
Principal component analysis for emergent acoustic signal
detection with supporting simulation results

Elizabeth Hoppea) and Michael Roan
Department of Mechanical Engineering, Virginia Polytechnic Institute and State University,
114G Randolph Hall, Blacksburg, Virginia 24061

(Received 21 March 2011; revised 27 July 2011; accepted 29 July 2011)

A method is introduced that uses principal component analysis (PCA) to detect emergent acoustic sig-

nals. Emergent signal detection is frequently used in radar applications to detect signals of interest in

background clutter and in cognitive radio to detect the primary user in a frequency band. The method

presented differs from other standard techniques in that the detection of the signal of interest is

accomplished by detecting a change in the covariance between two channels of data instead of detect-

ing the change in statistics of a single channel of data. For this paper, PCA is able to detect emergent

acoustic signals by detecting when there is a change in the eigenvalue subspace of the covariance ma-

trix caused by the addition of the signal of interest. The algorithm’s performance is compared to an

energy detector and the Neyman-Pearson theorem. Acoustic simulations were used to verify the per-

formance of the algorithm. Simulations were also used to examine the effectiveness of the algorithm

under various signal-to-interferer and signal-to-noise ratios, and using various test signals.
VC 2011 Acoustical Society of America. [DOI: 10.1121/1.3628324]
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I. INTRODUCTION

Change detection and emergent signal detection are

widely studied problems in a variety of signal processing

fields, including radar and sonar, biomedical, and speech

detection applications.1–4 One branch of change detection

research involves development of algorithms for detecting

important changes in a signal, such as a change in the mean

or variance.3–5 This is accomplished by processing signals

that emanate from a system, such as vibration signals meas-

ured on the outside of a gear box.6 A crack in a gear tooth

manifests itself as a detectable change in the statistics of the

signal. In a similar application, change detection is used to

passively monitor the structure of a naval ship.7 In another

application, change detection is used for automatic electro-

cardiogram (ECG) diagnosis.8 The statistics of the ECG sig-

nal are monitored to detect changes in the rhythm of the

heart, such as fibrillation and hypertrophy.9,10

Another branch of change detection research aims to

determine whether a target signal is present within

noise.11–13 This category of algorithms is often used in pas-

sive sonar applications.2 Algorithms of this type include

wildlife monitoring, such as the detection of whale calls in

the ocean.14,15 Similar algorithms are also widely employed

in radar applications to detect signals of interest in back-

ground clutter.16,17 This type of change detection is used to

determine when new signals appear in (or leave) the environ-

ment. This is useful for algorithms that require an estimate

of the number of sources (e.g., the MUSIC algorithm18). A

subset of this branch of change detection is voice activity

detection (VAD).19–22 The algorithm presented in this paper

falls under this second branch of change detection research

and seeks to detect an emergent acoustic signal in noise.

Statistical hypothesis testing is one of the primary tools

used to detect the presence of an emergent signal in a set of

measurements.23 In binary detection there are two hypotheses,

and for this paper, these hypotheses are the signal of interest

is either present or absent. In hypothesis testing, a sufficient

statistic (such as the log-likelihood ratio) is used to select one

of these hypotheses based on a small sample of data.24 This

paper presents a unique approach to emergent acoustic signal

detection based on the signals recorded from an array of two

sensors. This new method does not require prior knowledge

of the probability distribution of either the signal or noise, but

relies on detecting an increase in the covariance of the mixed

signals when the signal of interest is present.

The algorithm developed in this paper uses principal

component analysis (PCA) to calculate a test statistic based

on the smallest eigenvalue of the covariance matrix to deter-

mine whether the target signal is present. Where PCA has

been used previously in change detection is specifically for

the VAD problem.25,26 In Ref. 25, the authors use PCA to

project the signal into a space that has the highest signal-to-

noise ratio (SNR). They are finding a projection direction

that minimizes the noise present in the signal, which allows

for improved voice detection. In Ref. 26, PCA analysis is

used on the discrete cosine transform (DCT) coefficients of a

signal to separate the independent noise from the voice. In

these previous works, PCA is not used as an emergent acous-

tic signal detector, but rather a noise suppression approach.

II. BACKGROUND

A. Principal component analysis

PCA is a tool used for analyzing multivariate data that

has seen use across a wide variety of application areas such as

a)Author to whom correspondence should be addressed. Electronic mail:

ehoppe@vt.edu

1962 J. Acoust. Soc. Am. 130 (4), October 2011 0001-4966/2011/130(4)/1962/12/$30.00 VC 2011 Acoustical Society of America

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Wed, 01 Apr 2015 18:27:41

mlohrey
Typewritten Text
Copyright by the Acoustical Society of America. Hoppe, E. & Roan, M. (2011). Principal component analysis for emergent acoustic signal detection with supporting simulation results. Journal of the Acoustical Society of America, 130(4), 1962-1973. doi: 10.1121/1.3628324



classification, pattern recognition, and noise reduction.27–30

PCA transforms mutually correlated variables into a set of

uncorrelated variables that preserve the variation in the origi-

nal data set. This allows PCA to separate sources that are

uncorrelated. This correlation transformation is only depend-

ent on the second order statistics of the signals and has a sim-

ple, closed form solution.31 The transformed variables are

ordered so that the first few components contain most of the

original variation information, and the last components con-

tain little to no additional variance information.

Suppose that x is a vector of p random variables that are

mutually correlated. The first principal component (PC) is a

linear combination, y1¼w1
Tx, such that the variance of y1 is

a maximum. In other words, the first PC is calculated by

finding a weight vector, w1, which is the optimal solution to

the LaGrange problem

max var y1ð Þ½ � subject to w1k k ¼ 1; (1)

where the norm of w1 is the Euclidean norm. The norm of

w1 is constrained to be equal to one to prevent the variance

from growing without limits. The variance of the PC can be

rewritten as

var y1ð Þ ¼ E y2
1

� �
¼ E wT

1 x
� �2
n o

¼ wT
1 E xxT
� �

w1

¼ wT
1 Cxw1 (2)

where E{�} is the expectation and Cx is the covariance ma-

trix of x. Substituting Eq. (2) into Eq. (1) and differentiating

the LaGrange function produces the equation

Cxw1 � kw1 ¼ Cx � kð Þw1 ¼ 0; (3)

which shows that the weight vector w1 is the unit length

eigenvector of the covariance matrix. The kth PC of x is

yk¼wk
Tx, and has a variance given by

var ykð Þ ¼ wT
k Cxwk ¼ wT

k kkwk ¼ kkwT
k wk ¼ kk; (4)

where kk is the kth largest eigenvalue of Cx. The second

PC is another linear combination, y2¼w2
T
x, such that w2

is orthogonal to w1 (uncorrelated with the first PC). Since

eigenvectors are always orthogonal, the weight vectors,

wi, are the set of eigenvectors of the data covariance

matrix.32

For this paper, PCA will be used in an application where

only two channels of data are measured. Therefore, the data

set x is a 2� n matrix (also assumed zero mean). This allows

for a closed form derivation of the PCs in order to test the

hypothesis that PCA can be used as a simple and robust

VAD. The sample covariance matrix is calculated element

by element according to

cx i; jð Þ ¼ E xT
i xj

� �
¼ 1

n

Xn

k¼1

xi kð Þxj kð Þ: (5)

For the data set x, the covariance matrix will be a 2� 2

matrix, and have two eigenvalues. The closed form solu-

tion to the eigenvalue problem is straightforward to derive,

and is

k1;2 ¼ 0:5 cxð1; 1Þ þ cxð2; 2Þ½ �

6 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cxð1; 1Þ2 � cxð2; 2Þ2
h i2

þ4cxð1; 2Þ2
r

: (6)

B. Emergent acoustic signal detection using principal
component analysis

PCA separates uncorrelated sources by determining

directions that have maximum variance. Uncorrelated sour-

ces are recovered by projecting the mixed signals along these

directions. The addition of emerging signals alters the eigen-

value subspace, and therefore, the projection directions. By

examining the changes in the individual PCs, the change in

the subspace can be uncovered, and PCA can be used to

detect emergent acoustic signals. The advantage of the PCA

method is that it is nonadaptive and has an easily derived

closed form solution.

Independent component analysis (ICA) theory states

that the mixture of two or more sub- or super-Gaussian sig-

nals is more Gaussian than either of the individual unmixed

source signals.33 This paper exploits this property to de-

velop an emergent acoustic signal detection technique. If

the interferer only case has a certain probability distribution

function (pdf), the addition of the signal of interest to that

interferer will cause an increase in the variance of that pdf.

The advantage here is that the individual distributions do

not need to be known in advance, and the signal and noise

could have identical pdfs without affecting the method. If

only one channel of data were available, the detection

would be based a change in the variance. For two channels

of data, the detection is based on a change in the variance

of the joint pdf.

Figure 1 shows a plot of the amplitude of the first sensor

versus the second sensor. Figure 1(a) is the case where only

the interferer is present. Figure 1(b) is the case where both

signal and interferer are present. The lines in Fig. 1 lie along

the directions of the PCs. In Fig. 1(a), one direction (i.e., one

PC) contains most of the variance. This direction corre-

sponds to the interferer, and since the interferer is the only

signal present, there is little variance in any other direction.

In Fig. 1(b), the directions of the PCs have changed, and the

variance along both PC directions has increased. This

increase is especially pronounced along the second PC, la-

beled “PC 2” in Fig. 1. This increase indicates the presence

of one additional signal. For this paper, the smallest PC will

be considered the significant statistic. The smallest PC is

chosen because of a unique attribute that occurs in the simul-

taneous mixing case discussed in Sec. III A.

1. Relationship to the MUSIC algorithm for DOA
estimation

This new PCA based detection algorithm is based

on some of the same principles as the multiple signal
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classification (MUSIC) algorithm for direction of arrival

(DOA) estimation. The MUSIC algorithm is used to deter-

mine the parameters of multiple wavefronts arriving at an

array.18 The D waveforms are received at an array with M
elements according to the model

X ¼ AFþW; (7)

where is X is vector of the received signal, A is the array

manifold matrix, F is the vector of incident signals, and W
is the vector of noise. The M�M covariance matrix of X
is

S ¼ XX� ¼ AFF�A� þWW� ¼ APA� þ kS0; (8)

where the asterisk represents the complex conjugate and the

signal and noise are assumed to be uncorrelated. When the

number of incident waveforms is less than the number of

array elements (D<M), APA* is singular and

APA�j j ¼ S� kS0j j ¼ 0: (9)

This equation is only satisfied if k is an eigenvalue of S in

the metric of S0.18 When determining the eigenvalues of S,

the minimum eigenvalue is repeated N times. This eigen-

value spans the noise subspace. The D remaining eigenval-

ues span the signal subspace. In the MUSIC algorithm, the

DOA of the sources are estimated by picking the D highest

peaks of the function

PMU hð Þ ¼ 1

a� hð ÞENE�Na hð Þ ; (10)

where EN is the M�N matrix whose columns are the N noise

eigenvectors. Therefore, the MUSIC algorithm uses the

noise subspace (defined by the noise eigenvectors) to esti-

mate parameters of the incident wavefronts. Instead of using

the eigenvectors to describe the noise subspace, the new

method uses eigenvalues to detect changes in the size of the

signal subspace.

C. Energy detection test

The energy detector test is a useful tool for detecting a

signal within white, Gaussian noise34 and will be used as a

baseline for comparison in this paper. The H0 hypothesis is

that only the interfering source is present, while H1 states

that both the signal of interest and the interferer are present

(no noise). For this derivation, the signal of interest and

interferer are additively mixed according to

H0 : x n½ � ¼ w n½ �; n ¼ 0; 1;…;N � 1;
H1 : x n½ � ¼ s n½ � þ w n½ �; n ¼ 0; 1;…;N � 1;

(11)

where w[n] is the interferer and s[n] is the signal of interest.

The interferer is assumed to be white, Gaussian noise, with a

mean of zero and a variance of r2. The signal of interest is

also assumed to be white, Gaussian noise, with a mean of

zero and a variance of rs
2. The Neyman-Pearson theorem

says to declare H1 true if

L xð Þ ¼ p x; H0ð Þ
p x; H1ð Þ > c; (12)

where c is a threshold value chosen by the user.35 The func-

tion L(x) is called the likelihood ratio because it determines

the likelihood of H1 versus H0 for each value of x. Using the

assumption that both the interferer and the signal of interest

have Gaussian distributions, the likelihood ratio is written as35

p x; H0ð Þ ¼ N 0; r2
� �

¼ 1

2pr2ð ÞN=2
exp � 1

2r2

XN�1

n¼0

x2 n½ �
" #

p x; H1ð Þ ¼ N 0; r2
s þ r2

� �
¼ 1

2p r2
s þ r2

� �� �N=2

� exp � 1

2 r2
s þ r2

� �XN�1

n¼0

x2 n½ �
" #

L xð Þ ¼ r2
s þ r2

r2

	 
N=2

exp � 1

2

1

r2
� 1

r2
s þ r2

� �
 !"

�
XN�1

n¼0

x2 n½ �
#
> c; (13)

FIG. 1. (Color online) A visualiza-

tion of the joint pdf for two cases is

presented: only one signal present

and both signals present. A PCA

analysis is performed on the data,

and the directions of the PCs are

plotted as lines. (a) The joint pdf for

the case where only the interferer is

present. (b) The joint pdf for the case

where both the interferer and the sig-

nal of interest are present.
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where N(l, r2) represents a normal distribution with a mean

of l and a standard deviation of r2. Taking the natural log of

Eq. (13) gives the log-likelihood ratio to be

l xð Þ ¼N

2
ln

r2
s þ r2

r2

	 

� 1

2

1

r2
� 1

r2
s þ r2

� �
 !XN�1

n¼0

x2 n½ �

> ln cð Þ 1
2

r2
s

r2 r2
s þ r2

� �
 !XN�1

n¼0

x2 n½ �

>
N

2
ln

r2
s þ r2

r2

	 

� ln cð Þ: (14)

Therefore, the H1 hypothesis is declared true if

T xð Þ ¼
XN�1

n¼0

x2 n½ � > c0; (15)

where c0 is a user defined threshold value.

1. Neyman-Pearson limit for the energy detector

In this paper, the problem is to choose between the null

hypothesis, H0, and the alternative hypothesis, H1. When the

H1 hypothesis is actually true, and the test declares H1 to be

true, it is called a detection. When the H0 hypothesis is

actually true, and the test declares H1 to be true, it is called a

false alarm. To design an optimal detector, the goal is to

minimize the number of false alarms, while maximizing the

number of detections.34 The probability of false alarm (PFA)

constraint is written as

PFA ¼
ð1

c
p x; H0ð Þdx ¼ a; (16)

where p(x; H0) is the pdf of signal x under the H0 hypothesis,

c is the unknown threshold value, and a is the specified max-

imum allowable PFA value. The goal is to chose the thresh-

old, c, such that the PFA value does not exceed a, while

maximizing the PD, which is written as

PD ¼
ð1

c
p x; H1ð Þdx; (17)

where p(x; H1) is the pdf of signal x under the H1 hypothesis.

For this paper, the PFA is the probability that a frame of audio

does not contain the signal of interest, but the test algorithm

declares that the signal of interest is present. Furthermore, the

PD is the probability that a frame of audio contains the signal

of interest, and the test algorithm declares that the signal of in-

terest is present. The algorithm declares the signal of interest is

present when the test statistic exceeds the user defined thresh-

old. By sweeping the detection threshold through a range of

values, and calculating PD and the PFA for each threshold, the

receiver operating characteristic (ROC) curve is generated.35

ROC curves are used to examine the performance of a test

algorithm and to compare multiple test algorithms.

The Neyman-Pearson limit determines the theoretical

best performance of a binary hypothesis test by using Eqs.

(16) and (17) to determine the maximum PD for a specific

PFA value.35 Since the statistic T(x) in Eq. (15) is the sum of

squares of N independent and identically distributed Gaus-

sian random variables, this test statistic has a v2 distribution

given by

T xð Þ
r2
� v2

N under H0;

T xð Þ
r2

s þ r2
� v2

N under H1;
(18)

The PD is found by

PD ¼ Pr T xð Þ > c0; H1f g ¼ Pr
T xð Þ

r2
s þ r2

>
c0

r2
s þ r2

; H1

� �

¼ Qv2

c0

r2
s þ r2

	 

; (19)

while the PFA is found by

PFA ¼ Pr T xð Þ > c0; H0f g ¼ Qv2

c0

r2

	 

; (20)

where Qv2(n) is the probability that the v2 distribution has a

value greater than n. Equation (20) can be used to determine

an appropriate threshold value to maximize PD for a given

PFA. In addition, Eqs. (19) and (20) can be used to generate

the optimum ROC curve for the energy detector.

III. EMERGENT ACOUSTIC SIGNAL DETECTION
MODELS AND SUFFICIENT STATISTICS

In this work, there are three types of signals to be con-

sidered: the signal of interest, an interferer that is considered

to be a point source, and background noise. The interferer is

considered to always be present. Two general cases, with

and without the background noise, will be considered. The

significant statistic is derived for the model where the signal

of interest and the interferer are mixed additively. The inter-

ferer for all models is assumed to be a stationary signal. In

the simulations, the interferer is a white, Gaussian noise

source. In order to accommodate a variety of signal of inter-

est types, the only assumption made about the signal of inter-

est is that it has zero mean. Therefore, the mixed signals, for

both the signal of interest present and absent case, are

assumed to have zero mean.

In all instances, it is assumed that the interferer and

background noise are uncorrelated with the signal of interest.

The PCA emergent signal detection algorithm is based on

separating uncorrelated sources. Each uncorrelated source

corresponds to a subspace eigenvector direction. One direc-

tion corresponds to the signal of interest and one to the inter-

ferer. If the interferer is correlated with the signal of interest,

then the presence of the signal of interest will add variance

along the interferer’s subspace direction, as opposed to add-

ing variance along the signal of interest’s subspace direction.

Therefore, the new algorithm will not be able to detect a

change in the smallest eigenvalue corresponding to the sig-

nal of interest’s subspace and the algorithm will fail to detect

the presence of the signal of interest. Similarly, the detection

of the signal of interest is affected by the presence of
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multiple sources and interferers. The models presented in

this section are not applicable to that situation. To determine

if PCA is useful in that situation, new models would have to

be developed and examined. For this paper, the focus is for

the instance of one signal of interest and one interferer.

A. Simultaneous mixing model

Two forms of signal mixing are introduced in this section.

The first is simultaneous mixing, where there is no time of ar-

rival delay between the first and second microphones. This is

the instantaneous mixing case that is the underlying assumption

in many of the ICA models.31,33 The second case reflects the

more realistic case, and allows for a time delay of arrival

(TDOA) between the two sensors. While adding another sensor

increases the amount of information available, it comes with

the drawback that the signals are not time aligned between the

two sensors. Following sections will show how the perform-

ance changes due to this time misalignment.

In this section, the simultaneous mixing model is pre-

sented. Let s1 be the signal of interest with variance rs1, and

s2 be an interfering signal with variance rs2. The goal is to

detect the presence of the signal of interest s1. H1 represents

the case where the signal of interest, s1, and the interferer, s2,

are both present and H0 represents the case where only the

interferer is present. Models including diffuse background

noise appear in later sections. For the simultaneous mixing

model, the two hypotheses are represented by the models

H1 : x1ðkÞ ¼ as1ðkÞþ bs2ðkÞ; x2ðkÞ ¼ cs1ðkÞþ ds2ðkÞ;
H0 : x1ðkÞ ¼ bs2ðkÞ; x2ðkÞ ¼ ds2ðkÞ; (21)

where k is the sample number, and a, b, c, and d are the lin-

ear mixing coefficients. The smallest eigenvalue of the co-

variance matrix is calculated for each hypothesis. In each

case, the covariance matrix elements are calculated using

Eq. (5). For brevity, only the derivation for the (1,2) element

will be shown. The (1,2) element of the covariance matrix

for the H1 hypothesis is calculated as

cxð1;2Þ¼
1

n

Xn

k¼1

x1x2¼
1

n

Xn

k¼1

ðas1þbs2Þðcs1þds2Þ

¼ 1

n

Xn

k¼1

acs2
1ðkÞþðadþbcÞs1ðkÞs2ðkÞþbds2

2ðkÞ
� �

:

(22)

Using the properties of the summation, Eq. (22) can be

rewritten as

cxð1; 2Þ ¼ ac
1

n

Xn

k¼1

s2
1ðkÞ

" #
þ ðad þ bcÞ 1

n

Xn

k¼1

s1ðkÞs2ðkÞ
" #

þ bd
1

n

Xn

k¼1

s2
2ðkÞ

" #

¼ acrs1 þ ad þ bcð Þr s1s2ð Þ þ bdrs2; (23)

where r(s1s2) is the covariance between the signal of interest

and the interferer. For the H1 hypothesis, the covariance

matrix is

Cx ¼ a2rs1 þ 2abr s1s2ð Þ þ b2rs2 acrs1 þ ðad þ bcÞr s1s2ð Þ þ bdrs2

acrs1 þ ðad þ bcÞr s1s2ð Þ þ bdrs2 c2rs1 þ 2cdr s1s2ð Þ þ d2rs2


 �
: (24)

Substituting the values from Eq. (24) into Eq. (6) gives the

smallest eigenvalue of the covariance matrix for the H1 hy-

pothesis as

k1¼0:5 ða2þc2Þrs1þ2ðabþcdÞr s1s2ð Þþðb2þd2Þrs2

� �
�0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða2�c2Þrs1þ2ðab�cdÞr s1s2ð Þþðb2�d2Þrs2½ �2

þ4 acrs1þðadþbcÞr s1s2ð Þþbdrs2½ �2

s
:

(25)

For the H0 hypothesis, the smallest eigenvalue is

k1 ¼ 0:5ðb2 þ d2Þrs2 � 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb2 þ d2Þrs2½ �2

q
¼ 0: (26)

Equations (25) and (26) show that the smallest eigenvalue

can be used to detect the presence of the signal of inter-

est when it is mixed with an interferer. When the signal

of interest is present, the smallest eigenvalue is a function

of the variances of the signal of interest and the inter-

ferer, the covariance between the two signals, and the

elements of the linear mixing matrix. However, when the

signal of interest is not present, the eigenvalue becomes

zero. This theoretical result shows, interestingly, that for

the simultaneous mixing case with one interferer, the sig-

nal of interest can be detected for any signal-to-interferer

ratio (SIR) because the elements of the linear mixing ma-

trix do not influence the result for the H0 hypothesis.

This result is based on knowing the signal variances and

covariance exactly. In practice, only the sample variances

and covariances are known, so the smallest eigenvalue for

the H0 hypothesis may not always reduce to precisely

zero, and the SIR will have a small influence on the

results. In addition, while the method theoretically works

for infinitely large values of SIR, in practice, for large

SIR values, the signal of interest could drop below the

quantization level of the analog to digital convertor and

the method would break down. In the case of simultane-

ous mixing, the hardware would be the limiting factor in

determining the SIR values at which the algorithm breaks

down.

1966 J. Acoust. Soc. Am., Vol. 130, No. 4, October 2011 E. Hoppe and M. Roan: Signal detection using principal components

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.173.126.47 On: Wed, 01 Apr 2015 18:27:41



B. Mixing model including TDOA

The previous section derived the smallest eigenvalue in

the case of simultaneous mixing. This model, while widely

used for ICA derivations, is not suitable for most recorded

array signals because time delays between array elements

are introduced by the source/receiver geometry.36 This sec-

tion applies the new PCA technique to a model that includes

these delays. This model is applicable to a variety of situa-

tions, for example, passive sonar. In this example, a surface

ship engine could be the interferer, and the object is to detect

the presence of another submarine or ship engine. Similarly,

if the goal is to detect animals, a steady hum from a gener-

ated could be used as the interferer, and the calls of the ani-

mals are the signals of interest. If the animal of interest is a

human, this model is applicable to the VAD problem. In that

case, the fan noise from the HVAC system could be the

interfere and the voice is the signal of interest.

Similar to the previous section, let s1 be the signal of in-

terest with variance rs1, and s2 be an interfering signal with

variance rs2. The two hypotheses are

H1 : x1ðkÞ ¼ as1ðkÞ þ bs2ðkÞ;
x2ðkÞ ¼ cs1ðk þ s1Þ þ ds2ðk þ s2Þ;

H0 : x1ðkÞ ¼ bs2ðkÞ; x2ðkÞ ¼ ds2ðk þ s2Þ; (27)

where k, a, b, c, and d are the same as in the previous sec-

tion, and s1 and s2 are the time delays for the signal of inter-

est and interferer, respectively. As before, the covariance

matrix is constructed element by element, and the (1,2) ele-

ment calculation for the H1 hypothesis is given next as an

example. The (1,2) element is calculated as

cxð1; 2Þ ¼ ac
1

n

Xn

k¼1

s1ðkÞs1ðk þ s1Þ
" #

þ ad
1

n

Xn

k¼1

s1ðkÞs2ðk þ s2Þ
" #

þ bc
1

n

Xn

k¼1

s1ðk þ s1Þs2ðkÞ
" #

þ bd
1

n

Xn

k¼1

s2ðkÞs2ðk þ s2Þ
" #

: (28)

Equation (28) generates several new covariance terms that arise due to delays between the signals. A superscript s denotes a

delayed signal. Equation (28) is rewritten as

cxð1; 2Þ ¼ acrðs1ss
1Þ þ adrðs1ss

2Þ þ bcrðss
1s2Þ þ bdrðs2ss

2Þ; (29)

where r(�) is the covariance between the signals in parentheses. For the simulations in this paper, the interfering signal, s2, is

assumed to be white, Gaussian noise. Other interferers could be used, but stationary, white, Gaussian noise is chosen for

simplicity:

Cx ¼
a2rs1 þ 2abr s1s2ð Þ þ b2rs2

acr s1ss
1

� �
þ adr s1ss

2

� �
bcr ss

1s2

� �
þ bdr s2ss

2

� �
þacr s1ss

1

� �
þ adr s1ss

2

� �
þ bcr ss

1s2

� �
þ bdr s2ss

2

� � c2r ss
1ss

1

� �
þ 2cdr ss

1ss
2

� �
þ d2rs2

2
664

3
775: (30)

The smallest eigenvalue for the H1 hypothesis is

k1 ¼ 0:5 a2rs1 þ c2r ss
1ss

1

� �
þ 2abr s1s2ð Þ þ 2cdr ss

1ss
2

� �
þ b2 þ d2
� �

rs2

� �
� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2rs1 � c2r ss

1ss
1

� �
þ 2abr s1s2ð Þ � 2cdr ss

1ss
2

� �
þ b2 � d2ð Þrs2

� �2
þ 4 acr s1ss

1

� �
þ adr s1ss

2

� �
þ bcr ss

1s2

� �
þ bdr s2ss

2

� �� �2
vuut : (31)

The smallest eigenvalue for the H0 hypothesis is

k1 ¼ 0:5 b2 þ d2
� �

rs2 � 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � d2ð Þ2r2

s2 þ 4b2d2r s2ss
2

� �2
q

:

(32)

Unlike in the previous section, the eigenvalue for the H0

hypothesis does not reduce to zero in the absence of the

signal of interest. The covariance terms introduced by the

delays in the model do not cancel. However, switching

from the H0 to the H1 hypothesis still causes an increase
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in the smallest eigenvalue, which allows for the detection

of the signal of interest, but complicates the threshold

calculation.

C. One signal, one interferer with uncorrelated
background noise

The model in this section builds on the previous section

by using the same delayed signal scheme, but adding

uncorrelated noise to the two mixed signals. This is a more

realistic scenario that includes the effect of noise that is not

present in both sensors, such as sensor noise. As before, s1 is

the signal of interest with variance rs1, and s2 is the inter-

fering signal with variance rs2. The two hypotheses are

written as

H1 :
x1ðkÞ¼ as1ðkÞþbs2ðkÞþn1ðkÞ;
x2ðkÞ¼ cs1ðkþ s1Þþds2ðkþ s2Þþn2ðkÞ;

H0 :
x1ðkÞ¼ bs2ðkÞþn1ðkÞ;
x2ðkÞ¼ ds2ðkþ s2Þþn2ðkÞ:

(33)

In this case, the noise signals, n1 and n2, represent a combi-

nation of diffuse background noise, sensor noise, and electri-

cal noise, and are uncorrelated between sensors. The

covariance matrix is constructed element by element as

before. Once again, the interferer signal, s2, is assumed to be

short-term stationary, and the variance of the delayed signal,

s2(kþs2), is assumed to be equal to the variance of signal s2.

For brevity, the covariance matrix has been omitted, and the

smallest eigenvalue for the H1 hypothesis is

k1 ¼ 0:5
a2rs1 þ c2r ss

1ss
1

� �
þ b2 þ d2ð Þrs2 þ rn1 þ rn2 þ 2abr s1s2ð Þ þ 2cdr ss

1ss
2

� �
þ 2ar s1n1ð Þ þ 2br s2n1ð Þ þ 2cr ss

1n2

� �
þ 2dr ss

2n2

� �
" #

� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2rs1 � c2r ss

1ss
1

� �
þ b2 � d2ð Þrs2 þ rn1 � rn2 þ 2abr s1s2ð Þ � 2cdr ss

1ss
2

� �
þ 2ar s1n1ð Þ þ 2br s2n1ð Þ � 2cr ss

1n2

� �
� 2dr ss

2n2

� �
" #2

þ 4
acr s1ss

1

� �
þ adr s1ss

2

� �
þ bcr ss

1s2

� �
þ bdr s2ss

2

� �
þ ar s1n2ð Þ

þ br s2n2ð Þ þ cr ss
1n1

� �
þ dr ss

2n1

� �
þ r n1n2ð Þ

" #2

vuuuuuuuut ; (34)

where r(� �) is the covariance between the signals in parentheses, and as before, delayed signals are indicated with a super-

script s. For the H0 hypothesis, the smallest eigenvalue is

k1 ¼ 0:5 b2 þ d2
� �

rs2 þ rn1 þ rn2 þ 2br s2n1ð Þ þ 2dr ss
2n2

� �� �
� 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � d2ð Þrs2 þ rn1 � rn2 þ 2br s2n1ð Þ � 2dr ss

2n2

� �� �2
þ 4 bdr s2ss

2

� �
þ br s2n2ð Þ þ dr ss

2n1

� �
þ r n1n2ð Þ

� �2
vuut : (35)

As in the previous section, the eigenvalue for the H0 hypoth-

esis does not reduce to zero because the new covariance

terms introduced by the delays in the model and the uncorre-

lated noise do not cancel. Fortunately, switching from the H0

to the H1 hypothesis causes an increase in the smallest eigen-

value that may be thresholded for detection.

D. Threshold selection guideline for a given false
alarm rate

The previous sections showed how the smallest eigen-

value of the covariance matrix changes with the addition of

the signal of interest. In other words, the smallest eigenvalue

of the covariance matrix is the test statistic that is used to

distinguish between the H1 and H0 hypotheses. This new

PCA based detector decides on the H1 hypothesis if the

smallest eigenvalue of the covariance matrix exceeds a

threshold, c, or if

T Xð Þ ¼ k1 > c: (36)

The detection performance can be found by using Eqs. (11)

and (12). In the energy detector described in Sec. II C, the

pdf of the test statistic under each hypothesis is known to

be v2, which allows for a closed form solution of the

threshold value (for a specific false alarm rate). The pdf of

the smallest eigenvalue cannot be derived easily. Training

data will be used to estimate the pdf of the test statistic

under each hypothesis to provide a guideline for threshold

selection.

For this paper, a normal distribution will be used as the

model for the pdf of both the H1 and H0 hypotheses, so
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p k1; H1ð Þ ¼ N lk1;H1; r
2
k1;H1

� �
where lk1;H1 ¼ E kH1

1

� �
;

r2
k1;H1 ¼ E kH1

1 � lk1;H0

� �� �
;

p k1; H0ð Þ ¼ N lk1;H0; r
2
k1;H0Þ where lk1;H0 ¼ E kH0

1

� �
;

�
r2

k1;H1 ¼ E kH0
1 � lk1;H0

� �
�;

�
(37)

where k1
H0 is the test statistic calculated when the signal of

interest is present [Eq. (31) or (34)] and k1
H1 is the test statis-

tic calculated when the signal of interest is not present [Eq.

(32) or (35)]. Training data where the signal of interest is not

present is collected and used to estimate the mean and var-

iance of the test statistic for the H0 hypothesis. For a given

PFA value, the threshold, c, is chosen to satisfy the equation

PFA ¼
ð1

c
p k1; H0ð Þdx ¼

ð1
c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

k1;H0

q

� exp � 1

2r2
k1;H0

k1 � lk1;H0

� �" #
dx: (38)

If training data for the signal of interest present case is avail-

able, it can be used to estimate the mean and variance of the

test statistic for the H1 hypothesis. Using these estimates, the

PD for the threshold c is given as

PD ¼
ð1

c
p k1; H1ð Þdx ¼

ð1
c

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

k1;H1

q

� exp � 1

2r2
k1;H0

k1 � lk1;H1

� �" #
dx: (39)

IV. SIMULATIONS AND RESULTS

This section performs a parametric study using simula-

tions to examine the algorithm’s performance. All the simu-

lations assume an anechoic in-air environment, with the

speed of sound of 343 m/s, and a sampling frequency of

44100 Hz. In all cases, the interferer is white, Gaussian

noise. Unless otherwise stated, the signal of interest is a se-

ries of white, Gaussian noise bursts where the burst duration

is a random value. The data signal is split into 100 samples

per frame, and the significant statistic for each frame is cal-

culated as the smallest eigenvalue of the covariance matrix

[using Eq. (6)].

A. One signal, one interferer—simultaneous mixing

The first simulation uses the simultaneous mixing model

from Sec. III A. This model is only applicable in geometries

where the signal of interest and the interferer are the same

distance from both sensors. Despite its limited applicability,

it is included for its ease of model derivation and threshold

selection. For this simulation, the SIR was set to 0 dB and

the two signals are mixed using a linear mixing matrix as in

Eq. (21). Figure 2(a) shows the signal of interest before mix-

ing, Fig. 2(b) the mixed signal, and Fig. 2(c), the significant

statistic. During periods when the signal of interest is absent,

the significant statistic drops to nearly zero. In Eq. (26), the

significant statistic is exactly equal to zero, but since the

sample covariance matrix is used in the simulations instead

of the true covariance matrix, the simulations results do not

always reduce to exactly zero. For this simulation, any

threshold above zero can accurately differentiate between

the frames that contain the signal of interest and the frames

that do not contain the signal of interest.

B. One signal, one interferer—delayed mixing

While the previous simulation’s model is only applica-

ble for specific geometries, the model in Sec. III B is appli-

cable to any source/sensor geometry. For this simulation, the

signal of interest and the interferer are mixed according to

the model of Eq. (27) with the delays calculated based on the

geometry shown in Fig. 3(a), and an SIR of �8 dB. An SIR

of �8 dB was the first point at which false alarms began to

appear with the PCA technique. The same signal of interest

from the previous section was used for this simulation.

When compared to Fig. 2(c), during times when the signal of

interest is present, the significant statistics has risen from

clustering around 0.0175 to around 0.10. During times when

the signal of interest is not present, the significant statistic

has risen from nearly zero to clustering around 0.05. For this

particular case, a threshold value around 0.075 would be

FIG. 2. (Color online) (a) The origi-

nal signal of interest used for all sim-

ulations. (b) The mixed signal, X,

containing the signal of interest and

the white, Gaussian interferer mixed

simultaneously according to Eq.

(21). (c) The significant statistic gen-

erated using PCA. Using this signifi-

cant statistic and a user chosen

threshold, each frame is categorized

as signal present or signal absent.

For the simultaneous mixing scheme,

when the signal of interest is absent,

the significant statistic drops to

nearly zero.
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able to correctly predict the presence of the signal of interest

for most frames. This confirms the analysis in Sec. III B that

despite not reducing to zero under H0, this method is still

able to detect the presence of the signal of interest (for this

particular SIR).

Since the PFA is no longer zero, a ROC curve is used to

describe the performance of the algorithm for a variety of

PFA conditions. Figure 4 shows the ROC curves generated for

the case of �8 dB SIR. The solid line is the ROC curve for

the new PCA technique. The PD is greater than 96% for all

values of PFA. Using one second of training data where the

signal of interest is absent, the pdf of the significant statistic

under the H0 condition can be modeled as a normal distribu-

tion with a mean of 0.0528, and a variance of 0.0056. Using

these values and Eq. (16), a PFA of 0.05 is achieved with a

threshold value of 0.0620. By using one second of training

data where the signal of interest is present, the theoretical

best PD value is calculated from Eq. (17) to be 99.99%. Using

the simulated data, for a 5% PFA, the new PCA technique has

a 99.49% PD. The energy detection test presented in Sec. II B

was implemented to provide a comparison with the new tech-

nique. The dashed line in Fig. 3(b) shows the ROC curve for

the energy detector. For a 5% PFA, the energy detector test

has a PD of 96.47%. The dotted curve in Fig. 4 shows the

Neyman-Pearson theoretical best result for the energy detec-

tor generated using Eqs. (19) and (20).

1. Varying signal-to-interferer ratio

For the previous simulation, the two signals were at

�8 dB SIR. In order to evaluate the new technique’s robust-

ness to low SIR, cases were generated where the SIR is var-

ied between 0 dB and �15 dB. The SIR is given by

SIR ¼ 10 log10

Psignal

Pint

; (40)

where Psignal and Pint are the powers of the signal of interest

and interferer, respectively. For all cases, the delays for both

signals remain constant and are the same delays used in the

previous simulation. The series of plots in Fig. 5 illustrate

the impact of SIR on performance. For each SIR, the ROC

curve is calculated and the PD at 1%, 5%, and 10% PFA is

recorded. For all three reference PFA values, the PD

decreases as SIR decreases. The solid line gives the perform-

ance of the new PCA technique. For the 5% PFA reference

point, the new algorithm has near perfect performance for

SIRs above �8 dB. After that point, the performance

decreases as SIR decreases. The dashed lines in Fig. 5 give

the performance of the energy detector from Sec. II D. For

all SIR and all reference PFA, the new technique outperforms

the energy detector. Both the new technique and the energy

detector show similar trends in their degradation with respect

to SIR. In real world applications, the SIR varies with the

environment. For the VAD case where the microphone is

very close to the speaker of interest, SIR values above 10 dB

are common. For a conference room scenario, the SIR is

around 6 to 10 dB. In the more difficult scenario of passive

sonar, the SIR values are typically closer to 0 dB and, in the

extreme, could be as low as �50 dB.

FIG. 4. (Color online) The ROC curves generated in the delayed mixing

simulation corresponding to the geometry in Fig. 3(a). The solid line shows

the results using the new PCA technique, while the dashed line shows the

results using the energy detection test introduced in Sec. II D. The dotted

line shows the Neyman�Pearson theoretical best result for the energy detec-

tor generated by using Eqs. (19) and (20).

FIG. 3. (Color online) (a) The posi-

tioning of the signals and micro-

phones is shown. The TDOAs

calculated based on the source/re-

ceiver geometry presented are used

as the time delays in Eq. (27). (b)

The significant statistic generated

using PCA. The signal of interest is

the same as in Sec. IV A, which

allows for comparison with Fig. 2(c).
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2. Varying the type of signal of interest

In the simulations above, the signal of interest was a

burst of white, Gaussian noise. This simulation investigates

the algorithm’s performance for a variety of signal types.

The five signal types used in this section are named “Gauss

burst,” “tones,” “bandpass,” “uniform pdf,” and “impulse.”

The “Gauss burst” is the previously described series of burst

of random, white, Gaussian noise. “Tones” is a series of

tonal bursts at random frequencies (up to the Nyquist fre-

quency). “Bandpassed” is a series of bursts of 500 Hz wide

filtered white noise. The center frequencies for these bursts

are the same as the random frequencies used for the tone sig-

nal. The “uniform pdf” case is a series of bursts of a uni-

formly distributed signal with zero mean. Finally, the

“impulse” signal is a series of impulses. In order to replicate

the ringdown characteristic of sensors, the impulse decays

exponentially.

Figure 6 shows the performance of the new technique

for each of the signal trials. Figure 6(a) shows the ROC

curves generated when the SIR is �5 dB and no additional

noise is added to the system. Figure 6(b) shows the perform-

ance for the various signal types as SIR decreases. For the

varying SIR case, the ROC curve is calculated at each SIR

and the PD at 5% PFA is recorded. In both plots, the perform-

ance for the tone, Gaussian burst, and uniform pdf cases are

nearly identical. The bandpassed case has a lower perform-

ance. At 0 dB SIR case, the new technique’s performance

for the bandpassed case is nearly perfect, and then decreases

for all decreasing SIR. The impulse case has the worst per-

formance of all signal types examined. The PD never

achieves a value above 45% for all SIRs. Its performance is

only slightly better than a random guess. Impulses have very

small variances; in this example the sample variance of one

impulse is 0.0169, while the Gaussian interferer has a sample

variance of 0.999. The change in variance of the joint pdf

due to the addition of the impulse to the Gaussian interferer

is negligible. Since this method relies on detecting the

increase in the variance of the joint pdf, it fails when detect-

ing impulses.

3. New PCA method for voice activity detection

The previous sections presented the general case of

detecting an unknown acoustic signal in the presence of an

interferer. The signal of interest for the previous sections

was a series of random tone bursts (other signals were

also investigated). This section addresses the specific case

where the unknown signal is a voice signal. For this simu-

lation, the voice signal and the interferer are mixed

according to the model of Eq. (27) with the delays calcu-

lated based on the geometry shown in Fig. 3(a). The voice

FIG. 6. (Color online) The results of

changing the form of the signal of in-

terest on the algorithm’s perform-

ance. The ROC curve for the �5 dB

SIR is shown in (a). For the refer-

ence PFA values of 5%, the PD as a

function of SIR is shown in (b). For

the tone, random signal, and uniform

pdf cases, the performance lines lie

of top of one another, indicating

nearly identical performance.

FIG. 5. (Color online) The effect of

changing SIR on the algorithm’s per-

formance. Each plot frame represents

a different reference PFA value. From

left to right, the reference values are

1%, 5%, and 10% PFA. The signals

are arranged in the geometry indi-

cated in Fig. 3(a). For all cases, the

new technique has a better perform-

ance than the energy detector.
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signal and interferer have equal power. Figure 7(a) shows

the ROC curve for the new PCA technique. For a 5% PFA,

this new technique has a 94.31% PD. The dashed curve in

Fig. 7(a) shows the ROC curve for the energy detector.

For a 5% PFA, the statistical VAD algorithm has a PD of

70.69%. Figure 7(b) illustrates the impact of changing the

SIR on the new technique’s performance as a VAD algo-

rithm. As expected, decreasing SIR causes a decrease in

the algorithm’s performance. The performance of the tech-

nique as a VAD algorithm differs from the trend seen in

the previous tonal case. This is due to the nonstationary

characteristics of speech. The sample variance of the tone

in the tonal case is nearly constant for all frames, while

the voice signal has a variance that is a function of time.

As a result, the pdf of the significant statistic under the H1

and H0 hypotheses overlap more in the VAD case than in

the tonal case, which leads to lower PD values for a given

PFA.

C. One signal, one interferer with noise

For this series of simulations, the signal of interest

and the interferer are mixed according to the model of

Eq. (33), which includes the addition of uncorrelated

noise. The SNR is

SNR ¼ 10 log10

Psignal

Pnoise

; (41)

where Psignal and Pnoise are the powers of the signal of inter-

est and noise, respectively. This simulation evaluates the

new technique’s robustness to decreasing SNR. The two sig-

nals have equal power and the delays were the same as cal-

culated in Sec. IV B. The series of plots in Fig. 8 illustrate

the impact of SNR on the technique’s performance. For each

SNR, the ROC curve is calculated and the PD at 1%, 5%,

and 10% PFA is recorded. For all three reference PFA values,

the new algorithm maintains nearly perfect performance for

high SNR, and then the performance decreases as SNR

decreases. The trend seen in this simulation is similar to the

trend seen in the varying SIR case. The dashed lines in the

plots of Fig. 8 show the performance of the energy detector,

which is worse for all reference PFA and SNR. For each ref-

erence PFA value, the PCA technique and the energy detector

show similar trends in the performance degradation as a

function of SNR. For real world applications, the perform-

ance of this algorithm will depend highly the noise in the

data acquisition system, such as the sensitivity of the micro-

phone systems used, the quantization from analog to digital,

and the electrical noise in the system.

FIG. 8. (Color online) The algo-

rithms performance as a function of

varying SNR. Each plot represents a

different reference PFA value. From

left to right, the reference values are

1%, 5%, and 10% PFA. The signals

are arranged in the geometry indi-

cated in Fig. 3(a). For all cases, the

new technique has a better perform-

ance than the energy detector.

FIG. 7. (Color online) (a) The ROC

curves generated in the delayed mix-

ing VAD simulation corresponding

to the geometry in Fig. 3(a). The

solid line shows the results using the

new PCA technique, while the

dashed line shows the results using

the energy detection test introduced

in Sec. II D. (b) The effect of chang-

ing SIR on the algorithm’s perform-

ance. The ROC curves generated for

VAD simulations with 0, �5, and

�10 dB SIR.
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V. CONCLUSIONS

This paper introduced a new method for emergent acous-

tic signal detection based on PCA. The new method has the

capability to detect a signal consisting of bursts of white,

Gaussian noise in the presence of a Gaussian interferer for a

variety of conditions. It was also shown that a variety of other

signals could be detected using this new technique, including

tone bursts, bandpassed signals, and signals with a uniform

pdf. Existing algorithms detect the emergent signal by detect-

ing changes in the pdf of the mixed signals. The new method

uses PCA to detect the change in variance along the projection

direction corresponding to an uncorrelated source. Simula-

tions showed the capabilities of the new algorithm in detect-

ing emergent acoustic signals in a variety of conditions. Even

with high SIR and in the presence of uncorrelated background

noise, the new algorithm was able to detect the emergent

acoustic signal of interest. For both varying SIR and SNR, the

new algorithm outperformed the standard energy detector.

The method introduced is easy to implement and requires no

a priori information about the signal of interest.

For future work, the effect of multiple sources and multi-

ple interferers must be investigated. In addition, experiments

are necessary to verify the algorithm’s applicability to real

world situations, especially the affect of reverberation on the

algorithm. The multiple paths from the source to the micro-

phones cause delayed versions of the signal of interest to

appear in several subsequent time frames. The echoes of the

signal of interest may not reach the microphone during the

same processing frame as the direct path. Since the reverbera-

tion is coherent with the signal of interest, it will increase the

eigenvalue along the signal of interest’s subspace. Therefore,

the significant statistic is increased by the presence of echoes.

For frames where the direct path of the signal of interest is

present along with the echoes, this increase in the significant

statistic causes an increase in the PD. However, in frames

where the direct path of the signal of interest is not present

and the echoes are from a previous frame, the increase in the

significant statistic causes an increase in the PFA. Further

model development is necessary to quantify the effect of

reverberation on the algorithm’s performance.
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