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On a point defect inside an idealized elastic sphere

Chih-Bing Ling® and Charles R. Houska®
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

(Received 12 July 1982; accepted for publication 25 April 1983)

This paper presents a method of solution for the displacement, stress, and strain due to a point
defect located inside a sphere. The solution is represented by a Love stress function in spherical
coordinates, which is biharmonic in character. Two axisymmetric types of the point defect are
considered. One is treated as a center of dilatation and the other as a double force without
moment, or a doublet, oriented axisymmetrically. The Love stress function for the point defect in
an infinite solid is specified in each case by a single biharmonic function. The residual tractions on
the surface of the sphere left by this function are annulled by superposing two series of biharmonic
functions. When the Love stress function is determined, the displacement, stress, and strain can be

derived straightforwardly.
PACS numbers: 71.55. — i, 61.70.Ey

INTRODUCTION

A point defect in a crystalline solid is usually treated as
a center of dilatation*> when it is spherically symmetric. The
anisotropy of the solid is neglected in the sense that the solid
is idealized as a homogeneous isotropic elastic medium.
Such a treatment is satisfactory only when the solid is of
infinite size. When it is of finite size or at least one of its
dimensions is finite, residual tractions are left on its bound-
ary. Such tractions vanish identically on a boundary located
at infinity. In 1954, Eshelby? proposed to introduce an addi-
tional system of negative tractions to annul the residual trac-
tions.

The determination of displacement or stress in a solid
directly by integration when only the surface tractions are
known generally presents mathematical difficulties. This
was mentioned by Eshelby himself and also later by Dun-
durs and Guell.* The displacement, stress, and also the strain
in the solid can be derived from one or more sets of bihar-
monic functions appropriate to the problem. Several ap-
proaches are available to achieve the purpose. The solution is
considerably simplified whenever the problem possesses an
axis of symmetry.

A center of dilatation is by nature a spherically symmet-
ric elastic singularity, which can be resolved into three mutu-
ally orthogonal double forces without moment of equal
strengths. Since each double force without moment can be
treated separately, it is possible to construct a point defect of
unequal strengths in orthogonal directions. For brevity, a
double force without moment will henceforth be described
as a doublet.

This paper presents a method of solution for the dis-
placement, stress, and strain due to a point defect located
inside an idealized sphere. Two types of the point defect are
considered. One is treated as a center of dilatation and the
other as a doublet oriented axisymmetrically. Both types
possess an axis of symmetry. Love’s theory of symmetric
strain® is adapted in the solution and is represented by a
biharmonic function commonly called a Love stress func-
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tion. When such a function is determined, the displacement,
stress, and strain in the sphere can be derived straightfor-
wardly.

COORDINATES AND FORMULAS

Define a set of spherical coordinates ( p, ¢, 6 ) by

x = psin¢cos 6,

y = psin¢sin b, (1)

z= pcosb,
where (x,p,z) is a set of cartesian coordinates with its origin at
0. Also let

M = cos . (2)

In the axisymmetric case with the z axis as an axis of
symmetry, the Love stress function is independent of 6. The
formulas for the components of displacement, stress, and
strain referred to spherical coordinates were given by Ling

and Yang® some time ago. They are as follows:
(i) For the components of displacement,

1 d ad 1—u? 9
u, = — G [2(1—1/)#‘72 (/-t % + p'u 3/;‘)]1’,

uy = %(1 —;ﬂ)'/z[ —2(1 — »)V?
1 4d ( J 1—u? 4 )]
+ =+ — )6 3
p o\ dp p O 8

(ii) For the components of stress,
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(iii) For the components of strain,
9,
€ = e
dp
Up (L—p?'” du,
€¢ = - — —
p p Iu
()
€g = u_p + .ié_cot ¢’
P p
e 4y _uy  (1-pY'? O,
T p p O

The other components vanish identically. The expressions
for o, and o, are here modified slightly for simplicity. v is
the Poisson ratio and G the modulus of rigidity. V?is a La-
place operator. For the axisymmetric case, it is given in
spherical coordinates by

1 d d 1
vie S () s a-w 2| @
p dp \ dp p’ u du
A CENTER OF DILATATION

Define a second set of spherical coordinates ( p*, ¢ *, 6)
by

x = p*sin¢ * cos 6,

y=p*sing*sin 6, 7N

z—c= p¥cosd*

This set of spherical coordinates has its pole on the z axis at
the point 0* or z = c¢. Similarly, let

u* =cos ¢ *. (8)

Consider a center of dilatation of strength s located on
the z axis at the point 0* inside a sphere p<a. Suppose that
the Love stress function in question is composed of two parts
as follows:

X =Xo+ X1 9)
The first part is the Love stress function for the center of
dilatation in an infinite solid. The second part is added to
annul the residual tractions on the surface of the sphere left
by the first part. We construct

Xo = 2GsQo(u*),
X1= X A4.p"P, )+ ¥ B, .p" " P, (),
n=0

n=1

(10)

where Q, is a Legendre function of the second kind of order
zero and P, a Legendre function of the first kind of degree n.
A, and B, are parametric coefficients. Both parts are bihar-
monic.

From the first part y,, we find the following radial com-
ponents of displacement and stress by Egs. (3) and (4), respec-
tively, referred to p* and u*:
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s 4Gs
,UP.-—— F, Up.z — p*3 . (11)
With proper choice of units, the first relation defines s or the
strength of the center of dilatation.

When p > |c|, ¥, can be expanded into the series:
0 n 4+ 1
= ZGS[ L S ]
Xo Qi) = 3. e Pl

The following normal and tangential components of stress
are derived from y, or the sum of y, and y,, for p > |c|:

(12)

_ 4Gs & | 2Gsin + 1)(n + 2)c¢”
0'p - 3 T 2 [ n43
P n=0 P
2n +

5
+ n+1)n*—n—-2—-2vB,, .p"
2n+3( I v) 43P

taln— i+ 14,
_ 2n—dmv2-2v)
2n — 1
O =1 =" 5 | -

n=1

T L)
2Gs(n + 2)c”

n+43
P

wm+s (13

2n 4+ 3

X(n* +2n—142vB,  ,p"

Hin— 1)[(n+ I, ., — 2(3n—;nv+12—2v)
n_

XB, ]P” - 2}1’,’,(#)-

The prime on P, denotes a derivative. They are found with
the aid of the following relations:

d ) 1—u? d
-
2 Y PR
3 1
azQO(/-L)—'p_’

(14
2 [ P] =0 P ), (1)

p P
S0 —men
and also the recurrence formulas’ for P,. Consequently, the
normal and tangential tractions on the surface of the sphere
are annulled if we substitute p = @ into Eq. (13) and equate
each coefficient of P,(u) as well as of (1 — u?)!/?P/ (u) to
zero. This leads to two sets of equations, of which the solu-
tion is

, (n>0),

12Gs
5(1 +v)a*’
Gs(n + 2)(2n + 1)2n + 3)c”

3 =

T S\t 2v+ 1+t
(15)
_ 16Gs(4 —5v)  28Gsc?
T15(1 4 v (7 + 5vja®’
_ 2Gsn(2n —3)(3n — 4nv + 2 — Wjc" 2
n+1

B (n+ 1)2n + 1)(n* — 3n 4+ 2nv + 3 — Ivja> !
Gs(n + 2)(2n + 3)c”

- 2 1’ (n>3).
" +n+2nv+1+va
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The preceding solution does not include 4,, 4,, and B,. The
term involving 4, produces no effect on both displacement
and stress and may therefore be omitted. The terms involv-
ing 4, and B, produce no effect on stress but each gives a

rigid body displacement in the z direction of amounts — Az/J

G and B,(5 — 6v)/G, respectively. If the rigid body displace-
ment of the sphere is zero, these terms are absent.

The components of displacement and stress are given
below:

— 1 = m—5
up=‘_(”_c")—_2-6-2 "S5 4 1)n— 2+ 4B, , 10" 'Po)

283n —4nv 4+ 2 — 2v) B

vt [P (16)

v o P

(n+ 1n*—n—2 2B, , ,p"

p*’ "o 2n+3
— 2 —2v
- ——;::2 (n+ 14, — 23n ;:V_+1 ) B
uy — &‘;—“—)’— b= 5 =2 s g, P
+og = S 14, - et
and
o = 265 <p13 3(Pp—‘50#)2) i [ ; n+3

2(3n —dnv+2—2) B

+n<n—1)[(n+1)An+1— e

o, = —205(}0—25 - M)‘I‘ S 1+ 14, , " ~2[n(n — VP, () —
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+ 3 B, 3p"{(1 —¥(2n +2)2n + 5)[ P, ()

n=2

nl ]P"_Z]Pn(.“),
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—2uP, ()]

+ (1 4+ 1)(n + 2)[(n + 2P, () + 2uP, 1 ()] — (n + 3P W)},

0y =28 4 S+ 1,07 Ph )+ S B sp{[2v2n 4 5)
n=2 n=0
—(n+2)1(n + VP, () + (n + 3P u)} (17)
_ _ 6Gsc(l —p?)'*(p—cp) nirzw [ 2n+5 n
UP¢ - P*S +(1—.u‘ ) ngl n +3(n +2n 1+2v)'Bn+3p
2(3n — 4 2-2 S
+ (n + 1)[(” + I)An+l - ( z 2;1+1 V) Bn+l]p Z]PnW))
1
where 2K (1 — vt 2K(2 vt o
p# = (pz + (:2 _ 2cplu/)l/2. (18) p* = T, o = - ( )

The sphere is assumed to undergo no rigid body dis-
placement. For the sake of brevity, the components of strain
are not shown. They can be found readily from Eq. (5] when-
ever needed.

A DOUBLET

Consider a doublet located on the z axis at the point 0*
or z = ¢ inside a sphere p>a. Let the doublet be oriented
axisymmetrically in the z direction. Likewise, suppose that
the required Love stress function is composed of two parts as
follows:

X =Xo+ X (19)

To find the fifst part o, consider a Love stress function in
the form

X3 = Kp*, (20)

where K is a constant. This function is biharmonic and gives
the following radial components of displacement and stress
referred to p* and u*:
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It gives a concentrated force P in the z direction at the point
0* of amount®

P=38a{l — VK. (22)

Let a concentrated force P /h be applied at the point 0* or
z = cin thez direction and an equal and opposite concentrat-
ed force be applied at the point z = ¢ — 4 on the z axis. When
h tends to zero while the concentrated force P remains con-
stant, we obtain a doublet at the point 0* oriented in the z
direction. The corresponding Love stress function is

Yo=lim X [ 25wty 12— py
ol A
_ %[p2sin2¢+(z_c+h)2]l/2

= — Ku*, (23)

which gives the following radial components of displace-
ment and stress referred to p* and u*:
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K

e = = o (1= 5= 4,
% (24)
Op = 5 [1+v—(5—vju*?].

p

Suppose that three mutually orthogonal doublets each of
strength s are combined to form a center of dilatation of
strength s. It can be shown that

K = Gs/(1 —2v). (25)

The first part y, in Eq. (23) can be expanded for p > |¢| into
the series:

o n—1

K> —X— P,

= —Ku—
XO H "=2(2n_1)’)n—1

o n+ 1
KZ (n+2)c

n=o (2n + 3)p" ! P, ), (26)

from which the following normal and tangential compo-
nents of stress are found:

_ 4K(1—-2v)  12Kc(l —dvju

% 3p° e

+ K;::z( (n + l)z(n( 2J; i)(r; );22 + 4v)c?

N
o, = —K(l _,ﬂ)m[ 6(1_5—/):‘_”5

+ 22( LR (;2&;22 + 4>

pl i 2o ;:f, Pl

The second part y, is constructed as follows:

Xi= S AP+ S B "R, (28)

n=73 n=1

which is the same as in Eq. (10}, except that the terms involv-
ing 4,, A,, and B, are now absent. This implies that the
sphere undergoes no rigid body displacement. The compo-
nents of stress derived from y, are the same as the corre-
sponding parts in Eq. (13). The residual normal and tangen-
tial tractions on the surface of sphere are therefore annulled
if we substitute p = a into the expressions for o, and o,
derived from y, or the sum of y, and y,, and equate each
coefficient of P, (1) as well as of (1 —u?)!/2P’ (u) to zero.
Likewise, two sets of equations are obtained. Their solution
is

_2K(1—2v)
U514 v
3K (1—4v)e
T+ v
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B, ,= (”+2)K( nin — 1)2n + 3)
n+5)\ P +n4+2nv+1+v
_(n+1)2n+ 1)n — 2 + 4v)c? )

(M +n+2nv+ 1+ vja®

n--2

W > (n>2),
(29)
_ 23n—4nv+2—2) 2n+5 2
- n+1 n+ 3d
(n+ 1)2n —1) 2n+1
2K’ +n—2nv4 1 —v)"?
{n+1)2n — 1)2n + 1)a** !
The following components of displacement and stress
are found from the first part y,:

n+1

(n>2).

u, = 5( 2(1 —v)(pu — cju +p(1 _ﬂz)
? G p*3
_ pp—aul — 4 )
p*
Uy = — g(l —/ﬁ)”z( 21 —2V)(Z/*t3—c) —pp

_ 3ol —p?)
20%° ’

2K
o, = ;E[1+v+(1—2v),u2]
_ yg{2(2—V)(p/t—C)(p—C/t)ﬂ
p*> L+ [50° =202 + vjepu + 2ve*1(1 — u?)
4 15Kp(p — cu)(l — )
p*’

(30)
2K (1 — 2v)u? 6K
T T e T
(1 —v)(pu — ) pp — 2cu” + ¢)
+p(3p — 2cu)l — %)
_ 15Kp*(p — cu)(1 — p?)
p*’
2K(1+v) 3K [2vpp —cf ]
p* p** L+ 3p% = 3cop — cu)1 —p?))
O =K1 =g 22 8

*3 *5
P

[ =vlpr —cllp - 2cu)]
—plpu +c —2cu?)

)

Oy =

4 15ep’(p — cull =) ]
P
where p* is given before in Eq. (18). The components of dis-
placement and stress from the second part y, are the same as
the corresponding parts in Eqgs. (16) and (17). The compo-
nents of strain are given by Eq. (5).

THE PARTICULAR CASEc =0

In the particular case ¢ = 0, the point defect is located
at the center of the sphere. The solutions are considerably
simplified. For a center of dilatation of strength s,
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TABLE L /s and p4 /s on p = a due to a center of dilatation fora=2and v = .

Values of i, /s Values of p, /s
¢ c=0 c=1 c=1 c=3 c=0 c=1 c=1 c=3
o —0.1500 - 0.0218 0.3127 1.0679 0 0 0 0

15 —0.1500 —0.0321 0.2550 0.8413 0 —0.0307 —0.1193 —0.3275

30 — 0.1500 - 0.0593 0.1153 0.3708 0 —0.0544 —0.1951 — 0.4795

45 —0.1500 — 0.0952 — 0.0386 —0.0333 0 — 0.0669 —0.2122 — 0.4516

60 —0.1500 —0.1304 —0.1571 —0.2633 0 —0.0677 —0.1831 —0.3313

75 — 0.1500 — 0.1583 —0.2242 —0.3481 0 — 0.0594 —0.1305 —0.1922

90 —0.1500 —0.1759 —0.2462 —0.3428 0 — 0.0460 - 0.0743 — 0.0725
105 —0.1500 —0.1836 —0.2370 — 0.2908 0 —0.0314 —0.0271 0.0131
120 —0.1500 —0.1838 —0.2108 —0.2208 0 —0.0186 0.0052 0.0622
135 —0.1500 —0.1797 —0.1792 —0.1514 0 —0.0092 0.0213 0.0781
150 —0.1500 —0.1743 —0.1508 — 0.0945 0 — 0.0035 0.0230 0.0675
165 — 0.1500 —0.1700 —0.1316 — 0.0575 0 - 0.0009 0.0143 0.0385
180 —0.1500 —0.1684 —0.1248 — 0.0448 0 0 0 0
TABLE Il g, /s and py /s onp = a due to a doublet fora =2 and v=1.

Values of i, /s Values of i1,/

¢ c=0 c=3 c=1 c=13 c=0 c=1 c=1 c=3

0 2.1253 3.0267 4.4928 7.0582 0 0 0 0

15 1.8631 2.5186 3.4319 4.6450 — 0.5862 — 0.8582 — 1.2982 —2.0291

30 1.1470 1.2495 1.1454 0.5735 — 1.0153 — 1.3479 - 1.7384 —2.0758

45 0.1688 —0.2021 —0.8290 1.6626 —1.1723 — 1.3160 — 1.3017 - 0.9819

60 — 0.8094 —0.3018 — 1.7836 2.0789 — 1.0153 —0.8630 — 0.5060 0.0271

75 — 1.5255 — 1.7906 — 1.8511 — 1.6820 — 0.5862 —0.2215 0.2123 0.6063

90 — 1.7876 — 1.6846 — 1.4163 — 1.0772 0 0.3848 0.6807 0.8399
105 — 1.5255 — 1.1557 —0.7897 — 0.4958 0.5862 0.8135 0.8952 0.8648
120 - 0.8094 —0.4171 0.1553 — 0.0063 1.0153 1.0089 0.9104 0.7741
135 0.1688 0.3418 0.3918 0.3760 1.1723 0.9771 0.7855 0.6197
150 1.1470 0.9779 0.8042 0.6493 1.0153 0.7591 0.5689 0.4295
165 1.8631 1.3954 1.0588 0.8135 0.5862 0.4122 0.2973 0.2193
180 2.1253 1.5403 1.1447 0.8682 0 0 0 0

¥ = 2GsQuu) + A:p°Py(u) + Bp Pi(u), (31)  NUMERICAL EXAMPLES
where The components of displacement on the surface of the
16(4 — 5v|Gs 12Gs 52 spilere p = a are computed in both cases for the following
T s+ T T s(1+ v vatues:

For a doublet of strength s oriented axisymmetrically about
the z axis,

G
X = = T 4 A pPi) + As PP
+ By p’P\(p) + Bs p°P(p), (33)
where
4= 2Gs ( 44—5v)  25(1—v) )
T 45\ 14w (1 —2W(7 +5v) /)
16(7 — 9v)Gs
A= ,
45(1 — 20)(7 + 5v)a°
(34)
2Gs
By= —2 |
27 51 +v)a?
B, — 28Gs

9(1 — 24)(7 + Sv)a®
In either case, the rigid body displacement is assumed to be
zero.
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a=2, v=}

¢ = O (35)
The sphere is assumed to undergo no rigid body displace-
ment. The results are shown in Tables I and II.
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