
A modified strong-contrast expansion for estimating the effective thermal conductivity
of multiphase heterogeneous materials
Masoud Safdari, Majid Baniassadi, Hamid Garmestani, and Marwan S. Al-Haik 
 
Citation: Journal of Applied Physics 112, 114318 (2012); doi: 10.1063/1.4768467 
View online: http://dx.doi.org/10.1063/1.4768467 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/112/11?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Materials with constant anisotropic conductivity as a thermal cloak or concentrator 
J. Appl. Phys. 117, 054904 (2015); 10.1063/1.4907219 
 
Cross-plane thermal conductivity of a PbSnSe/PbSe superlattice material 
Appl. Phys. Lett. 99, 041903 (2011); 10.1063/1.3615797 
 
Thermal conductivity of chalcogenide material with superlatticelike structure 
Appl. Phys. Lett. 98, 101904 (2011); 10.1063/1.3562610 
 
Effective thermal conductivity of polycrystalline materials with randomly oriented superlattice grains 
J. Appl. Phys. 108, 034310 (2010); 10.1063/1.3457334 
 
Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites 
J. Appl. Phys. 94, 6591 (2003); 10.1063/1.1619573 
 
 

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

128.173.126.47 On: Mon, 04 May 2015 21:43:21

http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1683370892/x01/AIP-PT/MIT_JAPArticleDL_042915/MIT_LL_1640x440_banner.jpg/6c527a6a713149424c326b414477302f?x
http://scitation.aip.org/search?value1=Masoud+Safdari&option1=author
http://scitation.aip.org/search?value1=Majid+Baniassadi&option1=author
http://scitation.aip.org/search?value1=Hamid+Garmestani&option1=author
http://scitation.aip.org/search?value1=Marwan+S.+Al-Haik&option1=author
http://scitation.aip.org/content/aip/journal/jap?ver=pdfcov
http://dx.doi.org/10.1063/1.4768467
http://scitation.aip.org/content/aip/journal/jap/112/11?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/117/5/10.1063/1.4907219?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/99/4/10.1063/1.3615797?ver=pdfcov
http://scitation.aip.org/content/aip/journal/apl/98/10/10.1063/1.3562610?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/108/3/10.1063/1.3457334?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jap/94/10/10.1063/1.1619573?ver=pdfcov


A modified strong-contrast expansion for estimating the effective thermal
conductivity of multiphase heterogeneous materials

Masoud Safdari,1 Majid Baniassadi,2 Hamid Garmestani,3 and Marwan S. Al-Haik1,a)

1Engineering Science and Mechanics Department, Virginia Tech, MC 0219, Blacksburg, Virginia 24061, USA
2School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563,
Tehran, Iran
3School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive N.W.,
Atlanta, Georgia 30332, USA

(Received 23 July 2012; accepted 6 November 2012; published online 7 December 2012)

To evaluate the effective thermal conductivity of a general anisotropic multiphase microstructure, a

modified version of statistical strong-contrast expansions is formulated here. The proposed method

takes into account the shape, orientation, and distribution of each phase through two-point and three-

point correlation functions. By applying a recently developed method, three-point correlation

functions are approximated from the two-point correlation functions. Numerically, it is shown that for

high contrast constituents, the solution of the third-order strong-contrast expansions is very sensitive

to the selection of the reference medium. A technique is proposed to minimize the sensitivity of the

solution. To establish the validity of the methods developed, the effective thermal conductivity of a

number of isotropic and anisotropic two-phase and three-phase microstructures is evaluated and

compared to their corresponding finite element (FE) simulations. Good agreement between the FE

simulations and the proposed method predictions in the cases studied confirms its validity. When

there are orders of magnitude disparity between the properties of the constituents, the developed

method can be applied to better estimate the effective thermal conductivity of the multiphase

heterogeneous materials in comparison with previous strong contrast model and other homogeneous

methods. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768467]

I. INTRODUCTION

With the introduction of nanomaterials, many investiga-

tions have been devoted to incorporate them into polymer

composites as fillers.1 Carbon nanotubes (CNTs) and graph-

ite nanoplatelets (GNPs) are two nanostructured allotropic

forms of carbon with intrinsically elevated thermal conduc-

tivity.1,2 When utilized as particulate nanofillers, they can

dramatically enhance the effective thermal conductivity of

their derivative nanocomposites. A number of reference

closed form relations are developed based on classical ho-

mogenization techniques to evaluate the effective thermal

conductivity of the composites materials.3 However, most of

these relations are not applicable for nanocomposite in which

the filler phases usually exhibit large thermal conductivity

compared to the matrix, shape polydispersity (multiphase),

and random heterogenous structure (nonperiodic).

Classic homogenization techniques can be classified

into statistical methods,4 mean field methods,5 asymptotic

methods,6 variational energy-based methods,7 and empirical/

semiempirical methods.8 Generally, the mean field homoge-

nization and the asymptotic approaches are restricted to the

periodic particular inclusion based structures and, therefore,

they are not applicable for the homogenization of the random

heterogeneous materials. Variational energy based methods

typically provide an upper-bound or a lower-bound on the

effective properties under specific conditions.3,4 However,

statistical homogenization techniques are neither limited to

the periodic microstructures nor just providing bounds on the

effective properties. In practice, statistical continuum theory

provides tool for mathematical depiction of the dispersion

and distribution of the heterogeneous materials.9 In these

methods, structural information is usually transmitted in the

solution through microstructural descriptor functions which

are appearing within the solution expression.4 Thus, by uti-

lizing these methods, the properties of the heterogeneous

materials could be directly linked to the morphological

details through different types of correlation functions such

as the N-point correlation functions.4,9

According to the statistical continuum theory, the distri-

bution, orientation, and the shape of the heterogeneity for

non-eigen heterogeneous systems can be completely

described by N-point correlation functions when N is infi-

nite. However, a periodic eigen microstructure can be

uniquely described by two-point correlation functions

(TPCFs).10 In general, two-point correlation functions of a

d-dimensional isotropic media can be extracted from a

m-dimensional cut of the d-dimensional medium (m¼ 1,

2,…,d�1).11 However, experimentally, electron microscopy

images can be exploited to extract two-point and three-point

correlation functions of the microstructures.12–14 Small-

angle X-ray scattering (SAXS) measurement is another

powerful technique capable of providing statistical two-point

correlation functions of a large volume of heterogeneous

sample without limitation of electron microscopy.15

Statistical continuum mechanics methods have been

developed as a powerful basis for the reconstruction and
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homogenization of the microstructures.4 Weak and strong

contrast expansions are two well-known examples of these

methods.4 Weak contrast expansion is originally developed

based on the perturbation series which can perfectly estimate

the effective properties for the small contrast of the constitu-

ent properties (e.g., less than two). Developing a powerful

approach for estimating the effective properties of micro-

structure with high-contrast constituents led to the strong-

contrast expansions.4,16,17

In the literature, closed form relations are available to

estimate the second and third order bounds on the effective

properties of simple microstructures, e.g., coated-sphere

Hashin-Shtrikman structures.16 However, for more complex

microstructure, strong-contrast approximations are usually

good alternatives. The d-dimensional strong-contrast formu-

lation was developed to evaluate the effective elastic, elec-

tric, thermal, and permeability properties of a microstructure

comprising two isotropic phases.4 Later, this approach was

extended to the multiphase microstructures.16,17 Generally,

strong-contrast expansions should be evaluated numerically

for highly complex structures. For this purpose, the series

expansion is usually truncated up to its third order term

which only incorporates two-point and three-point correla-

tion functions into the solution.15,18 Such truncated expan-

sion is undesirably sensitive to the selection of the reference

phase properties.

In the following study, an established strong contrast

expansion by Pham19 is adopted and modified to find a

third-order estimate of the effective thermal conductivity of

multiphase random heterogenous materials. To generalize

the applicability of the proposed solution, a recent

method20 is applied to approximate three point correlation

functions from two-point correlation functions of the same

microstructure. An approach is also exploited to minimize

the effect of reference phase properties on the estimated

effective thermal conductivity. As mentioned earlier, the

proposed method is suitable for applications in nanomateri-

als such as CNTs with tubular structure and GNPs with

disk-shaped structure. To investigate the validity of the pro-

posed approach, different sets of two-phase and three-phase

microstructures comprising tubular and disk-shaped inclu-

sions are selected. The effective thermal conductivity for

each microstructure is estimated both via the proposed

method and with a standard finite element (FE) method.

Finally, the estimated properties of both methods are quan-

titatively compared and the agreement between the results

is discussed.

II. STRONG-CONTRAST EXPANSION

For a general microstructure with characteristic micro-

scopic length scale much smaller than that of specimen

length scale and consisting of three different phases, where

each phase has the volume fraction /aða ¼ 1; 2; 3Þ and is

characterized by isotropic thermal conductivity of ra, the

local conductivity at position ðxÞ is

rðxÞ ¼
X3

a¼1

raIðaÞðxÞ; (1)

where the indicator function (IðaÞðxÞ is) for each phase is

defined by

IðaÞðxÞ ¼ 1 x in phase a
0 otherwise:

�
(2)

Knowing that the local intensity filed (EðxÞ) and local

thermal current (JðxÞ) are interrelated by

JðxÞ ¼ rðxÞEðxÞ: (3)

It is possible to embed this microstructure in to a reference

medium, with thermal conductivity r0, subjected to an inten-

sity field E0ðxÞ at the infinity and define a polarization field

PðxÞ by

PðxÞ ¼ ðrðxÞ � r0ÞEðxÞ: (4)

Under steady state condition and without sources, the polar-

ization field is related to the temperature distribution (and

knowing that EðxÞ ¼ �$TðxÞ) by

r0DTðxÞ ¼ $:PðxÞ: (5)

By adopting the Green’s function solution to the Laplace

equation at the infinity, this equation can be solved. How-

ever, to obtain the intensity field EðxÞ, the solution to this

equation should be differentiated by excluding an infinitesi-

mal region around each solution point and introducing a cav-

ity intensity field (FðxÞ). Torquato4 has shown that

EðxÞ ¼ E0ðxÞ þ
ð

dx0Gð0ÞðrÞ:Pðx0Þ; (6)

where r ¼ x� x0 and

Gð0ÞðrÞ ¼ �Dð0ÞdðrÞ þHð0ÞðrÞ (7)

and

Dð0Þ ¼ 1

3r0

I; Hð0ÞðrÞ ¼ 1

4pr0

3nn� I

r3
; (8)

where the vector n ¼ r=jrj, and I is the second order identity

tensor. This integral over the surface of an excluded infini-

tesimal spherical cavity is identically zero, thus, a formula-

tion for the cavity intensity field F(x) can be deduced by

substituting Eq. (7) into Eq. (6) as

FðxÞ ¼ E0ðxÞ þ
ð
�

dx0Hð0Þðx� x0Þ:Pðx0Þ (9)

in which the cavity intensity field is

FðxÞ ¼ fI þ Dð0Þ½rðxÞ � r0�g:EðxÞ: (10)

By combining Eqs. (10) and (4), the relationship between the

polarization field and cavity intensity field is defined by

PðxÞ ¼ LðxÞFðxÞ; (11)
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where

LðxÞ ¼ 3r0

X3

a¼1

ba0IðaÞðxÞ (12)

and

ba0 ¼
ra � r0

ra þ 2r0

; a ¼ 1; 2; 3: (13)

Knowing that the average cavity field is related to the polar-

ization field by

hPðxÞi ¼ Le:hFðxÞi; (14)

in which the angular bracket represents an ensemble average.

With further mathematical manipulations, it is possible to

show that the second-order tensor Le is related to the effec-

tive thermal conductivity tensor for the microstructure (re)

by

Le ¼ 3r0fre � r0Ig:fre þ 2r0Ig�1: (15)

Torquato4 has shown the explicit form of the effective ther-

mal conductivity tensor to be

L�1
e ð1Þ ¼

Ið1Þ
hLð1Þi �

ð hLð1ÞLð2Þi � hLð1ÞihLð2Þi
hLð1ÞihLð2Þi

� �
Hð0Þð1; 2Þd2

�
ð ð  hLð1ÞLð2ÞLð3Þi

hLð1ÞihLð2Þi �
hLð1ÞLð2ÞihLð2ÞLð3Þi
hLð1ÞihLð2ÞihLð3Þi

!
Hð0Þð1; 2Þ:Hð0Þð2; 3Þd2d3þ � � � ; (16)

in this equation, the shorthand notation x ¼ 1, x0 ¼ 2 and

x00 ¼ 3 were utilized. This equation utilizes hLð1Þ;…; LðnÞi
terms which are related to the N-point microstructural corre-

lation functions. For instance, for a combination of three

phases a; b, and c one can show that

hLð1Þi ¼ 3r0

X3

a¼1

ba0S
ðaÞ
1 ð1Þ; (17)

hLð1ÞLð2Þi�hLð1ÞihLð2Þi¼ ð3r0Þ2
X3

a¼0

X3

b¼0

ba0bb0

h
S
ðabÞ
2 ð1;2Þ

�S
ðaÞ
1 ð1ÞS

ðbÞ
1 ð2Þ

i
; (18)

in which S
ðabcÞ
3 is a 3-point correlation function defined by

S
ðabcÞ
3 ðx1;x2;x3Þ¼hIðaÞðx1ÞIðbÞðx2ÞIðcÞðx3Þi; a;b;c¼1;2;3:

(19)

III. GENERAL ANISOTROPIC SOLUTION

Following Torquato,4 Pham,16 and Quang,19 it is possi-

ble to approximate the series in Eq. (16) up to its third-order

terms and then by substituting Eq. (15) into it, after some

simplifications, the effective conductivity tensor for a gen-

eral case of macroscopically anisotropic microstructure with

three phases reduces to

� 1

r0

re � I
��1

¼ 1

3

� 1X3

a¼1
/aba0

� 1
�

I � A2 � A3: (20)

In this equation, A2 and A3 are second-order and third-order

terms, respectively. Using Eqs. (17) and (18) and similar

expansion for higher order terms, one can show that

A2 ¼
r0�X3

a¼1
/aba0

�2

ðX3

a¼1

X3

b¼1

ðb0ab0b½SðabÞ
2 ð1; 2Þ

� S
ðaÞ
1 ð1ÞS

ðbÞ
1 ð2Þ�ÞHð0Þð1; 2Þd2; (21)

A3 ¼
3r0�X3

a¼1
/aba0

�2

ð ð �X3

a¼1

X3

b¼1

X3

c¼1

b0ab0bb0cS
ðabcÞ
3 ð1; 2; 3Þ

� 1X3

a¼1
/aba0

X3

a¼1

X3

b¼1

X3

c¼1

X3

d¼1

b0ab0bb0cb0dS
ðabÞ
2 ð1; 2ÞSðcdÞ2 ð2; 3ÞÞHð0Þð1; 2ÞHð0Þð2; 3Þd2d3: (22)

It should be noted that in both Eqs. (21) and (22),

b0a(a ¼ 1; 2; 3) terms only depend on the properties of each

phase and the reference medium and, therefore, the summa-

tions can be expanded and these terms can be factored out of

each tensor integration as constants. The third-order terms

require three-point correlation function which can be
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approximated properly; the details are addressed in the next

section. Finally, it should be noted that for a general micro-

structure, Eq. (20) has no closed form analytical solution and

therefore it should be evaluated numerically. Because of the

truncated nature of this expansion, care must be taken during

the numerical solution in order to guarantee its convergence

to the true solution. Detailed discussion about the numerical

evaluation of this equation is provided later in this article.

IV. MICROSTRUCTURAL DESCRIPTOR FUNCTIONS

Several microstructural descriptors are developed in

numerous fields of applied physics. Among them, the

N-point correlation functions (or probability functions) intro-

duced by Eq. (19) have been widely applied in the context of

determining the effective properties.4 TPCFs are the lowest

order of their kind that are capable of providing geometrical

information about a unique microstructure.4 For instance,

Figure 1 shows TPCF of the homogeneous two-phase micro-

structures with isotropic dispersion of unique tubular inclu-

sions calculated numerically from a representative volume

element (RVE). The RVEs were generated by the method

described elsewhere.21 As the correlation length (jx� x0j)
approaches infinity, TPCF is converging to a constant value

(� /2
a) with no dependence on the orientation.

Similar functions for an anisotropic microstructure with

tubular inclusions aligned in x-direction should show strong

correlation in this direction compared to the other directions.

Therefore, in order to correctly represent this microstructure,

a three dimensional correlation function is required. Corson

method22 is applied here to evaluate the three dimensional

TPCF of this microstructure as illustrated in Figure 2.

Analytical evaluation of TPCFs is only limited to certain

simple microstructures.4 Direct numerical evaluation of

higher order correlation functions is an expensive computa-

tional process. Different methods are developed to approxi-

mate higher order probability functions from lower order

ones.20,23 Recently, Baniassadi et al.20 introduced a method

to approximate N-point correlation functions from (N� 1)-

point correlation functions. Similar approach is employed

here to approximate three-point correlation functions by

two-point functions according to

S
ðabcÞ
3 ð1; 2; 3Þ �W3

1

S
ðabÞ
2 ð1; 2ÞSðacÞ

2 ð1; 3Þ
S
ðaÞ
1 ð1Þ

þW3
2

S
ðabÞ
2 ð1; 2ÞSðbcÞ

2 ð2; 3Þ
S
ðbÞ
1 ð2Þ

þW3
3

S
ðbcÞ
2 ð2; 3ÞS

ðacÞ
2 ð1; 3Þ

S
ðcÞ
1 ð3Þ

; (23)

in which

W3
i ¼

RiX3

j¼1
Rj

; i ¼ 1; 2; 3; (24)

where R1; R2, and R3 are the shortest distances between each

pair of points (1-3).

V. REFERENCE MEDIUM SELECTION

The strong contrast expansion introduced in Eq. (16) is

based on the assumption that the specimen is completely

bounded by a reference medium at infinity. For the limit of

infinite number of terms, the two phase expansion is known

to converge to the true solution regardless of the properties

of the reference medium (r0).4 However, for a three-terms

truncation, the absolute convergence to the true solution is

contestable. In fact, when the properties of the reference me-

dium (r0) are close enough to the effective properties, there

is a better chance for this equation to converge to the true

FIG. 1. TPCF of isotropic homogeneous microstructures loaded with 2-10

vol. % tubular inclusions (/ ¼ 20, l¼ 200, and aspect ratio¼ 10). The inset

shows 3D view of the RVE for 4 vol. % configuration.

FIG. 2. Three dimensional representation of a two-point correlation function

of homogeneous anisotropic microstructure loaded with 4 vol. % tubular

inclusions (/ ¼ 20, l¼ 200, and aspect ratio¼ 10) with preference orienta-

tion in the x-direction.
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solution. For only two phase media, Torquato4 recommended

one of the constituents to be selected as the reference me-

dium for the solution. Even under such conditions, two dif-

ferent expansions can be written with no guarantee for a

single solution. For a microstructure comprising more than

two phases, with orders of magnitude discrepancy between

their properties, the effective properties can be significantly

different from each of the individual phases. For instance,

the effective conductivity of a microstructure composed of

isotropically dispersed tubular inclusions inside a matrix phase

with two orders of magnitude difference between their ther-

mal conductivities (r1=r2 ¼ 100) is shown in Figure 3. It can

be observed that by varying the thermal conductivity of the

reference medium between the arithmetic and harmonic aver-

ages, there is a three-fold variation in the estimation of the

effective thermal conductivity of the microstructure. This ob-

servation strengthens the necessity to devise a method for

proper selection of the reference phase properties.

In order to find proper interval for r0, one can solve Eq.

(20) for re

re ¼ r0

 
I þ

 
1

3

 
1X3

a¼1
/aba0

� 1

!
I � A2 � A3

!�1!

¼ f ðr0;microstructureÞ;
(25)

in which f represents the approximation function. Assuming

the true solution is rtrue, the absolute approximation error as

a function of r0 is defined by

eðr0Þ ¼ ðf ðr0Þ � rtrueÞ2: (26)

Assuming the function e is continuous and differentiable

through the domain, one can differentiate this equation and

set it to zero as

@e

@r0

¼ 2
@f

@r0

ðf ðr0Þ � rtrueÞ ¼ 0: (27)

The solutions to this equation is

@f

@r0

¼ 0; (28)

f ðr0Þ ¼ rtrue: (29)

The roots of these equations poses minimal sensitivity of the

function e to the reference phase properties. Equation (29) is

trivial, however, Eq. (28) can be solved with available infor-

mation. Thus, the roots of Eq. (28) are the best candidates

for r0. Considering second order continuity for Eq. (26), it

can be differentiated one more time such that

@2eðr0Þ
@r2

0

¼ 2
@2f

@r2
0

ðf ðr0Þ � rtrueÞ þ 2
� @f

@r0

�2

; (30)

the second term of this equation vanishes at the candidate

points. Intuitively, the solutions of Eq. (25) at the candidate

points either overestimate or underestimate the effective

properties. Based on this fact, the expression inside the pa-

renthesis of the first term in this equation is either positive or

negative and, therefore, the best approximation to the effec-

tive properties is either local minima or maxima of Eq. (25).

When there is at least one local minimum and one maximum

point available, the arithmetic average value of them could

offer a better estimate of the effective properties by cancel-

ing out errors.

Evaluation of Eq. (27) analytically is only viable for

very simple microstructures. However, numerically, it can be

evaluated potentially for any combination of microstructure

and properties. For the isotropic microstructures described

earlier (Figure 1), Figure 4 is showing variation of re

(re ¼ reI) with r0. The local minimum and maximum are

FIG. 3. Effect of the reference phase (r0) selection on the effective conduc-

tivity for the microstructures loaded with 2, 4 and 6 vol. % tubular inclusions

(aspect ratio¼ 10, rtube ¼ 100, and rmatrix ¼ 1).

FIG. 4. Candidate points for the evaluation of re in an isotropic microstruc-

ture loaded with 2, 4, 6, and 8 vol. % tubular inclusions (aspect ratio¼ 10,

rtube ¼ 100, and rmatrix ¼ 1).
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providing an upper estimate and a lower estimate of the

effective properties.

For a general anisotropic microstructure, Eq. (27) yields

different candidate points. Each of these points represents a

possible estimate of the effective properties. For instance,

Figure 5 shows these points for the anisotropic microstruc-

ture described earlier in Figure 2.

VI. VALIDATION STUDY

In order to establish the validity of the proposed method,

the effective thermal conductivity for three phase micro-

structures comprising tubular inclusion, disk-shaped inclu-

sions, and a combination of both are studied. A RVE of the

microstructures was generated by stochastic Monte Carlo

method through random sequential addition process as

described elsewhere.24 Strong contrast predictions were

computed from two-point correlation function of the micro-

structure and approximated three-point correlation functions.

For all microstructures, the effective thermal conductivity

was compared to that calculated through finite element simu-

lations using commercial finite element code Abaqus

(version 6.10-EF). For the finite element model, the micro-

structure was simulated and meshed with four node tetrahe-

dral elements (DC3D4) under the presumption of perfect

bounding between the particulate inclusions and the matrix.

In order to ensure the convergence of the FE solution, a num-

ber of mesh refinement strategies were carried out as well as

preliminary local mesh refinement around each inclusion and

global mesh refinement in the convergence study. The

boundary conditions were chosen to be constant tempera-

tures uniformly distributed over the mesh grids in two

opposing side (273 and 373 K) of the simulation cuboid and

the steady state solution was evaluated. Finally, the effec-

tive thermal conductivity was calculated from the tempera-

ture difference and the volume-averaged heat flux vector

over the whole cuboid. Figure 6 shows the output of one of

the finite elements simulations for a microstructure with

disk-shaped inclusions. Depending on the volume fraction

of the inclusions, and considering the solution convergence

study, each FE simulation was taking between 10 and 96 h

on a hexacore windows based machine with 12 GB of

memory.

FIG. 5. Existence of different candidate points for an anisotropic microstruc-

ture loaded with 4 vol. % tubular inclusions with preferred orientation in the

x-direction (aspect ratio¼ 10, rtube ¼ 100, and rmatrix ¼ 1).

FIG. 6. FE calculation of the distribution of

the heat-flux in x-direction in the RVE

loaded with 10 vol. % disk-shaped inclu-

sions (aspect ratio¼ 10, rdisk ¼ 100, and

rmatrix ¼ 1) (a) internal view (b) full view.

FIG. 7. Comparison between the effective thermal conductivities predicted

by the strong contrast method and the finite element method for isotropic micro-

structures loaded with tubular inclusions (aspect ratio¼ 10 and rtube ¼ 100 and

rmatrix ¼ 1).
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Figure 7 is showing the effective thermal conductivity

for the homogeneous composite specimens loaded with dif-

ferent volume fractions of the tubular inclusions and with the

microstructure described in Figure 1. The thermal conductiv-

ity of the isotropic inclusions was selected to be hundred

times higher than that for matrix phase (rtube=rmatrix ¼ 100).

In this figure, the strong contrast predictions are calculated

twice. Initially, the reference medium was selected to be

identical to the inclusion phase and then it was selected by

the proposed method. Both predictions are also compared

with the lower-bound and the FE predictions. It can be

observed that only the predictions of the proposed method

are in good agreement with finite elements results in the case

of tubular inclusions.

Similarly, the effective conductivity of the homogeneous

microstructures filled with disk-shaped inclusions was also

evaluated. Figure 8 shows the comparison between the pre-

dicted results of the different methods for various volume frac-

tions of disk-shaped inclusions. Good agreement with finite

element predictions is also observed for the proposed method.

A number of multiphase hybrid disk-tube microstruc-

tures were also studied. In all cases, microstructures with ho-

mogenous distribution of the disk and the tube phases with

equal volume fractions were analyzed. Figure 9 compares

the effective thermal conductivity of these hybrid micro-

structures. Again, perfect agreement is observed between the

finite element predictions and the proposed method

predictions.

FIG. 8. Comparison between the effective thermal conductivities predicted

by the strong contrast method and the finite element method for isotropic

microstructures loaded with disk-shaped inclusions (aspect ratio¼ 10,

rdisk ¼ 100, and rmatrix ¼ 1).

FIG. 9. Comparison between the effective thermal conductivities predicted

by the strong contrast method and the finite element method for the micro-

structures loaded with tubular and disk-shaped inclusions (aspect ratio¼ 10,

/tube ¼ /disk; rdisk ¼ rtube ¼ 100, and rmatrix ¼ 1).

FIG. 10. Proposed strong contrast method predicts the synergetic

improvement in the effective thermal conductivity by tube-disk hybridiza-

tion into isotropic microstructure. (aspect ratio¼ 10, /tube ¼ /disk,

rdisk ¼ rtube ¼ 100, and rmatrix ¼ 1).

FIG. 11. Effective thermal conductivity of the anisotropic microstructure

loaded with tubular inclusions with preferential orientation in the x-direction

(aspect ratio¼ 10, rtube ¼ 100, and rmatrix ¼ 1).
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Figure 10 compares the strong contrast predictions for

all three configurations. It can be observed that disk-tube

hybridization improves the effective conductivity over that

for each individual phase. This synergetic enhancement in

the properties was also observed in the corresponding finite

element study.

Finally, the method was applied for the anisotropic

microstructure loaded with tubular inclusions as described in

Figure 2. Figure 11 compares the effective thermal conduc-

tivity tensor. It can be observed that the proposed method is

in good agreement with the finite element results.

VII. CONCLUSIONS

In this study, a modified version of the strong contrast

expansions is formulated to evaluate the effective thermal

conductivity of multiphase heterogenous materials. The

effect of the reference medium on the effective thermal con-

ductivity is discussed both analytically and numerically. A

method is proposed to minimize the effect of the reference

medium on the solution. The proposed method formulates

error between the predicted thermal conductivity and the

true thermal conductivity as a function of the reference phase

properties and then finds its extremal points. It is argued that

by choosing the properties of the reference phase on the

neighborhood of these extremal points, the predicted effec-

tive properties will contain minimal error compared to the

practice of arbitrary selection of the reference phase fol-

lowed by existing methods. In order to establish the validity

of the proposed method, its prediction is compared with

those from finite element simulations for three different

microstructures consisting of tubular, disk-shaped inclusions,

and a combination of both. Good agreements between the

proposed method predictions and the FE calculations are

observed for all three different microstructure cases. Further-

more, this study suggests that—compared to the single

inclusion scenario—a synergistic combination of tube and

disk-shaped inclusions can further enhance the effective

thermal conductivity of a hybrid microstructure.
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