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The small amplitude thermal vibrations of the microcantilever of an atomic force microscope can be
enhanced via a delayed feedback system. This is verified experimentally for a triangular cantilever,
and modeled theoretically as a boundary value problem resulting in a second order functional
differential equation for the temporal behavior of the cantilever. The eigenvalues of the resulting
delay differential equation describing the transverse vibrations of the cantilever are calculated and
analyzed. These values are compared with the corresponding resonant frequencies predicted by a
point mass model and with the experimentally observed values20@2 American Institute of
Physics. [DOI: 10.1063/1.1452771

I. INTRODUCTION cillator technique to be superior to the direct feedback

. . . o . method, allowing one to differentiate between conservative
The atomic force microscop@FM), since its invention g

. . - .~ and dissipative interactions.
by Binnig et al.> has been extensively used in imaging, b

chemical and biological sensing, and providing surface char Recently, Mehteet al™ studied the "Brownian” motion
o rogica 9, and pr _ 9 . of the microcantilevers induced by ambient thermal fluctua-
acteristics in various fields of applicatiofig' The probing

- . _ ; . tions and utilized that in a feedback system to improveQhe
capability of this device is based on the interaction of atactor of the cantilever in air and water by several orders of

oscillating microcantilever within the nanometer, angStrom’magnitude. Similarly, Muralidhararet al*® showed that

or contact ranges with the surface attributes of the sampl mall amplitude thermal vibrations of a microcantilever of

under study, which generates a measurable signal that reve ;
electric and magnetic properties of the sample surfadém ?r?angular shape can be enhanced by engaging a delayed

dynamics of the cantilever motion are of great interest ar]éeedback mechanism. In their work, the microcantilever was
. modeled as a system with a single degree of free{lo@®
have been studied by many authors. Cleeml® calculated 4 9 9 DOF)

the fundamental and harmonic resonance frequencies for gonsisting of a masan, a spring(spring constank), and a
. req L g;shpo(viscous damping constany, heretofore, referred to
shaped and rectangular cantilevers using a varlatlonaa

. ) s the “point mass model.” The effect of the feedback was

g]ritdhonda::]).csz\sleégé t;i?jn:heeq?:;f:ériaf;dfcgi?;tg? :i'ang}corporated by convoluting the current location of the point

y IC aspects . quenct & Caniiass with that of an earlier time. The feedback was charac-
lever beam with uniform arbitrary cross section that is im-

mersed in a viscous fluid and is driven by an arbitrary forceterlzed using a time de"f’"’ anq a gainG. The pqlnt mass
The vibrational dynamics of free and surface coupled canti-—mOdeI has bgen fugrjther investigated, and experlmentgl work
levers have been studied using equation of motion for erx-h as been car_rled here the dynamics of a g_eomet_rlca_lly

L L . . ~“different cantilever was studied. Results of the investigations
ural vibrations and the simplified first mode approximation

(point-mass modland compared with experimental obser- show that although the point mass model was successful in
vations for cantilever&-2? rationalizing conditions for which amplification succeeded, it

With the advent of noncontact force and tapping modeIacked the desired predictive capabilities. Furthermore, it

microscopy the dynamics of a cantilever driven in a feedbac was noticed that the predicted resonant frequencies for the
. ombinations of parametels and G) used in the experi-
loop has attracted a lot of attention. Albreaitall° used a P K ) b

frequency modulation technique, where the cantilever serveH1entS were different from the experimentally observed val-
d y que, des for the resonant frequencies. It is believed that this dis-

as the frequency. glgtermmmg elemept of the OSC'".ator’ tocrepancy is due to treating the system as a discrete one with
improve the sensitivity without restricting the bandwidth or a single DOF rather than a continuous one

the dynamic range. Dig et al!! using the cantilever as a The primary purpose of this work is to remove the
resonator in an active feedback circuit for sensing interactio%bo

forces in dynamic force microscopy showed the tracking os; ve-mentioned deficiency and analyze the vibrational be-
y Py 9 9Shavior of the cantilever using the beam equation which takes

into account the finite spatial extent of the microcantilever.

aAuthor to whom correspondence should be addressed; electronic maifVe discuss.delay, Qainv and amplification intervals in which
passian@utk.edu resonance is plausible, and address further work related to
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POSITION 6’4W( X,t) ¢92W( x,t)
SENSITIVE VERTICAL M M -
DETECTOR DIFFERENCE El ax* AT ROGH=FOuD), @
MIRROR ELECTRONICS L where the positive constani |, and u are Young's modu-
OSCILLOSCOPE lus, area moment of inertia, and the mass per unit length at
VARIABLE respectively. It should be understood thi,t), andF(x,t)
TIME DELAY are forces per unit length of the cantilever. For an undriven
gﬁmABLE cantilever, excited by an impulse &t 0, the amplitude of
the subsequent oscillations under atmospheric pressure and
room temperature, will decay as a function of time due to
CANTILEVER p— dampiqg. _Sad@r(;onsiders the hyc_jrodynami_c damping due
(_’I__)?_I—I (] GENERATOR to motion in an incompressible viscous fluid, and suggests
PIEZO-ELECTRIC further that the same arguments hold for gases provided cer-

BIMORPH tain conditions are satisfied. Here, due to the low density of

FIG. 1. Schematics of the experimental setup. The variable time delay andir compared to that of a continuum, and the fact that air is

gain modules are used to control the feedback process. compressible, we can write the damping due to a visco-
elastic resistive force &%

such feedback mechanisms. Section Il outlines the experi- R(X,1) = KW(x,t) + IV, %)

mental procedure to accomplish a delayed feedback. In Sec. ' YT

lll, the mathematlcal m.odel based on the beam .equatlon fO\therek andy are positive constants. The visco-elastic force
the cantilever is explained, and relevant equations are de:

Ss represented by EQ) has the form of the Kelvin—\oigt

rived. Section IV presents the results of the numerical Workelement i.e., a paralléhs opposed to a serjesombination

which is discussed and summarized in Sec. V where COMy+ the basic elastic and viscous eleméitshus, R(x,1) will

panstors areltmaAde W'trl] the p_omt_mas_s n;odelvalnd the EXPelere designate the damping of oscillations both due to the
mental resulls. A conclusion Is given in Sec. Vi. viscosity of the surrounding air and to internal losses in the

cantilever. Furthermore, referring to Ref. 13, we assume the
Il. EXPERIMENTAL METHOD following delayed feedback form:

The experimental configuration is depicted in Fig. 1. We F(x,H)=—kK'GW(x,t—7), &)
Closely follow the procedure outlined in Ref. 13. The Canti'where the dimensior”eSS Const¢m| is the gain’ the con-
levers used for the study were commercially available congignt=0 represents the total time delay, ddis the effec-
tact levers that are triangular in shape and made of silicofjye spring constant which will be used as a proportionality
nitride. The nominal length and width of the cantilevers arecgnstant.G can be related to the electronic gain as well as
100 and 20um, respectively. These are mounted in a comM-the relationship between the voltage applied to the piezoelec-
mercially available cantilever holder used for tapping modeyic bimorph and the magnitude of the resulting displacement
AFM with an in-built piezoelectric bimorph that drives the of the cantilever as outlined in Ref. 13. In contrast to the
cantilever. The whole assembly is placed inside an AFMprevious work wher& was assumed to be positive, we now
head containing the laser source and a two or a foufecognize thaG can either be positive or negative and varies
quadrant-position sensitive detector. The vertical differencgyith the cantilever holder. This is due to the fact that for a
output from the detectofand associated electronjds am-  positive voltageV,, applied to the bimorph, the piezoelectric
plified and constitute¥ . This output signal is then routed pimorph can either move in the same direction as the original
through a variable time delay circuit that causes a delay motion of the cantilever or in the opposite direction depend-
and a variable gain amplifier with an amplification fac®r jng on the orientation of the bimorph in the microcantilever
before it is applied to the piezoelectric bimorph. For futurepg|der. Mathematically, this corresponds to an uncertainty in

reference, we call this input voltadé,. Both the voltages  the sign ofG due to an uncertainty in the sign gfin the
Vout andV;, are monitored with a high-speed digital oscillo- following equation:

scope capable of sampling at the rate of 100 MRmimum
of 10 ns sampling intervalinterfaced to a computer. For Zp()=xVin(1), 4

studying the response of the cantilever to a specific shape Qfhere y is a constant related to the response of the

input signal, the experimental setup allowed the output fromyimorph13 |n formulating the differential equation that de-

a spectrum generator to be applied directly to the piezoelecseripes the motion of the microcantilever in the presence of

tric bimorph as shown in Fig. 1. feedback, we make an important assumption in that although
the measured signal from the reflected laser beam arises only
due to the vertical deflection of the cantilever at the illumi-
nated spot with a finite diameté&<L along the cantilever,

The transverse vibrations of a cantilever exposed to amas shown schematically in Fig. 1, we take the delayed feed-
arbitrary resistive forc®(x,t) and an arbitrary driving force back signal as that representing the vibrational state of the
F(x,t) can be described by the partial differential equdfion entire cantilever at a previous time. In particular, on the pre-

I1l. DYNAMICAL MODEL
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interval [ —7,0], we propose the use of a linear combinationand 0<\;<\,<A3<... are the positive roots of the implicit
of the dominating undriven eigenmode$x,t) of the canti- equation

lever as the prefunction. In this section we also present the

explicit form of ¢(x,t). Thus, making the change of variable 1+ COSA coshA =0. (13)
x—X/L, the motion of a cantilever of length driven by the
feedback Eq(3), can be described by the following delay
partial differential equation:

We now consider the undriven case, iEB(x,t)=0 in Eq.

(1). Equation(9) then describes a linear homogeneous differ-
ential equation for which the general solution takes on the
El d*W(x,t) . FPW(x,1) WOt AW(X,1) form

[ T O+ y =%

Th(t)=(a,cosw,t+b,sinw,t)e” "2 n=12..- (14
=—-k'GW(x,t—17), (5 )
. ] _ wherea, and b, are arbitrary complex constants, aag}
subject to the standard fixed-free beam boundary conditiongenotes theith radial frequency of the beam and is given by

W(O,t) =W, (0,t) = Wiy (1t) = Wy, (1) =0, (6) 1 Y 2
and the initial condition wn= ;(K:n+ k)— (m) , (15

Wx,H=¢(x.t) on [=70], ™ which is real for alln assuming the damping is not too large.
for eachxe[0,L]. We note that whern=0, the condition in  Finally, as discussed earlier, in view of Eq%0), (11), (12),
Eq. (7) reduces to the standard initial conditiafv(x,0) (14), and(15), we are able to express the prefunctip(x,t)
=f(x), whereas for finite delays<1, the motion of the as
lever depends explicitly on it's dynamic history. Then with
=0, and the particular choice of the initial conditid{x)
= ¢(x,0), the problem can be solved exactly, since the un-
driven eigenfunctions are smooth and form an orthogonal
set. This exact solution can then be compared with the soluvhereA,, cos(,t+ 6,) is thenth harmonic of amplitud¢A,|
tions to the delay equatiof®) in the limit —0, as a valida- and initial phasé,, . In most practical cases, it would suffice
tion check. to take the first few terms in the sum, i.8l=2 or N=3.
Due to the particular form of the right hand side of Eq. Next we turn our attention back to E@). Correspond-
(5), and without resorting to Fourier space, we separate thing to each fixed mode=1,2---, this equation yields a delay
differential equation in Eq.(5) via the ansatzW(x,t) differential equation of the form
=X(x)T(t), and require that the separation const&nt0
(see Appendix and obtain for the spatial dependence, thexTn(t)+ ¥Ta(t) + (K +K)To()=—K'GTp(t—7). (17
equations

N
H(x,t)= 21 AXq(X)e~ ("2 cog o t+6,), (16)

One natural way to solve E@L7) is to seek a solution of the

XH(x) = A*X(x)=0 g form g(t) =efn', whereg, is a complex number. It turns out,
X(0)=X"(0)=X"(1)=X"(1)=0, (®) by direct substitution, thai(t) solves Eq(17) if and only if
B, satisfies the following equation:
where
LYK 2, Y, 1 K"
a_=N + = Bnt —(Ky+k)=——Ge P, 18
N=—r Bn M,Bn M(n ) M (18)
and If {B,m} denotes either the finite or infinite sequence of

” , , distinct roots of Eq.(18), then the general solution of Eq.
,LLT (t)+’)/T (t)"'(’C‘f‘ k)T(t):_k GT(t_T) (9) (17) is given by q ’ |

for the temporal behavior. EquatidB) is standard. The set

of eigenfunctiong X,,(x)}; satisfying Eq.(8) form an ortho- T ()= pp p(t)efrmt (19)
normal set, and are explicitly given by " m o ’

Xpn(X) = COShA ;X — COSA ;X wherep, (1) is an arbitrary polynomial of degree less than
— C(\,)(SiNhA X— SiNA %), (10) the multiplicity of the root,anm. In the case of |nf|n|tely
many roots, we have to also impose conditions which ensure
where the convergence of the infinite suisee Ref. 1Y, It is also of
interest to note that in most cases the transcendental equation
cosh\ ,+ cos\, o : .
C\p)=—e——, (11) (18 has infinitely many roots. Finally, the general solution to
sinh\,+sin\, the beam’s equatio(b) with the boundary conditions E6)
and can be written as
=

Kn=—a (12 WOM):; % Xn(X) Pp,m(t) €Fnmt, (20)
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where the coefficients of each polynoma ,(t) should be
determined by the initial condition. Although it is only for
very special cases in which one can explicitly determine
W(x,t), Eq. (20) provides us with a good understanding of
the nature of the solutions for the beam'’s equation subject to
a delayed driving force. There is also another method of
piecewise continuation of the solution, which avoids the se-
ries solution discussed above. According to this approach,
one extends the solution of E¢p), with increasingt, from
each interval of lengthr to another interval of the same
length starting aff—7,0]. A more detailed theoretical analysis
with respect to the exact solution of the partial differential
equation(5) subject to the boundary and initial conditions
Egs. (6) and(7) is beyond the main purpose of this article.
These results will be presented in a forthcoming article. In
this article, however, we are mainly concerned with those
values of the delay time and the gairG, which result in a
successful amplification of the signal with frequencies close
to the normal frequencie®,. More precisely, we seek a
solution B8, to Eq. (18) such that the real part @, is posi- : P
tive while its imaginary part is close t®,,. First of all ob- 0 10 20 20 40

serve that sinceu, y are both positive constants, E(L.8) {b) 7 [us]

will hgve real/complex roots foG=0 (dep_ending _on the FIG. 2. (a) Variation in «?(7,G;) as calculated from Eq21) for negative
magnIIUde OG)_’ OI.’ no real roots fo6>0. ThI.S explalns our valu.es. ofG. The aIIoweé délalys are restricted to the values in ?he region
complex substitution foB,. Furthermore, since all the co- shown by the solid lines. The dotted lines correspond to negative values of
efficients of Eq(18) are real, the roots will appear as pairs of «f(r,G,) for which the oscillations will be damped out rather than ampli-
conjugate numbers. Substituting,= a,+i(w,+€,), |€n fied. (b) Magnitude ofaf(7,G,) for some selected contours.

<w, in EQ. (18) and using Eq(15), we find the following

equations fora,, :

G, [x107]

G, [X10°]

[(an+7)2— €,(€q+2wn) 1€ "= —KG co$ (wn+ €,) 7] (2p+3)m<(wnte€,)7<(2p+1)m, for G>0 24
2(an+'§/)(en+wn)e“”72~k6 sin (w,+€,) 7], 2p+dHm<(wpte,)m<2(p+1)m, for G<O,
21
for some integep=0, and
where ~
2(an+7y) (et w
G,=G(e,)= ( n Y)(€n n) ™, (25)
~ Y ksin (w,+€,)7]
y 2u bearing in mind that ther, used in Eq{(25) is given by Eq.
q (23). Alternatively, in Eqg.(21) we can treat the delay and
an the gainG as parameters and solve ferande,, as shown in
- K Sec. IV.
=—. (22
22
From Eq.(21) and the requirements,>0, |e,|<w,, it fol- V. RESULTS
lows at once that the delay timeis bounded within the ) ]
bands (D+ ) 7<(w,+e€,)7<(2p+1)m, for G>0, and Figures 2 and 3 show the values @f as a function of

the higher bands @+ 3)7<(w,+e,)7<2(p+1)m, for time delaysT and G, obtained from the solutions of the
G<0, wherep=0,1,2;-- is an integer that specifies the lo- System of equation1). The factory/2m=2.8x10°s™* re-
cation of the allowed band. Finally, after some algebra, and@ted to the damping of the motion of the microcantilever
taking into account the restrictions just mentioned, one cai/as obtained by analyzing the decay of the amplitude of the

conclude that Eq(21) has the unique solution oscillations obtained by subjecting the microcantilever to a
square wave form as outlined in Ref. 13. As a consequence
an(€)=—y—(€,+ wpy)col (w,+ €,) 7] of requiring an amplification of the cantilever’s oscillations

5 (ay=0), the range of useful delay times are restricted to
+{(en+ wn)? cOPl (@ +€n) 7] certain bands as shown in E§4) and as shown by the solid
+en(ent2wy) 2 (23)  lines in Figs. 2a) and 2b) for negative values o& and Figs.

3(a) and 3b) for positive values of5. Shown in these figures

if and only if the delayr and gainG can be chosen in such a are the first few permitted delay bands corresponding to

way that they satisfy the conditions =0,1,2. The delay times within the allowed bands are inter-
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alp(T,G1) (27T)_1€(T,G1) [kHZ]
0adl +1.0
-1.5
'og' g‘ -2.0 5."56A Aéo
= L =2:5 4a ; -1.0
— = 2a
S ¢ —3.0 ‘
-35 .
-4.0
0 10 20 30 40 0 10 20 30 40
(@) 7 [us] &) 7 [ps]
a(T,G,) [X10°] (2m)"'e(7,G,) [kHz]
4.0 : T 4.0
. a 7,8
3.5 -
3.5 —
o ’O 3.0 2
S 5 5 i
X, 3.0 = 2.5 5,62
S © 2.0 ‘1‘ ?O
2.5
1.5 9
2.0 =
0 10 20 20 40 0 10 20 30 40
(b) 7 [us] (b) 7 [us]

FIG. 3. (a) Variation in a®(r,G,) as calculated from Eq21) for positive /G- 4 Contours showing calculated values &r,G,) corresponding to
values ofG. The allowed delays are restricted to the values in the regiont1® available values ofi(r,G,) for: (a) negative values o5 and (b)
shown by the solid lines. The dotted lines correspond to negative values diositive values ofG. Contour values shown are correspondingf{e-=58
a?(,G,) for which the oscillations will be damped out rather than ampli- =1 kHz. Also shown as triangles and labeled by numbers 0-10, are experi-

fied. (b) Magnitude ofa?(7,G,) for some selected contours. mental data listed in Table I. The frequencies givenfbyf,+ e/2m corre-
sponding to the local contour are to be compared with the experimental data.

preted so that the actual physical delaysare obtained for V. DISCUSSION
>T, via 7,=7—pT, for p=0,1,2;--, whereT,=27w,*

is thenth observed period of the undriven cantilever oscilla-
tion. Specifically, for the fundamental resonant frequenc
considered heren=1 and 7,=7—17.24Xp (us) wherep
=0,1,2;--. For the sake of simplicity, the value of the gain
G, has been obtained by setting

We now proceed to compare the results obtained using
the beam equation with that obtained from the point mass
Ymodel and relate these to experimental observations. As
pointed out in Sec. IV, an important characteristic of the
solution obtained from the beam equation as displayed in

Figs. 2 and 3, is the presence of bands of allowed values of
~ and corresponding values &, and e. The primary differ-
k=1, (26) ence between Fig. 2@<0) and Fig. 3 G>0) is that the

. values of7 are shifted byT;/2=8.2 (us). As explained ear-

in Eq. (22). _ _ lier this shift can exactly be accounted for by the difference
An important result desired from the calculations wasj, the response of the piezoelectric bimorph with respect to

the frequency of vibration of the cantilevers. Since the €Xihat of the cantilever motion. Comparison between the cal-
perimentally observed fundamental frequencies of the

feedback-driven cantilever were not significantly different
from the fundamental resonant frequency of the undriverTABLE 1. Experimental values for the time delay, the gain factor, and the
cantileverw;=2mxf;, the magnitude ok;=¢€ in Egs. (21 corresponding resonant frequencies of a triangular microcantilever.

was chosen so that it would allow for solutions in the vicinity

of w,. The allowed values of (&) 'e calculated using the _ —ies  7®9 Gl f (kHz) (2m) e (kHz2)
beam equation are shown as functionsrondG, in Figs. 0 7.4 0.40 59.6250 1.63
4(a) and 4b) for negative and positive values Gf;, respec- 1 9.5 0.38 59.6250 1.63
tively. The experimental values afand|G,| for which am- g 13'2 8'2? gg'iggg éi’z
plification was observed are labeled by numbers 0-10 in Fig. 4 107 077 60.3900 239
4, and shown in Table I. Also shown in Table | are the mea- 5 11.4 0.65 61.1540 3.15
sured values for frequendyand (27) le. It should be un- 6 11.6 0.65 61.9190 3.92
derstood here that the calculated frequencies are given by 7 14.0 1.07 62.6830 4.68
w=w,+ €(kHz) and hencef =f,+ (27) e. The range of 8 14.3 1.07 62.6830 4.68
o : ) 9 15.0 0.70 62.6830 4.68
€ can be varied in order to examine other frequency regions 15.0 0.65 62.6830 468

of interest.
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ot a(7,6) [X10°] £(1,G,) [X10* Hz]
B 1 e
4 -
2 4
01 a.(7,G,) [X300.0]
10 11 12 13 14 15 16
(a) 7 [us]
7.0 a(1,G) [X10%]

6.5 .
6.0 1 .....

55 N
50 f(1,G,) [X10* Hz] ~

(b) 10 11 12 13 14 15 16

FIG. 5. (a) Variation inaP(7,G) in the vicinity of the fundamental resonant {b) 7 [us]

frequency of the system,, as a function of delay and negative values of L o

gain calculated using the point mass model. As before, the dotted line§!C 6- () Variation in frequencyf(r,G,) and amplification«(r,G,) for a
represent the negative valuescfr,G) and are not consideretb) Calcu- ~ constant value of5;=—1.0 as calculated using the beam model. As ex-
lated values for(r,G) corresponding to the available values of the ampli- Plained in the tex, has been normalized for comparison with the results
fication af(r,G). Also shown are the experimentally observed combina- ©Pt@inéd by using the point-mass modé). Functionsa(7,G) andf evalu-

tions of 7 and |G| for which amplification was observed. ated atG=—1 in Figs. §a) and §b).

culated values of and experimental data shows tf@a 0 observed combinations afand G also fall on traces of al-
results in better agreement and thus will be discussed furthelowed combinations of these two values. The agreement is
Figures 4a) and 4b) show the frequencies correspond- less dramatic with this model, since the combinations of al-
ing to the allowed combinations afandG. If one considers lowed values ofr andG are much larger than in the case of
the range of time delays from 5 to 25, the values of-for ~ the beam equation.
which amplification will succeed@<0) is restricted to the Important differences are observed between the two
interval 10-16us by the beam equation. For purpose of models with respect to the predicted frequencies. Calcula-
comparison, we display in Figs(® and §b), the calculated tions using the beam equation predict only a very small
amplifications and resonant frequencies for the cantilever utivariation in the range of allowed frequencies over the entire
lizing the point mass modéf:'* Although Fig. Fa) displays  range ofr values for which amplification succeeds. Figure
scattered forbidden regions along with a discontinuity in thed(a) shows for example a variation in frequencies of 58.0
domain of available amplification close t6=22 us, no fur-  +1.0 kHz over the entire range of allowedsalues. In con-
ther restriction is imposed on the time delay in this model.trast, the point mass model predicts a large range of allowed
Thus, a wide range of values are feasible for various values frequencies. Figure(b) shows that the predicted frequencies
of G, along with a large variation in the allowed frequencies.are approximately in the intervf$3.0,68.4=58.0+(—5,10
Figures 4a) and §b) also compare the predicted values (kHz). Comparison with Table | shows that the experimen-
of combinations ofr and G obtained using the beam equa- tally observed frequencies range from 59.6 to 62.7 kHz
tion and the point mass model, respectively, with the experi{58.0+5 kHz) for all observed combinations of and G.
mentally observed values. Clearly except for the two pointsThus, the values of the frequencies predicted by using the
with low values ofr, there is excellent agreement betweenbeam equation are always smaller than the measured fre-
the predictions using the beam equation and the experimentgliencies by about 3%—8%. The frequencies predicted by the
values of 7 and G for which amplification was observed. point mass can either be larger or smaller than the observed
Most of the combinations are observed to be along the borfrequencies and differ by values ef15% to +15%. Thus,
ders of the allowed region. This may be explained by the facthe beam equation is significantly better in predicting the
that experimentally, the regions were approached from eithezxperimentally observed frequencies.
the low 7 side or from the highr side and hence resonance The differences between the two models are further il-
was attained for the first value ofthat allowed resonance. lustrated in Figs. & and &b) which show a horizontal slice
From Fig. 8b) it should be noted that the experimentally through Figs. 2 and 5, respectively, for a particular value of
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G=G;~—1. Figure &a) shows a trace of the allowed val- it has been assumed that cantilever mass is uniform along its
ues of amplification §,=0) as a function ofr (in the first  length. However, the data reported in this and previous work
bandp=0) and the corresponding frequencies obtained fromhave been obtained from triangular cantilevers for which the
the beam equation, while Fig(t® shows the results obtained mass varies as a function of its length. Recent experiments
from the point mass model. To maintain consistency with thesuggest that the agreement is better for rectangular cantile-
definitions of G between the two models, the values®f  vers and will be the subject of a forthcoming work.

shown in Figs. Pa) and Zb) have to be scaled by a factor of In summary, we observe that the model utilizing the
k'/u=3.36x10° [see Eqs(18) and(26)]. Figure a) shows beam equation presented in this work is a significant im-
that the allowed frequencies are centered around the fund@rovement over the point mass model outlined in our earlier
mental frequencyf,=58 kHz and vary linearly withr, with ~ work. Criteria obtained using the beam equation agree well
the variation being+=0.5 kHz or 57.4f<58.5kHz. How-  Wwith the experimental values afand|G| for which ampli-
ever, the allowed frequencies for the point mass model var§ication in oscillations are observed in the feedback mode. It
nonlinearly with~ and range from a value of 52 to 66 kHz is also capable of predicting the observed frequencies with
for delays in the range ¥97<16 us. The experimentally less absolute error than the point mass model. It is expected
observed frequency for this combination 8£14.0 us and  thatimprovements in the formulation of the beam model will
G=1.07 wasf,;=62.68 kHz. Compare this with the predic- result in a better agreement in the direction of change in
tions by using the beam equatiofi; £57.4kHz) and the frequency and further reduce the magnitude of error in the
point mass modelf(=56.0kHz). Clearly, use of the beam frequencies.

equation results in a value better than that obtained by using

the point mass model. However, it should be observed that

both models predict a value smaller than the undriven fre¥l. CONCLUSIONS

quency while the observed resonant frequency is larger than  |; has been shown that by taking into account the spatial

the undriven frequency. _ extent of a microcantilever driven via a delayed feedback
Although the range of allowed values of time delays mechanism, successful amplification of its oscillations at fre-
predicted by the two models is different, some features argencies close to its fundamental frequency can be predicted,
similar between the two models. It can be seen from Figsgiven that the delay time and gain obey certain conditions.
6(@) and @b) that the amplification reaches a maximum in\e have shown that meeting these conditions restricts the
both models for cqmparz_;lbolevalues. For the beam equation, range of time delays to bounded intervals as observed experi-
the observed maximum in; at 7=12.97us (roughly 3T1/4)  mentally, a behavior not predicted by the simple point mass
corresponds té=f,=58.0 kHz wheréf, is the fundamental odel. In addition, the proposed model using the beam equa-
frequency. Compare this with the predictions using the poingjgn, predicts a range of allowed frequencies that is much
mass model where the maximum value ef occurs at  narrower than that predicted by the point mass model, in

m=11.96 us with a corresponding frequency of  petter agreement with the experimental results.
=60.75kHz. Reference to Table | shows that @ 1.07

the observed delays were=14 and 7=14.3 us with the  ACKNOWLEGMENTS
corresponding frequency beirfg=62.68 kHz. It is interest- ) i i i
ing to note that the frequency corresponding to the maximum _ 11is work was supported by the DOE Office of Biologi-
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sponds better to the experimentally observed frequency dfonal Laboratory, Oak Ridge, Tennessee is managed by UT-
(f=62.68 kHz) than that predicted for the appropriate valugdattelle, LLC for the Department of Energy under Contract
of 7=14.0 us (f=56.0kHz). No. DE-AC05-00960R22725.

Comparing the frequencies observed experimentally
with those predicted by the models, it is clear that the use ofPPENDIX

the beam equation is more restrictive than is necessary, while  To show thatk must be positive, disregarding the trivial
the use of the point mass model does not sufficiently restrickolution\W(x,t)=0, multiply the first equation in Eq8) by
the solutions. Two assumptions made in this work could bex(x) and integrate over the length of the beam. Partial inte-

likely sources of the discrepancies in the observed and calyration and the boundary conditions in E8) imply
culated range of allowed frequencies. It should be recalled

that experimentally, the feedback signal results only from the FX(“)(X)X(x)dx: X®(x)X(x)
instantaneous position of the tip of the cantilever. However, 0

in Eq. (5), it is assumed that the feedback signal results from

each point along the length of the cantilever and hence is _ flx@(x)x’(x)dx
much more restrictive than that necessary to model the ex- 0

periments. Thus, Ed5) should be modified so as to address

this issue in a more physically realistic manner while main- = —X"(x)X'(X)
taining the mathematical difficulty associated with delay dif-

ferential equations within a reasonable frame of work. On-

going work is exploring numerical approaches to solve this _ fl[x”(x)]zdx.
problem. Additionally, to formulate the differential equations 0

1

0

1

1
” 2
+JO[X (x)]edx

0
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