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The small amplitude thermal vibrations of the microcantilever of an atomic force microscope can be
enhanced via a delayed feedback system. This is verified experimentally for a triangular cantilever,
and modeled theoretically as a boundary value problem resulting in a second order functional
differential equation for the temporal behavior of the cantilever. The eigenvalues of the resulting
delay differential equation describing the transverse vibrations of the cantilever are calculated and
analyzed. These values are compared with the corresponding resonant frequencies predicted by a
point mass model and with the experimentally observed values. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1452771#

I. INTRODUCTION

The atomic force microscope~AFM!, since its invention
by Binnig et al.,1 has been extensively used in imaging,
chemical and biological sensing, and providing surface char-
acteristics in various fields of applications.2–4 The probing
capability of this device is based on the interaction of an
oscillating microcantilever within the nanometer, angstrom,
or contact ranges with the surface attributes of the sample
under study, which generates a measurable signal that reveals
electric and magnetic properties of the sample surfaces.5 The
dynamics of the cantilever motion are of great interest and
have been studied by many authors. Chenet al.5 calculated
the fundamental and harmonic resonance frequencies for V
shaped and rectangular cantilevers using a variational
method to solve the beam equation. Sader6 discusses the hy-
drodynamic aspects and the resonant frequencies of a canti-
lever beam with uniform arbitrary cross section that is im-
mersed in a viscous fluid and is driven by an arbitrary force.
The vibrational dynamics of free and surface coupled canti-
levers have been studied using equation of motion for flex-
ural vibrations and the simplified first mode approximation
~point-mass model! and compared with experimental obser-
vations for cantilevers.7–9

With the advent of noncontact force and tapping mode
microscopy the dynamics of a cantilever driven in a feedback
loop has attracted a lot of attention. Albrechtet al.10 used a
frequency modulation technique, where the cantilever served
as the frequency determining element of the oscillator, to
improve the sensitivity without restricting the bandwidth or
the dynamic range. Du¨rig et al.11 using the cantilever as a
resonator in an active feedback circuit for sensing interaction
forces in dynamic force microscopy showed the tracking os-

cillator technique to be superior to the direct feedback
method, allowing one to differentiate between conservative
and dissipative interactions.

Recently, Mehtaet al.12 studied the ‘‘Brownian’’ motion
of the microcantilevers induced by ambient thermal fluctua-
tions and utilized that in a feedback system to improve theQ
factor of the cantilever in air and water by several orders of
magnitude. Similarly, Muralidharanet al.13 showed that
small amplitude thermal vibrations of a microcantilever of
triangular shape can be enhanced by engaging a delayed
feedback mechanism. In their work, the microcantilever was
modeled as a system with a single degree of freedom~DOF!
consisting of a massm, a spring~spring constantk!, and a
dashpot~viscous damping constantg!, heretofore, referred to
as the ‘‘point mass model.’’ The effect of the feedback was
incorporated by convoluting the current location of the point
mass with that of an earlier time. The feedback was charac-
terized using a time delayt and a gainG. The point mass
model has been further investigated, and experimental work
has been carried out14 where the dynamics of a geometrically
different cantilever was studied. Results of the investigations
show that although the point mass model was successful in
rationalizing conditions for which amplification succeeded, it
lacked the desired predictive capabilities. Furthermore, it
was noticed that the predicted resonant frequencies for the
combinations of parameters~t and G! used in the experi-
ments were different from the experimentally observed val-
ues for the resonant frequencies. It is believed that this dis-
crepancy is due to treating the system as a discrete one with
a single DOF rather than a continuous one.

The primary purpose of this work is to remove the
above-mentioned deficiency and analyze the vibrational be-
havior of the cantilever using the beam equation which takes
into account the finite spatial extent of the microcantilever.
We discuss delay, gain, and amplification intervals in which
resonance is plausible, and address further work related to
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such feedback mechanisms. Section II outlines the experi-
mental procedure to accomplish a delayed feedback. In Sec.
III, the mathematical model based on the beam equation for
the cantilever is explained, and relevant equations are de-
rived. Section IV presents the results of the numerical work
which is discussed and summarized in Sec. V where com-
parisons are made with the point mass model and the experi-
mental results. A conclusion is given in Sec. VI.

II. EXPERIMENTAL METHOD

The experimental configuration is depicted in Fig. 1. We
closely follow the procedure outlined in Ref. 13. The canti-
levers used for the study were commercially available con-
tact levers that are triangular in shape and made of silicon
nitride. The nominal length and width of the cantilevers are
100 and 20mm, respectively. These are mounted in a com-
mercially available cantilever holder used for tapping mode
AFM with an in-built piezoelectric bimorph that drives the
cantilever. The whole assembly is placed inside an AFM
head containing the laser source and a two or a four
quadrant-position sensitive detector. The vertical difference
output from the detector~and associated electronics! is am-
plified and constitutesVout. This output signal is then routed
through a variable time delay circuit that causes a delayt
and a variable gain amplifier with an amplification factorG
before it is applied to the piezoelectric bimorph. For future
reference, we call this input voltageVin . Both the voltages
Vout andVin are monitored with a high-speed digital oscillo-
scope capable of sampling at the rate of 100 MHz~minimum
of 10 ns sampling interval! interfaced to a computer. For
studying the response of the cantilever to a specific shape of
input signal, the experimental setup allowed the output from
a spectrum generator to be applied directly to the piezoelec-
tric bimorph as shown in Fig. 1.

III. DYNAMICAL MODEL

The transverse vibrations of a cantilever exposed to an
arbitrary resistive forceR(x,t) and an arbitrary driving force
F(x,t) can be described by the partial differential equation15

EI
]4W~x,t !

]x4 1m
]2W~x,t !

]t2 1R~x,t !5F~x,t !, ~1!

where the positive constantsE, I, andm are Young’s modu-
lus, area moment of inertia, and the mass per unit length atx,
respectively. It should be understood thatR(x,t), andF(x,t)
are forces per unit length of the cantilever. For an undriven
cantilever, excited by an impulse att50, the amplitude of
the subsequent oscillations under atmospheric pressure and
room temperature, will decay as a function of time due to
damping. Sader6 considers the hydrodynamic damping due
to motion in an incompressible viscous fluid, and suggests
further that the same arguments hold for gases provided cer-
tain conditions are satisfied. Here, due to the low density of
air compared to that of a continuum, and the fact that air is
compressible, we can write the damping due to a visco-
elastic resistive force as15

R~x,t !5kW~x,t !1g
]W~x,t !

]t
, ~2!

wherek andg are positive constants. The visco-elastic force
as represented by Eq.~2! has the form of the Kelvin–Voigt
element, i.e., a parallel~as opposed to a series! combination
of the basic elastic and viscous elements.16 Thus,R(x,t) will
here designate the damping of oscillations both due to the
viscosity of the surrounding air and to internal losses in the
cantilever. Furthermore, referring to Ref. 13, we assume the
following delayed feedback form:

F~x,t !52k8GW~x,t2t!, ~3!

where the dimensionless constantuGu is the gain, the con-
stantt>0 represents the total time delay, andk8 is the effec-
tive spring constant which will be used as a proportionality
constant.G can be related to the electronic gain as well as
the relationship between the voltage applied to the piezoelec-
tric bimorph and the magnitude of the resulting displacement
of the cantilever as outlined in Ref. 13. In contrast to the
previous work whereG was assumed to be positive, we now
recognize thatG can either be positive or negative and varies
with the cantilever holder. This is due to the fact that for a
positive voltageVin applied to the bimorph, the piezoelectric
bimorph can either move in the same direction as the original
motion of the cantilever or in the opposite direction depend-
ing on the orientation of the bimorph in the microcantilever
holder. Mathematically, this corresponds to an uncertainty in
the sign ofG due to an uncertainty in the sign ofx in the
following equation:

zp~ t !5xVin~ t !, ~4!

where x is a constant related to the response of the
bimorph.13 In formulating the differential equation that de-
scribes the motion of the microcantilever in the presence of
feedback, we make an important assumption in that although
the measured signal from the reflected laser beam arises only
due to the vertical deflection of the cantilever at the illumi-
nated spot with a finite diameterd,L along the cantilever,
as shown schematically in Fig. 1, we take the delayed feed-
back signal as that representing the vibrational state of the
entire cantilever at a previous time. In particular, on the pre-

FIG. 1. Schematics of the experimental setup. The variable time delay and
gain modules are used to control the feedback process.
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interval @2t,0#, we propose the use of a linear combination
of the dominating undriven eigenmodesf(x,t) of the canti-
lever as the prefunction. In this section we also present the
explicit form of f(x,t). Thus, making the change of variable
x→x/L, the motion of a cantilever of lengthL, driven by the
feedback Eq.~3!, can be described by the following delay
partial differential equation:

EI

L4

]4W~x,t !

]x4 1m
]2W~x,t !

]t2 1kW~x,t !1g
]W~x,t !

]t

52k8GW~x,t2t!, ~5!

subject to the standard fixed-free beam boundary conditions

W~0,t !5Wx~0,t !5Wxx~1,t !5Wxxx~1,t !50, ~6!

and the initial condition

W~x,t !5f~x,t ! on @2t,0#, ~7!

for eachxP@0,L#. We note that whent50, the condition in
Eq. ~7! reduces to the standard initial conditionW(x,0)
5 f (x), whereas for finite delayst!1, the motion of the
lever depends explicitly on it’s dynamic history. Then with
t50, and the particular choice of the initial conditionf (x)
5f(x,0), the problem can be solved exactly, since the un-
driven eigenfunctions are smooth and form an orthogonal
set. This exact solution can then be compared with the solu-
tions to the delay equation~5! in the limit t→0, as a valida-
tion check.

Due to the particular form of the right hand side of Eq.
~5!, and without resorting to Fourier space, we separate the
differential equation in Eq.~5! via the ansatzW(x,t)
5X(x)T(t), and require that the separation constantK.0
~see Appendix! and obtain for the spatial dependence, the
equations

HX~4!~x!2l4X~x!50
X~0!5X8~0!5X9~1!5X-~1!50, ~8!

where

l45
L4K
EI

,

and

mT9~ t !1gT8~ t !1~K1k!T~ t !52k8GT~ t2t! ~9!

for the temporal behavior. Equation~8! is standard. The set
of eigenfunctions$Xn(x)%1

` satisfying Eq.~8! form an ortho-
normal set, and are explicitly given by

Xn~x!5coshlnx2coslnx

2C~ln!~sinhlnx2sinlnx!, ~10!

where

C~ln!5
coshln1cosln

sinhln1sinln
, ~11!

and

Kn5
ln

4EI

L4 , ~12!

and 0,l1,l2,l3,... are the positive roots of the implicit
equation

11cosl coshl50. ~13!

We now consider the undriven case, i.e.,F(x,t)[0 in Eq.
~1!. Equation~9! then describes a linear homogeneous differ-
ential equation for which the general solution takes on the
form

Tn~ t !5~an cosvnt1bn sinvnt !e2~g/2m!t, n51,2,•••, ~14!

where an and bn are arbitrary complex constants, andvn

denotes thenth radial frequency of the beam and is given by

vn5A1

m
~Kn1k!2S g

2m D 2

, ~15!

which is real for alln assuming the damping is not too large.
Finally, as discussed earlier, in view of Eqs.~10!, ~11!, ~12!,
~14!, and~15!, we are able to express the prefunctionf(x,t)
as

f~x,t !5 (
n51

N

AnXn~x!e2~g/2m!t cos~vnt1un!, ~16!

whereAn cos(vnt1un) is thenth harmonic of amplitudeuAnu
and initial phaseun . In most practical cases, it would suffice
to take the first few terms in the sum, i.e.,N52 or N53.

Next we turn our attention back to Eq.~9!. Correspond-
ing to each fixed moden51,2•••, this equation yields a delay
differential equation of the form

mTn9~ t !1gTn8~ t !1~Kn1k!Tn~ t !52k8GTn~ t2t!. ~17!

One natural way to solve Eq.~17! is to seek a solution of the
form g(t)5ebnt, wherebn is a complex number. It turns out,
by direct substitution, thatg(t) solves Eq.~17! if and only if
bn satisfies the following equation:

bn
21

g

m
bn1

1

m
~Kn1k!52

k8

m
Ge2bnt. ~18!

If $bn,m% denotes either the finite or infinite sequence of
distinct roots of Eq.~18!, then the general solution of Eq.
~17! is given by

Tn~ t !5(
m

pn,m~ t !ebn,mt, ~19!

wherepn,m(t) is an arbitrary polynomial of degree less than
the multiplicity of the rootbn,m . In the case of infinitely
many roots, we have to also impose conditions which ensure
the convergence of the infinite sum~see Ref. 17!. It is also of
interest to note that in most cases the transcendental equation
~18! has infinitely many roots. Finally, the general solution to
the beam’s equation~5! with the boundary conditions Eq.~6!
can be written as

W~x,t !5(
n

(
m

Xn~x!pn,m~ t !ebn,mt, ~20!
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where the coefficients of each polynomialpn,m(t) should be
determined by the initial condition. Although it is only for
very special cases in which one can explicitly determine
W(x,t), Eq. ~20! provides us with a good understanding of
the nature of the solutions for the beam’s equation subject to
a delayed driving force. There is also another method of
piecewise continuation of the solution, which avoids the se-
ries solution discussed above. According to this approach,
one extends the solution of Eq.~5!, with increasingt, from
each interval of lengtht to another interval of the same
length starting at@2t,0#. A more detailed theoretical analysis
with respect to the exact solution of the partial differential
equation~5! subject to the boundary and initial conditions
Eqs. ~6! and ~7! is beyond the main purpose of this article.
These results will be presented in a forthcoming article. In
this article, however, we are mainly concerned with those
values of the delay timet and the gainG, which result in a
successful amplification of the signal with frequencies close
to the normal frequenciesvn . More precisely, we seek a
solutionbn to Eq. ~18! such that the real part ofbn is posi-
tive while its imaginary part is close tovn . First of all ob-
serve that sincem, g are both positive constants, Eq.~18!
will have real/complex roots forG,0 ~depending on the
magnitude ofG!, or no real roots forG.0. This explains our
complex substitution forbn . Furthermore, since all the co-
efficients of Eq.~18! are real, the roots will appear as pairs of
conjugate numbers. Substitutingbn5an1 i (vn1en), uenu
,vn in Eq. ~18! and using Eq.~15!, we find the following
equations foran :

H @~an1g̃ !22en~en12vn!#eant52 k̃G cos@~vn1en!t#

2~an1g̃ !~en1vn!eant5 k̃G sin@~vn1en!t#,
~21!

where

g̃5
g

2m

and

k̃5
k8

m
. ~22!

From Eq.~21! and the requirementsan.0, uenu,vn , it fol-
lows at once that the delay timet is bounded within the
bands (2p1 1

2)p,(vn1en)t,(2p11)p, for G.0, and
the higher bands (2p1 3

2)p,(vn1en)t,2(p11)p, for
G,0, wherep50,1,2,••• is an integer that specifies the lo-
cation of the allowed band. Finally, after some algebra, and
taking into account the restrictions just mentioned, one can
conclude that Eq.~21! has the unique solution

an~en!52g̃2~en1vn!cot@~vn1en!t#

1$~en1vn!2 cot2@~vn1en!t#

1en~en12vn!%1/2, ~23!

if and only if the delayt and gainG can be chosen in such a
way that they satisfy the conditions

H ~2p1 1
2!p,~vn1en!t,~2p11!p, for G.0

~2p1 3
2!p,~vn1en!t,2~p11!p, for G,0,

~24!

for some integerp>0, and

Gn5G~en!5
2~an1g̃ !~en1vn!

k̃ sin@~vn1en!t#
eant, ~25!

bearing in mind that thean used in Eq.~25! is given by Eq.
~23!. Alternatively, in Eq.~21! we can treat the delayt and
the gainG as parameters and solve fora anden as shown in
Sec. IV.

IV. RESULTS

Figures 2 and 3 show the values ofan as a function of
time delayst and Gn obtained from the solutions of the
system of equations~21!. The factorg/2m52.83103 s21 re-
lated to the damping of the motion of the microcantilever
was obtained by analyzing the decay of the amplitude of the
oscillations obtained by subjecting the microcantilever to a
square wave form as outlined in Ref. 13. As a consequence
of requiring an amplification of the cantilever’s oscillations
(an>0), the range of useful delay times are restricted to
certain bands as shown in Eq.~24! and as shown by the solid
lines in Figs. 2~a! and 2~b! for negative values ofG and Figs.
3~a! and 3~b! for positive values ofG. Shown in these figures
are the first few permitted delay bands corresponding top
50,1,2. The delay times within the allowed bands are inter-

FIG. 2. ~a! Variation in a1
p(t,G1) as calculated from Eq.~21! for negative

values ofG. The allowed delays are restricted to the values in the region
shown by the solid lines. The dotted lines correspond to negative values of
a1

p(t,G1) for which the oscillations will be damped out rather than ampli-
fied. ~b! Magnitude ofa1

p(t,G1) for some selected contours.
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preted so that the actual physical delaystp are obtained for
t.Tn via tp5t2pTn for p50,1,2,•••, whereTn52pvn

21

is thenth observed period of the undriven cantilever oscilla-
tion. Specifically, for the fundamental resonant frequency
considered here,n51 and tp5t217.243p (ms) wherep
50,1,2,••• . For the sake of simplicity, the value of the gain
G1 has been obtained by setting

k̃51, ~26!

in Eq. ~22!.
An important result desired from the calculations was

the frequency of vibration of the cantilevers. Since the ex-
perimentally observed fundamental frequencies of the
feedback-driven cantilever were not significantly different
from the fundamental resonant frequency of the undriven
cantileverv152p f 1 , the magnitude ofe15e in Eqs. ~21!
was chosen so that it would allow for solutions in the vicinity
of v1 . The allowed values of (2p)21e calculated using the
beam equation are shown as functions oft, andG1 in Figs.
4~a! and 4~b! for negative and positive values ofG1 , respec-
tively. The experimental values oft and uG1u for which am-
plification was observed are labeled by numbers 0–10 in Fig.
4, and shown in Table I. Also shown in Table I are the mea-
sured values for frequencyf and (2p)21e. It should be un-
derstood here that the calculated frequencies are given by
v5v11e (kHz) and hence,f 5 f 11(2p)21e. The range of
e can be varied in order to examine other frequency regions
of interest.

V. DISCUSSION

We now proceed to compare the results obtained using
the beam equation with that obtained from the point mass
model and relate these to experimental observations. As
pointed out in Sec. IV, an important characteristic of the
solution obtained from the beam equation as displayed in
Figs. 2 and 3, is the presence of bands of allowed values oft
and corresponding values ofG1 and e. The primary differ-
ence between Fig. 2 (G,0) and Fig. 3 (G.0) is that the
values oft are shifted byT1/258.2 (ms). As explained ear-
lier this shift can exactly be accounted for by the difference
in the response of the piezoelectric bimorph with respect to
that of the cantilever motion. Comparison between the cal-

FIG. 3. ~a! Variation in a1
p(t,G1) as calculated from Eq.~21! for positive

values ofG. The allowed delays are restricted to the values in the region
shown by the solid lines. The dotted lines correspond to negative values of
a1

p(t,G1) for which the oscillations will be damped out rather than ampli-
fied. ~b! Magnitude ofa1

p(t,G1) for some selected contours.

FIG. 4. Contours showing calculated values fore(t,G1) corresponding to
the available values ofa1

p(t,G1) for: ~a! negative values ofG and ~b!
positive values ofG. Contour values shown are corresponding tof 1558
61 kHz. Also shown as triangles and labeled by numbers 0–10, are experi-
mental data listed in Table I. The frequencies given byf 5 f 11e/2p corre-
sponding to the local contour are to be compared with the experimental data.

TABLE I. Experimental values for the time delay, the gain factor, and the
corresponding resonant frequencies of a triangular microcantilever.

Entries t ~ms! uGu f (kHz) (2p)21e (kHz)

0 7.4 0.40 59.6250 1.63
1 9.5 0.38 59.6250 1.63
2 10.4 0.85 60.3900 2.39
3 10.4 0.61 61.1540 3.15
4 10.7 0.77 60.3900 2.39
5 11.4 0.65 61.1540 3.15
6 11.6 0.65 61.9190 3.92
7 14.0 1.07 62.6830 4.68
8 14.3 1.07 62.6830 4.68
9 15.0 0.70 62.6830 4.68

10 15.0 0.65 62.6830 4.68
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culated values oft and experimental data shows thatG,0
results in better agreement and thus will be discussed further.

Figures 4~a! and 4~b! show the frequencies correspond-
ing to the allowed combinations oft andG. If one considers
the range of time delays from 5 to 25ms, the values oft for
which amplification will succeed (G,0) is restricted to the
interval 10–16ms by the beam equation. For purpose of
comparison, we display in Figs. 5~a! and 5~b!, the calculated
amplifications and resonant frequencies for the cantilever uti-
lizing the point mass model.13,14Although Fig. 5~a! displays
scattered forbidden regions along with a discontinuity in the
domain of available amplification close tot'22 ms, no fur-
ther restriction is imposed on the time delay in this model.
Thus, a wide range oft values are feasible for various values
of G, along with a large variation in the allowed frequencies.

Figures 4~a! and 5~b! also compare the predicted values
of combinations oft and G obtained using the beam equa-
tion and the point mass model, respectively, with the experi-
mentally observed values. Clearly except for the two points
with low values oft, there is excellent agreement between
the predictions using the beam equation and the experimental
values of t and G for which amplification was observed.
Most of the combinations are observed to be along the bor-
ders of the allowed region. This may be explained by the fact
that experimentally, the regions were approached from either
the low t side or from the hight side and hence resonance
was attained for the first value oft that allowed resonance.
From Fig. 5~b! it should be noted that the experimentally

observed combinations oft andG also fall on traces of al-
lowed combinations of these two values. The agreement is
less dramatic with this model, since the combinations of al-
lowed values oft andG are much larger than in the case of
the beam equation.

Important differences are observed between the two
models with respect to the predicted frequencies. Calcula-
tions using the beam equation predict only a very small
variation in the range of allowed frequencies over the entire
range oft values for which amplification succeeds. Figure
4~a! shows for example a variation in frequencies of 58.0
61.0 kHz over the entire range of allowedt values. In con-
trast, the point mass model predicts a large range of allowed
frequencies. Figure 5~b! shows that the predicted frequencies
are approximately in the interval@53.0,68.4#558.01~25,10!
~kHz!. Comparison with Table I shows that the experimen-
tally observed frequencies range from 59.6 to 62.7 kHz
~58.015 kHz! for all observed combinations oft and G.
Thus, the values of the frequencies predicted by using the
beam equation are always smaller than the measured fre-
quencies by about 3%–8%. The frequencies predicted by the
point mass can either be larger or smaller than the observed
frequencies and differ by values of215% to 115%. Thus,
the beam equation is significantly better in predicting the
experimentally observed frequencies.

The differences between the two models are further il-
lustrated in Figs. 6~a! and 6~b! which show a horizontal slice
through Figs. 2 and 5, respectively, for a particular value of

FIG. 5. ~a! Variation ina1
p(t,G) in the vicinity of the fundamental resonant

frequency of the systemv1 , as a function of delay and negative values of
gain calculated using the point mass model. As before, the dotted lines
represent the negative values ofa(t,G) and are not considered.~b! Calcu-
lated values fore(t,G) corresponding to the available values of the ampli-
fication a1

p(t,G). Also shown are the experimentally observed combina-
tions of t and uGu for which amplification was observed.

FIG. 6. ~a! Variation in frequencyf (t,G1) and amplificationa(t,G1) for a
constant value ofG1521.0 as calculated using the beam model. As ex-
plained in the textG1 has been normalized for comparison with the results
obtained by using the point-mass model.~b! Functionsa(t,G) andf evalu-
ated atG521 in Figs. 5~a! and 5~b!.
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G5G1'21. Figure 6~a! shows a trace of the allowed val-
ues of amplification (a1>0) as a function oft ~in the first
bandp50! and the corresponding frequencies obtained from
the beam equation, while Fig. 6~b! shows the results obtained
from the point mass model. To maintain consistency with the
definitions ofG between the two models, the values ofG1

shown in Figs. 2~a! and 2~b! have to be scaled by a factor of
k8/m53.363109 @see Eqs.~18! and~26!#. Figure 6~a! shows
that the allowed frequencies are centered around the funda-
mental frequencyf 1558 kHz and vary linearly witht, with
the variation being60.5 kHz or 57.4< f <58.5 kHz. How-
ever, the allowed frequencies for the point mass model vary
nonlinearly witht and range from a value of 52 to 66 kHz
for delays in the range 10<t<16 ms. The experimentally
observed frequency for this combination oft514.0 ms and
G51.07 wasf 1562.68 kHz. Compare this with the predic-
tions by using the beam equation (f 1557.4 kHz) and the
point mass model (f 1556.0 kHz). Clearly, use of the beam
equation results in a value better than that obtained by using
the point mass model. However, it should be observed that
both models predict a value smaller than the undriven fre-
quency while the observed resonant frequency is larger than
the undriven frequency.

Although the range of allowed values of time delays
predicted by the two models is different, some features are
similar between the two models. It can be seen from Figs.
6~a! and 6~b! that the amplification reaches a maximum in
both models for comparablet values. For the beam equation,
the observed maximum ina1

0 at t512.97ms ~roughly 3T1/4!
corresponds tof 5 f 1558.0 kHz wheref 1 is the fundamental
frequency. Compare this with the predictions using the point
mass model where the maximum value ofa occurs at
t511.96 ms with a corresponding frequency off
560.75 kHz. Reference to Table I shows that forG51.07
the observed delays weret514 and t514.3 ms with the
corresponding frequency beingf 562.68 kHz. It is interest-
ing to note that the frequency corresponding to the maximum
value of a ( f 560.75 kHz) in the point mass model corre-
sponds better to the experimentally observed frequency of
( f 562.68 kHz) than that predicted for the appropriate value
of t514.0ms (f 556.0 kHz).

Comparing the frequencies observed experimentally
with those predicted by the models, it is clear that the use of
the beam equation is more restrictive than is necessary, while
the use of the point mass model does not sufficiently restrict
the solutions. Two assumptions made in this work could be
likely sources of the discrepancies in the observed and cal-
culated range of allowed frequencies. It should be recalled
that experimentally, the feedback signal results only from the
instantaneous position of the tip of the cantilever. However,
in Eq. ~5!, it is assumed that the feedback signal results from
each point along the length of the cantilever and hence is
much more restrictive than that necessary to model the ex-
periments. Thus, Eq.~5! should be modified so as to address
this issue in a more physically realistic manner while main-
taining the mathematical difficulty associated with delay dif-
ferential equations within a reasonable frame of work. On-
going work is exploring numerical approaches to solve this
problem. Additionally, to formulate the differential equations

it has been assumed that cantilever mass is uniform along its
length. However, the data reported in this and previous work
have been obtained from triangular cantilevers for which the
mass varies as a function of its length. Recent experiments
suggest that the agreement is better for rectangular cantile-
vers and will be the subject of a forthcoming work.

In summary, we observe that the model utilizing the
beam equation presented in this work is a significant im-
provement over the point mass model outlined in our earlier
work. Criteria obtained using the beam equation agree well
with the experimental values oft and uGu for which ampli-
fication in oscillations are observed in the feedback mode. It
is also capable of predicting the observed frequencies with
less absolute error than the point mass model. It is expected
that improvements in the formulation of the beam model will
result in a better agreement in the direction of change in
frequency and further reduce the magnitude of error in the
frequencies.

VI. CONCLUSIONS

It has been shown that by taking into account the spatial
extent of a microcantilever driven via a delayed feedback
mechanism, successful amplification of its oscillations at fre-
quencies close to its fundamental frequency can be predicted,
given that the delay time and gain obey certain conditions.
We have shown that meeting these conditions restricts the
range of time delays to bounded intervals as observed experi-
mentally, a behavior not predicted by the simple point mass
model. In addition, the proposed model using the beam equa-
tion predicts a range of allowed frequencies that is much
narrower than that predicted by the point mass model, in
better agreement with the experimental results.
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APPENDIX

To show thatK must be positive, disregarding the trivial
solutionW(x,t)[0, multiply the first equation in Eq.~8! by
X(x) and integrate over the length of the beam. Partial inte-
gration and the boundary conditions in Eq.~8! imply

E
0

1

X~4!~x!X~x!dx5X~3!~x!X~x!U
0

1

2E
0

1

X~3!~x!X8~x!dx

52X9~x!X8~x!U
0

1

1E
0

1

@X9~x!#2dx

5E
0

1

@X9~x!#2dx.
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Thus

E
0

1H @X9~x!#22
KL4

EI
@X~x!#2J dx50.

If K<0, the above implies thatX9(x)[0; that is, X8(x)
[const. Now the conditionX8(0)50 impliesX8(x)[0. So
X(x)[const. Use the fact thatX(0)50 to concludeX(x)
[0, which is the trivial solution. Therefore, we may assume
that K.0.
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