

power of the secondary sources can be expressed in terms of an integral equation. For the 

coupled systems, this integral equation depends on the transmission and reflection coefficients 

which must be calculated analytically before the integral equation can be solved.  

 

There are two main differences between radiosity and the diffusion BE-LTS. First, radiosity 

is a purely steady state method whereas the diffusion BE-LTS uses the Laplace transform and 

numerical inverse to compute a transient solution. Second, the diffusion BE-LTS is formulated in 

terms of energy on the boundaries and the radiosity method in terms of fictitious source 

strengths. Therefore, the diffusion BE-LTS only transfers energy to the coupled system from 

elements on the coupling surface. In radiosity, the secondary sources at every point on the 

boundary of the system transmit energy to the coupled system, not only the sources on the 

coupling surface as shown in Figure 6.3. 
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(a)

 
(b) 

 
Figure 6.3: The difference in transmission between coupled subsystems using (a) radiosity and (b) the diffusion BE-

LTS drawn schematically. 

 

6.1.3 Power Flow Models/Energy Finite Element Method 

A power flow model for structural analysis was proposed by Nefske and Sung (1989). In the 

paper, they consider a small control volume inside of a structural system, e.g. a vibrating plate. 

Applying a power balance on this volume and using relationships between energy density and 

intensity results in the governing differential equation for the power flow model as 
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where , tr  is the energy density in the volume, gc  is the group velocity of waves propagating 

in the structure,  is the angular frequency, and  is the loss factor. Using essentially the same 

method, the power flow model of the acoustic system is given by 
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Equations 6.1 and 6.2 are of exactly the same form as the acoustic diffusion model. However, 

they differ in terms of both the diffusion and attenuation coefficients. 

 

The differing diffusion coefficients pose significant changes to the fundamental physics of 

the model as shown in Figure 6.4. As discussed in its derivation, the diffusion of acoustic energy 

in the acoustic diffusion model is driven by the probability that acoustic energy particles are 

scattered from the bounding surfaces of the volume. The result is a diffusion coefficient that 

depends only on the speed of sound and geometry of the volume. The diffusion of acoustic 

energy in the power flow model is driven simply by the gradient of energy across a differential 

volume due to the atmospheric attenuation. 

 

(a) 

 

(b) 

 
Figure 6.4: The difference between the diffusion of acoustic energy in a small differential volume using (a) the 

power flow model and (b) the acoustic diffusion model shown schematically. 

 

These equations form the basis of the energy finite element method (EFEM) formulated by 

Bitsie (1997). The EFEM mainly concerns the extension to coupled systems where it provides 
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significant advantages over other techniques in the analysis of complex built-up structures. The 

basis for the EFEM is shown in Figure 6.5. 

 

Figure 6.5: Schematic demonstrating the energy finite element method for coupled subsystems. 

 

For two coupled systems, the power flow from one system to the next over the coupling 

surface must be conserved. Performing a balance of intensity, a coupling boundary condition can 

be derived which relates the gradient of the acoustic energy on each side of the coupling surface 

to the energy on the other side through a joint matrix of transmission coefficients. The total 

system is then solved numerically with the FEM to complete the formulation of the EFEM. For a 

more detailed review of this method, refer to Appendix D. 

 

6.2 Diffusion BE-LTS for Structural-Acoustic Problems 
Two formulations of the diffusion BE-LTS applied to coupled structural-acoustic problems are 

presented in this section. The first is a simple formulation which couples acoustic volumes 

through a partition with a known transmission coefficient. Then, a more complex formulation 

which uses a power flow model of the vibrating structure is presented. 

 

6.2.1 BE-LTS with Simple Structural Coupling 

In this section, the BE-LTS to the acoustic diffusion model for multiple acoustic volumes 

coupled through a known transmission coefficient is summarized. For the full derivation of the 
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solution, refer to Appendix E. Using the same procedure to derive the single volume BE-LTS 

gives the integral equation in the thv  volume as 
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where the subscript, u , denotes the coupled volume. Note that the integral equation is nearly the 

same as in the single volume case with the addition of one more integral of the energy density 

transmitted from the coupled volume over the coupling surface boxed in red. 

 

Discretizing the bounding surfaces forms a matrix equation which can be solved for the 

energy on the bounding surfaces (using the methods described previously) given by 
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Again, this equation is identical to the matrix equation derived for the BE-LTS previously with 

the addition of one term boxed in red representing the energy transmitted from the coupled 

volume. Individually, eq. 6.4 represents an underdetermined linear system of equations with vK  

in v uK K K  unknowns. However, writing one for each volume, 1,2,..., Vv N , gives 
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More compactly, 

1 1K KK K
s s sA B . 6.6 

The structure of the transmission matrix, 12 sC , in the complete system of equations of 

eq. 6.4 is shown for two coupled volumes in Figure 6.6. The off-diagonal matrices, vu sC  
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represent the flow of energy transmitted into the thv  volume from the thu  volume. Thus, these 

matrices have full columns of values multiplying the energy at nodes on the coupling surfaces; 

all other columns multiplying energy at nodes not on the coupling surfaces are zero. The 

matrices vv sC  are fully populated and identical to the coefficient matrix for the BE-LTS in a 

single volume.  

 

Figure 6.6: Structure of the BE-LTS matrix for two coupled acoustic volumes. 

 

A discussion of typical transmission coefficients of building components and the derivation of 

the transmission coefficient for a layer with a known acoustic impedance for which this 

formulation is particularly useful is given in Appendix F. 

 

6.2.2 BE-LTS with Power Flow Model Structural Coupling 

In this section, a diffusion model for a multiple volumes, vV , with absorbing boundaries, vS , and 

coupled through vibrating structural boundaries, PS , is developed. The geometry for this case is 

shown in Figure 6.7 where the vibrating boundary is considered to be a transversely vibrating 

thin plate with thickness, h , bounded by the contour, PS , which has a unit normal vector, Pn , 

pointing away from contour and parallel to the plate. 
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Figure 6.7: Schematic demonstrating the geometry for a single acoustic volume with both absorbing and vibrating 

boundaries. 

 

Again, the energy equation which governs points in either volume is the acoustic diffusion 

equation given by 

 2,
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To develop the boundary condition, the transfer of energy from an acoustic system to a 

mechanically vibrating system is considered using methods in SEA. The difference is that, now, 

the energy density can vary within the subsystem. Generalizing SEA coupling with spatially 

varying, transient energy density gives 

 , , ,
P v P

v v
S V S

t dS t dV t hdSI r n r r  6.8

assuming that the structural energy density, , tr , does not vary through the thickness of the 

thin plate. In this equation, ,v tI r  is the acoustic intensity,  is the angular frequency,  is 

the structural transmission coefficient (the ratio of transmitted structural power to incident 

acoustic power), and  is the acoustic transmission coefficient (the ratio of transmitted acoustic 

power to incident structural power). Analytical expressions have been derived for the 

transmission coefficients for use with SEA and are discussed in Appendix C. 
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The acoustic intensity normal to the plate can be rewritten using the acoustic diffusion 

coefficient as 
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Now, it is assumed that the acoustic energy density does not very much in the direction normal to 

the plate. Equation 6.9 can then be approximated by 
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where /v PL V S  is the average length of the volume relative to the plate area. Equation 6.10 

holds true if 
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is satisfied at every point on the coupling plate. 

 

The structural energy density at points on the vibrating plate are governed by (Bouthier and 

Bernhard, 1995) 
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where PD  is the plate diffusion coefficient given by 
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2 2
2

2 2P x y
 is a two-dimensional Laplacian in the plate coordinate system, 

3 2/12 / 1PK Eh  is the plate rigidity, E  is the elastic modulus of the plate,  is the 

structural loss factor,  is the Poisson’s ratio of the plate, P  is the density of the plate,  is the 

angular frequency, vN  is the number of acoustic volumes coupled to the plate, and ,Pf tr  is 

power supplied directly to the plate. Note that the plate diffusion coefficient depends primarily 

on mechanical properties of the plate, the mass, stiffness, and damping, unlike the acoustic 

diffusion coefficient which depends only on the volume geometry and speed of sound. 
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At the connection between the plate boundaries and absorbing surface boundaries, PS , the 

structural intensity associated with transverse vibrations, , tI r , must be zero, i.e. the plate is 

fastened to the adjoining, rigid surface, or 

 , 0, .P Pt SI r n r  6.14 

In terms of energy density, eq. 6.14 is 
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Together with known initial energy densities, the vN  governing differential equations for the 

acoustic energies in the volumes, eq. 6.7, the governing equation for the structural energy of the 

plate, eq. 6.12, and the boundary conditions, eq. 6.11 and an absorptive condition for the non-

coupling surface and eq. 6.15 for the plate boundaries, form a well-posed problem. 

 

There are four key differences between the BE-LTS with power flow model structural 

coupling and the EFEM which are summarized in Figure 6.8. First, only the boundaries of 

acoustic volumes are meshed using the BE-LTS where the entire domain must be discretized 

using EFEM. Second, the energy flow between coupled subsystems is derived as an integral over 

the coupling surface in the EFEM, so only the total transmitted energy in a global sense is 

transferred to the coupled subsystem. In the diffusion BE-LTS with power flow structural 

coupling, the energy transmission is performed locally on a point by point basis. Third, the 

energy models for acoustic volumes are controlled by the atmospheric attenuation in the EFEM 

as discussed in Figure 6.4, whereas the diffusion BE-LTS uses a statistical scattering formulation 

based only on the room geometry. Finally, the EFEM is derived purely as a steady state method, 

but the diffusion BE-LTS can compute transient solutions. 
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(a)

 
(b) 

 
Figure 6.8: Schematic demonstrating the key differences between (a) EFEM and (b) the diffusion BE-LTS with 

power flow structural coupling. 
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6.3 Numerical Validation 
To examine the BE-LTS solution to the acoustic diffusion model for volumes coupled by a 

partition, a simple room configuration first presented by Billon et al. (2008a) is simulated. The 

geometry, shown in Figure 6.9, consists of two, cubic, 5 x 5 x 5 m volumes with a 25 m2 

coupling partition. A monopole source is placed in the corner of one of the volumes, the source 

volume, 2 m away from each surface which radiates a power of 100 dB (ref 10-12 W). The 

volume without the source is referred to as the receiving volume. A 3-D grid of 125 receivers is 

placed in each volume with a uniform spacing of 1 m, skipping the source position and not 

placing receivers on the boundaries. The boundaries of each volume, excluding the coupling 

surface, have a uniform acoustic absorption coefficient of 0.1.  

 

 

Figure 6.9: Example problem schematic used for initial validation of the BEM solution to the coupled acoustic 

diffusion equation showing geometry and source location. 

 

Both steady and transient responses are computed using both BE-LTS formulations presented 

previously. These are compared to an approximate solution based on Sabine theory, a FEM 

solution, ray tracing, and SEA to provide numerical validation of the formulations. First, the 

simple structural coupling diffusion BE-LTS to the coupled uniform cubic volumes is presented. 

Then, the power flow model structural coupling diffusion model is computed for the same 

coupled volume configuration. 
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6.3.1 Simple Structural Coupling 

First, the steady state solution is analyzed using several different computation methods. Then, the 

transient buildup of energy from initially undisturbed volumes is examined. The diffusion BE-

LTS is compared to statistical theory, a FEM solution to the coupled diffusion model, and ray 

tracing. The statistical theory formulation based on Sabine theory used to solve the simple 

coupled example is presented in Appendix G. 

 

6.3.1.1 Steady State Solution 

A detailed study of the convergence of the numerical solutions is given in Appendix H. The 

meshes shown in Figure 6.10 and 16384 rays are used in all results presented in this section to 

provide convergence in the average steady state energy density to within 5 % difference. 
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(a) 

Source Volume 

 
Receiving Volume 

 

(b) 

Source Volume 

 
Receiving Volume 

 
Figure 6.10: Meshes used to compute the (a) BE-LTS and (b) FEM solution to the acoustic diffusion model with 

simple structural coupling. 

 

The average steady state SPL in each volume computed using the three numerical methods 

and statistical theory is plotted against the coupling partition TL in Figure 6.11. As with the 

uniform cubic volume, this configuration accurately models the assumptions made in the 

statistical theory which is thus used as a baseline method of comparison. 

 

For low values of the coupling partition TL, a significant amount of energy is transmitted 

into the receiving volume yielding relatively low energy levels in the source volume. As the 

partition TL increases, more energy becomes trapped in the source volume. However, at a certain 
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point, the absorption of the non-transmitting surfaces dominates the energy dissipation and the 

energy in the source volume becomes independent of the partition TL. Ray tracing does not 

capture this effect. However, all three numerical methods agree closely with the statistical theory 

to within 2 dB with the FEM solution of the diffusion model demonstrating the greatest 

accuracy. 

 

In the receiving volume, the average SPL decreases slowly for low values of the TL. The 

slope increases from about 0 to 10 dB TL corresponding to the increase in SPL in the source 

volume. After a TL of 10 dB, the decrease in average SPL in the receiving volume becomes 

linear demonstrating a decrease in average SPL of exactly 1 dB per 1 dB increase in TL. Again, 

both the statistical theory and diffusion models capture this trend, but ray tracing captures only 

the linear decrease. The diffusion FEM solution demonstrates the most accurate results in the 

receiving volume mostly to within 0.5 dB accuracy. The diffusion BE-LTS computes levels 

about 5 dB lower than statistical theory and ray tracing about 11 dB lower. 

 
(a) 

 

(b) 

 
Figure 6.11: Average SPL in the (a) source and (b) receiving volume calculated using statistical theory, the 

diffusion BEM, and ray tracing for different partition TL’s. 

 

The steady state SPL along a line of receivers perpendicular to the coupling surface through 

the center of each volume is plotted in Figure 6.12. Levels in the source volume are plotted as 

solid lines while the SPL’s computed in the receiving volume are plotted as dashed lines. The 

first observation to note is that the SPL distribution in either volume is independent of the TL of 
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the coupling partition. In the source volume, statistical theory and the diffusion models compute 

a maximum SPL at the location closest to the source with minima close to the back surface and 

coupling partition. The SPL distribution exhibited by statistical theory exists solely due to the 

direct field radiated by the source as the reverberant energy is assumed to be constant throughout 

the volume.  

 

In the receiving volume, statistical theory computes only one constant energy level for each 

TL due to only the reverberant energy, assumed constant, being transmitted through the partition. 

The diffusion models compute an SPL which decays as the receivers move further from the 

coupling partition. However, the decay is very slow, nearly the uniform trend of statistical 

theory, dropping by less than 2 dB. Ray tracing computes a stronger decay as the receivers move 

further from the coupling partition dropping by about 6 dB from the partition to the back surface. 
(a) 

 
(b) 

 

(c) 

 
Figure 6.12: Steady state SPL calculated using different methods for (a) 1 dB, (b) 5 dB, (c) 10 dB, (d) 20 dB, (e) 30 

dB, (f) 40 dB, and (g) 50 dB TL plotted against a coordinate perpendicular to the coupling surface. 
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(d) 

 

(e) 

 
(f) 

 

(g) 

 
Figure 6.12, cont.: Steady state SPL calculated using different methods for (a) 1 dB, (b) 5 dB, (c) 10 dB, (d) 20 dB, 

(e) 30 dB, (f) 40 dB, and (g) 50 dB TL plotted against a coordinate perpendicular to the coupling surface. 

 

6.3.1.2 Transient Buildup Solution 

The buildup of energy from initially undisturbed source and receiving volumes is also computed 

using the same methods. A detailed convergence study of the numerical solutions to the transient 

buildup is also presented in Appendix H. All results shown are calculated with the same meshes 

shown in Figure 6.10 and 32768 rays which provide convergence in the transient average energy 

density to within 5 % difference. 

 

The transient BEM solution is computed using two values of the Laplace variable. The 

values used are the midpoints of the S-shaped curve produced by computing an average s s  

in each volume. The average SPL in each volume is computed as a function of time and plotted 
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in Figure 6.13 for different TL’s of the coupling partition. In the source volume, the steady state 

level is reached quickly. The steady state level takes longer to reach in the receiving volume 

using statistical theory and the diffusion models, but is still reached very quickly using ray 

tracing. 

1 
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Figure 6.13: Average SPL in the source and receiving volumes as a function of time compared using different 

analysis methods for varying TL of the coupling partition. 
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Figure 6.13, cont.: Average SPL in the source and receiving volumes as a function of time compared using different 

analysis methods for varying TL of the coupling partition. 
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To better understand these buildup times, the metric is quantified as the length of time taken 

to reach 95 % of the steady state energy density. The average buildup time in each volume is 

plotted against partition TL in Figure 6.14. In the source volume, statistical theory and the 

diffusion FEM produce low buildup times for very low TL’s that decrease to a minimum 

between 5 and 10 dB TL. The buildup time then increases to a constant value about 0.35 s above 

20 dB. The diffusion BE-LTS captures the increase from low buildup times in the source volume 

for low partition TL’s to higher buildup times above 20 dB. However, the buildup time is longer 

than statistical theory or the diffusion FEM rendering it the least accurate method. The buildup 

time is not affected by the partition TL using ray tracing in either volume; it is more accurate for 

low partition TL’s, but is fairly accurate for any TL in the source volume. 

 

In the receiving volume, the buildup time increases from a low value for low partition TL’s 

below 20 dB to a higher value above 20 dB TL. This trend is captured by statistical theory and 

both diffusion models, though the buildup time is significantly longer using the diffusion BEM. 

Again, the buildup time computed with ray tracing is more accurate for low partition TL’s and 

becomes less accurate for higher TL’s due to its inability to capture the increase in buildup time 

from a higher TL. 

 

 

 

Figure 6.13, cont.: Average SPL in the source and receiving volumes as a function of time compared using different 

analysis methods for varying TL of the coupling partition. 
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 (a) 

 

(b) 

 
Figure 6.14: Average time taken to reach 95 % of the steady state energy density in the (a) source and (b) receiving 

volume calculated using different methods for different partition TL’s. 

 

The buildup times along a line of receivers perpendicular to the coupling surface through the 

center of each volume is plotted in Figure 6.15. Buildup times in the source volume are plotted 

as solid lines while the SPL’s computed in the receiving volume are plotted as dashed lines. The 

buildup time computed using statistical theory is constant in each volume due to the uniform 

energy density assumption. In the source room, the diffusion FEM computes a fairly constant 

buildup time in the source room which increases slightly closer to the coupling partition. The 

diffusion BE-LTS gives a buildup time which varies significantly reaching a minimum close to 

the source and a maximum close to the coupling partition. Ray tracing also produces a minimum 

buildup time close to the source. However, local minima are also produced close to the back 

surface and coupling partition due to the buildup of energy close to these surfaces that was 

observed in the steady state problem. 

 

In the receiving volume, the numerical methods compute buildup times which increase 

further from the coupling partition. The increase is fairly linear in the FEM and ray tracing 

solutions, but demonstrates small curvature in the BEM solution. All of these trends are 

independent of coupling partition TL. 
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(a) 

 
(b) 

 

(c) 

 
(d) 

 

(e) 

 
Figure 6.15: Time taken to reach 95 % of the steady state energy calculated using different methods for (a) 1, (b) 5, 

(c) 10, (d) 20, (e) 30, (f) 40, and (g) 50 dB TL plotted against a coordinate perpendicular to the coupling surface. 
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(f) 

 

(g) 

 
Figure 6.15, cont.: Time taken to reach 95 % of the steady state energy calculated using different methods for (a) 1, 

(b) 5, (c) 10, (d) 20, (e) 30, (f) 40, and (g) 50 dB TL plotted against a coordinate perpendicular to the coupling 

surface. 

 

Overall, the FEM solution to the diffusion model produces the most accurate results in this 

simple transmission example for both steady state and transient buildup cases. The diffusion BE-

LTS solution is fairly accurate in the steady state case, but encounters small difficulties in 

predicting the amount of time it takes for the energy to build up in the volumes. However, 

computational efficiency considerations may promote the use of the Laplace domain technique. 

In general, ray tracing produces the least accurate results. 

 

6.3.2 Power Flow Model Structural Coupling 

In this section, the uniform volumes of the previous section are coupled through different 

vibrating plates. The TL is computed from the results and compared to experimental data as well 

as a SEA of the system. For the TL calculation, four plates of varying material and thickness are 

considered: 

a) A thin aluminum sheet 0.9 mm thick 

b) A steel plate 6 mm thick 

c) A glass plate 6 mm thick 

d) A plywood sheet 12 mm thick 

The mechanical properties of these materials are given in Table 6.1. 
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Table 6.1: Mechanical properties of the vibrating plates coupling the uniform acoustic volumes. 

Material 

Elastic 

Modulus (GPa) 

Density 

(kg/m3) 

Poisson's 

Ratio 

Loss 

Factor 

Aluminum 71.6 2700 0.34 0.001 

Steel 207 7800 0.29 0.001 

Glass 67.6 2400 0.24 0.02 

Plywood 8.7 600 0.26 0.015 

 

Rather than program the BE-LTS with power flow structural coupling, an initial study is 

performed using a full FEM solution in a commercial software, COMSOL (COMSOL, 2007). 

The discrete mesh used to compute the FEM solution is shown in Figure 6.16.  

 
(a) 

 

(b) 

 

(c) 

 
Figure 6.16: Meshes of (a) the source volume, (b) the receiving volume, and (c) the coupling plate used to compute 

the power flow model structural coupling solution to the acoustic diffusion model. 
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6.3.2.1 Steady State Solution 

The average steady state SPL in the source volume computed with both the full structural 

acoustic diffusion model and SEA is plotted in Figure 6.17 for each partition type. In general, the 

results in the source volume are in good agreement. The sharp drop is caused by coincidence, 

when the acoustic wavelength matches the wavelength of flexural waves in the plate. 

Coincidence causes significant transmission of acoustic energy from the source volume to the 

plate, subsequently radiated into the receiving volume. This effect is captured by both methods at 

the same frequency. The only disagreement between the two methods is at very low frequencies 

below 200 Hz in most partitions. This disagreement is magnified in the light, flexible aluminum 

partition up to 700 Hz. As these methods are not strictly valid at such low frequencies, these 

disagreements are not relevant. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.17: Average steady state SPL in the source volume calculated using the fully coupled diffusion model and 

statistical energy analysis for coupling partitions made of (a) aluminum, (b) steel, (c) glass, and (d) plywood. 
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The average steady state vibration energy level in the coupling partition is plotted in Figure 

6.18. The diffusion model and SEA agree almost exactly; the disagreement noted at low 

frequencies in the source volume does not affect the vibration of the plate significantly. In the 

plate vibration, coincidence causes a peak at the critical frequency in an otherwise decreasing 

energy curve. Next, the radiation from the plate into the receiving volume is examined. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.18: Average steady vibration energy level of the plate calculated using the fully coupled diffusion model 

and statistical energy analysis for coupling partitions made of (a) aluminum, (b) steel, (c) glass, and (d) plywood. 

 

The average steady state SPL in the receiving volume is plotted in Figure 6.19. Again, there 

is excellent agreement between the diffusion model and SEA in general. The disagreement at 

low frequencies is very slight in the receiving volume. Coincidence causes a significant peak in 

acoustic energy transmitted into the receiving volume, to the point where the acoustic energy is 
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basically balanced between the two volumes. That is, the coupling partition is acoustically 

invisible at this critical frequency. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.19: Average steady state SPL in the receiving volume calculated using the fully coupled diffusion model 

and statistical energy analysis for coupling partitions made of (a) aluminum, (b) steel, (c) glass, and (d) plywood. 

 

The TL’s of the four coupling partitions can be computed as is commonly performed in 

experimental measurements in a reverberant chamber using (Beranek and Vér, 1992) 

 1,
10

2, 2

10log ave P

ave a

S
TL

S
 6.16 

where 1,ave  and 2,ave  are the average steady state energy densities in the source and receiving 

volumes, respectively, PS  is the area of the coupling partition,  is the acoustic absorption in 

the receiving volume, and 2aS  is the total absorbing area in the receiving volume. The TL of 
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each partition computed with the diffusion model and SEA is plotted in Figure 6.20. The TL 

curves agree closely except at low frequencies of the aluminum partition. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.20: Transmission loss of coupling partitions made of (a) aluminum, (b) steel, (c) glass, and (d) plywood 

calculated using the fully coupled diffusion model and statistical energy analysis. 

 

The TL is now averaged in octave bands for the aluminum, steel, and plywood partitions and 

one third octave bands for the glass partition for comparison with published data. The aluminum, 

steel, and plywood TL data comes from Bies and Hansen (2003) and the glass TL data from 

Quirt (1982). The experimental comparisons are plotted in Figure 6.21. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.21: Transmission loss in (a,b,d) octave bands and (c) one third octave bands of coupling partitions made of 

(a) aluminum, (b) steel, (c) glass, and (d) plywood calculated using the fully coupled diffusion model and statistical 

energy analysis compared to measured data. 

 

For the aluminum partition, SEA agrees with the experimental data to within 5 dB over the 

entire frequency range. The diffusion model exhibits greater than 10 dB error at very low 

frequencies, but demonstrates good agreement to within 5 dB in the frequency bands of 1000 Hz 

and higher. The TL of the steel partition is not well-predicted except in the 1000 Hz band. All 

other frequency bands exhibit at least 5 dB error. In the system coupled with a glass plate, the TL 

is significantly over-predicted at low frequencies until the region of coincidence is reached. 

Above 2000 Hz, the predicted TL is in good agreement with the measured data in general. Also, 

the slope of the damping controlled region (at high frequencies past coincidence) of the TL is 

very well predicted. The prediction of the TL of the plywood plate is similar to that of the glass 
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plate with significant over-prediction at low frequencies. At frequencies past coincidence, the 

predicted TL comes into close agreement with the measured data. Next, the system with the glass 

partition is examined more detail. 

 

First, the distribution of steady state acoustic and structural energy density computed using 

the diffusion model throughout the coupled system is examined. The SEA solution is also plotted 

although it is assumed in the method that the energy density is constant in each subsystem. The 

SPL along a line of receivers perpendicular to the coupling partition running through the center 

of each volume is plotted in Figure 6.22 for several frequency bands.  

 

As expected, a peak in SPL is computed close to the source in the source volume and the 

SPL decreases further from the source. The SPL decays fairly linearly in the receiving volume as 

the receivers are positioned further from the coupling partition. The SPL is fairly uniform in each 

volume for each frequency band with the highest variation in the frequency band near 

coincidence at 2000 Hz. Still, the range of SPL is much less than 5 dB in this case. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.22: Steady state SPL in the volumes coupled by a glass partition at (a) 1000 Hz, (b) 2000 Hz , (c) 4000 Hz, 

and (d) 8000 Hz plotted against a coordinate perpendicular to the coupling surface with the source volume plotted as 

a straight line and receiving volume a dashed line. 

 

The structural vibration energy level is plotted along a diagonal line of receivers running 

from corner to corner of the coupling partition through the projection of the source onto the 

plate. The vibration of the plate is very uniform in each frequency band. Slight variation is 

exhibited with a maximum close to the projection of the source but the range of energy levels is 

less than 1 dB in each case. The uniformity in acoustic and structural energy density is expected 

as the configuration is selected to be very uniform. However, the advantage of the diffusion 

model over SEA is demonstrated as the prediction of energy variation throughout a subsystem is 

possible with the former, not so with the latter. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.23: Steady state vibration energy level in the glass partition at (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and 

(d) 8000 Hz plotted against a diagonal line from corner to corner through the projection of the source. 

 

6.3.2.2 Transient Buildup Solution 

Another advantage of the diffusion model is the ability to compute transient buildup or decay of 

energy density, which is now examined for the uniform cubic volumes coupled with the glass 

plate. The average buildup of SPL in the source and receiving volumes is plotted in Figure 6.24 

for the 1000, 2000, 4000, and 8000 Hz octave bands. The SPL builds to its steady state level 

faster in the source volume than the receiving volume, as expected. However, the buildup at 

2000 Hz (near coincidence) occurs quickly for both volumes. The buildup of average vibration 

energy level in the coupling plate is plotted in Figure 6.25. The buildup of structural vibration 

energy at these frequency bands occurs at a similar rate to the source volume. To examine the 
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buildup in each subsystem in more detail, the buildup time (time required for the energy density 

to build up to 95 % of its steady state value) is computed. 
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Figure 6.24: Buildup of the average SPL in the source and receiving volume coupled by a glass partition at 1000 

Hz, 2000 Hz , 4000 Hz, and 8000 Hz. 
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Figure 6.24, cont.: Buildup of the average SPL in the source and receiving volume coupled by a glass partition at 

1000 Hz, 2000 Hz , 4000 Hz, and 8000 Hz. 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.25: Buildup of the average vibration energy level in the glass coupling partition at (a) 1000 Hz, (b) 2000 

Hz , (c) 4000 Hz, and (d) 8000 Hz. 
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The buildup time averaged across the receiver grids in each subsystem is plotted in Figure 

6.26 in 1/3rd octave bands. The buildup time in the source volume is generally about 200-250 ms 

faster than the receiving volume. At coincidence, this difference narrows to only about 100 ms. 

The buildup time for the coupling plate is only slightly longer than the source volume, except at 

low frequencies where the buildup time for the coupling plate can take up to about 230 ms 

longer. 

 

 
Figure 6.26: Average buildup time in the source and receiving volumes and the coupling partition. 

 

Now, the distribution of buildup time is examined. The buildup time along a line of receivers 

perpendicular to the coupling plate through the center of the acoustic volumes is plotted in 

Figure 6.27. As with the steady state SPL, the buildup time is very uniform in each volume. It is 

slightly shorter very close to the source in the source volume and slightly longer as the receivers 

are positioned further from the coupling partition in the receiving volume. The buildup time 

along a diagonal line of receivers from corner to corner of the coupling plate through the 

projection of the source onto the plate is plotted in Figure 6.28. The buildup of vibration energy 

across the plate is essentially uniform. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.27: Buildup time in the volumes coupled by a glass partition at (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and 

(d) 8000 Hz plotted against a coordinate perpendicular to the coupling surface with the source volume plotted as a 

straight line and receiving volume a dashed line. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6.28: Buildup time in the glass partition at (a) 1000 Hz, (b) 2000 Hz, (c) 4000 Hz, and (d) 8000 Hz plotted 

against a diagonal line from corner to corner through the projection of the source. 

 

Now that the new proposed models and solutions have been validated for these simple test 

cases, their use is examined in acoustic problems other than room acoustics. In the next chapter, 

the diffusion model and the BE-LTS is used to compute acoustic transmission through different 

engineering devices. 
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Chapter 7: Practical Applications of the Acoustic 

Diffusion BE-LTS 

This chapter presents practical engineering applications of the newly developed BE-LTS to the 

acoustic diffusion model. The applications in this chapter are not exhaustive but are presented to 

show the potential of the method. The main goal is to show that the BE-LTS provides accurate 

results and can be used in real applications. 

 

7.1 Noise Reduction of Tube Bundle Heat Exchangers 
Tube bundle heat exchangers are often employed to transfer heat from one fluid to another. In 

the device, one fluid runs through a bundle of tubes and the other flows across the tubes. They 

are commonly employed in industrial applications, e.g. steam generators, evaporators, and 

microturbine generators (Heckl, 1995). The acoustic propagation through these dense bundles of 

tubes is important in many situations, e.g. in aerospace applications, in factories where hearing 

damage is a risk, and when ultrasound is used to detect damage in the heat exchanger (Heckl, 

1995). Tube bundle heat exchangers have been shown both to increase noise due to acoustic 

resonances excited by vortex shedding from the flow (Cumpsty and Whitehead, 1971) and to 

reduce the amount of transmitted acoustic energy by providing a reflection of acoustic waves 

(Heckl, 1995). In this section, the acoustic transmission loss of a small tube bundle heat 

exchanger is studied using the BE-LTS to the acoustic diffusion model with simple coupling of 

acoustic volumes. 

 

A series of experiments were performed to determine the transmission loss of a small heat 

exchanger. The heat exchanger consists of two dense bundles of small aluminum tubes. There 

are 6000 1.1 mm diameter tubes total. The two rectangular bundles are about 7 x 13 x 15 cm 

spaced about 4 cm apart.  In this section, these measurements are simulated using the diffusion 

BE-LTS. The experiments were in a long box constructed with MDF with dimensions 1.5 x 0.15 

x 0.18 m3; an anechoic termination was fitted to one end of the box to absorb all acoustic energy. 

A speaker was placed about one inch from the rigid end of the box. Six microphones were used 

to measure the average SPL over a cross-section of the duct 1.2 m from the rigid end. 
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Measurements were made in an empty box, a box with the heat exchanger, and a box with a 

block of reticulated vitreous carbon (RVC) foam (Ultramet, 2013). 

 

First, a diffusion model of the empty duct problem, shown schematically in Figure 7.1, is 

created and solved with the diffusion BE-LTS. A monopole source is assumed to be located at 

the center of the cross section at the axial location of the speaker and a single receiver also at the 

cross section center is placed on the measurement plane. All walls are assumed perfectly rigid 

and the anechoic termination is assumed perfectly absorptive. Two cases are run assuming 

negligible atmospheric attenuation and atmospheric attenuation included using eq. 5.1 for an 

environment with 40% relative humidity. The mesh used for the calculations of this 

configuration which gives at least ten elements per mean free path is shown in Figure 7.2. 

 

 
Figure 7.1: Schematic of the empty box problem used to calibrate the source power of the diffusion model of the heat 

exchanger TL experiments. 
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Figure 7.2: Diffusion BEM mesh of the empty box used to calibrate the source power of the diffusion model of the 

heat exchanger TL experiments. 

 

Because the input power is unknown in the experiments, the empty duct configuration is used 

to calibrate it. For each 1/3rd octave band from 200 Hz to 20 kHz, the input power in the 

diffusion model is adjusted so that the SPL calculated matches the average SPL on the 

measurement plane. Note that the BE-LTS is not strictly valid at low frequencies where the 

diffuse field assumption is not satisfied. In this problem, it is estimated that a diffuse field exists 

at in the 1000 Hz one-third octave band and above, where the modal density in the empty duct is 

greater than 3. Results for the full frequency range are presented to examine the transition region. 

 

Now, using the calibrated source power, a diffusion model of the box with the heat 

exchanger is created. Three volumes are coupled using the simple coupling diffusion BEM. As 

shown in Figure 7.3, the first volume on the left is made of five rigid walls with the calibrated 

monopole source at the same position as in the empty duct and filled with air. The second 

volume consists of the two tube bundles. Acoustically, the tube bundle domain is modeled as a 

modification with a diffusion coefficient which is a function of the tube bundle geometry as 

discussed by Billon et al. (2012). The diffusion coefficient in the tube bundle is smaller 

compared to other sections of the duct due to the large increase in surface area provided by the 

tubes (Billon et al., 2012). The third volume contains the receiver (at the same position as in the 

empty duct) and the anechoic termination. All boundaries coupling volumes are assumed to have 
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no absorption and perfect transmission (transmission coefficient of one). The meshes of each 

volume are shown in Figure 7.4 in which an attempt is made to preserve the approximate 

element size of the empty duct. 

 

 
Figure 7.3: Schematic of the problem setup used to determine the TL of the tube bundle heat exchanger. 

 

 

 

 

 

 

 
Figure 7.4: Diffusion BEM meshes of the box split into three volumes filled with air, a dense tube bundle, and air, 

respectively. 

 

Assuming plane waves propagating along the longest axis of the box, the TL of the tube 

bundle heat exchanger is determined by subtracting the sound power measured with the device in 

the duct from the sound power measured in the empty duct. The measured average SPL and TL 



146 

are compared to the SPL and TL calculated from the diffusion model in 1/3rd octave bands in 

Figure 7.5 with and without atmospheric attenuation. Without any absorption, there are no 

frequency dependent parameters in the model. Thus, the TL is a constant value. The diffusion 

model is accurate exhibiting less than 2 dB error in both SPL and TL in the mid-frequency 

bands, 3150 Hz to 8000 Hz. Large errors of at least 5 dB are observed in the frequency bands 

below 3150 Hz as high as 10 dB, however. Also, the octave bands of 10 kHz and above exhibit 

error close to 3 dB or higher. 

 

Including atmospheric attenuation greatly improves the accuracy of the diffusion model. The 

very high frequency bands above 3000 Hz demonstrate very good agreement with less than 2 dB 

error in each band. The significant improvement in the 1/3rd octave bands of 8000 Hz and above 

demonstrates that atmospheric attenuation is a factor in this range. The range of bands from 200 

to 2500 Hz have the largest error ranging from 2.8 to 10 dB and show similar results to those 

excluding atmospheric attenuation as it is not as important at low frequencies. 

 
No Air Absorption 

 

With Air Absorption 

 

  
Figure 7.5: Comparison of the average measured (a,b) SPL and (c,d) TL and the SPL and TL computed from the 
diffusion model for the case (a,c) with no absorption and (b,d) including atmospheric attenuation. 
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It can be concluded that two mechanisms are acting in concert to provide the attenuation of 

the tube bundle heat exchanger. First, the very low diffusion coefficient in the equivalent tube 

bundle medium causes the medium to provide a very low flow of acoustic energy. Therefore, a 

significant amount of acoustic energy is stored in this medium as evidenced by the TL of Figure 

7.5. Second, the energy that very slowly travels through this medium loses a much greater 

amount of energy from atmospheric attenuation than the energy that propagates very quickly 

through air. 

 

Next, a block of reticulated vitreous carbon (RVC) foam is placed in the long box as shown 

in the schematic in Figure 7.6. The configuration is measured experimentally and simulated 

using a diffusion model. This study is performed only to determine an empirical model for the 

attenuation coefficient of the RVC foam block which will be used in subsequent studies. Similar 

to the heat exchanger configuration, the diffusion model consists of three volumes: one filled 

with air and a monopole source, the second filled with an absorptive acoustic material 

characterized by its own attenuation coefficient, and the third volume is filled with air, the 

receiver, and an anechoic termination. The RVC foam volume is modeled with the diffusion 

coefficient that would be used if the volume were filled with air. All exterior surfaces are 

perfectly reflecting except the anechoic termination which is perfectly absorptive. The interior 

surfaces are perfectly transmitting. 

 
Figure 7.6: Schematic of the problem setup used to calculate an empirical model for the attenuation coefficient of an 
RVC foam block. 
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In the diffusion model, the absorptive medium is modeled by an atmospheric attenuation 

constant, mm ; the speed of sound through the material is assumed to be that of air. RVC foam is 

a relatively new material capable of withstanding high temperatures; acoustic energy models 

have not yet been developed. In this initial simulation, an empirical model is determined for the 

calculation of the attenuation constant. 

 

The empirical model for the RVC foam attenuation coefficient is of the form 

 f
ff

febfm ln  7.1 

where fb  and f  are the empirical coefficients. The coefficients are determined by performing 

the diffusion simulation for the 1/3rd octave bands from 2500 Hz to 20000 Hz using different 

values until the difference between the SPL simulated and measured is less than 0.03 dB. Then, 

the coefficients are calculated through a curve that fits the attenuation coefficients in a least-

squares sense. The coefficients are 

 
1.6294

10 1.2108 -5

f

fb
. 7.2 

The SPL and TL from the calibrated diffusion model are compared to experiments in Figure 

7.7. Not surprisingly, the results match well in the frequency range which was used to calculate 

the empirical model for the RVC foam exhibiting less than 1 dB error except in the 20 kHz 

octave band which is less than 2 dB error. At low frequencies below the 2500 Hz band, the 

empirical model still agrees with experimental data to within 2 dB except in the 250, 315, 630 

Hz bands. 
(a) 

 

(b) 

 
Figure 7.7: Comparison of measured and predicted (a) SPL and (b) TL of the block of foam using the empirical 
model of the foam. 
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7.2 Expansion Chamber Mufflers with Foam 
Expansion chamber mufflers are employed in engines to reduce the noise produced by the 

combustion process. An expansion chamber is a reactive muffler which reflects acoustic waves 

back towards the source by presenting a mismatch of acoustic impedance through varying cross 

sectional areas. Acoustic foam can be added to expansion chambers to provide a dissipative 

mechanism for loss of acoustic energy. At low frequencies, expansion chambers can be modeled 

analytically assuming plane waves, but other methods must be used at higher frequencies where 

the plane wave assumption is invalid. Often, a FEM solution to the acoustic wave equation is 

used. Since the BE-LTS to the acoustic diffusion model offers a significant computational 

efficiency advantage over a traditional FEM solution, its use to compute the TL of these mufflers 

is now examined. 

 

In this section, the diffusion model and the BE-LTS is used to compute the acoustic 

transmission through three different expansion chamber mufflers with RVC foam. These 

simulations serve two purposes: 1) to validate the diffusion model and the BE-LTS in high 

frequency muffler acoustics and 2) to validate the empirical model for the propagation of 

acoustic energy through RVC foam proposed in the previous section. 

 

Three cylindrical expansion chambers were constructed, one of which is shown in Figure 7.8, 

and tested with a single speaker and microphone as a part of previous research (Sesler, 2003).  

 

 
Figure 7.8: Silencer with 13 inch long expansion chamber with RVC foam lining and an airflow channel with bends 

(Sesler, 2003) [fair use]. 
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The cross-sections of the three cylindrical expansion chambers are shown in Figure 7.9 

(Sesler, 2003). The different mufflers are referred to as the chevron, 13" bend flow, and 6" bend 

flow based on the shape of the airflow channels through the RVC foam. 

 
(a) 

         
(b) 

 
(c) 

 
Figure 7.9: Drawings of the cross-section of the (a) chevron, (b) 13" bend flow, and (c) 6" bend flow expansion 

chamber mufflers with RVC foam linings (Sesler, 2003) [fair use]. 

 

For simplicity, each expansion chamber is modeled as a single 3-D volume as shown in 

Figure 7.10. Acoustic power (1 W) supplied as a surface source on one of the one inch diameter 

circular ends in each case models the sound propagating through the engine to which the muffler 

is connected. The opposite one inch diameter circular end is given an absorption coefficient of 

one to simulate the acoustic energy transmitted through the muffler and radiated from the 

exhaust. The other surfaces are given absorption coefficients of zero. The attenuation coefficient 
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is computed using a volume-weighted average of RVC foam, using the empirical model, and air 

which is assumed to have negligible attenuation compared to the foam. The TL's of the devices 

are computed by integrating the energy density over the perfectly absorbing surface and dividing 

the result by the input power. 

 
Figure 7.10: Schematic of the model used to represent an expansion chamber with acoustic diffusion and BE-LTS. 

 

The TL's of the three different expansion chambers computed with the diffusion BE-LTS 

with the RVC foam are plotted in Figure 7.11 and overlaid on scanned images from the 

measurements made by Sesler (2003). Note that the measured data is plotted in narrowband and 

the diffusion BE-LTS is computed in one-third octave bands. Thus, the more accurate 

comparison is to average the narrowband data in each one-third octave band and compare to the 

diffusion BE-LTS. Due to the unavailability of the measured data, this computation is not 

possible and is left up to the interpretation of the reader. Imagine a curve of best fit running 

through the narrowband data. 

 

It is demonstrated that the TL predicted by the diffusion BE-LTS demonstrates very good 

agreement with the average measured TL for each expansion chamber with RVC foam. In the 

chevron and 13 inch bend flow mufflers, the TL appears to be in good agreement from the 630 

Hz band throughout the entire frequency range to the 5 kHz band with measured data scattered 

about equally above and below the predicted curves. The TL of the six inch bend flow muffler 
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with RVC foam appears to be slightly over-predicted as the measured data rarely exceeds the 

diffusion BE-LTS curve. 

 
(a) 

 
(b) 

 

(c) 

 
Figure 7.11: Transmission loss of the (a) chevron, (b) 13 inch bend flow, and (c) six inch bend flow expansion 

chambers computed using the BE-LTS to the diffusion model compared to measured data (Sesler, 2003) [fair use]. 

 

Overall, the diffusion model and the BE-LTS performs very well in the prediction of the TL 

of these different types of expansion chamber mufflers. This provides validation of the empirical 

model developed to predict the loss of acoustic energy of the RVC foam as well as the diffusion 

BE-LTS in yet another practical engineering application. 



153 

Chapter 8: Conclusions and Future Work 

In this dissertation, a new, computationally efficient method of solution to the acoustic diffusion 

model was derived. A unique Laplace domain BEM solution and numerical inverse Laplace 

transform technique, the BE-LTS, was used to compute the time domain buildup and decay of 

acoustic energy in a volume. Previously, only a straight FEM solution to the diffusion model had 

been developed. The computational efficiency of the BE-LTS is greatly improved by minimizing 

the number of Laplace variable values necessary to accurately compute the numerical inverse 

Laplace transform. It was shown that one critical value of the Laplace variable can be estimated 

using the volume geometry and surface absorption. 

 

The new acoustic diffusion BE-LTS was then validated through comparisons in three 

different rooms with statistical theory, ray tracing, and a FEM solution to the diffusion model. 

Both steady and transient solutions computed with the Laplace transform technique were 

compared in all volumes. Significant advantages in numerical convergence and computational 

efficiency of the diffusion BE-LTS over ray tracing were demonstrated. 

 

Structural coupling of the BE-LTS to the diffusion model was investigated for acoustic 

volumes coupled by vibrating structural partitions. Two methods were investigated. The first 

used a simple transmission coefficient to compute the diffusion BE-LTS in coupled volumes. 

The second used a more complex power flow modeling of the structural partition which has 

never before been coupled to the diffusion model. The simple structural coupling method was 

validated through comparisons with statistical theory, ray tracing, and a FEM diffusion model 

solution. The power flow model coupling was validated through comparisons with SEA and by 

computing the TL for different structural partitions and comparing to experimental data. 

 

Finally, the BE-LTS to the diffusion model was used in two problems of practical 

engineering importance other than room acoustics which is the diffusion model’s only reported 

application. The method was used to compute the acoustic transmission loss through a tube 

bundle heat exchanger. Comparisons with experimental data demonstrated that the combination 

of slowly diffusing acoustic energy and air absorption work in concert to provide transmission 
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loss. Excellent agreement between the diffusion BE-LTS and the experimental data is observed. 

The TL of three expansion chamber mufflers with the same RVC foam was then computed using 

the diffusion BE-LTS and compared to experimental data. Excellent agreement provided further 

validation of the BE-LTS. 

 

Although the research presented in this dissertation is comprehensive, a few details remain 

uninvestigated. First, more coupled structural-acoustic problems should be investigated to 

determine how accurate the method is for much more complex systems. Second, it is 

recommended that the lower frequency limits to this method is explored for varying problems 

and compared to other energy methods for acoustics. Finally, impulsive sources involving both 

energy buildup and decay can be explored to determine the model’s effectiveness in more 

transient scenarios. 
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Appendix A: Basic Review of Diffusion Theory 

Diffusion is the process describing the random spreading of particles from regions of high 

concentration to region of low concentration. Figure A.1 shows the simple example of a group of 

particles in a glass. The particles are initially all concentrated in the same area, and then diffuse 

in the whole glass. In other words, the particles, as a result of their random movement, eventually 

spread themselves uniformly in the whole medium. 

 

 
Figure A.1: Schematic demonstrating the diffusion of particles in a glass [fair use]. 

 

The mathematical and physical concept of diffusion was first developed by Joseph Fourier in 

1822 in his work on heat conduction. The time rate of heat transfer through a material (local heat 

flux) is defined as proportional to the negative gradient of temperature and the coefficient of 

proportionality is called the material’s conductivity. Analogous laws are known in electricity 

(charge transport) as Ohm’s law and in fluid dynamics (hydraulic flow) as Darcy’s law.  

 

The general laws of diffusion were derived in 1855 by Adolf Fick, introducing the diffusion 

coefficient. Here, a variable with an under bar denotes a vector quantity. Fick’s first law states 

that the diffusive flux, J ,  at position, r , and time, t , is proportional to the negative gradient of 

concentration field, , with  denoting the gradient operator. That is 

 ttDt ,,, rrrJ  A.1 

where J  is expressed generally as have units of an amount of substance per m2 per s and is the 

amount of substance per m3, D  is the diffusion coefficient, also called diffusivity, expressed in 

SI units of m2 per s, which depends on the nature of the substance. At that time, the diffusion 

coefficient could only be determined experimentally but Fick still observed that its value 

increased with temperature. 
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Fick’s second law describes how the concentration field varies in time. Let us first consider 

the mass balance of a closed system, i.e. the rate of accumulation of mass in the system, 
t

, 

exactly equals the rate of mass leaving the system, J , where the negative sign is present due 

to the conventional definition of the diffusive flux. Mathematically stated, this is 

 t
t

t ,, rJr
. A.2 

Substituting Fick’s first law, eq. A.1, into the mass balance of eq. A.2 leads to the expression of 

the second law as 

 ttD
t

t ,,, rrr
. A.3 

If the diffusion coefficient is a constant, then eq. A.3  becomes 

 trD
t

tr ,, 2 . A.4 

where 2  is the Laplacian operator. 

 

In 1905, Einstein, considering the random walk of the diffusing particles, established a 

mathematical description of the diffusion coefficient in liquids. He stated that D  depends on the 

mean square value of the displacement of the particles in a given time period (Philibert, 2005). 

 

These expressions have largely been used in heat transfer to describe the conduction of heat 

or the variation of temperature in a given region over time (Incropera et al., 2007). The diffusion 

of photons has also been used in optics for medical imaging in the brain, referred to as diffuse 

optical imaging (Gibson et al., 2005). Application of the laws of conservation of energy had also 

been extensively used in acoustics to predict the sound pressure level due to sound sources inside 

rooms (Bies and Hansen, 2003). However, these applications always assumed the uniformity of 

the sound density and the energy flow. Recent research has been performed to model the sound 

field in rooms following Fick’s laws (Picaut et al., 1997; Picaut et al., 1999b; Billon et al., 2006; 

Valeau et al., 2006; Jing and Xiang, 2007; Billon et al., 2008a; Billon et al., 2008b; Billon et al., 

2008c; Jing and Xiang, 2008). Even more recently, efforts have been put in using the diffusion 

theory to predict sound outdoors, more specifically in streets canyons (Picaut et al., 1999a; 

Picaut, 2002; Le Pollès et al., 2004; Billon et al., 2009). The next section focuses on applications 
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of the conservation of energy and the diffusion equation in acoustics, for both indoor and outdoor 

propagation. 



162 

Appendix B: Numerical Formulation of Boundary 

Elements 

Now, the BEM is applied to the Laplace domain integral equation as a method of solving the 

surface integral. The BEM is applied to the general case with the understanding that the solution 

of the steady state surface integral is obtained simply by setting 0s . Let the surface integral, 

sIS ,'r , be defined as 

 
'

| ',
', , | ',S

S

h G s
I s s G s dS

D
r r r

r r r r
n

. B.1 

The bounding surface is discretized into J  elements, jS , made up of I  nodes each. Equation 

B.1 can then be written as 
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 B.2 

where 
4 2 2

j
j

j

ch  and each element is assumed to have a constant absorption coefficient, 

j . The acoustic energy density at any position on the surface can be found by a linear 

superposition of the nodal energy density values, si , as 

 
I

i
ii sNs

1
, rr  B.3 

where i  is the node index and riN  are the shape functions for the element. A schematic of a 

typical flat triangular element is shown in Figure B.1(a) with its geometry, features, and 

properties labeled and a typical triangular mesh used for a numerical example later is shown in 

Figure B.1(b). Although the element is drawn triangular, no specification has been made on the 

shape of the element at this point in the formulation of the BEM solution.  
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(a)

 

 

(b)

 
Figure B.1: Schematic showing (a) a typical, arbitrary element with features, geometry, and properties labeled and 

(b) a typical structured triangular mesh of a 10 x 10 x 10 m cubic volume. 

 

Substituting eq. B.3 into eq. B.2 gives 
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where ij s  is the energy density at the thi  node of the thj  element. 

 

The next step in the BEM formulation is to set up the numerical integration of the discrete 

elements. In this formulation, the boundary elements are assumed to be linear, 2D isoparametric 

elements. The position, ˆˆ ˆxi yj zkr  where î , ĵ , and k̂  are the unit vectors in three 

orthogonal directions, at any point inside an element can be found using the shape functions as in 
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where iii zyx ,,  are the nodal positions and 21,  are the isoparametric coordinates of the 

master element. For a triangular master element shown in Figure B.2 (Wu, 2000), the shape 

functions are given by 
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2212

1211

1,
,
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N

. B.6 

 

 

 

 

 

 

 

 
Figure B.2: Isoparametric triangular master element geometry. 

The elemental area, jd S , can be found using the relation 

 1 2j jd S d dv  B.7 

where  
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Let the Jacobian, J v . Then, using eq. B.8, 
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and 
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The unit normal vector to the thj  element can be found using 

 j
j

jJ
v

n . B.11 

For triangular elements, the x  derivatives defining the vector, v , are determined using eqs. B.5 

and B.6 to be 
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. B.12 

Similarly, the derivatives can be evaluated for y  and z . Focusing on the element integral of eq. 

B.4, let 
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j

j
ij ij j
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h G s
C s N G s d S

D
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r r r r
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. B.13 

Using the geometry of the master element shown in Figure B.2 to obtain integral limits and 

substituting eq. B.10 into B.12 results in 
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ij ij j
j

h G s
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D
r r

r r r
n

 0.14 

where 1 2,Tx y z fr . To apply Gaussian quadrature to the triangular master 

element, it must first converted to a unit square as shown in Figure B.3 using the '  and '  

isoparametric coordinates shown for both master elements in Figure B.2 and  Figure B.3 (Wu, 

2000). 

 

 

 

 

 

 

 

 
Figure B.3: Isoparametric unit square element geometry. 
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The coordinates and Jacobian for this transformation are given by (Wu, 2000) 

 
''

''
'1'

2

1

J
. 0.15 

Thus, 

 '''21 ddJdd . B.16 

Substituting eq. B.16 into eq. 0.14 gives 
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0 0
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', | ', , ' ' 'j
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C s G s N J d d

D
r r

r r r
n

. 0.17 

In the next step required to directly apply Gaussian quadrature to the element, the unit square is 

converted to a 2x2 square with geometry shown in Figure B.4 (Wu, 2000). 

 

 

 

 

 

 

 

 
Figure B.4: Isoparametric 2x2 square element geometry. 

The coordinates and Jacobian for this transformation are given by (Wu, 2000) 
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The elemental areas between the two square elements are related by 

 214
1'' dddd . B.19 

Substituting eq. B.19 into eq. 0.17 gives 
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D
r r

r r r
n

. B.20 

Now, an exact solution of the integral for the linear interpolation of the integrand can be found 

by application of a Gaussian quadrature by evaluation of the shape functions at 2M  Gauss 

integration points, nm
21 , , given by 

 1 2
1 1

| ',1', | ', , '
4

M M
m nj

ij m n ij j
m n j

h G s
C s w w G s N J

D
r r

r r r
n

 B.21 

where m  and n  are the indices of the Gauss point in each direction and mw  and nw  are the 

weights associated with the Gauss integration points. 

 

For elements in which 'r r  at one of the nodes, the integrand becomes singular but the 

integral will converge using the numerical integration procedure discussed. For quicker 

convergence in this special case, the origin of the local 21  coordinate system is placed on 

the singular node and a more general transformation to the local ''  coordinate system is used 

(Wu, 2000). For example, if the first node of the element is singular, the coordinate 

transformation becomes 
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where superscripts in parentheses indicate node numbers. 

 

Equation B.21 can be used to evaluate the integral, ',ijC sr , for linear, triangular boundary 

elements. For other types of elements, a different numerical integration scheme must be 

developed. 
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Appendix C: Statistical Energy Analysis Review and 

Coupled Volume Derivation 

Consider a subsystem (acoustic or structural) of resonant modes, all with equal energy, over a 

frequency band, . Next, consider a similar subsystem coupled to the first forming a system. 

Now, it is assumed that all the resonating modes in the frequency band transfer energy from one 

subsystem to the other similarly and that the modes between subsystems are uncorrelated. The 

power transmitted from one subsystem 1 to 2, '12W , is 

 12112' EW  C.1

where 1E  is the total energy of all resonant modes in subsystem 1,  is the center frequency of 

the band, and 12  is called the coupling loss factor (Beranek and Vér, 1992). Since the modes are 

assumed uncorrelated, the total power transmitted between the two subsystems, 12W , is written as 

(Beranek and Vér, 1992) 

 212121211212 '' EEWWW . C.2

 

Next, a modal energy, 1mE , is defined as the average energy per mode of the subsystem in the 

frequency band. The modal energy is 

 
1

1
1 n

EEm  C.3

where 1n  is the modal density of the subsystem (Beranek and Vér, 1992). A consistency 

relationship can be found considering the modal energy and the assumptions made as (Beranek 

and Vér, 1992) 
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21

n
n . C.4

Substituting eq. C.4 into eq. C.2 gives 
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11212 n

E
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EnW . C.5
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An energy balance is performed in each subsystem including power input and dissipated by the 

subsystem and the power transferred to coupled subsystems, 12W . Using previously derived 

relationships for different types of subsystems, the coupling loss factors and modal densities are 

calculated. Then, an algebraic system of equations is written with one equation for each 

subsystem. The total energy in each subsystem is solved for giving a uniform value for each 

component subsystem (Beranek and Vér, 1992). 

 

The coupling loss factor of a plate (2) coupled to an acoustic volume (1), for example, is 

 radh
c
2

11
21  C.6

where 2  is the density of the plate, h  is the plate thickness, and rad  is the plate radiation 

efficiency. Modal density for typical system components can also be derived. For an acoustic 

volume, 

 3
1

2
1

2

1 2 c
Vn  C.7

where 1V  is the volume. For a plate,  

 
hc

Sn
2

2
2 4

12  C.8

where 2S  is the plate area and 2c  is the group speed of flexural waves in the plate (Beranek and 

Vér, 1992). 

 

As an example, the SEA formulation for two acoustic volumes coupled through a plate is 

derived. The formulation is used later in a numerical example for comparison with the diffusion 

model. The source acoustic volume, subsystem 1, contains an input power, W  and its energy 

balance is written as 

 121 WWW d  C.9

where dW1  is the power dissipated by absorption of the surfaces, 1 . This term is easily found to 

be 
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 1
1

111
1 4

E
V
cSW d  C.10

Equation C.5 can be rewritten as 

 
1

1

2

2
2212112 n

E
n

EnWW . C.11

Substituting eq. C.6into eq. C.11 gives the net power transmitted from subsystem 1 to the plate, 

subsystem 2, as 
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2
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1

1

2

2

11
12 E

h
cE

n
n

h
cW radrad  C.12

Substituting eqs. C.7 and C.8 gives 
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4
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12 E

h
cE

Vh
S

c
cW radrad . C.13

Substituting eqs. C.10 and C.13 into eq. C.9 gives the first of the system of equations in the SEA 

formulation: 

 WE
h
cE

Vh
S

c
c

V
cS

radrad 2
2

11
1

1
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2

22
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4
11

1

111

2
12

4
. C.14

The power balance of the plate, subsystem 2, is 

 23212 WWW d  C.15

where dW2  is the energy dissipated due to damping in the plate and 23W  is the net power 

transmitted from the plate to the receiving acoustic volume, subsystem 3. The dissipated power is 

written in terms of a structural loss factor, 2 , as 

 222 EW d . C.16

The net power transmission from plate to receiving volume is 
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2

2
22323 n

E
n

EnW . C.17

Substituting eqs. C.6, C.7, and C.8 with the appropriate subsystem subscripts into eq. C.17 gives 
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2
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33

2
2
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23 2

12 E
Vh

S
c

cE
h
cW radrad . C.18

Substituting eq. C.13, C.16, and C.17 into eq. C.15 gives the second equation in the SEA 

formulation: 
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radradrad . C.19

The power balance in the receiving acoustic volume, subsystem 3, is 

 dWW 323  C.20

where dW3  is the power dissipated by the surface absorption, 3 , given by 

 3
3

333
3 4

E
V
cSW d  C.21

Substituting eqs. C.18 and C.21 into eq. C.20 gives the final equation for the SEA formulation: 
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2
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h
c

radrad . C.22

Using the radiation efficiency for a thin plate surrounded by a rigid baffle (Beranek and Vér, 

1992), eqs. C.14, C.19, and C.22 can be solved simultaneously for the total energy in each 

subsystem. The total energy can then be related to the spatially averaged mean square pressure in 

acoustic subsystems and the spatially averaged mean square velocity in structural subsystems 

(Beranek and Vér, 1992). 
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Appendix D: Energy Finite Element Method 

Derivation 

A power flow model for structural analysis was proposed by Nefske and Sung (1989). In the 

paper, they consider a small control volume inside of a structural system, e.g. a vibrating plate. 

Applying a power balance on this volume results in the governing differential equation for the 

power flow model as 

 
,

, ,diss

t
t W t

t
r

J r r  D.1

where , tr  is the energy density in the volume, , tJ r  is the intensity through the volume, 

and ,dissW tr  is the power dissipated inside the volume. The power dissipated through damping 

and/or acoustic radiation in the structure is proportional to the energy density as 

 , ,dissW t tr r  D.2

where  is the angular frequency and  is the loss factor. Nefske and Sung (1989) propose a 

form of the intensity as 

 , ,t tJ r r  D.3

where  and  are termed vibration conduction coefficients whose value must be determined. 

Substituting eqs. D.2 and D.3 into D.1 gives the general power flow model for structures: 

 
,

, ,
t

t t
t
r

r r . D.4

 

To determine the arbitrary coefficients, consider the far field energy density as the sum of 

positive and negative propagating waves whose energy densities can be separated into , tr  

and , tr , respectively. The total energy density is then 

 , , ,t t tr r r . D.5

The intensity propagating through this point is 

 , , ,t t tJ r J r J r . D.6
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Since the intensity of a wave can be written as a product of the energy density and group 

velocity,  

 
, ,

, ,

g

g

t c t

t c t

rJ r r
r
rJ r r
r

, D.7

this gives 

 , , ,g gt c t c t rJ r r r
r

. D.8

Next, a power balance is applied to equate the gradient of the intensity to the energy dissipated as 

 
, ,

, ,

t t

t t

J r r

J r r
. D.9

Multiplying eq. D.9 by /gc  and adding gives 

 , , , ,g
g g

c
t t c t c tJ r J r r r . D.10

Substituting eq. D.10 into eq. D.8 gives 

 , , ,gc
t t tJ r J r J r . D.11

Next, eq. D.7 is substituted into eq. D.11 to give 

 , , ,g
g g

c
t c t c tJ r r r . D.12

which can be rewritten as 

 , ,g
g

c
t c tJ r r . D.13

Comparing eq. D.13 to D.3 gives 

 gc
 D.14

and 

 gc . D.15

The power flow model for structures can now be written as 
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c t t

t
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r r . D.16

Assuming the group velocity and loss factor do not change with position gives 

 
2

2,
, ,gct
t t

t
r

r r . D.17

This equation forms the basis of the energy finite element method (EFEM) formulated by Bitsie 

(1997). Using essentially the same method, the power flow model of the acoustic system is given 

by 

 ttc
t

t ,,, 2
2

rrr . D.18

Next, EFEM is extended to coupled systems where it provides significant advantages over other 

techniques in the analysis of complex built-up structures. For two coupled systems, the power 

flow from one system to the next over the coupling surface, cS , must be conserved. This can be 

expressed in terms of intensity as 

 0,,
21

2211

cc SS

dStdSt nrJnrJ  D.19

where ciS  is the thi  system's side of the coupling surface with unit normal, in , and iJ  is the net 

intensity. Each integral can be split into the intensity of an incident wave, tiinc ,, rJ , a reflected 

wave, tiref ,, rJ , and a transmitted wave, titrans ,, rJ , as in 

 
cicicici S

iitrans
S

iiref
S

iiinc
S

ii dStdStdStdSt nrJnrJnrJnrJ ,,,, ,,, . D.20

The magnitude of the net intensity of the thi  system integrated over the coupling surface can be 

written in terms of incident intensities only with the use of power reflection, iir , and transmission 

coefficients, ij , as 

 
cjcicici S

jincij
S

iincii
S

iinc
S

i dStdStrdStdSt ,,,, ,,, rJrJrJrJ  D.21

where the thi  system is coupled to the thj  system and ij . The total net intensity in the 

direction of the normal to the coupling surface becomes 
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For the simplest case of two systems, 1 and 2, eq. D.22 can be written in matrix form as 
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The energy density multiplied by the group speed of the thi  system, ic , can also be written in 

terms of the magnitudes of the intensities of the three waves as 
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Using power reflection and transmission coefficients, 
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Again, for a two system coupling, eq. D.25 in matrix form is 
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Solving for the magnitude of the intensity gives 
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Substituting eq. D.27 into eq. D.26 gives the intensity normal to the coupling surface in terms of 

the energy density on the surface as 
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From conservation of energy, the power reflected and transmitted must equal the incident power, 

or 

 1jiiir . D.29



176 

Substituting eq. D.29 into eq. D.28 gives the coupling condition for the EFEM,  
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Using the relationship between the intensity and the gradient of the energy density gives 

 1 1
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Equations D.18 and 6.2 are written for each system with appropriate boundary conditions and 

coupled through eq. D.31. The total system is then solved with the FEM to formulate the EFEM. 
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Appendix E: Full Derivation of the Diffusion BE-LTS 

with Simple Structural Coupling 

In this section, the Laplace domain BEM solution to the acoustic diffusion model for multiple 

acoustic volumes coupled through a known transmission coefficient, as shown in Figure E.1, is 

developed. The case shown in the schematic is two coupled volumes, but this formulation can be 

used for any number or configuration of volumes and coupling surfaces. The domain of the thv  

acoustic volume is referred to as vV . The domains of the bounding surfaces of each volume are 

split into two sub-surfaces each. The domain of the boundary exclusive to the thv  volume is vS , 

while the domain of the boundary on the coupling surface is cvS . The unit normal vector 

pointing outward from vS  or cvS  is vn . The position vector can be in any of these defined 

domains. 

 

Figure E.1: Schematic demonstrating the geometry for two coupled volumes. 

 

The diffusion equation in the thv  volume is given by (Billon et al., 2008a) 

 tftmctD
t

t
vvvv

v ,,,, 2 rrrr  E.1
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where v  represents the energy density in the volume or on its bounding surface, vD  the 

diffusion coefficient, and vf  the supplied acoustic power per unit volume. The boundary 

conditions are given by (Billon et al., 2008a) 
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 E.2 

where 
4 2 2v
ch

r
r

r
 is the absorption exchange coefficient, / 4vh cr r  is the 

transmission exchange coefficient, v r  is the absorption coefficient of the bounding surface, 

v r  is the transmission coefficient of the coupling partition associated with energy flowing out 

of the thv  volume, and the thu  volume is coupled to the thv  through cvS  and cuS  and u v . 

Equations E.1 and E.2 with an initial condition form a well-posed problem that can be solved 

with a numerical technique such as the FEM or FD technique. 

 

Moving towards the development of the BEM solution, the Laplace Transform of eq. E.1 is 

 2, ,0 , , ,v v v v v vs s D s F s Vr r r r r  E.3

where ts vv ,, rr L  and tfsF vv ,, rr L . This can be rearranged to give 

 2 1 1, , ,0 , ,v v v v v
v v v

ss s F s V
D D D

r r r r r . E.4

Taking the Laplace Transform of eq. E.2 gives 
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Solving for the normal derivative of the energy density in eq. E.5 results in 
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which is needed later. The multiple volume diffusion equation in terms of its Green’s function is 

given by 

 2| ',
| ', ' , , 'v

v v v

g t
D g t t V

t
r r

r r r r r r  E.7

where | ',vg tr r  is the free field 3-D Green’s function. The initial condition for the Green’s 

function equation is given by | ',0 0vg r r . The Laplace Transform of the Green’s function 

equation is 

 2| ', | ', ' , , 'v v v vsG s D G s Vr r r r r r r r  E.8

where tgsG vv ,'|,'| rrrr L . Equation E.8 can be rearranged into  

 2 | ', | ', ' , , 'v v v
v

sG s G s V
D

r r r r r r r r  E.9

The Green’s function is given by (Butkovskiy, 1982) 
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and its normal derivative on the boundary is 
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The mathematical statement of Green’s Second Identity is 
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Substituting eqs. E.4 and E.9 gives 
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Carrying out the integration over the delta function and rearranging gives 
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The surface integral can be split into one integral over vS  and another over cvS  which gives 
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where  is given by eq. 3.17. Substituting the appropriate relations of eq. E.6 into eq. E.15 

gives the integral equation as 
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Note that the integral equation is nearly the same as in the single volume case with the addition 

of one more integral of the energy density transmitted from the coupled volume over the 

coupling surface and another term devoted to carrying energy out of the volume in a similar 

manner as the absorption. 

 

The steady state integral equations can be derived using the FVT as done previously. 

Multiplying eq. E.16 by s  and taking the limit as 0s  results in 
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where 

 lim ,v vt
tr r  E.18 

and 

 lim ,v vt
f f tr r . E.19 

 

Next, the bounding surfaces are discretized and integrated numerically forming a matrix 

equation which can be solved for the energy on the bounding surfaces. Focusing only on the 

surface integrals of eq. 6.3, let 

 ' '

'

| ',
', , | ',

1 , | ', , '

v

v cv
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r r r r

n

r r r r r
. E.20 

Discretizing the bounding surfaces, vS  and cvS , into vJ  and cvJ  2-D elements jS , 

respectively, with I  nodes each gives 

 
1 '

1 '

| ',
', , | ',

1 , | ', , '

v cv

v

j
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j

J J
v v v

S v v j
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I s s G s d S

D

h s G s d S V S S
D

r r r r
r r r r

n

r r r r r
. E.21 

Considering that the energy density at any point inside of the thj  element can be found by a 

linear superposition of the nodal values (denoted with the subscript i ) of the energy density, 

,v ij s , multiplied by the chosen shape function, ijN r , eq. E.21 becomes 
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Equation E.22 can be rewritten as 

 , , , ,
1 1 1 1
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v
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j i j i

I s C s s C s s V S Sr r r r  E.23 

where 
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and 

 ,
'

1', | ', , '
j

vu ij u ij v j v v cv
v S

C s h N G s d S V S S
D

r r r r r r . E.25 

The integral equation, eq. E.16, can now be rewritten as 

' '

, , , ,
1 1 1 1

1 1', | ', ,0 | ', ,

', ', , '

v v
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v v v v v
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vv ij v ij vu ij u ij v v cv
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s G s dV G s F s dV
D D

C s s C s s V S S

r r r r r r r

r r r
. E.26 

The coefficients, , ',vv ijC sr  and , ',vu ijC sr , can be solved using numerical integration as 

discussed in Appendix B. Letting the position vector assume the value of the thk  node of the 

bounding surface, ' = 'kr r , where there are a total of vK  unique nodes, eq. E.26 becomes 

 
, , , , ,

1 1 1 1

' '

1
2

1 1| ', ,0 | ', ,

v cv cv

v v

J J JI I

v k vv kij v ij vu kij u ij
j i j i

v k v v k v
v vV V

s C s s C s s

G s dV G s F s dV
D D

r r r r r r
 E.27 

where , , ',vv kij vv ij kC s C sr  and , , ',vu kij vu ij kC s C sr . Assuming the volume integrals can 

be solved using methods discussed previously, let 
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Substituting eq. E.28 into E.27 gives 

 , , , , , ,
1 1 1 1

1
2

v cv cvJ J JI I

v k vv kij v ij vu kij u ij v k
j i j i

s C s s C s s B s . E.29 

In matrix form, eq. E.29 can be written as 

1 1

1 1

1
2 v v v vv v

u vv u

v vv vK K K KK K

vu u vK KK K

s s s

s s s
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C B
 E.30 

where ,1 ,2 , v

T

v v v v Ks s s sK,K  and 

,1 ,2 , v

T

v v v v Ks B s B s B sK,B K . The matrix of coefficients, 
v v

vv K K
sC , is given 

by 
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 E.31 

where ,ev lJ  is the number of elements the thl  node belongs to in volume v ; the index, i , takes on 

only one value for each of these elements as each unique node will correspond to a single node 

of the thj  element. The matrix of coefficients, 
v u

vu K K
sC , is given by 
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1 1 1
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C
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. E.32 
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Individually, eq. E.30 represents an underdetermined linear system of equations with vK  in 

v uK K K  unknowns. However, writing one for each volume, 1,2,..., Vv N , gives 

11 12 11 1 1

2 2 221 22

11 1 1

...

1 .
2

V

V V VV V V

N

K K

N N NN N NK K KK K

s s ss s s
s s ss s

s s ss s

C C C

C C
I

C C

.  E.33 

More compactly, 

1 1K KK K
s s sA B  E.34 

where  1 2 ...
V

T

Ns s s s ,  1 2 ...
V

T

Ns s s s , and 

 

11 12 1

21 22

1

...

1
2

V

V V V

N

N N N

s s s

s s
s

s s

C C C

C C
A I

C C

. E.35 

 

The structure of the coefficient matrix in the complete system of equations of eq. E.35 is as 

follows. The matrices vv sC  are fully populated because the energy at one node is dependent 

upon the energy integrated over the entire surface of its volume; these matrices represent the 

energy flow out of the thv  volume and are the equal to the matrices that are calculated if each 

volume is isolated and considered independently. The off-diagonal matrices, vu sC  represent 

the flow of energy transmitted into the thv  volume from the thu  volume. Thus, these matrices 

have full columns of values multiplying the energy at nodes on the coupling surfaces; all other 

columns multiplying energy at nodes not on the coupling surfaces are zero. Equation E.34 can be 

solved for the energy density at each node of the bounding surfaces of both volumes. Then, eq. 

E.26 can be solved to calculate the energy at any point in the thv  volume. 

 

A similar matrix equation can be set up to solve the steady state integral equations. Once the 

steady state energy is calculated and eq. E.34 is solved for several discrete values of the Laplace 
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variable, the energy at any point of interest can be numerically inverted back into the time 

domain using one of the numerical Laplace inversions discussed previously. 
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Appendix F: Transmission Loss of Plates with Known 

Acoustic Impedance 

Transmission coefficients of typical building components have been calculated and measured for 

applications in room acoustics for many years (Berendt et al., 1967; Halliwell et al., 1998; 

London, 1950; Mulholland et al., 1967; Marsh, 1971a; Marsh, 1971b; Marsh, 1971c; Quirt, 

1982; Quirt, 1983). The transmission coefficient, , is usually expressed in terms of an acoustic 

transmission loss (TL) given by 

ffTL 10log10  F.1 

as a function of frequency, f . 

 

To use the coupled volume acoustic diffusion model in other fields of acoustics where 

transmission coefficients are not as well documented, e.g. muffler analysis, an equivalent 

transmission coefficient is derived from known properties. The equivalent transmission 

coefficient is now derived for the transmission through any layer with known specific acoustic 

impedance. 

 

Consider a plane wave incident upon a thin absorptive layer with complex pressure, ip , 

particle velocity, iv , and angle, i , as shown in Figure F.1.  The presence of the obstacle will 

cause a reflected wave with pressure, rp , particle velocity, rv , and angle, r , and a transmitted 

wave with pressure, tp , particle velocity, tv , and angle, t . 

 

 

 

 

 

 

 

 

Figure F.1: Schematic of a plane wave incident upon an absorptive layer with reflected and transmitted waves. 

,r rp v  
,t tp v  

i  

r  t  

,i ip v  
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Assuming that the layer is thin and rigid, the particle velocity in the direction normal to the layer 

must be continuous as in 

cos cos cos .i i r r t tv v v  F.2 

If the medium on either side of the thin layer is the same, then it can be shown that all angles are 

equal, i r t  (Kinsler et al., 2000), and eq. F.2 becomes 

.i r tv v v  F.3 

The relations 

, ,i i r r t tp c p c p c= v = v = v  F.4 

relate pressure and particle velocity for all three plane waves. Multiplying eq. F.3 by the density 

and speed of sound, and substituting eq. F.4 gives 

i r tp p p  F.5 

which can be rearranged into 

1 .tr

i i

pp
p p

 F.6 

Assuming a known specific acoustic impedance of an absorptive layer, z , the relation can be 

written (Wu, 2000) 

cos .i r t tp p p czv  F.7 

Rearranging and substituting eq. F.4, eq. F.7 becomes 

1 1 cos .tr

i i

pp z
p p

 F.8 

Substituting eq. F.6 into eq. F.8 and solving for the ratio of transmitted to incident pressure gives 
111 cos .

2
t

i

p z
p

 F.9 

Taking the absolute value and squaring eq. F.9 gives the transmission coefficient of the 

absorptive layer as 
1211 cos .

2
z  F.10 

Let z a ib  and eq. F.10 reduces to 
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2 2
1 .

1 11 cos cos
2 2

a b
 

F.11 

Because the acoustic diffusion model assumes a diffuse field with incident waves arriving from 

all angles, the diffuse transmission coefficient, d , must be derived. The diffuse transmission 

coefficient is defined as the integral of the transmission coefficient over a hemispherical surface 

given by (Bies and Hansen, 2003) 
2 /2

0 0

1 , cos sind d d  F.12 

where  is the azimuthal angle of incidence. Substituting eq. F.11 into eq. F.12 gives 

 

2 /2

2 2
0 0

1 cos sin .
1 11 cos cos
2 2

d d d
a b

 
F.13 

Let cosu  to get 
2 0

2 2
0 1

1 .
1 14

d
u dud

z u au
 F.14 

Carrying out the integration with respect to u  with the help of any integration table yields 
0

22
2 2 1

2
0

1

11 2 2 21ln 1 tan .4d

z u aaz u au d
b bz

 F.15 

Evaluating at the limits of integration gives 
22

21 1
2

0

11 2 2 2 21tan ln 1 tan .4d

z aa aa z a dbb b bz
 F.16 

Since the transmission coefficient is independent of the azimuthal angle of incidence, the last 

integral is trivially evaluated and the diffuse transmission coefficient is 
2

21 1
2

14 2 2 2 1tan tan ln 1 .4d

z aa aa z abb b bz
 F.17 

A very simple empirical expression to calculate the impedance of a perforated sheet as a function 

of frequency, f , is given by (Wu, 2000) 
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1 2.40 0.02z f i f
c

 
F.18 

where  is the porosity or ratio of the total area of the holes to the total area of the sheet. The 

resistance and reactance, or real part and imaginary part of the impedance, respectively, are 

plotted for a few different values of porosity in Figure F.2. Based on eq. F.18, it comes as no 

surprise that the resistance of the perforated sheet is constant and the reactance is linear in 

frequency. As the porosity of the perforated sheet increases, or more hole area is introduced 

compared to the sheet area, the resistance decreases and the slope of the reactance decreases. 

 
(a) 

 

(b) 

 
Figure F.2: (a) Resistance and (b) reactance of perforated sheets with different porosity as a function of frequency. 

 

The transmission coefficients and transmission losses (TL) of the perforated sheets with 

different porosity with the impedance given by eq. F.18 are plotted in Figure F.3 against 

frequency. At low frequencies, the acoustic transmission through each perforated sheet is 

dominated by the resistive part of its impedance being fairly flat in frequency. At high 

frequencies, the reactive part of the impedance dominates the transmission greatly reducing the 

amplitude of the transmitted wave. The transition frequency where the reactance begins to 

dominate the resistance varies with the porosity of the perforated sheet occurring around 100 Hz 

for very low porosity, 1000 Hz for a more standard (20%), and 5000-6000 Hz for a very high 

porosity. 
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(a) 

 

(b) 

 
Figure F.3: (a) Transmission coefficients and (b) TL’s of perforated sheets with different porosity as a function of 

frequency. 
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Appendix G: Coupled Volume Statistical Formulation 

An energy balance formulation will now be presented using statistical theory and its underlying 

assumptions for a two volume interior transmission problem such as the one shown in Figure 6.9. 

Assuming the energy in each volume is uniform, a steady state energy balance can be written as 

0source abs transE E E  G.1 

for either volume where sourceE  is the energy emitted by the source, absE  is the energy absorbed 

by the surfaces, and transE  is the energy transmitted to another volume. The balance of power for 

Volume 1 is 

1 1 1 1 1 2 1 1 2 0
4 4c c c
c cW A A A  G.2 

where 1W  is the acoustic power of the source in Volume 1, 1  and 2  are the uniform energy 

densities in Volumes 1 and 2, respectively, 1A  is area of the exclusive surfaces bounding Volume 

1 with 1  being the uniform absorption of these surfaces, cA  is the area of the coupling surface, 

c  is the absorption of the coupling surface, 1  is the transmission coefficient of the coupling 

surface for energy flowing into Volume 1 from Volume 2, and 2  is the transmission coefficient 

for energy flowing into Volume 2 from Volume 1. The power balance in Volume 2 is 

2 2 2 2 2 1 2 2 1 0
4 4c c c
c cW A A A  G.3 

where 2W  is the acoustic source power in Volume 2 and 2A  and 2  are the surface area and 

absorption coefficients of the surfaces exclusive to Volume 2, respectively. Rewriting eqs. G.2 

and G.3 as a linear system of equations gives 

 

1 1 1 2 1 1 2 1

2 1 2 2 2 1 2 2

4

.
4

c c c c

c c c c

A A A A W
c

A A A S W
c

 G.4 

In matrix form, eq. G.4 is 

1 1 1 2 1 1 1

2 2 2 2 1 2 2

4c c c c

c c c c

A A A A W
A A A S Wc

 G.5 
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which can be solved for the uniform, steady state energy in each volume. 

 

The rate of change of the total diffuse energy in a volume, vE , is equal to the acoustic power 

supplied by a source, sourcevW , , less the power absorbed in the volume, absvW , , and transmitted to 

another volume, transvW , . Stated mathematically 

tWtWtW
dt

tdE
transvabsvsourcev

v
,,,  G.6 

 

Now, this formulation is specialized for the problem in Chapter 6, i.e. a source and receiving 

volume with uniform absorption coupled through a partition with a known TL. Assuming a 

uniform distribution of energy density in the source volume (denoted with subscript 1), eq. E.1 

can be written as 

1

1
22

1
11

1

1

44 V
WtA

V
ctAA

V
c

t
t

cc  G.7 

where 1  is the energy density in the source volume and 2  the energy density in the receiving 

volume; 1V  is the volume of the source room, 1A  the surface area of the non-coupling surfaces, 

and cA  is the surface area of the coupling partition;  is the absorption coefficient of the non-

coupling surfaces;  is the transmission coefficient of the coupling partition; 1W  is the source 

power. In the receiving volume, eq. E.1 becomes 

tAA
V
ctA

V
c

t
t

cc 22
2

1
2

2

44
 G.8 

where 2V  is the volume and 2A  is the surface area of the non-coupling surfaces in the receiving 

volume. 

 

The homogeneous solutions to two coupled first order ordinary differential equations take the 

form 

tvCtvCth 212211111 expexp  G.9 

and 

tvCtvCth 222212112 expexp  G.10 
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where 1C  and 2C  are constants to be determined by initial conditions, 1  and 2  are the 

eigenvalues of the system matrix, and Tvv 21111v  and Tvv 22122v  are the eigenvectors. 

 

The fundamental matrix, t , for this system is 

tvtv
tvtv

t
222121

212111

expexp
expexp

. G.11 

The forcing vector, tb , is 

 

0
/ 11 VW

tb . G.12 

The total solution to the system is the linear superposition of the homogeneous solution and the 

particular solution which is (Kohler and Johnson, 2006) 

t
dtttt

C
C

t
t
t

0

1

2

1

2

1 ''' b . G.13 

Substitution and some matrix calculations gives the transient solutions for the energy density in 

the source and receiving volumes as 

tvvvvtvvvv
V
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vvvv
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2
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2112

2
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1

1
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1
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1

1
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tt
V
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vvvv
vv
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2
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1
111

1

21122211

2221

222212112

exp11exp11

expexp
. G.15 

For the buildup of energy due to the source with zero initial energy, 

021 CC  G.16 

and the solutions are 

tvvvvtvvvv
V
W

vvvv
t 2

2

2112

2

2112
1

1

2211

1

2211

1

1

21122211
1 expexp1  G.17 

and 
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2221
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Appendix H: Numerical Convergence in the Simple 

Uniform Coupled Volumes 

Convergence in the multiple volume BEM solution due to mesh size is studied for the two 

extreme values of the coupling partition TL (1 dB and 50 dB), i.e. for varying strengths of the 

coupling between the two volumes. The initial boundary mesh of 12 elements per volume is 

created by placing one element side along each edge of the volumes. The mesh refinement 

strategy places consecutively increasing numbers of element sides along each edge of the 

volumes. The average steady state energy density in the source volume is plotted against the total 

number of elements, on the bounding surface of both volumes, and the number of elements per 

MFPL in Figure H.1. The average steady state energy density in the receiving volume is plotted 

in the same way in Figure H.2. Both volumes demonstrate a converging trend in energy density. 
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(a) 1 dB TL 

 

(b) 1 dB TL 

 
(c) 50 dB TL 

 

(d) 50 dB TL 

 
Figure H.1: Convergence in the steady state average energy density in the source volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 
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(a) 1 dB TL 

 

(b) 1 dB TL 

 
(c) 50 dB TL 

 

(d) 50 dB TL 

 
Figure H.2: Convergence in the steady state average energy density in the receiving volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 

 

Next, the percent difference in average steady state energy density is plotted in Figure H.3. 

There are two general features to note about the convergence in this example. First, convergence 

in the receiving volume takes about twice as many elements per MFPL than in the source 

volume. This is because the acoustic energy must encounter at least one collision in the source 

volume, i.e. travel one MFPL, before it can be transmitted into the receiving volume. Second, a 

higher coupling partition TL takes longer to converge than a lower TL, especially significant in 

the receiving volume whose average energy is most affected by the TL. This is due to the 

significantly smaller amounts of energy transmitted into the receiving volume being more 

affected by the change in mesh size. For a coupling partition with 1 dB TL, convergence to 



198 

within 5 % difference is obtained with a mesh of 864 elements (2.8 per MFPL) in the source 

volume and 2400 elements (4.8 per MFPL) in the receiving volume. For a coupling partition 

with 50 dB TL, meshes of 1536 elements (3.8 per MFPL) in the source volume and 4056 

elements (6.1 per MFPL) provide convergence to within 5 % difference. The results presented 

are computed using the finest mesh with 4056 elements. 

 
(a) 

 

(b) 

 
Figure H.3: Percent difference in the steady state average energy density for increasingly refined meshes of the 

receiving volume against (a) number of elements and (b) number of elements per mean free path length. 

 

The diffusion model is also solved using the FEM for the simple transmission model. The 

point source is modeled as a spherical volume with a radius of 17 cm. The source volume is 

discretized using three perpendicular circles divided into quarter-circular segments. Initially, two 

element edges are placed along each of these segments and each of the bounding volume edges. 

This mesh is refined by consecutively increasing the number of element edges along the source 

segments. The average steady state energy density in the source volume is plotted in Figure H.4 

and in the receiving volume in Figure H.5 against the number of elements and number of 

elements per MFPL for coupling partition TL’s of 1 dB and 50 dB. A converging trend is 

demonstrated in each of the plots. 
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(a) 1 dB TL 

 

(b) 1 dB TL 

 
(c) 50 dB TL 

 

(d) 50 dB TL 

 
Figure H.4: Convergence in the steady state average energy density in the source volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 
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(a) 1 dB TL 

 

(b) 1 dB TL 

 
(c) 50 dB TL 

 

(d) 50 dB TL 

 
Figure H.5: Convergence in the steady state average energy density in the receiving volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 

 

The percent difference in average steady state energy density is plotted in Figure H.6. As 

shown in this plot, the convergence is independent of the TL and both volumes converge at the 

same rate when using the FEM to solve the diffusion model. Convergence to within 2 % 

difference is guaranteed in three refinements using a mesh of 935 elements (2.7 elements per 

MFPL); this mesh is used to compute the results presented later. 
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(a) 

 

(b) 

 
Figure H.6: Percent difference in the steady state average energy density for increasingly refined meshes of the 

receiving volume against (a) number of elements and (b) number of elements per mean free path length. 

 

The final numerical technique used to solve the simple transmission example is ray tracing. 

Rays encountering the coupling partition are allowed to propagate through the surface without 

changing direction but the energy is lessened by the defined reflection, scattering, and 

transmission coefficients. Rays are traced for three seconds; the steady state value is taken to be 

the energy after three seconds have passed. Convergence in the ray tracing solution is studied by 

increasing the level of source division as in previous examples. The average steady state energy 

density in each volume is plotted for coupling partitions of 1 dB and 50 dB TL for increasing 

numbers of rays in Figure H.7. A converging trend is demonstrated in each case. 
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(a) 1 dB TL 

 

(b) 50 dB TL 

 
(c) 1 dB TL 

 

(d) 50 dB TL 

 
Figure H.7: Convergence in the steady state average energy density in the (a,b) source volume and (c,d) receiving 

volume against the number of rays for (a,c) 1 dB TL and (b,d) 50 dB TL of the coupling partition. 

 

The percent difference in average steady state energy density is plotted in Figure H.8. Due to 

the geometric nature of the ray tracing technique, convergence is independent of the TL of the 

coupling partition as demonstrated in the plot. Another interesting feature of this convergence 

study is that the energy converges faster in the receiving volume than in the source volume, 

opposite what was demonstrated in the diffusion BEM solution. The average energy density 

converges to within 5 % difference in the receiving volume using only 4096 rays, while 32768 

rays are required for convergence to within 5 % difference in the source volume. The steady state 

results plotted later are computed using 32768 rays. 
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Figure H.8: Percent difference in the steady state average energy density for an increasing number of rays. 

 

To study the convergence of the numerical solutions to the transient problem, the average 

energy density in the source volume at 0.5 s and in the receiving volume at 0.7 s is computed for 

partition TL’s of 1 dB and 50 dB. Using the same meshing strategy as the steady state problem, 

the transient average energy density computed using the BEM solution to the diffusion model is 

plotted in Figure H.9 for the source volume and in Figure H.10 for the receiving volume. Again, 

both demonstrate the expected converging trend. 
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(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure H.9: Convergence in the transient average energy density in the source volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 
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Figure H.10: Convergence in the transient average energy density in the receiving volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 

 

The percent difference in average transient energy density is plotted in Figure H.11. The 

convergence in the transient solution is basically the same as in the steady state case. For a 

coupling partition with 1 dB TL, convergence to within 5 % difference is obtained with a mesh 

of 864 elements (2.8 per MFPL) in the source volume and 2400 elements (4.8 per MFPL) in the 

receiving volume. For a coupling partition with 50 dB TL, meshes of 1536 elements (3.8 per 

MFPL) in the source volume and 4056 elements (6.1 per MFPL) provide convergence to within 

5 % difference. The results presented are computed using the finest mesh with 4056 elements, 

the same as the steady state mesh. 
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Figure H.11: Percent difference in the transient average energy density for increasingly refined meshes of the 

receiving volume against (a) number of elements and (b) number of elements per mean free path length.. 

 

The average transient energy density in the source volume computed with the diffusion FEM 

is plotted in Figure H.12 and in the receiving volume in Figure H.13 against the number of 

elements and number of elements per MFPL for coupling partition TL’s of 1 dB and 50 dB. The 

same meshing strategy as in the steady state case is used. A converging trend is demonstrated in 

each of the plots. 
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Figure H.12: Convergence in the transient average energy density in the source volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 
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Figure H.13: Convergence in the transient average energy density in the receiving volume against (a,c) number of 

elements and (b,d) number of elements per mean free path length for (a,b) 1 dB TL and (c,d) 50 dB TL of the 

coupling partition. 

 

The percent difference in average transient energy density is plotted in Figure H.14. Again, 

convergence is the same in the transient case as in the steady state problem. Convergence to 

within 2 % difference is guaranteed in three refinements using a mesh of 935 elements (2.7 

elements per MFPL); this mesh, again the same as the steady state mesh, is used to compute the 

results presented later. 
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Figure H.14: Percent difference in the transient average energy density for increasingly refined meshes of the 

receiving volume against (a) number of elements and (b) number of elements per mean free path length.. 

 

Finally, the average transient energy density in each volume computed using the ray tracing 

technique is plotted for coupling partitions of 1 dB and 50 dB TL for increasing numbers of rays 

in Figure H.15. A converging trend is demonstrated in each case. 



210 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure H.15: Convergence in the transient average energy density in the (a,b) source volume and (c,d) receiving 

volume against the number of rays for (a,c) 1 dB TL and (b,d) 50 dB TL of the coupling partition. 

 

The percent difference in average transient energy density is plotted in Figure H.16. As with 

the other numerical methods, the convergence of the transient ray tracing solution is almost 

identical to the steady state convergence. The average energy density converges to within 5 % 

difference in the receiving volume using only 4096 rays, while 16384 rays are required for 

convergence to within 5 % difference in the source volume, slightly faster than the steady state 

problem. The transient results plotted later are computed using 32768 rays, the same number 

used to compute the steady solution. 
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Figure H.16: Percent difference in the transient average energy density for an increasing number of rays. 

 

 


