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New results in the theory of wetting transitions (invited) 
D. M. Kroll 
Physics Department, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 and 
Institut/iir Festkorper/orschung, Kern/orschungsanlage Jiilich, 5170 JiiUch, West Germany"-) 

The aim of this contribution is to draw attention to some recent developments in the theory of 
wetting transitions which may be of interest to the magnetism community. After presenting a 
qualitative discussion of wetting phenomena, the predictions of both the mean field and 
renormalization group (RG) theories of wetting with short range forces are reviewed. Recent 
Monte Carlo (MC) results are also described and possible causes of some of the discrepancies 
between the RG and MC results are discussed. Wetting phenomena in magnetic systems with a 
first-order bulk transition are considered and it is shown that metallic magnets and magnetic 
insulators (with short~range exchange) belong to different universality classes. Both the need 
for and the feasibility of experimental tests of the theory are emphasizedo 

I. INTRODUCTION 

The theoretical description of the wetting transition 1 

proposed by Cahn2 and developed by numerous authors3 is 
based on the simple phenomenological free energy func­
tional 

F= f dV[1C'\7q»2- (1"!2)(P+ (g/4!)4i4
- h4il 

+ J dS[(c/2)¢2 + hl4il (1) 

for a scalar field ¢;, where the integrals extend over the vol­
ume V and the surface S, respectively. For the semi-infinite 
geometry normally considered, S is the plane z = 0 and V is 
the half-space z;;,O. 

The bulk terms in (1) are the familiar ones that appear 
in the usual Landau expansion of the free energy of a single 
component system. In particular, r (the temperature) is a 
measure of the distance from the bulk critical point r> 0 
corresponds to the ordered phase and h = 0, r> 0, defines 
the coexistence plane. 

The effect of the waH is described by the surface tem­
perature c and the surface magnetic field h I. In particular, if 
the bulk boundary conditions far from the waH favor one 
phase (for example, 4i> 0), and if h! is positive, then at suffi­
ciently low temperatures a layer of down spins with a finite 
thickness (determined by hI' c, and r) may form at the sur· 
face. Wetting occurs if the thickness of this adsorbed layer 
diverges at some higher temperature Tw. 

This model is easily analyzed in the mean-field (MF) 
approximation. The extremal solution of ( 1) is determined 
from 

of /8ifJ(r) 1m = 0, (2) 

wherem = <if;) , The surface term in (2) leads to the bound­
ary condition 

m(O) = cm(O) + hI. (3) 

Extremal solutions depend only on the coordinate z perpen­
dicular to the surface. 

,,) Permanent address. 

Consider now h = 0, hI> 0, and assume 

m(z) --m b = ~6r7i for z--- 00, A first integral of (2) then 
yields 

m2(z) =2{U(mb ) - U[m(z)]} (4) 

with 

U(m) = (r/2}m 2 
- (g/4!)m4 + hm. 

Representing Eq. (4) graphically, plotting m vs m as in Fig. 
1, we obtain two parabolas. The boundary condition (3) is 
represented by the straight line A. For the chosen boundary 
conditions m (z) is increasing from the waH to i.nfinity. The 
solution starts at z = 0 at the intersection of A with the solid 
curve. For r large enough (T small enough) A will intersect 
the trajectory as indicated at some m > - mb. If the slope of 
A is larger than the slope of line B, the tangent at the point 
(m = - m b ,m = 0), there is a single intersection of A with 

the relevant parabola. This occurs for c> /2r, which is the 
condition for having a critical wetting transition. If the tem­
perature is raised in this case, 7 and mb decrease; assuming 
h j and c remain fixed, the fixed point at - mb will move 
towards the line A. When it reaches A the thickness of the 
wetting layer diverges. This occurs when - cm b + hi van-

. 
m 

A 

FIG 1. m as II function of m. The wall boundary condition is the straight line 
A. The dashed line B tangent at m = 0, m = - m b is the separatrix between 
second-order and first-order transitions. 
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ishes, i.e., for 7 = 7 w = gh i I (6c2
). For temperatures 

between Tw and Tc (the bulk critical temperature) the 
thickness of the down-spin layer remains infinite and a finite 
positive bulk magnetic field h is necessary to keep the inter­
face within any specified finite distance of the wall. 

For h = 0 and T < Tw the explicit solution of (2) is 

m(z) =mb tanh[{1'/2(z-zo)], (5) 

with z{) determined by substituting (5) in (3). The surface 
free energy density is given by 

2:= L" dzHm(z)z- (l'/2)[m(z)2- m/] 

+ (g/4!) (m(z)4 - m!]} + icm; + hIm, 

= [g7fi(m; - 3m~ms + 2m~ )/3 + !cm; + hIms ' (6) 

where ms = m(O) is the magnetization at the walL The MF 
condition for determining Zo is nothing but aI-lam, = O. 
The influence of finite bulk field h can be studied perturbati­
vely. A scaling form for the singular part of the surface free 
energy density 2:5 is easily derived. In particular, one finds 

2:s _t 2fJ.j(hlt 2
) +hln[t2fl2(hlt2)} (7) 

at the critical wetting transition, where t is the reduced tem­
perature (both 7 and h I have projections on t). Quite gener­
ally 2s has the scaling form4 

2., _t 2 - a UCh Itil) (8) 

so that a = 0 and A = 2 in the MF approximation for this 
modeL Further results of the MF approximation are: 

0) the correlations in directions parallel to the wall di­
verge with a characteristic length 

[gp -t --Vp = t ._\ 

so that vp = 1, and 
Oi) the coverage, i.e., the distance of the interface from 

the wall, diverges as 

zo-J2:,1ah Ih =0 ~ -In(t) . 

The hyperscaling relation 2 - a = DlIp is satisfied for Dc 
(interface dimension) = 2, i.e., bulk dimension 3. It-is there­
fore not surprising that the upper critical dimension above 
which MF theory is valid is de = 3. 

The fluctuations which are responsible for the violation 
of the MF approximation in d<3 are capillary waves. 5

,6 It 
therefore makes sense to construct an effective interface 
model in which the dynamical variable is the position 
lCp) = Zo + ;Cp) of the interface. Projecting out the reI~ 
evant fluctuations, we have 

¢;(z,p) = m(z) - m(z};(p):::::::m[z - ;Cp)J . (9) 

Inserting (9) in ( 1 ) we obtain a free energy functional of the 
form 

F{l} = f dd- Ip( (a/2H\71)2 + 2:(1) 1 , (10) 

where ~(l) is obtained by substituting (9) in (6). For the 
isotropic system studied here, a is the surface tension of the 
free interface. For uniform I, ~ (I) reduces to the free energy 
per unit area (6). Indeed, as already mentioned, the location 
of the interface in the MF approximation is determined by 
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minimizing "I.(l) with respect to 1. Near Tw the interface is 

far from the wall and an expansion of:I (l) for large I yieldso 

I,(l) = - Ae -lIsb + Be - 211sb + Ce - 3//th + ... 
for II = 0, where 

A = 2m/, (cmb - hi) , 

B=2m~(c-{iT) +A, 

C = 2md (4/3)mbI5b - 3cmb + hd ' 
and S b = 1/../27 is the bulk correlation length. The MF 
phase diagram is easily reproduced using this result. The 
critical wetting line corresponds to A = 0, B > 0, and T < Tw 
corresponds to A> O. The first-order line corresponds to 
B<O,B= -4AC. 

RenormaHzation group (RG) treatments of the critical 
wetting transition for model (1) start with the effective in­
terface model (10).5.7,8 The essential ingredients of the RG 
treatments are: (0 a convolution of'L(l) with the capillary 
wave excitations, and (ii) a normal ordering of the resulting 
effective Hamiltonian. A very clear way of accomplishing 
this program is the functional RG procedure employed by 
Fisher and Huse.H The resulting critical behavior is predict­
ed to differ dramatically from the MF result. For example, 
while the MF approximation predicts that for h = 0 the cor­
relation length SP describing correlations in the interface 
diverges with the exponent vp = 1, recent RG work predicts 
that vI' is nonuniversal in d = 3, depending on the value of 
(I) = k BTl ( 4170"5; ) . For (jJ < 2, the wetting transition is pre­
dicted to occur when the strength A of the attractive tail of 
the interface-wall potential goes to zero. In both regime I, 
o < (jJ < !, and regime II, ! < liJ < 2, the film thickness (I) di­
verges logarithmically as the wetting transition is ap­
proached (A ->Ac = 0) and the correlation length SP di­
verges as a power of the deviation from wetting t - (A - Ac ) 
(with logarithmic corrections in regime II). The critical ex­
ponents vary with (jJ and are nonanalytic at the multicritical 
point at cu = !. For (jJ > 2, regime III, the wetting transition 
occurs at finite strength, Ac #0, of the wall attraction. The 
film thickness diverges as 1!t and the correlation length di­
verges as ell' in this regime. Near the multicritical point at 
w = 2, Ac vanishes as liJ - 2 and for a large range of t, the 
behavior will be dominated by the multicritical point, at 
which (l > ~ lit 2andsp -e- 11(2 .8 The predicted behaviorls 
summarized in Table I. 

Before proceeding to a discussion of more recent devel­
opments, we recall another manifestation of wetting which is 
relevant to the subsequent discussion. Making the substitu-

TABLE I. Renormalization group predictions for the critical behavior of 
the interface correlation length t;p for model (10) in three dimensions. The 
correlation length exponent Vp depends explicitly on the ratio IiJ = kB T / 
( 41TOn)k· 

Sp = sot - Y'lin t 1-- v Vp = (y2 - Y(u)-2 

v=~£v78 l'p 

sp,-...,e-c/-··'jJn/i c=const 
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tion¢(r) ..... 1](r) + mb in (2) we arrive at a free energy func­
tiona! for 7J(r) of the form 

F{1]} = f dV[KV1J)2+nl-v1]3 + U'I]4] 

+ f dS [(c/2)1J2 + H I 1J] , (11) 

where HI = - cm b + hi' The bulk free energy density in 
( 11) has a cubic invariant. It describes a system with a first­
order transition. The critical wetting transition discussed 
above occurs for h = 0 at - cmb + hi = O. However, h = 0 
is the position of the first-order transition in (11) and 
- cmb + hi = 0 implies HI = O. In this form the critical 

wetting transition is sometimes referred to as a surface-in­
duced disorder transition. 9

•
10 It can occur in semi-infinite 

systems with a free surface: as the bulk transition tempera­
ture is approached from below, a narrow region of the high­
temperature disordered phase intervenes at the free surface 
and finally wets it at the bulk transition temperature, where 
the ordered and disordered phases coexist. At this transition 
the order at the surface goes continuously to zero. Such be­
havior appears to be quite common and will be discussed in 
more detail below. It has been observed at the order-disorder 
transition in CU,Au (Ref. 11) and a closely related phenom­
ena is the surface melting of certain crystals as the solid­
liquid-phase boundary is approached. 12 We expect such be­
havior to occur in many semi-infinite magnetic systems with 
a first-order transition. 

One very attractive aspect of this wetting transition is 
the possibilities it offers for the experimentalist. In the classi­
cal wetting experiments in binary mixtures it is generally 
only possible to measure "excess" quantities such as the cov­
erage. Furthermore, the relaxation times involved in many 
of these experiments are extremely long, making it difficult 
to make true equilibrium measurements. On the other hand, 
at surface induced disorder transitions it is possible to probe 
the behavior of local quantities such as the surface order 
parameter using LEED, SPLEED, or by performing total 
reflection experiments using synchrotron radiation or neu­
trons. In this context, total reflection experiments are par­
ticularly attractive since they provide information concern­
ing both local and excess quantities. In addition, their 
interpretation is unambiguous. 13 

The previous discussion reviews several of the older 
theoretical results. One of the most intriguing results were 
the RG predictions for the critical wetting exponents. Re­
cently Monte Carlo (Me) methods have been used to study 
wetting in a simple cubic Ising model with nearest-neighbor 
interactions in order to test these predictions. 14 The critical 
behavior was found to be consistent with MF theory; the 
singularities predicted by RG treatments were not observed! 
Subsequently, the effective interface model (to) was simu­
lated and results were obtained which agree with the RG 
work. iS This work is reviewed and discussed in Sec. II. The 
results discussed in Sec. II make it clear that our understand­
ing of wetting in systems with short-range forces in d = 3 is 
still incomplete. It would thus be of considerable interest to 
study such behavior experimentally. This may be possible in 
magnetic insulators with a bulk first-order phase transition. 
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For this rcason, the order-disorder transition at the surface 
of a face-centered-cubic (fcc) Ising antiferromagnet is dis­
cussed in Sec. III. Finally, in Sec. IV we review what is 
known about the universality classes for critical wetting. dis­
cuss briefly wetting in ordering alloys with long-range inter­
actions and metallic magnets. 

II. MONTE CARLO STUDY OF CRITICAL WETTING WITH 
SHORT eRANGE fORCES 

A nearest-neighbor Ising model on Ii simple cubic lattice 
was studied by Binder, Landau, and K.roll. 14 A thin film 
L XL XD geometry with two free (100) surfaces was em­
ployed. A film thickness D = 40 layers was chosen; this was 
sufficient in order to avoid finite size effects associated with 
finite D. Periodic boundary conditions in the directions par­
allel to the surface were used and L was varied between 
L = 10 and L = 50 in order to study the finite size behavior 
as a function of L 15 p • Sampling techniques with preferential 
surface site selection were employed. 

Denote the exchange constants by J in the bulk and Js 

on the surface, and the surface field by h I' Depending on the 
parameters J IkB T and JsIJ, the wetting transition was 
found 16 to be either first order or continuous, in agreement 
with theory.4 The simulations were performed at tempera­
tures Tsuch that J Ikn T)O.25 (J Ik8 1~ = 0.22169) in or­
der to avoid crossover to bulk critical phenomena, but 
J Ike T<O.35 in order to avoid "layering" (for T < TR , the 
roughening temperature, "multilayer adsorption" occurs). 

In order to compare the results for the critical exponents 
with theory, the value of W ( = kB T 14'TTug ~) for the Ising 
model in the relevant temperature regime is needed. Near 
Te. m tends to a universal value me:::::: 1.2 + 0.3.17 For T < Tc, 
a should be identified with the "surface stiffness". 18 Unfor­
tunately, (J' is not known for the Ising model; only hnt' the 
interfacial free energy density of a planar (100) interface, 

. has been estimated. 19 It is known, however, that (J" exhibits a 
universal jump from aa 2/kB TR = 11'12 (where a is the spac­
ing of the bulk crystalline planes normal to the interface) for 
T -> Tit to 0' = 00 for T = T i . Using the estimate of Tarko 
and Fisher20 for gb this leads to a value of (VR between 0.8 
and 1.25 for the range of values of TR suggested in Ref. 
19 (b). This is the same order as We so that OJ is probably of 
order one at the temperatures employed in the simulation. 
Note that below TR capilIary wave excitations are sup­
pressed so that (jJ = O. 

The results are the following l4
: The surface excess (or 

coverage) was found to diverge logarithmically in 
t- (hI - h Ie) at the critical wetting transition as well as 
logarithmically in h for T> Twas coexistence is approached 
(complete wetting). These results are in agreement with the­
ory. However, this logarithmic behavior is predicted by both 
the RG work and MF theory. Since a direct evaluation of the 
correlation length is technically difficult, the singular part of 
the surface magnetization at the transition 
!J.m l = m l - m J (h = 0) andXJ = amJdh were calculated. 
From scaling we expect21 

l:s = t 2vPU (h It 2vp) 
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at the critical wetting transition, where t = hi - h Ie' This 
implies 

Xl=a2~Jahahl=t-1Xl(ht2Vp) -h -1I2v
p. 

t=[) 

Similarly, we have ~ml-h 1 - 1I2l'p. Surprisingly, forbothJ I 
kB T = 0.25 and 0.35 the results are consistent with vp = 1 
(Fig. 2), i.e., the MF result instead of the (nonuniversal) 
exponent listed in Table I. As discussed above, since we be­
lieve (1) > ~ at these temperatures (so that v p > 2), these re­
sults are in striking disagreement with the theoretical predic­
tions! 

Subsequently, Gompper and KroH 15 simulated lattice 
version of the effective interface model 

F= fd2p[(Q"/2HVl)2-Ae-lISb 

+Be 21Isb + hl ], [>0, 

directly. Since both the MF approximation as well as the RG 
theories predict that 51' diverges as h -1/2 for h-O at the 
critical wetting transition, it was convenient to simulate the 
singular h dependence of the coverage and excess surface 
magnetization 11m 1 [given by (e -II!;,,) J. AnL xLgeometry 
with periodic boundary conditions was chosen and L was 
varied between 10 and 40 in order to study finite size effects. 

Simulations were performed for two values of u)(O.25 
and 1.0). For lu = 1.0, B = 1.0 was employed, while for 
w = 0.25 simulations were performed for both B = 0.1 and 
1.0 in order to determine the influence of B on the size of the 
asymptotic critical region. For (J) <! theory8 predicts that 
the coverage (I) diverges asymptotically as (1 + 2cu) In SP 
with 5p~h --1/2 while for ~<o)<2, (n 
-.J8o~[ln5p - (l/8)ln InspJ· In both cases we expect 
am[ - (e - IISb

) ~h 1- li2vp. The results ofthe simulation are 
shown in Fig. 3. The solid lines are obtained by integrating 
the full functional RG recursion relations and matching in 
the usual fashion when the long wavelength fluctuations 

'001 

x :f" 
10 ~ 

os ~ 

_O'~ E D 
<I 0.2 

= 0.1 

.J1ymbo( l 
20 
30 
50 

00 

0.001 0.002 0.005 o.m 0.02 C.OS 

HIJ 

FIG. 2. Surface-layer susceptibility X, for J,iJ = 1. J IkE T= 0.35, and 
hJJ= -0.89, and excess surface magnetization 6.m, for J,IJ= 1, 
J Ike T= 0.25, and h,IJ = - 0.55, plotted vs h IJ. 
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h 

Ibl h 

FIG. 3. (a) Coverage (I > and (b) excess surface rnagnetizaiton L>m , vsh for 
(1) (U = 0.25, B = 0.1 and (2) lJ) = 1, B = 1. The solid lines are obtained by 
integrating the fun RG recursion relations. 

have been integrated out. The agreement is excellent! This 
shows that the RG treatments of (10) are correct, at least in 
the range of «) investi.gated. 

The discrepancy between these results and the simula­
tion of the fun three dimensional Ising model is puzzling . 
Several explanations are possible. It may be that the value of 
0) for the Ising model is much smaller than we believe at the 
temperatures tested. It's also possible that the critical region 
is extremely narrow and has not yet been reached in the 
three-dimensional simulation. This, however, seems unlike­
ly since the range of scaling fields studied in the two simula­
tions is about the same. It is also possible that there is some­
thing fundamental which we do not yet understand and that 
the effective interface model (to) does not captivate the es­
sentia! physics of wetting in the three dimensional Ising 
model. 

In any case, these results indicate that the present theo­
retical understanding of critical wetting with short-range 
forces in d = 3 is still incomplete. More work is needed to 
determine the width of the asymptotic critical regime, to 
understand the influence of lattice effects, and to narrow 
down uncertainties in the value of w for the Ising model. 
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m. WETTING IN fcc ISING ANTIFERROMAGNETS22 

Help from the experimentalist would be most useful in 
sorting out these problems. As already mentioned, magnetic 
insulators with a bulk first-order transition are good candi­
dates for such experiments. Metamagnets,23 i.e., Ising anti­
ferromagnets which undergo a first-order transition in suffi­
ciently strong external magnetic fields are a common 
example of such systems. Another example, which we dis­
cuss here in more detail, is an Ising antiferromagnet on an fcc 
lattice. In this case the Landau-Ginzburg model describing 
the transition to the phase with L 12 structure contains a cu­
bic invarient so that the transition is intrinsically first order. 

A common characteristic of all these systems is that sev­
eral densities are needed to describe the order. The prevail­
ing wisdom has been that the resulting wetting behavior is 
independent of the number of densities needed to describe 
the thermodynamic state. This belief amounts to the as­
sumption that the only relevant length scale in the problem is 
that dictated by the order parameter. However, since this 
length remains finite at the transition (for finite range 
forces), this assumption is not justified in general. In fact, as 
we shall see, MP theory predicts that the wetting exponents 
are nonuniversal in this case, depending on many details of 
the system such as the structure of the ordered phase, the 
crystal surface, as wen as the relative strength of the nearest­
neighbor (nn) and next-nearest-neighbor (nnn) interac­
tions. This behavior is caused by the competition between at 
least two relevant length scales in the problem-that given 
by the order parameter and at least one of the nonordering 
densities. Before proceeding it should be emphasized that 
the novel features we discuss in this section are intimately 
connected with the short-range nature of the forces. The 
long-range forces induced by conduction electron in metallic 
alloys and magnets modify the critical behavior consider­
ably; in particular, different critical exponents are to be ex­
pected and a nonuniversality of the type discussed in this 
section doesn't occur (see Sec. IV). On the other hand, the 
results should apply to magnetic insulators, in which ex­
change interactions are truly short range. 

To illustrate this behavior, an fcc Ising antiferromagnet 
with nn and nnn interactions which exhibits an L 12 
(Cu3Au) ground-state structure was studied. 22 The Hamil­
tonian is of the form 

H = J )' O"jO"j - aJ L (FiO"j - HIpi - H i 2Pi' 
~) (nnn) i ic.8 

(12) 

where the first sum ranges over nn and the second over nnn 
pairs of sites. a = 0.2 was used so that the nn interactions are 
antiferromagnetic and the mm couplings ferromagnetic. The 
last term is a surface field acting on the first one or two 
surface planes. Surface enhancement effects were not con­
sidered. 

Wetting transitions which occur at (100), (110), and 
(111) free surfaces as the L 12 order-disorder transition is 
crossed going from the ordered to the disordered state were 
studied. In order to describe the ordered state we need to 
distinguish two types of sublattices. The a sublattice (pre­
ferred sites for "up" spins) was chosen to consist of all face 
centered lattice sites and the!3 lattice to be composed of all 
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corner sites of the fcc lattice. 
In the [111] direction an lattice planes are equivalent; 

two densities are thus needed to describe the wetting profiles. 
In contrast, in the [100] and [110] directions there are two 
distinct types of planes. Planes of type 1 consist of an equal 
number of a and f3 sites. while the other, type 2 planes con­
sist only of a sites. 

In the MP approximation one finds that continuous 
wetting transitions are possible at aU three surfaces for ap­
propriately chosen surface fields hi' In the [111 J direction 
numerical solution of the lattice MP equations indicates that 
the surface order goes to zero with the exponent PJ = ~, in 
agreement with the single component model discussed in the 
introduction. Significantly different behavior was obtained 
at (100) and (110) surfaces. For a (100) surface one find 
PI ;::;:2.22 at the critical wetting transition while at a (1 iO) 
surface, although /31 = ~, the true asymptotic scaling region 
is extremely narrow, indicating the presence oflarge correc­
tion to scaling terms. 

The reason for the drastic difference in behavior at these 
three surfaces is that while one length scale (measured for 
example by the width of the MP order parameter interface) 
dominates in the [{ 11 J direction, there are two characteris­
tic lengths of comparable size in the [ 100] and [1101 direc­
tions. It's the competition between these two length scales 
which leads to this nonuniversal behavior. This effect is rath­
er easy to understand in terms of an effective interface model 
similar to (10). A procedure similar to that outlined above 
for the single component case leads to the free energy func­
tionaf2 

(13 ) 

where 51/ (5c) is the bulk order parameter (concentration) 
correlation length in the disordered surface phase in the di­
rection perpendicular to the interface and the reduced tem­
perature t - ( T >I< - T) is a measure of the distance from the 
bulk first-order phase transition (located at T >1<). A1/ is pro­
portional to the surface field conjugate to the order param­
eter [it's zero for model (12) J and Ac is rdated to the sur­
face fields Hi in (12). The free energy functional (13) is 
derived in Ref. 22. 

For 5'1 > 25c the leading terms in (13) are i It" and 
e - 211tn so that the surface critical behavior is the same as in 
the single component case. However, qualitatively new be­
havior occurs for 571 < 25c. Consider A1] = O. Since the lead­
ing exponential term is e- liSe, the transition for t -> 0 is con­
tinuous if Ac > O. The equilibrium thickness (I> of the 
wetting layer again grows logarithmically (but with a differ­
ent amplitude), but the singular behavior of the surface or-

. h d I h' -(I)lt;c th t der parameter 1S c ange . n t .is case e - ~ t so a 
Pi = 5,.151] >~. The exponent depends explicitly on the ra­
tio of the length scales. 24.25 

In the [lOOJ direction one finds 5c > 251] so that PI> 2 
in agreement with the numerical results mentioned above. In 
the [110 J direction 571 ;::;: 25 c so that the asymptotic region is 
very narrow because of the competition between the two 
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terms e - ! Is, and e - 211s" in ( 13) . 

Monte Carlo simulations were subsequently per­
formed26 on model ( 12). (100) and ( 111 ) free surfaces were 
studied. A 2L X 2L X 2D lattice ( 1O..;;L..;; 20 and lO..;;D..;; 23 ) 
was used in the simulation and preferential surface site selec­
tion was again employed. Between 7500 and 30 000 MC 
steps/spin were used in evaluating expectation values, and 
the reduced temperature interval 5X 1O--3 ..;;t..;;10- 1 was 
studied. In the [111] direction.8! was found to depend rath­
er strongly on the value of the surface field HI in this tem­
perature range. This is consistent with the MF results. For 
large HI where MF theory indicates that the critical region is 
widest, PI -->~, the MF exponent. In the [100 J direction, 
.81 -:::; 1. 78 was found deep in the critical wetting region and 
fl ~ -;:::.0.76 at the tricritical transition (Ae =Oin (12)]. 
Since the value of w is not known in this case it is not possible 
to compare these results directly with RG theory. However, 
MF theory predicts that,s' ~ /.81 =~, while the Me data im­
ply f3 ~ /f31 -:::;0.44. Since RG theory predicts that this ratio is 
an increasing function of (i), the MC data again appear to 
support the MF prediction. As discussed in Sec. II, it is not 
yet clear why corrections to MF behavior were not observed. 

IV. UNIVERSALITY CLASSES AND LONG~RANGE 
FORCES 

Until now we have only considered short-range interac­
tions. "Short range" in the current context means that the 
interactions drop off at least exponentially fast with dis­
tance. This condition is not fulfilled in many cases. For ex­
ample, the dispersion forces which govern the wetting prop­
erties of fluids vanish as r- 6 at large distances. Similarly, the 
interactions in magnets with indirect or itinerate exchange 
are long range. In the rare earths, strongly localized f elec­
trons polarize the conduction electrons; this leads to RKKY 
interactions which are osciHatory and long range. The inter­
actions in ordering alloys such as CU3Au are of similar form. 

The easiest way to understand the influence of long­
range interactions is to use an effective interface Hamilto­
nian of the form ( 10). For dispersion forces the Hamiltonian 
has already been derived. 27

•
28 Given the elementary interac­

tion potentials, it would be easy to do so for ordering alloys 
or metallic magnets. 

Forlong range interactions the potential ~ (I) in (10) is 
of the form 

(14) 

For dispersion forces '0 = 2 and r 1 = 3. The critical wetting 
line corresponds to ao = 0, t = 0, and a I > O. Quite a lot is 
known concerning the critical behavior of the model defined 
by ( 10) and ( 14). We summarize here the results for disper­
sion forces; details may be found in Ref. 21. In the MF ap­
proximation we have a = - 1 and A = 4. There are two 
upper critical dimensions, d 1 = 11/5 and do = 2. Ford>d!, 
MF theory is correct, while for d 1 > d> do the transition still 
occurs at 0 0 = 0, but the exponents are renormalized. In par­
ticular, vp=l/[2(d-2)] and vplt:..=2!(d+l). For 
d < do the transition occurs at finite ao; although the ratio 
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'lip I ~ remains 2/(d + 1), 'lip is not yet known for general d. 
These results have been verified by transfer matrix methods 
ind = 2.21 

The most important implication of these results is that 
since d l < 3 (for all long-range forces), MF theory should 
correctly describe the wetting behavior. Since the exponents 
ro and '1 in (14) depend sensitively on the basic interaction 
parameters, measurements ofp] at surface induced disorder 
transitions could provide a useful check of our understand­
ing of the magnetic or ordering interactions in these systems. 
This would be very important since the interaction param­
eters in real materials are in general not well known. 
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