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Improvement of microcantilever-based sensors and actuators chiefly depends on their modeling
accuracy. Atomic force microscopy (AFM) is the most widespread application of microcantilever
beam as a sensor, which is usually influenced by the tip-sample interaction force. Along this line of
reasoning, vibration of AFM microcantilever probe is analyzed in this paper, along with analytical
and experimental investigation of the influence of the sample interaction force on the
microcantilever vibration. Nonlinear integropartial equation of microcantilever vibration subject to
the tip-sample interaction is then derived and multiple time scales method is utilized to estimate the
tip amplitude while it is vibrating near the sample. A set of experiments is performed using a
commercial AFM for both resonance and nonresonance modes, and the results are compared with
the theoretical results. Hysteresis, instability and amplitude drop can be identified in the
experimental curves inside the particle attraction domain. They are likely related to the interaction
force between the tip and sample as well as the ever-present water layer during the experiments. A
fair agreement is observed between the theoretical simulations and experimental findings, which
obviously demonstrates the effectiveness and applicability of the developed model. © 2009
American Institute of Physics. [doi:10.1063/1.3266000]

I. INTRODUCTION

Microcantilevers are widely utilized due to their simple
structures and effective sensing and actuating capabilities.
They have a key role in many scanning probe microscopes.
Among them, atomic force microscopes (AFMs) are the
most well-known instruments that use microcantilevers.
AFM systems are composed of a microcantilever beam
equipped with a sharp tip at its free end, capable of revealing
the tip-sample interaction forces. As a matter of fact, sample
motion generates an interatomic interaction force to the mi-
crocantilever tip and influences the static or dynamic re-
sponses of the cantilever beam. Both static and dynamic
modes can be used in various fields of microcantilever-based
sensing and actuating applications.

In this research, the dynamic behavior of a typical
AFM’s cantilever is investigated. This mode of operation is
caused by applying a sinusoidal input motion to the beam
support with specific frequency and amplitude. On the other
hand, the vibration amplitude of the tip is considered as an
output. Microcantilevers in such systems can be simply mod-
eled as a spring with a varying force constant while interact-
ing with the sample. However, it is very important to cor-
rectly model this spring as well as its interaction with the
sample.
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The tip motion in tapping-mode AFM has been analyti-
cally and experimentally investigated so far and comparison
between continuous and point-mass models has been
presented.1 The microcantilever-sample interaction problem
in noncontact AFM has been studied and both lumped-
parameters and linear distributed-parameters models of the
microcantilever were developed to effectively estimate the
interatomic force between the tip and sample.2 Distributed-
parameters modeling of free microcantilever without sample
has been linearly analyzed3 and nonlinearly studied.* More-
over, the corresponding frequency response equation has
been experimentally verified.” Nonlinear dynamics of micro-
cantilever in tapping-mode AFM were also carried out and a
comparison between theory and experiment in resonance do-
main has been reported.ﬁ’7 In addition to flexural vibration,
torsional resonance mode AFM under tip-surface interactions
has been also studied.®

To further explore the vibration behavior of microcanti-
lever beam subject to the tip-sample interaction, it is desir-
able to develop a reliable model of microcantilever, which
enables precise prediction of the vibration amplitude of the
tip near the sample. This forms an important step toward
designing accurate microcantilever-based sensors and actua-
tors that are applicable in variety of nanoscale imaging sys-
tems, nanomanipulators, and nanorobotic arms.

In this paper, a nonlinear distributed-parameters base
modeling framework for a microcantilever beam interacting

© 2009 American Institute of Physics
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FIG. 1. Schematic representation of microcantilever and sample.

with a sample is developed and experimentally verified.
Modulation equations are analytically developed for both
resonance and nonresonance cases and compared with the
experimental results. The rest of the paper is organized as the
follows. In the immediately following section, the math-
ematical model of the microcantilever beam under tip-
sample influence is presented and discussed. Experimental
setup and methods are provided in Sec. III. The comparison
between theoretical and experimental results is then pre-
sented in Sec. IV, followed by summary and concluding re-
marks in Sec. V.

Il. MATHEMATICAL MODEL

In order to obtain the governing equations of motion for
the microcantilever beam under the influence of tip-sample
interaction, element ds is considered at distance s measured
from the beam support in time ¢ while u(s,t) and v(s,?)
depict the longitudinal and bending displacements of the mi-
crocantilever, respectively (see Fig. 1). It is assumed that
Euler-Bernoulli conditions are fully satisfied and the vibra-
tion of microcantilever completely lies in two-dimensional
plane, as shown in Fig. 1.

The orientation of ds element is presented by angle
0(s,1). As per Fig. 1, this angle can be calculated by

!

v

0= arctan( ) , (1)
1+u

where overprime is used to show the derivative with respect

to spatial coordinate s. The kinetic and potential energies for

single beam element can be obtained as

1 1.
T=—m(i* +9%) + —J 0, (2)
2 2
1 12 1 2
U= Ekge + EEbAbsO, (3)

where J; and K are microcantilever mass moment and area
moment of inertia, respectively. Also overdot represents the
derivative with respect to temporal variable ¢ and g is the
Green’s strain at neutral axis of the beam section given by

! !
go=V(1+u')?+v"?-1. (4)

Using Eq. (1) and applying Taylor’s series expansion for
spatial and temporal derivatives of 6 yields,

0=0v" -v'u' -0 -v'i', (5)
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0! — U" _ U"l/t’ _ erUH _ U,I/l". (6)

In order to mathematically present the influence of sample on
microcantilever vibration, the atomic interaction force is
considered as’

H, H,
[6+z(0+v(DP [8+z2(0)+v(DP

Fip= (7)
where H; and H, are Hamaker constants, z(z) is the input
displacement at the beam support (see Fig. 1), and & repre-
sents the initial distance between tip and sample, which is
also called tip-sample separation. Interaction force can then

be written by summing up the first six Taylor series terms of
Eq. (7) as

Fip=K()z(t) + Kyz(t)* + K3v(1)? + Kyz(1) + Ksv(1)

+ K, (8)
where
6H, 72H,
K=" = %0 O
3H, 36H
Ky=Ky=— - =2, (9b)
2H, 8H
K4=K5=—?1+?2, (9C)
H, H,
Ki=—7—-—. 9d
6 52 58 ( )

Considering all the aforementioned derivations, it iS now
possible to write the Lagrangian function and virtual work
expression for the entire system as

I
L=f [T+ U+ \(s)gglds, (10)
0

1
oW = f [mz(t) Sv — uv v + fipdv(l)1ds, (11)
0

in which \(s) is the Lagrangian multiplier factor and utilized
to handle the inextensibility constraint. Moreover, w is the
beam viscous damping coefficient. For simplicity and repre-
senting the equations in a more clear and compact form, the
following change of variables is chosen:

(12)

The Lagrangian function and virtual work are now converted
into their nondimensional forms L* and W*, respectively, as
12

L*=—1L, 13
2 (13
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W= —W. (14)

Substituting Egs. (2)—(12) into Egs. (13) and (14) yields the
following expressions for nondimensional Lagrangian func-
tion and virtual work expressions, respectively:

1 1
: —02+ =i+ 0v"u’
2 2
L= |
0
+ U/rvru//_ _v772+ U!ZUHZ
2
Shoe et 12212 1 ro12
—-vovu —v v —Eu v
+ a ) 1. + o, ds,
0" +—p"? R N
-~V —_U
2

(15)

1
oW = f [2(t) = a0 — Biz(DvH(s = 1) = Br2*(1)
0

= B3v*H(s — 1) = Byz(1) — BsvH(s — 1) — Bgldvds.

(16)
where
) 5 i=1,2,3
K . .
Bi=——, j=14 i=45 (17)
K{ )
3 i=6

and H is the Heaviside function. The asterisk has been
dropped for convenience. So far, there have been two inde-
pendent generalized coordinates, u and v, to represent the
system. It can now be shown that they can be reduced to only
one variable by considering the following widely accepted
inextensibility assumption

1
80%u’+5v'2=0. (18)

The extended Hamilton’s principle, [{(SL+ 6W)dt=0, is then
applied and inextensibility condition is adopted to derive the
single-variable nonlinear integropartial equation of motion

l-)-+vmr+[vr(vrvu)r]/+lvrf (f U,l}’dS) dS:|
1 0

+ azv + BoH(s — 1)z(1) + Byz(1)* + Bv*H(s — 1)

+ Byz(t) + BsvH(s — 1) + B — 2(1) = 0, (19)
with the corresponding boundary conditions
v(0,)=0, v'(0,)=0, v"(L,H)=0, v"(L,1)=0.
(20)

lll. FREQUENCY RESPONSE ANALYSIS

The Galerkin’s first mode approximation can be utilized
in order to discretize Eq. (19) into separate spatial and tem-
poral functions as'”
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v(s,0) = 2 Co(5)g,(1), (21)
n=1

in which ¢,(¢) is the generalized coordinate for nth mode of
the beam vibration and C,(s) is the comparison function ap-
pearing in the position-dependent part of the governing equa-
tion and can be written in nondimensional form as'®

C,(s) =cosh \,,;s — cos \,,s + (sin \,,s

cos \,, +cosh \,,

— sinh \,,5) (22)

sin \,, +sinh \,, ’
where \,s are the roots of the following frequency equation:
1 +cos \,cosh\,=0. (23)

Using the orthogonality of comparison functions, the time-
dependent part of the governing equation can be expressed as

.. . 2 3 2..
Yinldnt YVouldn + Vandn + Yandn + Y5ndn + Yondn9n

+ 77nan.i + ’}/annz(t) + 79ilz(t) + 71011Z(t) + 711nZ2(t)

+ Yion = 0’ (24)
where
1
Vin= f C2ds (25a)
0
1
Yon = f C,LBsC,H(s 1)+ C}" ds, (25b)
0
1
Yan = 013f Cids, (25¢)
0
1
Yan = B%J Cn[CiH(S - I)sts (25d)
0
1
Ysn = f C(C2CY +4C,ChCl + C)ds, (25¢)
0
1 K s s
Yen = Yon = f cn<c;; f J C)’dsds +C,, f C,’fds)ds,
0 1 J0 0
(25f)
1
Ysn = Blf Cn[CnH(S - 1)]ds9 (25g)
0
1
Yon=" f C,ds, (25h)
0
1
Yion = B4f Cnds7 (251)
0
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1
Yiin= BZJ Cnds’ (ZSJ)
0

I
Yion = BGJ Cnds' (251()
0
Since the comparison functions are orthonormal, Eq. (25a)
equals to unity, i.e., y;,=1. Also it is assumed that Eq. (25b)
equals to square of the linear natural frequency of vibration,
. 2
Le., Y, =w,.

A. Primary resonance response

The method of multiple time scales is chosen to analyze
the obtained equation and e is introduced as a book keeping
parameter to show infinitesimal quantity in the equation.
From this point on, the analysis procedure is divided into two
different parts; (i) resonance, and (ii) nonresonance modes.
In resonance mode, the frequency of excitation remains near
the natural frequency of vibration by the following relation:'!

O =w,+ €0, (26)
and the corresponding soft excitation function is given as
(1) = eze™™, (27)

in which o is a detuning parameter to demonstrate how far
the frequency of excitation is from natural frequency of vi-
bration. For the resonant case, the ordinary differential equa-
tion of motion is generated as
.. 2 . 2 3 2.. .2
qn + wnqn + €Y309n + 674nqn + E’}/ann + 676(ann + ann)
+ €759,2(1) + €702(1) + €7102(0) + €y 2°() + €y
=0 (28)

According to multiple time scale formulation, the steady-
state solution can be expanded as'1?

QI‘l(t’ 6) = qu(TOsTl) + 6q}n(TO»T1) + 0, (29)

where the two time scales Ty=¢ and T =€t characterize mo-
tions occurring at the linear natural frequency and due to

d 1
dT e (Tl) 2 anYsn+ <‘Y9nw - yw1_>z sin i,
3751 a_i Yion | £
lr/ln(Tl) o+ 276nw - 3 Yon Wy, —
n
in which ,=—¢,+oT),. To relate the frequency of excitation

or its representative o to the steady-state amplitude of vibra-
tion, the left-hand sides of Eq. (35) are assumed to be zero
and ¢, is eliminated. Thus, the following frequency response
equation is extracted:
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nonlinearities in the system, respectively. Substituting Eq.
(29) into Eq. (28) and equating the terms with the same order
of € yields

dZ

dT 2q0n+ wann_O (30)
& i+ @g 2 o= Vol

dT 2 nTt W, 41, = dTodT 3ndTO On 4n40n

d2
~ Vsullon = Yon| Dom 5= don
7i n U n
&~T,

d
+ qon\ - 9on

2
dTO ) :| - 78r1q0nz(t)

+ You 22 (1) = Y1052(t) = V11,22(0)
= Y12n» (3 1)

The solution of Eq. (30) is now assumed to be in the follow-
ing form:

qu(T()?Tl) =An(T1)€iw”TO+CC, (32)

where A, is a complex amplitude and cc stands for the com-
plex conjugate of the preceding terms. Substituting Eq. (32)
into Eq. (31) gives the following secular terms which are
coefficients of e'“T0, produce time-increasing solutions and
ought to be eliminated as a consequence,

dA, ,
’y?nwnAn + an dT + (3 Ysn— 276/1 )AnA
+2¢'"T1(= 9,0, + Y10,) =0. (33)

The complex amplitude A, can be written in its polar form as
A, =—a,e®n. (34)

If one substitutes Eq. (34) into Eq. (33), the following modu-
lation equation of frequency and amplitude can be obtained

(35)

os .

(4an73nwn)2 + [80'61 W, + 6173,(2 76nwi -3 7511)]2
YIOn)] (36)

The solution of the system in resonant case can be finally
written as

= [8Z(79n
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q,,(t) — anei(wnt+¢>n) + O(E) — anei(wnt+em—a//n) + O(E)

=a, " 4+ O(e). (37)

B. Nonresonance response

For nonresonance case, Eq. (24) is regenerated for the
hard excitation and € is again introduced to show small-
valued terms as'’

.. 2 . 2 3 2.. -2

G+ D+ €3y + €YVantly + €5y + €Ye(dubin + 4ud7)

+ €93q,2(1) + o2 (1) + Y102(1) + ¥112°() + €y, =0.
(38)

Following the same procedure of resonance case for the non-
resonance situation yields

2
dd_T(z,qO" + rqon = (0,2 = 10,)z€™ 0 = 1,270,
(39)
d? 5 2d° _d 5
d_TéQIn + w41, == m%n - 73nd_TOQOn ~ Yan4on
Q(z)n?_2('IOn
3 d°Ty
= Ysndon — Yén d 2
+ qu(d_To('I0n>
- YanOnZ(t) ~ Y12n- (40)

The solution of Eq. (39) is assumed to be in the form of
Gon(To,T1) = A (Ty)e' 0 + B, ™Mo 4 C ™Mo 1 cc, (41)
where

B 2(4Q% - w?)
40500+ o

4 (_ ‘sz Yon + 710n) s (42)

n

C = Zz?’lln(Qz— wi) (43)
404 - Sszi + wi .

From this equation, it is understood that the amplitude of
vibration substantially depends on the difference between the
primary resonance frequency and the frequency of excitation
as well as the drive amplitude. Substituting Eq. (41) into Eq.
(40) yields the following secular term that must be omitted,

. dAn 2\ A2
l ’YSnwnAn + an dT + (3 Ysn— 276nwn)AnA + (6An75n
1

- 2An76nwi) (Bi + Ci) - 2An76nQ2(Bi + 4(’3) =0.
(44)

Considering the polar form of the amplitude appeared in Eq.
(34) and separating the real and imaginary parts of the equa-
tion leads to the following equation which can be called,
similar to resonance mode, the modulation equation of fre-
quency and amplitude:

J. Appl. Phys. 106, 113510 (2009)
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FIG. 2. (Color online) Experimental setup.

p
d 1
_ T)=——
dT] an( 1) Zan Y3n
\ . (= 375, + 2You )+
(T =———| 87, QB +4C)
dTl Swn 5 )
\ + (_ 247511 + 87611)(Bn + Cn)
(45)
The solution of Eq. (38) eventually reduces to
g,(1) = a,e ) 1 B & 1 C Y + O(e). (46)

The first term decays with time, while the second and third
terms do not. The former is the transient solution and the
latter is steady-state or particular solution. This is exactly the
same as in the case of forced vibration of linear systems.

IV. EXPERIMENTAL SETUP AND METHODS

The validity of the developed equations of motion is
examined experimentally in this section, and the effects of
the tip-sample interaction on the amplitude of microcantile-
vers’ vibration are extensively studied. The experimental
setup, shown in Fig. 2, consists of an Auto-probe CP-
Research system of AFM fabricated by TM Microscopes
Veeco Metrology Group®. It is equipped with 20X optical
microscope for the preliminary adjustments, pneumatic
vibration-free table, point lighting source and the computer
system to automatically control the setup. The experimental
setup is first calibrated by the factory-defined instructions
and the target experiments are then run in the atmospheric
condition. Each experimental run includes the following suc-
cessive steps.

(1) Microcantilever and sample are carefully installed on the
system.

(2) Microcantilever tip vibration is measured by the laser
system. In this system, a laser beam is steered to reach
the end of microcantilever on top of the tip and the
reflected laser beam is aligned to the center of position
sensitive photodetector (PSPD) before the experiment
starts. PSPD collects the reflected laser beams and con-
verts them to electric signals for further processing in
the computer.
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TABLE I. Microcantilever parameters.

Microcantilever
Type MPP-3120-cont20 Metrology Probes
Shape Rectangular
Material Si doped with P, a =40 nm of Al has
been coated on one side
Range Nominal Simulated

Values Values
Length (um) 440-450 450 450
Width (um) 30-40 35 30
Thickness (um) 3.5-4.5 4 35
Frequency (kHz) 13-40 20 30
Force Constant (N/m) 0.45-18 0.9 0.9
Density (kg/m?) 2330
Viscose damping 0.0001
(Ns/m)
Tip
Tip Height (wm) 15-20
Front Angle 15°
Side Angle 17.5°
Tip Radius (nm) <125 <10
Tip Set Back (um) 5-25 15

(3) Noncontact mode of AFM is run and the substrate is
thoroughly scanned in order to find a suitable place with
desirable nearly flat area.

(4) The microcantilever tip is located at top of this flat area
and the experiment starts.

(5) When the microcantilever is away from the surface, the
frequency response curve (FRC) is plotted and the reso-
nant peaks are obtained. The drive frequency is then
chosen in such a way that dominates the resonance or
nonresonance conditions as demanded.

(6) The microcantilever is approaching to and retracting
from the sample and spectroscopy toolbox is used to
generate the plot of vibration amplitude versus tip-
sample vertical distance.

(7) The last step is repeated for many times to inspect the
repeatability, guarantee the validity of acquired data and
eliminate the statistical errors.

V. THEORETICAL AND EXPERIMENTAL RESULTS
COMPARISON

The equation of vibration amplitude has been derived for
resonance and non-resonance modes separately, along with
an experimental AFM setup to perform relevant experiments
in the preceding sections. The FRC of microcantilever beam
with the properties listed in Table I is depicted in Fig. 3 in
which the primary resonance frequency is clearly recognized
at f=30450 Hz.

There are some uncertainties for the properties of micro-
cantilever beam given in Table I. Some of these uncertainties
are declared by the manufacturer as well and are limited to
the specified range. They mainly appear in the geometrical
dimensions and the material properties of the beam. One can
search inside the uncertainties’ ranges in order to find the
values for which the theoretical resonance frequency can best
fit the experimental resonance frequency as seen in Fig. 3.
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FIG. 3. (Color online) Frequency response curve of microcantilever.

These values are shown in “simulated values” column of
Table I and will be later used instead of “nominal values” to
analytically calculate the amplitude of vibration.

In order to experimentally verify the obtained equation
of motion and the corresponding amplitude-distance equa-
tions, different frequencies and amplitudes are applied as an
input motion to the specified microcantilever beam. Low am-
plitude of excitation with the frequency near the first har-
monic of motion signifies the soft resonance mode. Con-
versely, high amplitude of input signal with the frequency
away from the primary resonance frequency characterizes
the hard nonresonance mode. In the soft resonance mode, the
experiment is done once for the frequencies very close to the
primary resonance frequency and once repeated for the fre-
quencies a little farther. The former is called small-o reso-
nant mode, while the latter is called large-o resonant mode.

The target frequencies and amplitudes for which experi-
mental data are gathered and theoretical formulations are nu-
merically simulated are presented in Table II. As illustrated
in Table II, in the resonance mode, it is assumed that the
frequency of excitation is just a little away from the first
harmonic of motion; that is, 0.1% for small-o- and 2.5% for
large-o. Again, the frequency of excitation is chosen to be
completely far away from the primary resonance frequency
in order to fulfill the nonresonant situations.

Figure 4 demonstrates the experimental results and the
theoretical simulation of vibration amplitude with respect to
the tip-sample separation for small-o resonant mode. For the
experimental results, there are two separate curves: ap-
proaching and retracting. The first one depicts the behavior
of the beam while the tip goes toward the sample and the
second one shows the situation in which the tip comes back
from the sample. There is a large gap between the approach-
ing and retracting curves, which is called hysteresis and will

TABLE II. Experiment data.

Resonant Resonant
small-o large-o Nonresonant
Natural frequency (Hz) 30 450 30 450 30 450
Excitation frequency (Hz) 30 480 31220 110510
o (Hz) +30 +770 .
Excitation amplitude (nm) ~10 ~10 ~100
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FIG. 4. (Color online) Vibration amplitude vs tip-sample separation; reso-
nant small-o condition.

be discussed later. For all the curves, there is also a special
region in which the amplitude of vibration changes with the
tip-sample distance and is called the sample attraction re-
gion. Outside of this region, the amplitude of vibration re-
mains constant despite of changing the tip-sample distance.

It should be clarified that the initial conditions of ob-
tained equation are set to zero during the simulation and
consequently, the theoretical curve must be compared with
the experimental approaching curve for which these initial
conditions are fully satisfied.

When Fig. 4 is scrutinized, it is unveiled that there is an
unstable region in the amplitude of the beam vibration very
close to the sample, i.e., when & has very small value. The
unstable region may be a consequence of remarkable increas-
ing in the attraction force near the sample. This interatomic
interaction force prevents the beam from vibrating and
makes it eventually stop its motion and stick to the surface.
In addition to instability region, there is a sudden change in
the amplitude of vibration at the point in which the tip enters
the sample attraction domain. As a matter of fact, the tip is
suddenly absorbed by the sample at the border of attraction
region and it is followed by drop. The unstable region can be
well predicted by the theoretical model where the square of
natural frequency equals to negative values and loses its
meaning. However, sudden changes in the amplitude cannot
be theoretically identified at all. Outside the sample attrac-
tion region, approaching and retracting curves approach each
other, and the theoretical curve is well fitted with the experi-
mental one.

By choosing the frequency of excitation a little bit away
from the natural frequency of vibration, o possesses larger
value and becomes more comparable with the primary reso-
nance frequency. Although Eq. (36) is still valid for large-o,
the result is not as satisfactory as small-o situation. More-
over, by increasing the detuning parameter, instability and
dropping phenomena are gradually weakening. The theoreti-
cal and experimental results for large-o are represented in
Fig. 5.

For nonresonant case, it is assumed that the frequency of
excitation is at a far distance from the primary resonance
such that Eq. (36) is no longer valid, and instead, Eqs. (42)
and (43) must be substituted. The results for this situation are

J. Appl. Phys. 106, 113510 (2009)

Vibration Amplitude (nm)
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FIG. 5. (Color online) Vibration amplitude vs tip-sample separation; reso-
nant large-o condition.

illustrated in Fig. 6. A great drop in the amplitude values and
a large hysteresis between approaching and retracting curves
can be vividly recognized in nonresonant mode (see Fig. 6).

The hysteresis and amplitude drop can be attributed to
the thin film of water confined between the tip and a solid
surface. These experiments are carried out in free atmo-
sphere without any special considerations. Therefore, con-
densing the water vapors, which typically exist in the labo-
ratory atmosphere, on the surface of all materials is hence a
valid assumption. This condensed water layer produces an
extra interatomic force, which is called capillary force and
influences the tip vibration.® In other words, the severe hys-
teresis in the curves and a sudden drop in the amplitude
values can be considered as a signature of water layer pres-
ence like what has been reported in other similar
experiments. 1315

VI. CONCLUSIONS

Microcantilever vibration subject to the tip-sample inter-
action was studied in this paper and the amplitude of vibra-
tion for different tip-sample distance (o) was analytically
and experimentally investigated. The findings were divided

Theoretical :
R

Vibration Amplitude {(nm)

; i i i H i ; i i
0 0 20 30 40 50 60 70 80 90 100
Tip - Sample Separation (nm)

FIG. 6. (Color online) Vibration amplitude vs tip-sample separation; non-
resonant condition.
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into two major groups: resonance and non-resonance modes.
Resonant experiments were also carried out once for the
small o and again for the large o.

In all experimental results, inside the sample attraction
region, a hysteresis between approaching and retracting
curves was observed. However, these two curves joined out-
side the attraction region and remained constant. For small o,
there were clear unstable motion and falling trend at both
ends of the sample attraction region. Unstable region can be
perfectly tracked by the theoretical model, while the falling
region cannot. For larger o, the developed resonance model
was persistently valid and unexpected behaviors like insta-
bility and dropping could be hardly detected. In non-
resonance situation, the hysteresis between approaching and
retracting curves was amplified and the amplitude of vibra-
tion suddenly and considerably dropped. Hysteresis and
other unexpected changes in the curves may originate from
the existence of water layer on the sample during the experi-
ment. Considering both theoretical and experimental results,
it was concluded that the developed theoretical models can
reasonably match with the real behavior of microcantilever
vibration.

J. Appl. Phys. 106, 113510 (2009)
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