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Variational ground state for the periodic Anderson model 
Samuel P. Bowen 
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061 

Jay D. Mancini 
Department of Physics, Fordham University, Bronx, New York 10458 

A variational calculation of the ground state of the Anderson lattice model is discussed. The 
calculation creates a finite Hamiltonian matrix for many-electron states, which are appropriate 
for the thermodynamic limit. A simple 14 X 14 truncation is discussed for finite U and a 
smaller 3 X 3 is used for the large U limit. Both approximations indicate that the spin 
configurations of the localized/orbitals are antiferromagnetically correlated for nearest 
neighbors in the ground state. This anti ferromagnetic correlation is mediated by an RKKY 
interaction and thus offers a variety of spin orderings as a function ofIattice and density. 

INTRODUCTION 

The study of the ground state of the Anderson lattice 
model CALM) has recently generated several papers.! These 
studies have used a variety of methods, of which the most 
successful to date have been variational. The most frequently 
used technique in the last year has been the Gutzwiller meth­
od. 2 In this approach two particle states on the localized 
single-site! states are projected out of the variational wave 
function. The minimization of the energy functional is car­
ried out in the usual way. An essential assumption in most 
applications of the Gutzwiller wave function is the evalua­
tion of expectation values only at single sites on the lattice. In 
fact, many authors have correctly characterized the Gutz­
willer method as a single-site mean field theory' in the sense 
that eachf-orbital site is assumed to be the same as the oth­
ers. Recently, Vulovic' and Abrahams4 demonstrated that 
the Hartree Fock ferromagnetic ground state was lower in 
energy than the Gutzwiller paramagnetic state in the Kondo 
regime for a certain range of model parameters. This discov­
ery points out a weakness in the Gutzwiller approach in that 
no information about the spin correlations between localized 
f orbitals at different sites is available. 

This paper presents an alternative approach to the vari­
ational problem for the ALM, which does give information 
about intersite correlations. The method we propose here 
starts from the same initial state as the Gutzwiller method, 
but includes the doubly occupied states. We obtain informa­
tion about the f-orbitallattice spin configurations through 
their contributions to the ground-state energy. In particular, 
we find for a wide range of densities that the ground state 
should be dominated by a nearest-neighbor antiferromag­
netic correlation. A wide variety of orderings is possible. 

This method has its origin in the Mancini and Mattis5 

application of the Lanczos recursion scheme6 to many-elec­
tron states. The restriction of this original Lanczos method 
to tridiagonal total energy matrices was rdaxed7 with COIl­

siderable success and improved convergence when applied 
to the Anderson impurity model. The truncated matrix ap­
proximations for the type of basis states to be discussed be­
low gave much lower ground-state energies than the corre­
sponding Mancini-Mattis tridiagonalizations with less 
efiort. It was found in comparison with exact Bethe Anzatz 

ground state of the Anderson impurity model that the sim­
plest approximations of this approach recovered the major 
properties quite well. This paper represents an extension of 
these ideas to the ALM. 

The approach starts with a suitable many-electron state 
and then applies the HamiltonianH to it. Successive applica­
tions of H creates an energy matrix between orthogonal 
many-electron states. The initial stages generated in this se­
quence have been found to contain a surprising amount of 
information about the ground-state correlations. Finite 
truncations of this matrix have provided reasonably good 
approximations to the ground-state properties of the Ander­
son impurity model with relativelY little labor. In the sim­
plest demonstration of this property for the ALM we will 
show that a 3 X 3 matrix truncation (in the large U limit) 
displays an antiferromagnetic correlation which lowers the 
ground state over ferromagnetic and random spin configura­
tions. 

A possible strength of this method is its ability to exhibit 
ground-state information with relatively small amounts of 
effort. The ground-state energies are given in terms of aver­
ages of single-particle energies and occupation probabilities 
over the initial states.7 As will be seen below, this method 
seems to give information that has not been found in other 
methods. One drawback of this technique is, however, that 
small excitation energies from near the Fermi energy are not 
wen approximated in the initial truncations and will prob­
ably require very large basis sets. The vectors that are includ­
ed in the truncations are all valid in the thermodynamic lim­
it. 

METHOD 

The initial vector is the same as that used by the Gutz­
willer approach, and consists of a half-filled conduction 
band and the lattice of singly occupied! orbitals with a given 
spin configuration: 

l\{In> =A: 105,,052>"')' (1) 

where the spin configuration for the lattice is specified by the 
set of spins on each site (Sl'S2".') and A ): creates the Fermi 
sea. 

The ALM Hamiltonian is 
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(2) 

where Ck~ (cks ) andf I.~ (fts) are the creation (annihilation) 
operators for the conduction band electrons and localizedf 
electrons, respectively. The conduction band energies are 
given by Cks and thef-orbital energies are given by Es. The 
on-site coulomb repulsion for the localizedf electrons is U 
and the hybridization matrix element is V (assumed to be 
independent of wave vector k). 

The variational calculation is begun by applying the 
ALM Hamiltonian to 1\110 ), This gives two new orthogonal 
many-electron states !\{It) and !\{I2)' 

The first row of the Hamiltonian matrix in this basis is 

H !~o> = Eo/qJo> + ~N 5· !¥\> + IN [(r~-x,_ f!~2' 
where (3) 

l;Pl) = lINll[(T=:i--;) L e - Ik·R, 

k'/ 

(4) 

and 

11V2 ) = liN l/[(T=-x~T L e -IK·R, 

k'/ 

XCk\s,A/!Sj,sz,"'(O)l"") , (5) 
A 

where x ± is defined below in Eq. (6c). The first vector I \II I) 
creates a doubly occupiedfstate on the lattice and a conduc­
tion electron hole. The k sum is over the first Brillouin zone 
and the I sum is over the entire set oflattice sites. The second 
vector ! q, 2) creates an empty f orbital and a conduction elec­
tron above the Fermi energy. These two states are orthogo­
nal and their norms are given by 

('{ldll'l) = Nx_. , 

(1¥21I¥z) =N(l-x+), 

where 

(6a) 

(6b) 

x ± = lIN 2
')' nk ,( ± 51) (6c) 
try 

and where nks = <I¥olck~ Cks IlPo) and the sum represents the 
fractional occupation of the conduction band for particular 
spin states. Each of these vectors contains all possible con­
duction andl-electron single particle hole excitations appro­
priate for consideration in the thermodynamic limit. 

The operation of H on each of these two vectors gener­
ates 11 new vectors. These vectors correspond to all possible 
two-electron and two-hole states and their distribution 
between the conduction band and thej:electron lattice. We 
may classify these 11 vectors into three distinct classes: (A) 
vectors that are relevant in the thermodynamic limit 
(N -- 00, n ..... 00, ]V In finite), that is, those that have norms 
of order N; (8) vectors that are marginally relevant in the 
thermodynamic limit, that is, which have norms that are of 
order unity; (C) vectors that are not at all important in the 
thermodynamic limit, that is, those whose norms are of or­
der 1/ N. For this paper we will only include vectors of class 
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A in our ground-state estimates. The inclusion of an the vec­
tors in class B is required if one wants to approximate well 
the continuum excited states of the system. Including finite­
ly many of these class B vectors in the matrix will lower the 
ground state a very sman amount and will mostly fin in the 
spectrum of the excited states between the class A eigenval­
ues. The class A vectors have as diagonal matrix elements of 
the Hamiltonian matrix average band energies and they 
alone should give a good approximation to the ground state. 

The number of distinct vectors in class A is only four, 
These can be further classified by their excitation structure 
on the f-orbitallattice and thus by their dependence on U, 
The f-electron spin lattice configuration can be represented 
by a set which displays the sequence of spins on each site. A 
particular spin in a configuration at a site will be represented 
by ansI' whiIean emptyforbital will be represented by (O)!> 
and a doubly occupied site will be denoted by (x) t. The four 
types of vectors are 

is]"oo,(O)j, ... ,(Oh,oo"sn) , 

ISl>""(X) 1" .. ,(0) I' , ... ,S,,), 

!Sj, ... ,(O) I>""(X) I' ,oo',Sn), 

iSJ'''''(x) I"'" (X) I' ""'Sn)' 

(7a) 

(7b) 

(7c) 

Oct) 

The three vectors (7b)-(7d) all have diagonal Hamiltonian 
matrix elements with a U term. For large U the effect of these 
vectors on the lowest energy of the matrix will be very small. 
Because of size limitations on this note We will not explicitly 
consider these three vectors except to examine some of their 
matrix elements below. 

To examine the ground-state energy in the large U limit 
we need only consider a matrix that has three distinct vec­
tors: 1'1'0>' the vector in Eqs. (4) and (7a). The diagonal 
matrix elements are Eo, Eo + DE, Eo + 286, respectively, 
where Eo is the energy of the conduction band and the singly 
occupied lattice off orbitals. The energy 8£ is the average 
particle-hole excitation for conduction electron f-orbital 
hole excitations and is defined by 

Oe = lINI, (Eks ] - E ls , )n kS , ' 

k'/ 

(8) 

The off-diagonal Hamiltonian matrix element between i\llo) 
and 1'{lI> is V IN(T=-x~T, where x + is the fractional occu­
pation number of the conduction band wth spin that is the 
same as thef-orbital configuration of !\{Io)' The major effect 
to be reported in this paper is a consequence of the matrix 
element between the vectors in Eqs. (4) and (7a), This ma­
trix element is 

r=[ N 2«(l-Xt-)2 
(l-x+) 

(9) 

( 10) 

It is important to notice in Eq. (9) that the lattice sum of the 
squares ofthe RKKY functions contain only terms in which 
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the two spins are parallel. This means that the second term in 
the matrix element will be largest when all of the spins are 
aligned in a ferromagnetic arrangement. Such an arrange­
ment will make the value ofthis off-diagonal matrix element 
its smallest. Any other arrangement of spins will give a larg­
er matrix element and thus a lower ground-state energy esti­
mate. Because the RKKY functions are largest for small 
separations and oscillate with increasing R the effect of the 
nearest neighbors will be largest in the lattice sum. Thus f­
orbital lattice spin configurations which have strong nearest­
neighbor antiferromagnetic correlations will result in the 
lowest ground-state estimates. 

An approximate expression for the ground state of the 
3 X 3 matrix mentioned above is 

E =Eo- N(V
2

/&) [1 + (r/&)2+ "'J, (11) 
g ~----~ 

yO-x\-) 

where we have expanded in a series expansion to lowest Of­

der in the matrix element (9). As discussed above, in a ferro­
magnetic lattice r is its smallest. In an antiferromagnetic 
configuration r will be its largest and the ground state wiiI 
be at its lowest. 

This conclusion about the /-orbital spin configurations 
is not altered by the inclusion of the vectors (7b) - (7 d). The 
remaining matrix elements in the extended matrix, which 
are necessary for a finite U discussion are of the form 

'-'--_._( 1" I R 12)112 ...;N /x_ x_ (1 - x+) + Il.T £... {) _s"s,IJ ( ll') 
H 11.,,40 

(12) 

Note that here the RKKY factor lattice sums only contain 
contributions from pairs off orbitals with antiparallel spins 
and the sums in this ca.<;e increase the size of the matrix ele­
ments. In this case larger matrix elements also will be given 
by antiferromagnetic correlations, especially between neigh­
boring sites. These larger matrix elements will further con­
tribute to a lower ground-state energy. 

The RKK Y functions have a scale factor determined by 
the Fermi wave vector of the conduction band. This gives an 
indirect dependence on the lattice spacing. In real lattices, 
these functions will reflect the symmetry of the Fermi sur­
face and have different values for different crystal directions. 
It is possible that a great variety of spin configurations could 
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be consistent with the lowest ground state depending on the 
location of the zeros of the RKKY functions and the spacing 
of the lattice sites. 

SUMMARY 

In this work we have applied a discrete matrix method 
to the variational calculation of the ground-state energy of 
the ALM. While this method is not extremely sensitive to 
excitations close to the Fermi energy it nevertheless gives 
information about ground-state spin correlations which are 
induced by the interplay of the hybridization and the Cou­
lomb repulsion. The results of this work are valid for finite U. 
One of the more surprising aspects of this study is that the 
size of U does not alter the qualitative conclusion that anti­
ferromagnet correlations among the localized/spins domi­
nates the ground state of the ALM. Matrix elements which 
are operable for finite U also favor nearest-neighbor antifer­
romagnetic correlations. This variational method is not de­
pendent on the dimensionality of the system and a compari­
son of the ground states in different dimensions will be 
discussed elsewhere. Another aspect of this approximation 
which needs to be explored further is the variety of spin con­
figurations and crystal structures that arise out of the inter­
play of the range and symmetry of the RKKY functions. 
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