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In this paper, we discuss a theoretical model with experimental verification for the resonance

enhancement of magnetoelectric (ME) interactions at frequencies corresponding to bending-tension

oscillations. A dynamic theory of arbitrary laminated magneto-elasto-electric bars was constructed.

The model included bending and longitudinal vibration effects for predicting ME coefficients in

laminate bar composite structures consisting of magnetostrictive, piezoelectric, and pure elastic

layers. The thickness dependence of stress, strain, and magnetic and electric fields within a sample

are taken into account, as such the bending deformations should be considered in an applied

magnetic or electric field. The frequency dependence of the ME voltage coefficients has obtained by

solving electrostatic, magnetostatic, and elastodynamic equations. We consider boundary conditions

corresponding to free vibrations at both ends. As a demonstration, our theory for multilayer ME

composites was then applied to ferromagnetic-ferroelectric bilayers, specifically Metglas-PZT ones.

A theoretical model is presented for static (low-frequency) ME effects in such bilayers. We also

performed experiments for these Metglas-PZT bilayers and analyzed the influence of Metglas

geometry (length and thickness) and Metglas/PZT volume fraction on the ME coefficient. The

frequency dependence of the ME coefficient is also presented for different geometries (length,

thickness) of Metglas. The theory shows good agreement with experimental data, even near the

resonance frequency. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4732130]

I. INTRODUCTION

Active materials with coupled electric, magnetic, and

elastic parameters that simultaneously display ferroelectricity,

ferromagnetism, and ferroelasticity can be called multifer-

roics. Multiferroics are a special class of materials that have

attracted much attention because of their potential for

enhanced functionality in sensors and other devices.1–3

Magnetoelectric (ME) effects are defined as an induced

polarization in an applied magnetic field, or an induced mag-

netization in an applied electric field. The ME effect is studied

by subjecting the sample to a magnetic (electric) bias field and

an ac magnetic field. One then measures the resulting ac elec-

tric (magnetic) field produced in the material. Over the past

fifty years, ME materials have evolved from single phase

compounds, to particulate composites, and finally to laminate

composites.1–4 Remarkably higher ME effects observed in

laminate composites are produced by mechanically coupling

continuous magnetostrictive and piezoelectric layers. While

several models for laminate ME composites exist, these sig-

nificantly over predict the experimental results.1–4 Here, we

provide an explanation for this discrepancy, and a correspond-

ing analytical model that corrects these differences which is

validated with experimental results.

Prior modeling investigations of laminate ME compo-

sites have sometimes made questionable assumptions: for

example, a homogeneous distribution of field functions

(stress, strain, and electromagnetic) through the layers.

Based on these approaches, many authors1–4 have provided

an analytical foundation for static ME laminate composites.

However, these theoretical approaches have yielded a huge

disagreement with experiments, because of an assumption

that all field functions are homogeneously distributed

throughout the composite. To eliminate disagreement

between analysis and experiments, various authors2–5 have

proposed a model that was free of the above mentioned

assumption, where field functions were allowed to vary

along (only) the longitudinal direction of the laminates (i.e.,

no bending). While this provided an approach to better corre-

late theoretical analysis with experimental data, the approach

was applicable only to symmetric laminated composite struc-

tures. However, for nonsymmetrical structures, this model

remained questionable. For example, ferromagnetic-

ferroelectric bilayers cannot be modeled only with interac-

tions along the longitudinal direction: in this particular case,

bending-tension modes always couple together and the field

functions vary not only along the longitudinal direction but

also through the thickness as well. Please note that the mech-

anism of ferromagnetic-ferroelectric interactions in this case

is quite complicated and that simplified approaches to

describe them often do not provide adequate conclusions.

Since the ME coupling in composites is directly pro-

duced by the mechanical stress, one would expect orders of

magnitude stronger coupling when the frequency of the ac

field is tuned to acoustic mode frequencies in the sample, rel-

ative to non-resonance ones. Many recent experiments and

modeling efforts have dealt with ME interactions at
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electromechanical resonances in layered composites.4 How-

ever, a key drawback of these studies of ME resonance

effects was that the resonance frequencies were quite high,

on the order of hundreds of kilohertz for nominal samples of

normal dimensions. In order to reduce the resonance fre-

quency, researchers have increased the laminate size, which

is disadvantageous for many applications. An alternative

approach to achieving strong ME coupling at lower frequen-

cies is resonance enhancement using bending modes of the

composite. The frequency of ac fields that must be applied to

the composite for such bending oscillations is much lower

than that of the longitudinal acoustic modes. Recent investi-

gations have shown giant ME effects at bending modes in

several layered structures.6–16

Here, we focus our attention on developing a model

which describes the dynamic ME effects at bending-tension

coupled modes. The important aspects of the model are as

follows: the thickness dependence of stress, strain, and mag-

netic and electric fields within a sample are taken into

account so that the bending deformations of a multilayer

composite in an applied magnetic or electric field can be

considered. For simplicity, we developed a model for a mul-

tilayer beam-plate structure. Many papers have been devoted

to symmetrically and asymmetrically laminated electro-

elastic bars: a bar theory, as a rule, is constructed by the

method of hypotheses.17,18 In this case, the well-known

Kirchhoff’s hypotheses are used for the mechanical quanti-

ties. The hypotheses for the electrical quantities are generally

taken without considering the electrical boundary conditions

of the faces of the piezoelectric-piezomagnetic layers.

As a validation, the theory that we developed for multi-

layer ME composites was applied to ferromagnetic-

ferroelectric bilayers. We considered boundary conditions

corresponding to free vibrations at both ends. Frequency de-

pendent longitudinal and transverse ME voltage coefficients

were obtained using the simultaneous solutions to the elec-

trostatic, magnetostatic, and elastodynamic equations. The

ME voltage coefficients were estimated from known material

parameters and were then compared to experimental data for

bilayers. The model is applied to the specific case of

Metglas-PZT bilayers. A theoretical model is presented for

static (low-frequency) ME effects in bilayers as a particular

case. We analyzed the influence of Metglas geometry (length

and thickness) and Metglas/PZT volume fraction on ME

coefficient. We also performed experiments for Metglas-

PZT bilayers. The frequency dependence of the ME

coefficient is presented for different geometries (length and

thickness) of Metglas. The theory shows good agreement

with experimental data even around resonance frequency.

II. MODEL AND CONSTITUITIVE EQUATIONS FOR
A MULTI-LAYER ME LAMINATE COMPOSITE

Consider an arbitrary laminated structure of length 2L
and N layers. In this case, there is no middle plane of the bar

that can serve as a plane of symmetry. For simplicity, we

will assume that the multilayer structure is two dimensional

(i.e., a bar structure). In this case, the field functions depend

only on the space coordinates x1 and x3. The geometry and

the magnetic loads are represented schematically in Fig. 1.

The x1 axis in Cartesian coordinates is directed along the bar

length, the x2 axis is directed across the width, and the x3

axis is orthogonal to them both. It is assumed that the piezo-

electric layers are poled in the x1 direction. It should be men-

tioned that the proposed theory can be successfully applied

to multilayer structures when the polarization direction of

the piezoelectric layers is along the x3 direction, or when

some of them are along x1 and along x3 or x2.

We then assumed that the total thickness of the multi-

layers can be given by

h ¼
XN

k¼1
hk ¼

XNp

k¼1
hkp þ

XNm

k¼1
hkm þ

XNe

k¼1
hke; (1)

where N¼NPþNMþNE is the total number of layers; NP is

the number of ferroelectric layers; NM is the number of ferro-

magnetic layers; NE is the number of pure elastic ones; hk

(k¼ 1, N) is the thickness of the kth layer; hkP (k¼ 1, NP) is

the thickness of the ferroelectric kth layer; hkM (k¼ 1, NM) is

the thickness of the ferromagnetic kth layer; and hkE (k¼ 1,

NE) is the thickness of the elastic kth layer. Later, we will

use the following notations as well: Hp ¼
PNp

k¼1 hkp which is

the total thickness of the piezoelectric layers, HM ¼PNM

k¼1 hkM which is the total thickness of the piezomagnetic

layers, HE ¼
PNe

k¼1 hke which is the total thickness of the

elastic layers, and H¼ h¼HpþHMþHE which is the total

thickness of the composite (Fig. 2).

A. Basic assumptions and restrictions

We then make the following assumptions and

restrictions:

(I) The layers are perfectly bonded together (i.e., no

cracks or other type of imperfections).

(II) The Material of each layer is linearly elastic.

(III) Each layer is of uniform thickness.

FIG. 1. Magneto electric multilayer laminated composite. The arrows indi-

cate the direction of polarization in piezoelectric layer, applied magnetic

field and induced magnetic field in ferromagnetic layer.
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(IV) The strains and displacements are small.

(V) The length of the composite is much greater than the

total thickness, i.e., L� h.

(VI) The transverse shear stresses on the top and bottom

surfaces of the laminate are zero.

(VII) Bernoulli’s (Kirchhoff’s) hypothesis are valid for any

layer, i.e., the displacements in x1 and x3 directions

can be given as

u1ðx1; x3Þ ¼ uðx1Þ � x3

@w

@x1

u3ðx1; x3Þ ¼ wðx1Þ
;

8<
: (2)

where u(x1) and w(x1) are plates midplane displacements in

x1 and x3 directions, respectively.

We also assume that the specimen was poled along the

longitudinal (L) direction (i.e., x1-axis). The dc and ac mag-

netic fields were then applied along the L direction and across

the planes of the contacts (~Happl). The magnetostrictive and

piezoelectric layers were assumed to be bonded together with

an elastic bonding material-layer of a finite thickness.

Due to magnetostriction, an alternating magnetic field

induces vibrations in the magnetostrictive layers, which

propagates both across and along the specimen. Mechanical

vibrations of the ferrite medium are transferred to the piezo-

electric component, via mechanical bonding, wherein an

electric field is induced by the piezoelectric effect. Our fur-

ther considerations will be a case of coupled bending and

longitudinal vibrations of this multilayer structure.

With the above assumptions of (I) to (VII), the equations

of motions and Maxwell’s electro-magneto static equations,

the elastic, magnetic and electro elastic layers can be written

as follows (see Refs. 17–20)

T
ðkÞ
ij;i ¼ qk >

@2u
ðkÞ
j

@t2
ðk ¼ 1; 2;…;NÞ (3)

B
ðkÞ
i;i ¼ 0; eijmH

ðkÞ
j ;m ¼ 0 ðk ¼ 1; 2;…;NÞ (4)

D
ðkÞ
i;i ¼ 0; eij;mE

ðkÞ
j;m ¼ 0; ðk ¼ 1; 2;…;NÞ; (5)

where F;i ¼ @F
@xi

; eijm is the permutation symbol with eijm¼ 1

or �1 depending on whether the indices are in cyclic or anti-

cyclic order, respectively, and eijm¼ 0; otherwise, the super-

script in parentheses denotes the number of the layer. The

constitutive equations for the magnetostrictive, piezoelectric

and pure elastic layers can then be expressed in the following

forms (see Refs. 6, 18–20):

Piezoelectric media

S
ðkÞ
iP ¼ s

ðkÞ
PijT

ðkÞ
jP þ d

ðkÞ
mi EðkÞm

D
ðkÞ
mP ¼ d

ðkÞ
mi T

ðkÞ
iP þ eðkÞmnEðkÞn

ðk ¼ 1; 2;…;NP; i; j ¼ 1;…; 6; m; n ¼ 1; 2; 3Þ;

8<
: (6)

Magnetostrictive media

S
ðkÞ
iM ¼ s

ðkÞ
MijT

ðkÞ
jM þ q

ðkÞ
mi HðkÞm

B
ðkÞ
mM ¼ q

ðkÞ
mi T

ðkÞ
iM þ lðkÞmnHðkÞn

ðk ¼ 1; 2;…;NM; i; j ¼ 1;…; 6; m; n ¼ 1; 2; 3Þ;

8<
: (7)

Pure elastic media

S
ðkÞ
iE ¼ s

ðkÞ
EijT

ðkÞ
jE ðk ¼ 1; 2;…;NE; i; j ¼ 1;…; 6Þ: (8)

In Eqs. (6)–(8), we introduced the following notations:

Si and Ti are the strain and stress tensor components; Em and

Dm are the vector components of electric field and displace-

ment; Hm and Bm are the vector components of magnetic

field and induction; S
ðkÞ
Pij , S

ðkÞ
Mij and S

ðkÞ
Eij are the compliance

matrixes of the piezoelectric, piezomagnetic, and pure elastic

media, respectively; qmi and dmi are the piezomagnetic and

piezoelectric coefficients; ekm and lkm are the dielectric per-

mittivity and magnetic permeability matrixes, respectively.

The sub indexes P, M, and E correspond to the piezoelectric

and piezomagnetic phases and substrate (i.e., pure elastic

media), respectively, where the superscripts in the parenthe-

ses denote the number of the layer. If the material of the

layer is not specified then for compliances we will use nota-

tion S
ðkÞ
ij . We assume that the symmetry of the piezoelectric

phase is1m and that of the piezomagnetic one is cubic.

As in elastic bar theory,17,18 the stresses T2 and T3 in the

constitutive relations can be neglected compared to the stress

T1, and it is assumed that the magneto-electro-elastic state

does not depend on the x2 coordinate. Within the scope of

Bernoulli’s (Kirchhoff’s) hypothesis of beam bending

theory, only the strain S1 is induced in a beam, given as

FIG. 2. Piezomagnetic-piezoelectric bi-layer in an applied magnetic field.
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S1 ¼
@u1ðx1; x3Þ

@x1

¼ @uðx1Þ
@x1

� x3

@2w

@x2
1

¼ e� x3j; (9)

where e ¼ @uðx1Þ
@x1

is a strain along the neutral axis and j ¼ @2w
@x2

1

is

a bending of the neutral axis. Equation (9) denotes the linear

behavior of the strain S1 over the entire cross section of the bend-

ing beam, whereas x3 defines the distance from the neutral axis.

B. Boundary conditions on the interfaces of layers

We next provide the most frequently used boundary

conditions for the electrical quantities. If there are no electro-

des on the surfaces of the bar and the layer on their surfaces

is in contact with a non-conducting medium (i.e., insulating

glue or a vacuum or air), the component of the electric

induction vector D3 normal to these surfaces equals zero:

D3 ¼ 0: (10)

For the electrical field, magnetic field, and magnetic

induction components, the following boundary conditions

should be satisfied

E
ðkÞ
1

���
x3¼zk

¼ E
ðkþ1Þ
1

���
x3¼zk

; H
ðkÞ
1

���
x3¼zk

¼ H
ðkþ1Þ
1

���
x3¼zk

;

B
ðkÞ
3

���
x3¼zk

¼ B
ðkþ1Þ
3

���
x3¼zk

; (11)

where (k¼ 0,1,…Nþ 1) and the components with “0” or

“Nþ 1” superscript in parentheses indicate electromagnetic

components with surrounding area to the laminate. If the

electrodes are in open-circuit conditions, then the following

integral condition for the current is satisfied

I ¼
ðð

S

dD1

dt
ds ¼ ix

ðð
S

D1ds ¼ 0; (12)

where the integral is evaluated over the surface S of electrodes.

The mechanical load on the surface is given that on the

bar faces, namely

T
ðNÞ
6

���x3¼zN
¼ qþ1 ; T

ðNÞ
6

���
x3¼z0

¼ q�1 ; (13)

T
ðNÞ
3

���x3¼zN
¼ qþ3 ; T

ðNÞ
3

���
x3¼z0

¼ q�3 ; (14)

where q6
i are the forces applied on the surfaces x3¼ zN and

x3¼ z0. The boundary conditions on the composite edges should

also be included as well. We will provide these conditions later

in a paragraph related to vibration of multilayer composites.

In order to construct a theory of ME bars, some addi-

tional assumptions regarding the electrical and magnetic

quantities must be made. As in the theory of piezoelectric

shells and plates,17–21 the content of the hypotheses assumed

depends on the electrical conditions on the surfaces of the

ME layers. For the piezoelectric layers, we will make the

following assumptions, which were previously justified by

an asymptotic method for single-layer electro elastic plates

and shells:17–21

• The electric field component E
ðkÞ
1 ðx1; x3Þ is not a function

of the thickness coordinate x3, i.e.

E
ðkÞ
1 ðx1; x3Þ ¼ E

ðkÞ
0 ðx1Þ ¼ E0ðx1Þ: (15)

• The magnetic field component H
ðkÞ
1 ðx1; x3Þ is not a func-

tion of the thickness coordinate x3, i.e.

H
ðkÞ
1 ðx1; x3Þ ¼ H

ðkÞ
0 ðx1Þ ¼ H0ðx1Þ: (16)

• The third component of magnetic induction is zero, i.e.

B
ðkÞ
3 ðx1; x3Þ � 0: (17)

Note that due to assumptions (15)–(17) that the bound-

ary conditions given in Eq. (11) are automatically fulfilled.

These three assumptions can be derived by the asymptotic

integration of Maxwell’s equations (4) and (5) in composite

layers and surrounding areas. These assumptions are the first

terms in an asymptotic representation. Any further foundation

of assumptions (15)–(17) are outside of the scope of this pa-

per. Analogous asymptotic integration of Maxwell’s equations

for only piezoelectric layers was provided in Refs. 17–21.

III. RESULTING TANGENTIAL FORCE AND BENDING
MOMENT

Due to representation (9), the induced stresses in the kth

layers of the various phases can be expressed as

Piezoelectric layer

T
ðkÞ
1P ¼

1

s
ðkÞ
P11

�
e� x3j� d

ðkÞ
11 E

ðkÞ
1

�
ðk ¼ 1; 2…NPÞ: (18)

Piezomagnetic layer

T
ðkÞ
1M ¼

1

s
ðkÞ
M11

�
e� x3j� q

ðkÞ
11 H

ðkÞ
1

�
ðk ¼ 1; 2…NMÞ: (19)

Elastic layer

T
ðkÞ
1E ¼

1

s
ðkÞ
E11

ðe� x3jÞ ðk ¼ 1; 2…NEÞ: (20)

By integrating the stresses over the thickness, we can obtain

the resultant tangential force T1 in the following form

T1 ¼
XN

k¼1

ðzk

zk�1

T
ðkÞ
1 ðx1; x3Þdx3

¼
XNP

k¼1

ðzP
k

zP
k�1

T
ðkÞ
1P ðx1; x3Þdx3

þ
XNM

k¼1

ðzM
k

zM
k�1

T
ðkÞ
1Mðx1; x3Þdx3

þ
XNE

k¼1

ðzE
k

zE
k�1

T
ðkÞ
1E ðx1; x3Þdx3: (21)

Using Eqs. (18)–(20), the expression in Eq. (21) for T1

results in

013908-4 Hasanyan et al. J. Appl. Phys. 112, 013908 (2012)
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T1 ¼ Ae� Bj � A01E0 � A02H0; (22)

where

A ¼
XNP

k¼1

hkP

s
ðkÞ
P11

þ
XNM

k¼1

hkM

s
ðkÞ
M11

þ
XNE

k¼1

hkE

s
ðkÞ
E11

;

B ¼
XNP

k¼1

1

2s
ðkÞ
P11

��
zP

k

�2 �
�
zP

k�1

�2�þXNM

k¼1

1

2s
ðkÞ
M11

½
�
zM

k

�2 �
�
zM

k�1

�2�þXNE

k¼1

1

2s
ðkÞ
E11

��
zE

k

�2 �
�
zE

k�1

�2�
;

A01 ¼
XNP

k¼1

d
ðkÞ
11 hkP

s
ðkÞ
P11

; A02 ¼
XNP

k¼1

q
ðkÞ
11 hkM

s
ðkÞ
M11

:

(23)

The resulting bending moment M1 is calculated according to

M1 ¼
XN

k¼1

ðzk

zk�1

x3T
ðkÞ
1 ðx1; x3Þdx3

¼
XNP

k¼1

ðzP
k

zP
k�1

x3T
ðkÞ
1P ðx1; x3Þdx3

þ
XNM

k¼1

ðzM
k

zM
k�1

x3T
ðkÞ
1Mðx1; x3Þdx3

þ
XNE

k¼1

ðzE
k

zE
k�1

x3T
ðkÞ
1E ðx1; x3Þdx3: (24)

Using Eqs. (18)–(20), the expression in Eq. (24) for M1

results in

M1 ¼ Be� Dj� C1E0 � C2H0; (25)

where

D ¼
XNP

k¼1

1

3s
ðkÞ
P11

��
zP

k

�3 �
�
zP

k�1

�3�þXNM

k¼1

1

3s
ðkÞ
M11

½
�
zM

k

�3 �
�
zM

k�1

�3�þXNE

k¼1

1

3s
ðkÞ
E11

��
zE

k

�3 �
�
zE

k�1

�3�
(26)

C1 ¼
XNP

k¼1

d
ðkÞ
11

2s
ðkÞ
P11

��
zP

k

�2 �
�
zP

k�1

�2�
;

C2 ¼
XNM

k¼1

q
ðkÞ
11

2s
ðkÞ
M11

��
zM

k Þ
2 �

�
zM

k�1

�2�
:

(27)

In the context of the above simplification, from the sec-

ond equation in Eq. (6), the component of electric displace-

ment D1 can be expressed in a following form

D1 ¼
XNP

k¼1

ðzP
k

zP
k�1

D
ðkÞ
1 ðx1; x3Þdx3: (28)

Using Eqs. (18)–(20), the expression (28) results in

C3E0 þ C4e� C5j ¼ D1; (29)

where

C3 ¼
XNP

k¼1
eðkÞ11 ð1� K2

1kÞhkP; C4 ¼
XNP

k¼1
eðkÞ11 r1khkP;

C5 ¼
XNP

k¼1

eðkÞ11 r1k

2
½ðzP

k Þ
2 � ðzP

k�1Þ
2�; K2

1k ¼
ðdðkÞ11 Þ

2

eðkÞ11 s
ðkÞ
P11

;

r1k ¼
d
ðkÞ
11

eðkÞ11 s
ðkÞ
P11

: (30)

We then combine Eqs. (22), (25), and (29) together for fur-

ther use

Ae� Bj � A01E0 � A02H0 ¼ T1

Be� Dj� C1E0 � C2H0 ¼ M1

C3E0 þ C4e� C5j ¼ D1:

8<
: (31)

Note that e, j, E0, and H0 are function of x1 and time t.
These unknown functions should be determined using the

motion equation of Eq. (3), Maxwell’s equations of (4) and

(5) and the boundary conditions on composite edges of

x1¼6 L. From Eq. (31), we can see that if the coefficient

B= 0, then the bending term j can produce a tension T1 and

the strain e can produce a bending moment M1, in other

words, the bending and longitudinal modes are coupled.

These two modes can be decoupled only when B¼ 0.

IV. EQUATIONS OF MOTION IN THE THEORY OF
LAMINATED MAGNETO-ELECTRO-ELASTIC BARS

The equations of motion in bar theory are obtained by

integrating the three-dimensional equations of motion

(3)–(5) over the bar thickness, i.e.,

@T1

@x1

þ X1 ¼ q
@2u

@t2
� ~q

@3w

@x1@t2
(32a)

@Q

@x1

þ X3 ¼ q
@2w

@t2
(32b)

Q ¼ @M1

@x1

� ~q
@2u

@t2
� ~~q

@3w

@x1@t2
; (32c)

where Q is a transverse shear stress in a cross sectional area of

the composite; X1 ¼ qþ1 � q�1 ; qþ1 and q�1 are the applied shear

stresses to the top and bottom of the composite, respectively;

X3 ¼ qþ3 � q�3 ; qþ3 and q�3 are the applied normal stresses to

the top and bottom of the composite, respectively, and

q ¼
XNP

k¼1
hkPqkP þ

XNM

k¼1
hkMqkM þ

XNE

k¼1
hkEqkE (33a)

~q¼
XNP

k¼1

qkP

2
½ðzP

k Þ
2�ðzP

k�1Þ
2�þ

XNM

k¼1

qkM

2
½ðzM

k Þ
2�ðzM

k�1Þ
2�

þ
XNE

k¼1

qkE

2
½ðzE

k Þ
2�ðzE

k�1Þ
2�

(33b)

q
� ¼

XNP

k¼1

qkP

3
½ðzP

k Þ
3 � ðzP

k�1Þ
3�

þ
XNM

k¼1

qkM

3
½ðzM

k Þ
3 � ðzM

k�1Þ
3�

þ
XNE

k¼1

qkE

3
½ðzE

k Þ
3 � ðzE

k�1Þ
3�: (33c)
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Note for static conditions that the time dependent terms

are zero: in which case for @
@t ¼ 0, the complete problem

exactly divides into plane and bending problems. Dy-

namical equations (32) do not enable the complete sys-

tem of equations for the theory of asymmetrical

laminated electroelastic bars to be split into two

decoupled systems for the tangential and transverse

vibrations, as in the theory of bars of symmetrical struc-

ture. Using the constitutive relations (31) and the expres-

sions e ¼ @uðx1;tÞ
@x1

and j ¼ @2wðx1;tÞ
@x2

1

, the system of equations

(32) can be expressed in terms of the displacements

u(x1,t) and w(x1,t)

A
@2u

@x2
1

� B
@3u

@x3
1

¼ q
@2u

@t2
� ~q

@3w

@x1@t2
� X1

B
@3u

@x3
1

� D
@4w

@x4
1

� ~q
@2u

@t2
� ~~q

@4w

@x2
1@t2
¼ q

@2w

@t2
� X3:

8>>><
>>>:

(34)

V. VIBRATIONS OF MULTILAYER ME COMPOSITES

Next, based on Eqs. (34), we will discuss some issues

related to the bending-tension vibration of multilayer compo-

sites. The dynamic ME coefficient will be derived for free-

free boundary condition at the edges of the composite. As a

particular case, bi-layer composites made of ferromagnetic-

ferroelectric will be considered.

As an example, consider the harmonic vibrations of a

multilayer bar. The top and bottom surfaces are free of

stresses, i.e., q6
i ¼ 0, (i¼ 1,3). We will assume that the sys-

tem of equations (34) can be decomposed in to two systems

of equations:

(A) The equations of the plane problem

@2u0

@x2
� qL2

A

@2u0

@t2
¼ 0

T10 ¼
A

L

@u0ðx; tÞ
@x

� A01E0 � A02H0;

8>><
>>:

(35)

and (B) the equations of the bending problem

qL4

D

@2w0

@t2
þ @

4w0

@x4
¼ 0

M10 ¼ �
D

L2

@2w0ðx1; tÞ
@x2

� C1E0 � C2H0

Q0 ¼
1

L

@M10

@x
:

8>>>>>>><
>>>>>>>:

(36)

We next have to examine the following boundary condi-

tions applied to the edges of the laminated composite. Both

ends are free of stresses, i.e., at the edges, x¼6 1 should

satisfy

T10 ¼ 0; Q0 ¼ 0 and M10 ¼ 0: (37)

Using boundary conditions (37), the general solutions of

Eqs. (35) and (36) can be obtained in the following form

u0ðx; tÞ ¼ eixt ½A01E0 þ A02H0�
AkT

sinðkTLxÞ
cosðkTLÞ ; (38)

w0ðx; tÞ ¼ eixt C1E0 þ C2H0

Dk2
B

1

cosðkBLÞ þ sinðkBLÞcthðkBLÞ

� cosðkBLxÞ � sinðkBLÞ
shðkBLÞ coshðkBLxÞ

	 

: (39)

For strain e ¼ @uðx1;tÞ
@x1

and bending j ¼ @2wðx1;tÞ
@x2

1

; we can obtain

the following representations

e ¼ ~eðxÞeixt A01E0 þ A02H0

A
; j ¼ ~jðxÞeixt C1E0 þ C2H0

D
;

(40a)

where

~eðxÞ ¼ cosðkTLxÞ
cosðkTLÞ ; (40b)

~jðxÞ ¼ 1

cosðkBLÞ þ sinðkBLÞcthðkBLÞ

� �cosðkBLxÞ þ sinðkBLÞ
shðkBLÞ coshðkBLxÞ

	 

: (40c)

A. ME coefficient

Using open circuit conditions (12), along with solutions

(38) and (39), we can drive the following compact expres-

sion for the ME coefficient aME

aME � aMEðxÞ ¼ �
HP

H

D0I

D0II

; (41)

where

D0I ¼
A02C4

A

tgðkTLÞ
kTL

þ 2C2C5

D
D0ðkBLÞ; (42)

D0II ¼ C3 þ
A01C4

A

tgðkTLÞ
kTL

þ 2C1C5

D
D0ðkBLÞ; (43)

D0ðkBLÞ¼ sinhðkBLÞ
sinhðkBLÞcosðkBLÞþ sinðkBLÞcoshðkBLÞ

sinðkBLÞ
kBL

:

For the case of ferromagnetic-ferroelectric bi-layer compo-

sites, the ME coefficient aME can be simplified as

aME � aMEðxÞ ¼ �
q11d11

sP11e11

hP

hP þ hm

~D0I

~D0II

; (44)

where

~D0I ¼
c0

c0 þ 1

tgðkTLÞ
kTL

� 3

2

c1

c2 þ 1
D0ðkBLÞ: (45)

~D0II ¼ 1� K2
1 þ K2

1

1

c0 þ 1

tgðkTLÞ
kTL

þ 3

2
K2

1

1

c2 þ 1
D0ðkBLÞ:

(46)
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kT ¼
ffiffiffiffiffiffiffiffiffi
x2q

A

r
; kB ¼

ffiffiffiffiffiffiffiffiffi
x2q
D

4

r
; c0 ¼

sP11

sM11

hm

hp
;

c1 ¼
sP11

sM11

hm

hp

� 2

; c2 ¼
sP11

sM11

hm

hp

� 3

;

K2
1 ¼

d2
11

sP11e11

:

1. Some notes and definitions

The frequency at which the ME coefficient aME ! 61
is called the resonance frequency; whereas, the frequency at

which aME ! 0 is called the anti-resonance one. The reso-

nance frequency can be determined from the equation

D0II ¼ 0. The anti-resonance frequency can be determined

from the equation D0I ¼ 0. The number of resonance and

anti-resonant frequencies are discrete and infinite: i.e., the

transcendental equations (42) and (43) (or (45) and (46) for

bi-layer) have an infinite and discrete number of zeros.

2. Special cases

(A) Static ME coefficient. If we assume x! 0 in Eqs.

(41)–(43) or (44)–(46) for bi-layers, we can arrive to

aME ¼ aS
ME ¼ �

C4A02

A
þ C2C5

D

C3 þ
A01C4

A
þ C1C5

D

HP

H
; (47)

or to

aME¼�
q11d11

sP11e11

hP

hPþhm

c0

c0þ1
þ 1

D01

½c1ðc0þ1Þ
�

�c0ðc1�1Þ� c1�1

c0þ1
þ1

	 
��
1�K2

1�K2
1

1

D01

½ðc0þ1Þ

þðc1�1Þ� c1�1

c0þ1
�1

	 

þK2

1

1

c0þ1

��1

for bi� layers D01¼ðc1�1Þ2�4

3
ðc0þ1Þðc2þ1Þ:

(48)

Formulae (47) is consistent to the model developed by

Refs. 3–5 for static ME coefficient. In other words, assuming

the vibration frequency approaches zero, from the formulae

for dynamic ME coefficients, we can derive the static ME

coefficient as a particular case.

(B) Pure longitudinal mode: If D!1 in Eq. (41), we

can obtain the dynamic ME coefficient for the pure longitu-

dinal mode

aME � aMEðxÞ

¼ �HP

H

A02C4

A

tgðkTLÞ
kTL

C3 þ
A01C4

A

tgðkTLÞ
kTL

� ��1

: (49)

Furthermore, similar conclusions can be derived for bi-layer

composites: i.e., if in Eq. (44) c2 þ 1!1, then one obtains

a pure longitudinal mode

aME � aMEðxÞ ¼ �
q11d11

sP11e11

hP

hP þ hm

c0

c0 þ 1

tgðkTLÞ
kTL

� 1� K2
1 þ K2

1

1

c0 þ 1

tgðkTLÞ
kTL

� ��1

: (50)

This case is consistent to the model developed in Refs. 22

and 23.

(C) Pure bending mode: If A!1 in Eq. (41), we

arrive at the dynamic ME coefficient for the pure bending

mode, i.e.,

aME�aMEðxÞ¼�
HP

H

2C2C5

D
D0ðkBLÞ

� 2C1C5

D

sinhðkBLÞ
sinhðkBLÞcosðkBLÞþsinðkBLÞcoshðkBLÞ

sinðkBLÞ
kBL

� ��1

;

(51)

and if c0 þ 1!1 in Eq. (44), one has a pure bending mode

for bi-layer structure, i.e.,

aME � aMEðxÞ ¼
q11d11

sP11e11

hP

hP þ hm

3

2

c1

c2 þ 1
D0ðkBLÞ

� 1� K2
1 þ

3

2
K2

1

1

c2 þ 1
D0ðkBLÞ

� ��1

: (52)

VI. NUMERICAL RESULTS

To demonstrate the validity of the theory, we will con-

sider bi-layer laminate composites. In the calculations, we

will use the following material parameters for Metglas-PZT

composite bilayers given in Table I. For numerical illustra-

tions, the Metglas-PZT bilayer composite was chosen, as a

model system, because it has higher piezoelectric and piezo-

magnetic coefficients.

A. Theoretical validations and experimental
verifications

1. Sensor fabrication

To check the theoretical developments, we performed

two experiments using Metglas-PZT bi-layer composites. In

the first experiment, we assumed a laminate length of

2L ¼ 8 � 10�2 m and in the second 2L ¼ 4 � 10�2 m. The

maximum number of Metglas layer was chosen as 21. To fabri-

cate bi-layer Metglas-PZT laminates, we obtained commer-

cially available PZT fibers from Smart Materials (Florida,

USA) and Metglas foils from Vitrovac Company (Germany).

First of all, 5 pieces of 180 lm thick PZT fibers were oriented

TABLE I. Material parameters (compliance coefficient’s ð10�12m2=NÞ,
piezomagnetic coupling qð10�12m=AÞ, piezoelectric coefficient

dð10�12m=VÞ, density qðkg=m3Þ, permeability l, and permittivity e for lead

zirconate titanate (PZT) and Metglass.

Materials s11 s12 s13 s33 q11 q13 d13 d11 l11/l0 e11/e0 q

PZT 15.3 �5 �7.22 17.3 �175 400 1 1750 7600

Metglass 10 50000 45000 7180
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along the long axes to form a piezoelectric layer that was in

total one cm wide and 4 cm long. Two Interdigited (ID)

Kapton
VR

-based electrodes were then bonded to the top and bot-

tom surfaces of the PZT layer in a multi push-pull mode config-

uration. Various layers of Metglas foils of 8 cm in length (or

4 cm in length) and 1 cm in width were bonded together first,

and subsequently laminated to only one side of PZT layer of

4 cm in length to achieve the bi-layer structure.

B. Result and discussion

The ME voltage coefficients aME for bending mode lam-

inates with different layers of Metglas were measured as a

function of frequency of ac magnetic driving field. A com-

mercial lock-in amplifier (SR-850) was used to drive a pair

of Helmholtz coils, which can generate an ac magnetic field

of Hac¼ 0.1 Oe over a frequency range of 10 Hz< f¼
x/2p< 2 kHz. The induced voltage from the ME laminates

was measured by this amplifier as well. Figure 3(a) shows

how aME was affected by the number of Metglas layers. The

peak positions exhibited significant tenability on changing

the number (N) of Metglas layers. For 4 cm (Metglas length),

the resonant frequency shifted from 325 Hz to 790 Hz with

N¼ 1 to N¼ 8. Bending mode laminates with N¼ 4 showed

a maximum value of aME> 100 V/cm-Oe. In Figures 3(a)

(experiment) and 3(b) (predicted, based on formulae (44)),

the ME voltage coefficient aME is shown as a function of ac

magnetic field frequency f¼x/2p. The length of the com-

posite was 2L ¼ 4 � 10�2 m; the thickness of PZT was

hP ¼ 1:8 � 10�4 m; and the thickness of each Metglas layer

was hM ¼ 2:5 � 10�5 m:
Figure 3(a) shows the experimental results for different

layers (number of layers¼ 5;7;8), and Figure 3(b) shows the

theoretical validations using the same parameter choice. As

can be clearly seen from these two figures, the experimental

data and theoretical predictions are consistent not only quali-

tatively but also quantitatively. For example, the values of

the resonant frequency from experiment differed only

FIG. 3. ME voltage coefficient as a function of f ¼ x=2p. Results are for a PZT-Metglass bilayer. Length of the composite 2L ¼ 44 � 10�2 m; Thickness of

PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas is hM ¼ 2:5 � 10�5 m: (b) ME voltage coefficient as a function of f ¼ x=2p. Results are for a PZT-

Metglass bilayer. Length of the composite 2L ¼ 4 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas is hM ¼ 2:5 � 10�5 m: (c)

ME voltage coefficient as a function of f ¼ x=2p. Comparison of ME voltage coefficient based on the Eq. (44) for bending-tension coupled model (blue line)

and on the Eq. (52) for pure longitudinal mode (purple line). Results are for a PZT-Metglass bilayer. Number of Metglas layers N¼ 4. Length of the composite

2L ¼ 4 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; (d) ME voltage coefficient as a function of f ¼ x=2p. Comparison of ME voltage coefficient based

on the Eq. (44) for bending-tension coupled model (blue line) and on the Eq. (52) for pure longitudinal mode (purple line). Results are for a PZT-Metglass

bilayer. Number of Metglas layers N¼ 12. Length of the composite 2L ¼ 8 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas

is hM ¼ 2:5 � 10�5 m: Dots are experimental results.
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slightly with the theoretical predictions. In addition, the

spectra of aME computed using our model showed only dis-

crete resonances (see Fig. 3(b)). Please bear in mind that real

structures always exhibit losses, which are related primarily

to nonideal contacts or introduction of dielectric and mag-

netic losses in the permittivity and permeability tensors (see

Fig. 3(a)). These losses determine the resonance line width

and limit the peak value of aME. In reality, such dissipation

effects should be included in the modeling to quantitatively

compare with experimental spectra. In this paper, we out-

lined qualitative effects in ME composites, and losses

(damping effects) were not taken into consideration. How-

ever, losses could be taken into account in the modeling: for

example, in formulas (41)–(52), the frequency x could be

represented as a complex quantity, then the imaginary part

of x would introduce the damping coefficient.

In Figures 3(c) and 3(d), we represent experimental and

theoretical results in the same graph for aME as a function of

f¼x/2p. Comparisons of aME based on Eq. (44) for the

bending-tension coupled model (blue line) and on Eq. (52)

for the pure longitudinal mode (purple line) is given in this

figure, where dots are experimental results. In Figure 3(c),

we show the case where number of Metglass layers N¼ 4

and length of the composite 2L ¼ 4 � 10�2 m. In Figure 3(d),

we show the case when number of Metglass layers N¼ 12

and length of the composite 2L ¼ 8 � 10�2 m. Thickness

of one layer of Metglas is hM ¼ 2:5 � 10�5 m: From these two

figures, one can clearly see that the bending-tension coupled

model much better describes the experimental result, relative

to the theory based on a pure longitudinal mode.

In Figures 4(a)–4(d), we show aME as a function of N.

Comparisons of aME based on Eq. (44) for the bending-

tension coupled model (blue line) and on Eq. (52) for the

pure longitudinal mode (purple line) are shown, where dots

again represent experimental data. The length of the compos-

ite was 2L ¼ 8 � 10�2m, the thickness of PZT layer was

hP ¼ 1:8 � 10�4m, and the thickness of each Metglas layer

was hM ¼ 2:5 � 10�5m: The values of the frequencies were

FIG. 4. ME voltage coefficient as a function of N number of layers of Metglas. Frequency value f ¼ 110 Hz. Comparison of ME voltage coefficient based on

the Eq. (44) for bending-tension coupled model (blue line) and on the Eq. (52) for pure longitudinal mode (purple line). Results are for a PZT-Metglass bilayer.

Length of the composite 2L ¼ 8 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas is hM ¼ 2:5 � 10�5 m: Dots are experimen-

tal results. (b) ME voltage coefficient as a function of N number of layers of Metglas. Frequency value f ¼ 150 Hz. Comparison of ME voltage coefficient

based on the Eq. (44) for bending-tension coupled model (blue line) and on the Eq. (52) for pure longitudinal mode (purple line). Results are for a PZT-

Metglass bilayer. Length of the composite 2L ¼ 8 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas is hM ¼ 2:5 � 10�5 m:
Dots are experimental results. (c) ME voltage coefficient as a function of N number of layers of Metglas. Frequency value f ¼ 200Hz. Comparison of ME volt-

age coefficient based on the Eq. (44) for bending-tension coupled model (blue line) and on the Eq. (52) for pure longitudinal mode (purple line). Results are

for a PZT-Metglass bilayer. Length of the composite 2L ¼ 8 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas is hM ¼
2:5 � 10�5 m: Dots are experimental results. (d) ME voltage coefficient as a function of N number of layers of Metglas. Frequency value f ¼ 280Hz. Compari-

son of ME voltage coefficient based on the Eq. (44) for bending-tension coupled model (blue line) and on the Eq. (52) for pure longitudinal mode (purple line).

Results are for a PZT-Metglass bilayer. Length of the composite 2L ¼ 8 � 10�2 m; Thickness of PZT is hP ¼ 1:8 � 10�4 m; thickness of one layer of Metglas is

hM ¼ 2:5 � 10�5 m: Dots are experimental results.
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f ¼ x=2p ¼ 110 Hz (see Fig. 4(a)), f ¼ x=2p ¼ 150 Hz

(see Fig. 4(b)), f ¼ x=2p ¼ 200 Hz (see Fig. 4(c)), and

f ¼ x=2p ¼ 280 Hz (see Fig. 4(d)). In each of these cases,

the bending-tension coupled model showed better correla-

tion with experimental data than a theory based on a pure

longitudinal mode. In particular, the bending-tension theory

was in much better agreement with experiments near the

resonant frequencies (see Fig. 4(d) for f ¼ x=2p ¼ 280 Hz).

Finally, the values of aME at different frequencies are

given in Figures 5(a)–5(c), which show data for volume ratio

effect of Metglas on aME. The low-frequency value of aME is

shown as a function of bilayer volume fraction. In Figures

5(a)–5(c), we compare predicted and experimental values.

The solid blue line is based on Eq. (44) (bending-tension

coupled mode), the purple line is based on Eq. (52) (only

longitudinal mode), and the dots are the experimental data.

The data presented were for Metglas-PZT bilayers of length

2L¼ 8 cm for following frequency values: f¼ 120 Hz (Fig.

5(a)); f¼ 150 Hz (Fig. 5(b)); f¼ 280 Hz (Fig. 5(c)). It can be

seen that aME did not show a similar volume ratio effect as

predicted by the theoretical model that only considered lon-

gitudinal deformations.4,14,23 Clearly from this figure, we

can also see that the bending-tension coupled mode is in

much better agreement with experimental data than longitu-

dinal mode. In Fig. 5(d), we can see that overall the value of

the ME coefficient increased upon approaching the first reso-

nance frequency of the pure longitudinal mode f1L: above

which frequency, the overall behavior resembled that of the

longitudinal mode (pure longitudinal mode is shown as a red

dotted line). However, before approaching the first resonance

frequency of the pure longitudinal mode f1L, the ME coeffi-

cient exhibited resonances at the bending mode frequencies.

VII. DISCUSSIONS

A dynamic theory for arbitrary laminated magneto-elec-

tro-elastic bars was constructed. A theoretical model includ-

ing both bending and longitudinal vibration effects was

developed for predicting the magneto electric (ME) effects

in laminated bar composite structures consisting of magneto-

strictive, piezoelectric, and pure elastic layers. Analytical

expressions indicate that the vibration frequency strongly

influenced the strain distribution in the laminates and that

these effects in turn strongly influenced the ME coefficients.

As particular cases, the low frequency ME and dynamic

coefficients were derived. Dynamic ME coefficients were

also derived. As a demonstration, the developed theory for

multilayer ME composites was applied to ferromagnetic-

ferroelectric bilayers. The vibration of a two-layer magneto-

electro-elastic bar was considered. The displacements,

stresses, and magneto-electrical quantities were calculated,

and the dependence of the coupling coefficient on the

FIG. 5. Low-frequency ME voltage coefficient as a function of bilayer volume fraction. Comparison between the theory and experiment dates (dots). Solid blue

line based on Eq. (44) (bending-tension coupled mode) and purple line based on Eq. (52) (only longitudinal mode). Data presented for Metglas-PZT bilayer for

frequency value f ¼ 120 Hz, 2 L¼ 8 cm. (b) Low-frequency ME voltage coefficient as a function of bilayer volume fraction. Comparison between the theory and

experiment dates (dots). Solid blue line based on Eq. (44) (bending-tension coupled mode) and purple line based on Eq. (52) (only longitudinal mode). Data

presented for Metglas-PZT bilayer for frequency value f ¼ 150 Hz, 2 L¼ 8 cm. (c) Low-frequency ME voltage coefficient as a function of bilayer volume frac-

tion. Comparison between the theory and experiment dates (dots). Solid blue line based on Eq. (44) (bending-tension coupled mode) and purple line based on Eq.

(52) (only longitudinal mode). Data presented for Metglas-PZT bilayer for frequency value f ¼ 280Hz, 2L¼ 8 cm. (d) ME voltage coefficient as a function of

f ¼ x=2p. Results are for a PZT-Metglass bilayer. The value of hP=L ¼ 0:01, hM=L ¼ 0:02. Pure longitudinal mode is shown as a red dotted line.

013908-10 Hasanyan et al. J. Appl. Phys. 112, 013908 (2012)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Wed, 06 May 2015 22:01:01



vibration frequencies and the ferromagnetic/piezoelectric

layer thickness studied. As a particular case, a theoretical

model was presented for low-frequency ME effects in

bilayers. We considered boundary condition corresponding

to that which is free to vibrate at both ends.

As a demonstration, our theory for multilayer ME com-

posites was then applied to ferromagnetic-ferroelectric

bilayers. The model was applied to a specific case of

Metglas-PZT bilayers. A theoretical model was presented for

static (low-frequency) ME effects in bilayers as a particular

case. We analyzed the influence of Metglas geometry

(length, thickness) and Metglas/PZT volume fraction on the

ME coefficient. We performed experiments for Metglas-PZT

bilayers. The frequency dependence of the ME coefficient

was also presented for different geometries (length, thick-

ness) of Metglas. The theory shows good agreement with ex-

perimental data, even around the resonance frequency.
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