
Modeling of resonant magneto-electric effect in a magnetostrictive and piezoelectric
laminate composite structure coupled by a bonding material
D. Hasanyan, Y. Wang, J. Gao, M. Li, Y. Shen, J. Li, and D. Viehland 
 
Citation: Journal of Applied Physics 112, 064109 (2012); doi: 10.1063/1.4752271 
View online: http://dx.doi.org/10.1063/1.4752271 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/112/6?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in
magnetostrictive-piezoelectric layered composites 
J. Appl. Phys. 112, 013908 (2012); 10.1063/1.4732130 
 
Dual-resonance converse magnetoelectric and voltage step-up effects in laminated composite of long-type
0.71Pb(Mg1/3Nb2/3)O3–0.29PbTiO3 piezoelectric single-crystal transformer and Tb0.3Dy0.7Fe1.92
magnetostrictive alloy bars 
J. Appl. Phys. 109, 104103 (2011); 10.1063/1.3587574 
 
Experimental evidence of end effects in magneto-electric laminate composites 
J. Appl. Phys. 102, 124901 (2007); 10.1063/1.2822455 
 
Magnetoelectric effect in magnetostrictive/piezoelectric laminate composite Terfenol- D ∕ Li Nb O 3 [ ( z x t w ) −
129 ° ∕ 30 ° ] 
Appl. Phys. Lett. 88, 172903 (2006); 10.1063/1.2198486 
 
Magnetoelectric effect in hybrid magnetostrictive-piezoelectric composites in the electromechanical resonance
region 
J. Appl. Phys. 97, 113910 (2005); 10.1063/1.1929865 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Wed, 06 May 2015 21:56:52

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1683370892/x01/AIP-PT/MIT_JAPArticleDL_042915/MIT_LL_1640x440_banner.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=D.+Hasanyan&option1=author
http://scitation.aip.org/search?value1=Y.+Wang&option1=author
http://scitation.aip.org/search?value1=J.+Gao&option1=author
http://scitation.aip.org/search?value1=M.+Li&option1=author
http://scitation.aip.org/search?value1=Y.+Shen&option1=author
http://scitation.aip.org/search?value1=J.+Li&option1=author
http://scitation.aip.org/search?value1=D.+Viehland&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4752271
http://scitation.aip.org/content/aip/journal/jap/112/6?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/1/10.1063/1.4732130?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/112/1/10.1063/1.4732130?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/10/10.1063/1.3587574?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/10/10.1063/1.3587574?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/109/10/10.1063/1.3587574?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/102/12/10.1063/1.2822455?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/88/17/10.1063/1.2198486?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/88/17/10.1063/1.2198486?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/97/11/10.1063/1.1929865?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/97/11/10.1063/1.1929865?ver=pdfcov


Modeling of resonant magneto-electric effect in a magnetostrictive and
piezoelectric laminate composite structure coupled by a bonding material

D. Hasanyan,a) Y. Wang, J. Gao, M. Li, Y. Shen, J. Li, and D. Viehland
Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA

(Received 8 June 2012; accepted 9 August 2012; published online 18 September 2012)

The harmonic magneto-electro-elastic vibration of a thin laminated composite was considered. A

theoretical model, including shear lag and vibration effects was developed for predicting the

magneto-electric (ME) effect in a laminate composite consisting of magnetostrictive and

piezoelectric layers. To avoid bending, we assumed that the composite was geometrically

symmetric. For finite length symmetrically fabricated laminates, we derived the dynamic

strain-stress field and ME coefficients, including shear lag and vibration effects for several

boundary conditions. Parametric studies are presented to evaluate the influences of material

properties and geometries on the strain distribution and the ME coefficient. Analytical expressions

indicate that the shear lag and the vibration frequency strongly influence the strain distribution in

the laminates and these effects strongly influence the ME coefficients. VC 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4752271]

I. INTRODUCTION

Multiferroics are a special class of materials that have

attracted much attention because of their potential for

enhanced functionality in sensors and devices.1,2 For the past

fifty years, magnetoelectric (ME) materials have evolved

from single phase compounds, to particulate composites, and

finally to laminate composites.1–10 The remarkably higher

ME effects observed in laminate composites are produced by

mechanically coupling continuous magnetostrictive and pie-

zoelectric layers. For example, a ME voltage coefficient of

22 V/cm Oe under a low Hbias of 2 Oe was reported by

authors.3,11 While several models for laminate ME compo-

sites exist, these typically over predict the experimental

results significantly. This paper provides an explanation for

this discrepancy and a corresponding analytical model vali-

dated with experimental results.

Authors12 provided an analytical foundation for static

ME laminate composites. However, this theoretical approach

gave a huge disagreement with experiments, because of an

assumption that all field functions are homogeneously dis-

tributed throughout the composite. To eliminate disagree-

ment between analysis and experiments, authors13 proposed

a model that include interface coupling parameter k to

account for sliding boundary conditions at the ME laminate

interfaces. While this provided an approach to better corre-

late theoretical analysis with the test data, it is unlikely that

interface slip occurs at well-bonded continuous interfaces.

The magnitude of the ME effect significantly increases in the

region of the electromechanical resonance.8,14 Theory of this

phenomenon was developed and experimentally verified

using samples in the form of disks and plates. A theoretical

model that predicts very strong ME interactions at magneto

acoustic resonance in single-crystal ferrite-piezoelectric

bilayer is discussed in Ref. 15.

Another possible influence on ME laminates that has not

been well considered is the shear lag effect. Authors16 pre-

sented a modified shear lag approach to predict load transfer

between piezoelectric actuators and an elastic substructure,

i.e., electromechanical coupling. The corresponding stress

and strain distribution in the piezoelectric laminate compos-

ite were studied and confirmed by experiments. Modeling of

static shear lag and demagnetization effects in ME laminate

composites was proposed by authors.17 However, a dynamic

shear lag yet has not applied to electro-magneto-mechani-

cally coupled ME composites.

In this paper, an analytical model is proposed to predict

the dynamic response of a laminate ME composite. Shear lag

analysis, along with geometrical and vibration characteris-

tics, is incorporated to provide spatial solutions for strain,

magnetic field variations, as well as effective ME voltage

coefficient.

II. MODEL AND CONSTITUITIVE EQUATIONS FOR
A THREE LAYER ME LAMINATE COMPOSITE
CONSIDERING AN INTERLAYER BONDING MATERIAL

We consider a tri-layer laminated structure in the shape

of a bar with a length 2L and a total thickness of

h¼ 2hbþ hpþ 2hm (L�h). The specimen is polarized along

the longitudinal (L) direction to the planes of the contacts (i.e.,

the x3-axis). Static (magnetic bias) and alternating magnetic

fields were applied along the L direction and across the planes

of the contacts (~Happl). Magnetostrictive and piezoelectric

layers are bonded together with a bonding material-layer of a

finite thickness hb and of finite elastic properties Gb. If the

thickness of the bonding layer hb ! 0 or shear modulus

Gb !1, we can assume that the magnetostrictive and piezo-

electric layers are perfectly bonded together. A schematic

view of the considered problem is shown in Figure 1.

Due to magnetostriction, an alternating magnetic field

induces vibrations in the magnetostrictive layers, which

propagate both across and along the specimen. Our further
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considerations will be a case for only bulk vibrations propa-

gating along the plane of the specimen (i.e., no bending).

Mechanical vibrations of the magnetostrictive medium are

transferred to the piezoelectric component via mechanical

bonding, wherein an electric field is induced by the piezo-

electric effect.

We assume further that the total thickness

(h ¼ 2hb þ hp þ 2hm) and width W of the specimen are

much smaller than its length 2L and the stresses on its

surfaces can be assumed to be equal to zero. Since the plate

is thin and narrow, i.e., 1D strain-displacement state, we

can also assume that the stress components T1 and T2 are

equal to zero not only on the surface but also in the bulk:

Only the T3 tensor component is different from zero. We

also assume that only the E3 and H3 components of the

electric and magnetic fields are non-zero. Accordingly,

the equations for the strain tensor S3m and the magnetic

induction B3 in the magnetostrictive layers and for the

strain tensor S3p and electric field inductance D3p in the pie-

zoelectric ones for the case of a longitudinal field orienta-

tion have the following form:18,19

S3m ¼ sM
33T3m þ q33H3;

B3 ¼ q33T3p þ l33H3;

S3p ¼ sP
33T3p þ d33E3;

D3 ¼ d33T3p þ e33E3;

(1)

where sM
33 and sP

33 are the elastic compliance tensors com-

ponents of the magnetostrictive and piezoelectric layers,

respectively; e33 and l33 are the relative dielectric and

magnetic permeability tensor components of the piezo-

electric and piezomagnetic layers respectively; and d33

and q33 are the piezoelectric and piezomagnetic coeffi-

cients, respectively. Note that for the case of transverse

orientation of H1ðE1Þ; the functions q33 (d33Þ and H3ðE3Þ
will be replaced by q31 (d31Þ and H1 (E1) in Eq. (1),

respectively.

Shear lag analysis then assumes a pure shear in the

bonding layer and a pure extension in both the piezoelectric

and magnetostrictive layers. The 1D strain-displacement

relationships are thus

S3m ¼
@u3m

@x3

; S3p ¼
@u3p

@x3

; cb ¼
u3p � u3m

hb

; (2)

where cb denotes the shear strain in the bonding layer, which

is related to shear stress by an isotropic stress-strain relation-

ship s ¼ Gbcb (see Refs. 16 and 17). For the pure extension

assumption, as illustrated in the free body diagram of Fig. 1,

the force equilibrium equations for the representative ele-

ments are given by

qm

@2u3m

@t2
¼ @T3m

@x3

þ s
hm

;

qp

@2u3p

@t2
¼ @T3p

@x3

� 2s
hp

;

(3)

where qm and qp are densities of the magnetostrictive and

piezoelectric phases, respectively. Equations (1)–(3) should

be considered, along with Maxwell’s magnetostatic and elec-

trostatic equations in magnetostrictive and piezoelectric

layers, given as

div ~B ¼ 0; rot ~H ¼ 0;

div ~D ¼ 0; t ~E ¼ 0:
(4)

Equations (1)–(3) are written under the assumption that all

field components do not vary through the thickness and

width directions of the laminate composites.

III. GENERAL AND SPECIFIC SOLUTIONS FOR
MODEL

First, we must set up the equations. Using the constitu-

tive equations of Eq. (1), the bonding stress-strain relations

of s ¼ Gbcb, the strain-displacement equations of Eq. (2),

the equations of motions of Eq. (3), and Maxwell’s equations

of Eq. (4), two coupled partial differential equations can be

derived in terms of the displacements u3mðx3; tÞ and u3pðx3; tÞ

qm

@2u3m

@t2
¼ l33

sM
33l33 � q2

33

@2u3m

@x2
3

þ Gb

hmhb

½u3p � u3m�; (5)

qp

@2u3p

@t2
¼ e33

sP
33e33 � d2

33

@2u3p

@x2
3

� 2Gb

hphb

½u3p � u3m�: (6)

Assuming

u3mðx3; tÞ ¼ umðx3Þeixt; u3pðx3; tÞ ¼ upðx3Þeixt;

H3ðx3; tÞ ¼ H3eixt and E3ðx3; tÞ ¼ E3eixt

from Eqs. (5) and (6), we can derive

x2

X2
m

umðzÞ ¼ am
d2u3m

dz2
þ bm½u3p � u3m�; (7)

FIG. 1. Magneto electric laminated composite. The arrow’s indicates the

direction of polarization, applied magnetic field, and shear stress between

two phases.
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x2

X2
p

upðzÞ ¼ ap
d2u3m

dz2
� abp½u3p � u3m�: (8)

In Eqs. (7) and (8), we introduced following nondimensional

parameters:

X2
m ¼

1

qmsM
33L

; X2
p ¼

1

qpsP
33L

; am ¼
l33sM

33

sM
33l33 � q2

33

;

ap ¼
e33sP

33

sP
33e33 � d2

33

; bm ¼
GbsM

33

tmtb

;

bp ¼
GbsP

33

tptb

; a ¼ 2; z ¼ x3=L; tp ¼ hp=L;

tb ¼ hb=L; tm ¼ hm=L:

Second, we must find the general solutions of the equations.
The general solutions of the system of Eqs. (7) and (8) can

be expressed in the following two forms under different

conditions:

(1) If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ
upðzÞ

� �
¼ 1

~k1

� �
A1 sinc1zþ 1

~k1

� �
A2 cosc1z

þ 1
~k2

� �
A3 sinc2zþ 1

~k2

� �
A4 cosc2z; (9)

(2) If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ
upðzÞ

� �
¼ 1

~k1

� �
A1 sinc1zþ 1

~k1

� �
A2 cosc1z

þ 1
~k2

� �
A3 sinhc2zþ 1

~k2

� �
A4 coshc2z: (10)

In Eqs. (9) and (10), we introduced the following notations:

~kk ¼
1

bm

x2

X2
m

� amkk þ bm

" #
; ck ¼

ffiffiffiffiffiffiffi
jkkj

p
: (11)

kk¼
1

2amap
am abp�

x2

X2
p

 !
þap bm�

x2

X2
m

 !
þð�1Þk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
am abp�

x2

X2
p

 !
þap bm�

x2

X2
m

 !" #2

þ4amapabpbm

vuut
8<
:

9=
; ; ðk¼ 1;2Þ:

(12)

From Eq. (12), we can show that, k1 < 0 for 0 � x <1;
k2 > 0 for 0 � x � x0, and k2 < 0 for x0 < x <1.

Third, we must apply boundary conditions to get specific
solutions. Four boundary conditions can now be applied to

determine the four unknown constants of Aiði ¼ 1; 2; 3; 4Þ. It

should be noted that the magnetostrictive and piezoelectric

strains q33H3 and d33E3 do not appear explicitly neither in the

motion equations of Eqs. (5) and (6) nor in the solutions of

Eqs. (9) and (10), but they enter into the solutions through the

boundary conditions. We next have to examine the following

three particular boundary conditions applied to the edges of

the laminated composite: case (I) both ends are traction free;

case (II) one end is clamped and the other end is traction free;

case (III) both ends are traction free of the magnetostrictive

layers and zero strains on both ends of the piezoelectric layer.

Using the constitutive equations of Eq. (1) and the

strain-displacement relations of Eq. (2), the boundary condi-

tions for the above mentioned three cases can be expressed

in terms of their displacements as follows:

Case (I)

For z ¼ 61

dupðzÞ
dz

¼ d33E3 and
dumðzÞ

dz
¼ bq33H3: (13)

Case (II)

For z ¼ �1

upðzÞ ¼ 0 and umðzÞ ¼ 0: (14)

When z ¼ þ1

dupðzÞ
dz

¼ d33E3; and
dumðzÞ

dz
¼ bq33H3: (15)

Case (III)

For z ¼ 61

dupðzÞ
dz

¼ 0 and
dumðzÞ

dz
¼ bq33H3: (16)

In Eqs. (13), (15), and (16), we introduced a demagnetization

coefficient of b ¼ 1� Ndðl33 � 1Þ, where Nd is a demagnet-

ization factor which is a function of sample geometry. The pa-

rameter b belongs to the interval of 0 < b < 1 (see Refs. 17

and 20). If, for ferromagnetic plates, tm < 10�1, then b � 1.

Using the general solutions of Eq. (9) or (10) and the

boundary conditions for these cases mentioned above, we

can uniquely determine the unknown coefficients

Aiði ¼ 1; 2; 3; 4Þ. Without going into details, the specific sol-

utions for Eq. (9) or (10) can be expressed as follows:

Case (I)

If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ ¼
~k2bq33H3 � d33E3

~k2 � ~k1

sinc1z

c1cosc1

þ d33E3 � ~k1bq33H3

~k2 � ~k1

sinhc2z

c2coshc2

;

064109-3 Hasanyan et al. J. Appl. Phys. 112, 064109 (2012)
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upðzÞ ¼ ~k1

~k2bq33H3 � d33E3

~k2 � ~k1

sinc1z

c1cosc1

þ ~k2

d33E3 � ~k1bq33H3

~k2 � ~k1

sinhc2z

c2coshc2

;

If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ ¼
~k2bq33H3 � d33E3

~k2 � ~k1

sinc1z

c1cosc1

þ d33E3 � ~k1bq33H3

~k2 � ~k1

sinc2z

c2cosc2

;

upðzÞ ¼ ~k1

~k2bq33H3 � d33E3

~k2 � ~k1

sinc1z

c1cosc1

þ ~k2

d33E3 � ~k1bq33H3

~k2 � ~k1

sinc2z

c2cosc2

:

Case (II)

If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ ¼
~½k2bq33H3 � d33E3�

~k2 � ~k1

sinc1ðzþ 1Þ
c1cos2c1

þ ½d33E3 � ~k1bq33H3�
~k2 � ~k1

sinhc2ðzþ 1Þ
c2cosh2c2

;

upðzÞ ¼ ~k1

~½k2bq33H3 � d33E3�
~k2 � ~k1

sinc1ðzþ 1Þ
c1cos2c1

þ ~k2

½d33E3 � ~k1bq33H3�
~k2 � ~k1

sinhc2ðzþ 1Þ
c2cosh2c2

:

If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ ¼
~k2bq33H3 � d33E3

~k2 � ~k1

sinc1z

c1cosc1

þ d33E3 � ~k1bq33H3

~k2 � ~k1

sinc2ðzþ 1Þ
c2cos2c2

;

upðzÞ ¼ ~k1

~k2bq33H3 � d33E3

~k2 � ~k1

sinc1ðzþ 1Þ
c1cos2c1

þ ~k2

d33E3 � ~k1bq33H3

~k2 � ~k1

sinc2ðzþ 1Þ
c2cos2c2

:

Case (III)

If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ ¼
bq33H3

~k2 � ~k1

~k2

sinc1z

c1cosc1

� ~k1

sinhc2z

c2coshc2

� �
;

upðzÞ ¼ ~k1

~k2bq33H3

~k2 � ~k1

sinc1z

c1cosc1

� sinhc2z

c2coshc2

� �
:

If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

umðzÞ ¼
bq33H3

~k2 � ~k1

~k2

sinc1z

c1cosc1

� ~k1

sinc2z

c2cosc2

� �
;

upðzÞ ¼ ~k1

~k2bq33H3

~k2 � ~k1

sinc1z

c1cosc1

� sinc2z

c2cosc2

� �
:

IV. CALCULATION OF ME COEFFICIENT

The magneto-electric coupling coefficient aME can be

determined under the open circuit condition of

I ¼

ð ð
dD3

dt
dS ¼ 0; (17)

where the integral is evaluated over the surface S of

electrodes.

Using the constitutive equation of Eq. (1), condition

(17) can be rewritten as

e33 �
d2

33

sP
33

� �
E3 ¼ �

1

2

d33

sP
33

½upð�1Þ � upðþ1Þ�: (18)

Defining aME ¼ E3

H3
, from Eq. (18), we can then derive the fol-

lowing ME coupling coefficients for the identified three

cases

Case (I)

If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

aI
ME ¼

bq33d33

sP
33e33

~k1
~k2

~k1 � ~k2

1

DI

tgc1

c1

� thc2

c2

� �
; (19)

where DI ¼ 1� d2
33

sP
33e33

1�
~k1

~k1 � ~k2

tgc1

c1

þ
~k2

~k1 � ~k2

thc2

c2

( )
.

If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

aI
ME ¼

bq33d33

sP
33e33

~k1
~k2

~k1 � ~k2

1

DI

tgc1

c1

� tgc2

c2

� �
; (20)

where DI ¼ 1� d2
33

sP
33e33

1�
~k1

~k1 � ~k2

tgc1

c1

þ
~k2

~k1 � ~k2

tgc2

c2

( )
:

Case (II)

If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

aI
ME ¼

bq33d33

sP
33e33

~k1
~k2

~k1 � ~k2

1

DII

tg2c1

2c1

� th2c2

2c2

� �
; (21)

where DII ¼ 1� d2
33

sP
33

e33
1� ~k1

~k1�~k2

tg2c1

2c1
þ ~k2

~k1�~k2

th2c2

2c2

n o
.

If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

aI
ME ¼

bq33d33

sP
33e33

~k1
~k2

~k1 � ~k2

1

DII

tgc1

c1

� tgc2

c2

� �
; (22)
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where DII ¼ 1� d2
33

sP
33e33

1�
~k1

~k1� ~k2

tg2c1

2c1

þ
~k2

~k1� ~k2

tg2c2

2c2

( )
.

Case (III)

If x <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

aI
ME ¼

bq33d33

sP
33e33

~k1
~k2

~k1 � ~k2

1

DIII

tgc1

c1

� thc2

c2

� �
; (23)

where DIII ¼ 1� d2
33

sP
33e33

If x >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
¼ x0, then

aI
ME ¼

bq33d33

sP
33e33

~k1
~k2

~k1 � ~k2

1

DIII

tgc1

c1

� tgc2

c2

� �
; (24)

where DIII ¼ 1� d2
33

sP
33e33

:

From Eqs. (19)–(24) for the ME coefficient, it follows at

the frequencies where Di ¼ 0ði ¼ I; II; IIIÞ that there is reso-

nant increase in ai
MEði ¼ I; II; IIIÞ. Next, we need to consider

some particular cases for these solutions.

(a) Particular case of low frequency ME coefficients

with an account of shear-lag effect (i.e., static shear-lag).

The low frequency ME coefficient can be derived

assuming x! 0 in Eqs. (19)–(24). In this case, it is easy

to see that ~k1 ¼ 1, ~k2 ¼ 1� am

bm
k2ð0Þ, and k2ð0Þ

¼ abm

ap
þ bp

am
¼ GbsM

33

tb
a
ap

1
tm
þ sP

33

amsM
33

tp

	 

¼ j212, where ¼

ffiffiffiffiffiffiffiffi
GbsM

33

tb

q
,

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
ap

1
tm
þ sP

33

amsM
33

tp

r
, k1ð0Þ ¼ 0, c1 ¼ 0, and c2 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k2ð0Þ

p
¼ c20. For example, the ME coefficient of case (II) can then

be simplified to

aII
ME ¼ �

bq33d33

sP
33e33

1

DII

abpam

apbm þ abpam
1� th2j1

2j1

� �
; (25)

where, DII ¼ 1� d2
33

sP
33e33

1� ap

apþ agam
þ agam

apþ agam

th2j1
2j1

� �
.

This case is consistent with the results of authors.17 In

addition to x! 0; if we also assume perfect bonding

between layers i:e:; j ¼
ffiffiffiffiffiffiffiffi
GbsM

33

tb

q
!1

� �
, then from Eq.

(25), we can obtain the following expression:

aII
ME¼�

bq33d33

sP
33e33

gaam

apþgaam
1� d2

33

sP
33e33

1� gaam

apþgaam

� �� ��1

;

(26)

where g ¼ sP
33tm

sM
33tp

:

FIG. 2. (a) Locations of first resonant frequencies for three boundary cases. Case (I): blue line, case: (II) purple line, and case (III): green line. Graphs intro-

duced for following parameters: tm ¼ 0:02, tp ¼ 0:05; 2L ¼ 0:04 m, and j ¼ 100. (b) Locations of first resonant frequencies for three boundary cases. Case

(I): blue line, case (II): purple line, and case (III): brown line. Graphs introduced for following parameters: tm ¼ 0:002, tp ¼ 0:005; 2L ¼ 0:04 m, and

j ¼ 0:01. (c) Locations of first resonant frequencies for three boundary cases. Case (I): blue line, case (II): purple line, and case (III): brown line. Graphs intro-

duced for following parameters: tm ¼ 0:02, tp ¼ 0:005; 2L ¼ 0:04 m, and j ¼ 100. (d) Locations of first resonant frequencies for three boundary cases. Case

(I): blue line, case (II): purple line, and case (III): brown line. Graphs introduced for following parameters: tm ¼ 0:002, tp ¼ 0:05; 2L ¼ 0:04 m, and j ¼ 100.
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(b) Case of ME coefficients for perfect bonding between

layers.

If we assume perfect bonding between layers
�
i:e:;

Gb

tb
!1

�
, Eqs. (19)–(24) can be simplified. In this case

k1 ! �f2x2; k2 !1;
~k1

~k2

~k1 � ~k2

! 1þ agam=ap;

where f2 ¼ X�2
p

1

ap þ gaam
ð1þ agX2

mX�2
p Þ:

The ME coefficient in case (I) is then reduced to

aI
ME ¼ �

bq33d33

sP
33e33

1

DI

agam

ap þ agam

tgx1
x1

� �
; (27)

where DI ¼ 1� d2
33

sP
33e33

1� ap

ap þ agam

tgx1
x1

� �
.

Equation (27) is consistent to that developed in Ref. 21.

For frequencies of x ¼ 1
1 ðp2 þ pkÞ; k ¼ 0; 1;…, Eq. (27) then

simplifies to

aI
ME ¼ �

bq33

d33

: (28)

From Eq. (28), we can see for a composite made of Met-

glas and piezoelectric lead zirconium titanate (PZT) layers

(q33 ¼ 50 � 10�9 m=A and d33 ¼ 400 � 10�12 m=V), the ME

coefficient becomes aI
ME � 300 V=cmOe, and for a compos-

ite made of Permendur and PZT layers, (q33¼ 3 �10�9 m=A

and d33¼ 1:7 � 10�10 m=V) the ME coefficients are equal to

aI
ME � 16 V=cmOe.

V. NUMERICAL DISCUSSIONS

For calculations, we will make use of the following pa-

rameters for Metglas-PZT-Metglas three layer composite:

sM
33 ¼ 10 � 10�12 m2=N; q33 ¼ 50 � 10�9 m=A;

l33 ¼ l0 � 4:5 � 104; l0 ¼ 4p � 10�7N � A�2;

qm ¼ 7180 kg=m3; sP
33 ¼ 15:3 � 10�12 m2=N;

d33 ¼ 400 � 10�12 m=V; e33 ¼ 1750 � e0;

qp ¼ 7600 kg=m3; e0 ¼ 8:9 � 10�12 F=m:

We will also assume a laminate length L¼ 40 mm and the

demagnetization coefficient b¼ 1. The behavior of the ME

coefficients ai
ME ði ¼ I; II; IIIÞ was then calculated in terms

of the following parameters: a nondimensional frequency

X ¼ x=Xp, the relative thicknesses of magnetostrictive

and piezoelectric layers tm and tp, and the rigidity coeffi-

cient j ¼ GbsM
33

tb
. Figures 2–5 show the predicted dependence

of ai
ME ði ¼ I; II; IIIÞ calculated using Eqs. (19)–(24) for

different values of the parameters X ¼ x=Xp, tm, tp, and

j ¼ GbsM
33

tb
. From these figures, we can see that

• Boundary conditions have significant influence on reso-

nant frequency of the ME coefficient. For case (I), the

resonant frequency was about 80 kHz, for case (II), it was

about 40 kHz, and for case (III), it was about frequency

57 kHz [see Figs. 2(a)–2(d)].
• Comparisons of Figs. 2(a) and 2(b) show that the rigidity

parameter j not only changes the magnitude of the ME

coefficient but also the location of the resonant frequency.
• The thickness parameters tm and tp strongly influence the

location of the ME resonance frequency [see Figs. 2(c)

and 2(d)] and also the 3D representation of the ME coeffi-

cient [see Figs. 3(a) and 3(b)].
• The strain distribution is strongly inhomogeneous in the

layers. There are strong end effects [see Figs. 4(a)–4(d)].

The strain distribution is strongly influenced by frequency,

thickness of the layers, and the rigidity parameter.
• Figures 4(c) and 4(d) show for certain values of the fre-

quency and other parameters that the strain becomes large

in magnitude and has an oscillatory type of distribution.

This means that a linear theory is not completely suitable

to applications describing ME interactions.
• For an ac magnetic field of frequency x0	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
, the ME coefficient is not continuous

FIG. 3. (a) 3D dependence of ME coefficient aME on frequency and thick-

ness of magnetic layer tm. The other parameters chosen as j ¼ 100, tp
¼ 0:005; 2L ¼ 0:04 m: case (I). (b) 3D dependence of ME coefficient aME

on frequency and thickness of magnetic layer tm: The other parameters

chosen as j ¼ 100, tp ¼ 0:01; 2L ¼ 0:04 m: case (I).
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(i.e., the ME coefficient jumps from one value to another

[see Fig. 2(b) near 45 kHz]).
• The dependence of the ME coefficient on thickness of

the magnetic layer at low frequencies is shown on

Figs. 5(a)–5(c). From these figures, we can see that for

j¼GbsM
33

tb
>0:1, highest values of the low frequency ME

coefficient occur for case (II) (i.e., cantilever beam-

layers).

VI. CONCLUSIONS

An analytical model, including dynamic shear-lag effect

has been proposed for magneto-electric laminate composites.

The theory is applied to Metglas-PZT-Metglas tri-layer com-

posite structures. The frequency dependence of the ME coef-

ficient predicts that the resonance depends strongly on the

physical and geometrical parameters of the laminates.

FIG. 5. (a) Distribution of ME coefficient on thickness of magnetic layer tm.

Case (I): blue line; case (II): purple line, and case (III): green line. Graphs

introduced for following parameters: tp ¼ 0:01; 2L¼ 0:04 m;X¼ x
XP
¼ 20;

j¼ 0:01: (b) Distribution of ME coefficient on thickness of magnetic layer

tm. Case (I): blue line; case (II): purple line, and case (III): green line.

Graphs introduced for following parameters: tp ¼ 0:01; 2L¼ 0:04 m; X
¼ x

XP
¼ 20;j¼ 0:1: (c) Distribution of ME coefficient on thickness of

magnetic layer tm. Case (I): blue line; case (II): purple line, and case (III):

green line. Graphs introduced for following parameters: tp ¼ 0:01; 2L¼
0:04 m; X¼ x

XP
¼ 20;j¼ 100:

FIG. 4. (a) Strain distribution in piezoelectric for different values of rigidity

parameters and tm ¼ 0:002, tp ¼ 0:005; 2L ¼ 0:04 m;X ¼ x
XP
¼ 0: Blue line

j ¼ 10; purple line j ¼ 0:02, and green line j ¼ 0:01. (b) Strain distribution

in piezoelectric for different values of rigidity parameters and tm ¼ 0:02,
tp ¼ 0:05; 2L ¼ 0:04 m;X ¼ x

XP
¼ 5. Blue line j ¼ 10; purple line j ¼ 0:02,

and green line j ¼ 0:01. (c) Strain distribution in piezoelectric for different

values of rigidity parameters and tm ¼ 0:02, tp ¼ 0:05; 2L ¼ 0:04 m;
X ¼ x

XP
¼ 50. Blue line j ¼ 10; purple line j ¼ 0:02, and green line

j ¼ 0:01.
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Nondimensional shear lag parameter j, frequency

X ¼ x=Xp, and relative thicknesses of magnetostrictive and

piezoelectric layers tm and tp were used to study the influen-

ces caused by material properties and sample geometries on

the ME coefficient. The results indicate that shear lag causes

substantial strain inhomogeneity near free ends. For certain

values of frequency, the distribution of strain becomes large

and results in an oscillatory behavior, which makes question-

able a linear theory for ME interactions. We then show,

when the value of the ac magnetic field frequency equals

x0	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abpX

2
p þ bmX2

m

q
, the ME coefficient is not continu-

ous but rather jumps from one value to another.
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