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We quantify the Brownian driven, stochastic dynamics of an elastic nanobeam immersed in a

viscous fluid that is partially wrapped around a microdisk optical resonator. This configuration has

been proposed as an optomechanical and nanoscale analog of the atomic force microscope

[Srinivasan et al., Nano Lett. 11, 791 (2011)]. A small gap between the nanobeam and microdisk is

necessary for the optomechanical transduction of the mechanical motion of the nanobeam. We

compute the stochastic dynamics of the nanobeam in fluid for the precise conditions of the

laboratory using deterministic finite element simulations and the fluctuation dissipation theorem.

We investigate the dynamics of a nanobeam in water and in air and quantify the significance of the

fluid-solid interaction between the nanobeam and the optical resonator. Our results in air show that,

despite the complex geometry of the nanobeam, it can still be represented approximately as a

damped simple harmonic oscillator. On the other hand, when the nanobeam is immersed in water

there are significant deviations from the dynamics of a simple harmonic oscillator. The small gap

between the nanobeam and the microdisk is found to be a significant source of additional

dissipation. In air, the quality factor of the mechanical oscillation of the nanobeam is reduced by an

order of magnitude due to the presence of the microdisk, however, the dynamics remain

underdamped even in the presence of the microdisk. On the other hand, when placed in water, the

dynamics without the microdisk is underdamped and with the microdisk the dynamics become

strongly over damped. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824297]

I. INTRODUCTION

Highly sensitive measurements of the mechanical motion

of ultrasmall elastic objects in a viscous fluid are at the heart

of many emerging technologies that have made significant

impacts in a broad range of fields. A prominent example is

the microscale cantilever that is central to atomic force mi-

croscopy (AFM).1–3 Since the inception of the AFM there has

been significant progress in using atomic force microscopy in

fluid environments.2–4 As technology progresses, there is

increasing pressure to exploit the dynamics of mechanical

oscillators that are much smaller than the typical micron scale

AFM cantilever.3,5–8 Among the advantages of using nano-

scale elastic objects are improved time resolution due to

much higher frequencies of oscillation (MHz and higher9)

and also the possibility of much softer elastic objects with

significantly improved force resolution.10 However, there are

significant experimental challenges in developing approaches

to measure the motion of nanoscale elastic objects. For exam-

ple, traditional AFM uses laser interferometry which is lim-

ited by the spot size of the laser.

A very promising approach is to measure the mechanical

motion of the elastic object through its optomechanical cou-

pling with a microdisk resonator.11–13 This approach has

yielded a number of exciting recent advances including meas-

urements of mechanical motion at, or near, the standard

quantum limit.13,14 In this approach an elastic beam is placed

is close proximity to an optical resonator. The elastic struc-

ture interacts with the evanescent wave of the microdisk11

which can then be detected. This approach has been used

to detect the motion of nanoscale beams with sub-

femtometer/(Hz)1/2 sensitivity in absolute displacement.14

In this paper, we explore in detail the Brownian driven

mechanical motion of the nanobeam when the entire appara-

tus is immersed in a viscous fluid. As an important, and repre-

sentative, example, we numerically investigate the stochastic

dynamics for the geometry and configuration that has been

explored experimentally by Srinivasan et al.14 A schematic of

the geometry of interest is shown in Fig. 1. A microdisk cav-

ity optical resonator is located in the center with the nano-

beam wrapped around the left portion of the microdisk. The

nanoscale beam is attached to supports at four locations. The

motion that we are interested in is the Brownian driven

motion of the nanobeam that is in-plane with the nanobeam

and microdisk. This particular geometry was chosen to stiffen

out-of-plane modes which makes the in-plane mode the fun-

damental mode of oscillation for this structure. In essence, the

structure is composed of two doubly clamped beams that are

attached via the triangular section near the center of the nano-

beam. This triangular section, for example, could serve as the

tip for tapping mode type measurements. The small gap sg

between the nanobeam and the microdisk is necessary for the

optomechanical coupling that is central for the measurement

of the nanobeam dynamics. On the right hand side of thea)Electronic mail: mrp@vt.edu.
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microdisk is a fiber taper waveguide where light travels from

the bottom to the top where it is measured by a photodetector.

We now briefly describe the measurement approach and

provide only the necessary details to place our work in con-

text (for more details see Ref. 14). The fiber taper waveguide

is sufficiently close to the microdisk that the evanescent tail

of the optical mode is large enough in the waveguide to cou-

ple with the optical modes of the microdisk. The microdisk is

a high-finesse oscillator with a typical quality factor of 105 or

larger. The evanescent wave of the optical mode in the micro-

disk is large enough to couple with the mechanical vibrations

of the nanobeam which can be detected at the photodetector.

In this paper, we quantify the mechanical motion of the

nanobeam for the configuration of Fig. 1 when the entire ap-

paratus is immersed in a viscous fluid. Specific properties

describing the nanobeam are given in Table I. An in-plane

projection of a portion of the geometry is shown in Fig. 2.

II. APPROACH

We compute the stochastic dynamics of the nanobeam

using the thermodynamic approach of Paul and Cross.15 We

provide only the essential details of the approach and refer

the reader to Ref. 16 for more details. The approach has

been used to quantify the stochastic dynamics of micro and

nanoscale cantilevers in fluid,15,16 the dynamics of a cantile-

ver near a solid boundary,17 and the dynamics of V-shaped

cantilevers.17 The approach has been validated by a direct

comparison with experimental measurement for a variety of

conditions.16,18–21

The essence of the approach is to compute the determin-

istic response of the system to the removal of a step-force

and to then use the fluctuation-dissipation theorem to com-

pute the autocorrelation and noise spectrum of equilibrium

fluctuations in the nanobeam displacement. We use time-

dependent, three-dimensional, and finite-element numerical

simulations of the nanobeam-microdisk geometry shown in

Fig. 2. We have used two planes of symmetry to greatly

reduce the computational cost of the simulations. The motion

of interest is in-plane with the nanobeam as shown in Fig. 2.

The mode shape of the fundamental mode of oscillation is

shown in Fig. 3. We point out that the thickness of the nano-

beam is h as shown in Fig. 2. The important characteristic

length with respect to the fluid motion, and its interaction

with the nanobeam, is the width w which is in the direction

perpendicular to the nanobeam motion.

FIG. 1. A schematic of the nanobeam and microdisk optical resonator. The

nanobeam is partially wrapped around the microdisk optical resonator. The

nanobeam is attached to adjacent walls at four locations with the triangular

tip of the nanobeam pointing to the left side of the microdisk optical resona-

tor. The fundamental mode of mechanical vibration of the nanobeam is

in-plane with the surface of the microdisk. On the right hand side of the

microdisk is the fiber taper waveguide that leads to a photodetector. The

arrows indicate the optical path. The geometry of the nanobeam is given in

more detail in Fig. 2 and in Table I.

FIG. 2. The geometry of the nanobeam. The image shown represents the

two-dimensional projection of the domain used in the numerical simulations.

Several important length scales are as labelled. The microdisk is gray and

the nanobeam is black. The location on the nanobeam where the step force

removal of magnitude F0 occurs is indicated at the tip of the nanobeam. The

gap separation between the nanobeam and the microdisk is sg and the dis-

tance to the nearest bounding wall in the numerical simulations is repre-

sented as sw. The thickness of the nanobeam is h and the width of the

nanobeam is w (the width is in the out-of-plane direction and is not shown).

Specific values of the geometrical parameters are given in Table I.

TABLE I. Parameters describing the nanobeam. The geometry is shown in

Fig. 2 where f0 is the resonant frequency of the fundamental mode in vac-

uum, k is the spring constant, w is the width, h is the height, sg is the gap

thickness between the nanobeam and the microdisk, and hx2i1=2
is the

root-mean-squared magnitude of the Brownian fluctuations in displacement

as measured at the tip of the nanobeam. The radius of the microdisk is

r1¼ 5.1 lm, L1¼ 8.28 lm, L2¼ 4.09 lm, H1¼ 4.1 lm, and H2¼ 0.6 lm.

The nanobeam has a Young’s modulus of E¼ 174 GPa and a density of

qs ¼ 2320 kg=m3.

f0 k w h sg hx2i1=2

(MHz) (N/m) (nm) (nm) (nm) (pm)

7.81 MHz 2.15 260 100 8.28 44.9

144901-2 S. Epstein and M. R. Paul J. Appl. Phys. 114, 144901 (2013)
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Figure 1 is an accurate representation of the tip region

of the nanobeam. In particular, we would like to draw atten-

tion to the hollow triangular geometry of the tip. In the nu-

merical simulations we consider this region to be entirely

made of the elastic material as shown in Fig. 2. At low

Reynolds numbers, as is the case here, we expect the fluid

solid interactions to be relatively insensitive to small geo-

metrical features such as this and anticipate that this approxi-

mation incurs little error although we have not explored this

aspect in detail.

In our numerical simulations, the microdisk is repre-

sented as a rigid object with a no-slip surface. As a result,

we are neglecting the breathing mode dynamics of the

microdisk. The breathing mode is at much higher frequency

(>300 MHz) and at much smaller amplitudes.14 We do not

anticipate the breathing mode of the microdisk to have a

significant effect upon the dynamics of the nanobeam. The

bounding walls of the numerical domain are either symme-

try planes or no-slip surfaces.

A force of magnitude F0 is applied to the tip of the nano-

beam at some time in the distant past as shown in Fig. 2. At

time t¼ 0, the force is removed and the nanobeam is allowed

to return to equilibrium. The deterministic motion of the

nanobeam tip as it returns to equilibrium X(t) is directly

related to the autocorrelation of equilibrium fluctuations of

the nanobeam tip displacement x(t). This relationship is found

using the fluctuation-dissipation theorem and linear-response

theory.16 For the case of interest here it is,

hxð0ÞxðtÞi ¼ kBT
XðtÞ
F0

; (1)

where hi indicates an equilibrium ensemble average, kB is

Boltzmann’s constant, and T is the temperature. The noise

spectrum can be found immediately by taking a Fourier

transform,

GðxÞ ¼ 4

ð1
0

hxð0ÞxðtÞicosðxtÞdt: (2)

Using the equipartition of energy it is straightforward to

show that the root-mean-squared magnitude of the nanobeam

displacement is very small, hx2i1=2 ¼ kBT=k � 45pm where

k is the equivalent spring constant given in Table I.

III. RESULTS AND DISCUSSION

We first explore the dynamics of the nanobeam when

immersed in atmospheric air. The parameters describing

the fluid, as well as several important nondimensional pa-

rameters, are given in Table II. In order to gain some

insight into the physics of the fluid-solid interaction we ini-

tially quantify the dynamics of the nanobeam in the absence

of the microdisk. It is insightful to describe the dominant

physics for this particular parameter regime of high fre-

quency and small amplitude motion of the nanobeam in

fluid. An estimate for the Reynolds number of the fluid

motion is

Ru ¼
x0hx2i1=2w

�
; (3)

where � is the kinematic viscosity of the fluid. Using our

parameters, and atmospheric air as the fluid, yields

Ru ¼ 6� 10�4 � 1. For this nanobeam Ru � 1 regardless

of the fluid due to the extremely small amplitude of the oscil-

lations. As a result, the convective nonlinearity of the fluid

equations can be neglected despite the high frequency of

oscillation.16

For an oscillating flow, a measure of the importance of

molecular scale dynamics is given by the Weissenberg num-

ber Wi ¼ xs where x is the frequency of oscillation of the

nanobeam and s is the fluid relaxation time scale.22 For

atmospheric air s � k=c � 0:2 ns where k is the mean free

path of a fluid molecule between collisions and c is the speed

of sound. For the resonator considered here, in atmospheric

air, this yields Wi � 0:01� 1 which indicates that the flow

field can be treated as a continuum.22 Although we have not

explored this aspect further, we emphasize that it would be

possible to use our general approach with a lattice-

Boltzmann solver23,24 for the fluid-solid interactions to quan-

tify the dynamics in the Wi � 1 limit if desired.

For the case of interest here we proceed by numerically

simulating a free standing nanobeam immersed in air using

the approach described in Sec. II. The autocorrelation of

equilibrium fluctuations in nanobeam displacement is shown

in Fig. 4(a) by the dashed line. In this figure, the autocorrela-

tion is normalized by kBT=k and the time �t ¼ t=t0 has been

normalized by the period of oscillation of the nanobeam at

resonance in a vacuum.

The noise spectrum �Gð~xÞ is found using Eq. (2) and is

shown in Fig. 4(b) by the dashed line. The noise spectrum

has been normalized by its maximum value and is presented

FIG. 3. A schematic of the fundamental mode of the nanobeam. The dis-

placement is exaggerated for clarity.

TABLE II. Important nondimensional parameters describing the dynamics of

the nanobeam in a viscous fluid for the fluids of atmospheric air and water

where R0 is the frequency parameter, T0 is the mass loading parameter, Wi is

the Weissenberg number, Ru is the velocity based Reynolds number, and d0=sg

is the ratio of the Stokes length to the gap thickness. Also included are analyti-

cal predictions for the reduction in the resonant frequency in fluid x�f =x0 and

the quality factor for the fundamental mode Q�. For air the density is

qf ¼ 1:28 kg=m3 and the dynamic viscosity is lf ¼ 1:9� 10�5kg=m-s. For

water qf ¼ 997 kg=m3 and lf ¼ 8:59� 10�4 kg=m-s.

Fluid R0 T0 Wi Ru sg=d0 x�f =x0 Q�

Air 0.056 0.0011 0.01 6� 10�4 0.18 0.99 24

Water 0.96 0.88 �1 4� 10�5 0.77 0.23 0.68

144901-3 S. Epstein and M. R. Paul J. Appl. Phys. 114, 144901 (2013)
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as a function of the reduced frequency ~x ¼ x=x0. Fitting

these results to the dynamics of a damped simple harmonic

oscillator yields a quality factor of Q¼ 44 and a resonant fre-

quency in fluid of ~xf ¼ xf=x0 � 0:99 where xf is the value

of the frequency at the peak of the noise spectrum in

Fig. 4(b).

The geometry of the nanobeam is quite complex and an

analytical solution for this case is not available. However, it

is insightful to compare these results with available analyti-

cal predictions for the stochastic dynamics of a long and thin

beam of rectangular cross section where the noise spectrum

is given by15

Gð~xÞ ¼ 4kBT

k

1

x0

� T0 ~xC00ðR0 ~xÞ
ð1� ~x2ð1þ T0C0ðR0 ~xÞÞÞ2 þ ð~x2T0C00ðR0 ~xÞÞ2
h i : (4)

In this approach, the fluid motion at each cross-section of the

beam is represented as the fluid motion caused by an oscillat-

ing cylinder of diameter equal to the width w. The approxi-

mation of representing the rectangular cross-section as a

circle is small (less than 10% error) for low Reynolds

flows.25 This approach does not include the effect of curva-

ture of the nanobeam, the double beam configuration of the

nanobeam structure, nor the details of the tip interactions

with the fluid. The analytical description requires knowledge

of two nondimensional parameters. The frequency parameter

R0 ¼
x0w2

4�
; (5)

which plays the role of a frequency based Reynolds number

and represents the ratio of local inertia forces to viscous

forces. The mass loading parameter

T0 ¼
p
4

qf w

qsh
; (6)

which represents the ratio of the mass a cylinder of fluid

with a radius w/2 to the actual mass of the beam. The

hydrodynamic function for an oscillating cylinder is found by

solving the unsteady Stokes equation and is

CðxÞ ¼ 1þ 4iK1ð�i
ffiffiffiffiffiffiffiffiffiffi
iR0 ~x
p

Þffiffiffiffiffiffiffiffiffiffi
iR0 ~x
p

K0ð�i
ffiffiffiffiffiffiffiffiffiffi
iR0 ~x
p

Þ
; (7)

where i ¼
ffiffiffiffiffiffiffi
�1
p

, and K0 and K1 are Bessel functions. The

real and imaginary parts of the hydrodynamic function are

given by C0 and C00, respectively. The values of the frequency

and mass loading parameters for air are given in Table II.

Using the width w of the nanobeam as the characteristic

length the analytical prediction of the quality factor is

Q� ¼ 24 and the reduction of the resonant frequency is

x�f =x0 ¼ 0:99. As expected, there is very little mass load-

ing of the nanobeam when placed in air where T0 � 1 and,

as a result, there is very little shift of the resonant frequency

to lower values such that ~xf � 1.

It is interesting to note that Q� < Q indicating that the

actual geometry used in the numerical simulations experien-

ces less dissipation than the uniform straight beam approxi-

mation. Using the analytical predictions, we can determine

the width of the equivalent beam that would yield the same

dynamics. To accomplish this, we first determine the

FIG. 4. The stochastic dynamics of the nanobeam when immersed in atmospheric air. The solid and dashed curves represent the nanobeam dynamics when the

microdisk optical resonator is included and not included, respectively. (a) The autocorrelations of equilibrium fluctuations in tip displacement. The autocorrela-

tion has been scaled by kBT/k and is indicated by the prime notation. The scaled time �t ¼ t=t0 where t0 ¼ 2p=x0 is the period of a single oscillation of the fun-

damental mode of the nanobeam in vacuum. (b) The noise spectrum of the displacement fluctuations. The noise spectrum �G has been scaled by it maximum

value in the absence of the microdisk.

144901-4 S. Epstein and M. R. Paul J. Appl. Phys. 114, 144901 (2013)
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required value of the frequency parameter R�0 to yield the

quality factor Q found by the numerical simulations. Next,

by using Eq. (5), we can determine the required value of the

beam width w� for this case. Following this procedure yields

R�0 � 2:2R0 which gives w�=w � 1:5. Therefore, the compli-

cated nanobeam geometry yields the same stochastic dynam-

ics as a long, thin, and uniform beam with a width that is

approximately 1.5 times larger than the width of the nano-

beam. We anticipate that the double beam configuration of

the nanobeam, with the bridging tip structure, has larger iner-

tia and also results in fluid shielding effects that contribute to

the larger quality factor.

We next consider the case of the nanobeam immersed in

air with the microdisk present. The autocorrelations of the

equilibrium fluctuations in the tip displacement of the nano-

beam are shown in Fig. 4(a) by the solid line. The presence

of the microdisk results in a significant increase in the fluid

damping. There remains very little mass loading on the

nanobeam T0 � 1 and as a result ~xf � 1. However, there is

a dramatic reduction in the quality factor which is now

Q¼ 3.7. The quality factor has reduced by an order of mag-

nitude due to the presence of the microdisk. It is well known

that the presence of nearby walls increases the fluid dissipa-

tion and will result in smaller values of the quality factor.

This has been studied for cantilevers numerically17 and ana-

lytically. The results from our numerical simulations using

air as the fluid are given in Table III.26,27

An important length scale is the size of the unsteady vis-

cous boundary layer caused by the oscillating object relative

to the gap thickness. An estimate of the size of the unsteady

viscous boundary layer is given by the Stokes length

d0 ¼
ffiffiffiffiffiffi
�

x0

r
: (8)

In Clark et al.,17 it was shown that for a cantilever near a

wall the reduction in the quality factor due to the presence of

the wall begins when the separation is sg � 6d0. As shown in

Table II, sg=d0 ¼ 0:18� 6 and the fluid interactions

between the nanobeam and the microdisk are expected to be

significant. The significant increase in fluid damping can

also be seen in the noise spectrum shown by the solid line in

Fig. 4(b). For ease of comparison, the maximum value of the

noise spectrum has been normalized by the same value used

to normalize the noise spectrum in the absence of the micro-

disk. Using the analytical theory available for a straight uni-

form beam, we can again find the required width of the

nanobeam to achieve the same quality factor. In this case,

R�0=R0 ¼ 0:095 which yields w�=w ¼ 0:31.

In the presence of the microdisk in air, approximating

the nanobeam as an underdamped simple harmonic oscillator

remains valid. In Fig. 5, we show the autocorrelations from

numerical simulation by the solid line and also the simple

harmonic oscillator curve fit as the dashed line. Although

some deviations are evident between the fitted curve and the

numerical results it is clear that these deviations are quite

small.

We next explore the dynamics when the nanobeam is

immersed in water. This case is particularly interesting since

there is significant pressure to develop nanoscale oscillators

for use in making measurements on biological samples in

aqueous environments. Figure 6 illustrates the dynamics in

water where the dashed lines are the results without the micro-

disk and the solid lines are for results with the microdisk.

Without the microdisk, the dynamics are underdamped

and using the simple harmonic oscillator analogy yields a

quality factor of Q¼ 1.6 and a reduction of the resonant fre-

quency of ~xf ¼ 0:58 as shown in Table IV. In this case, it is

difficult to fit the dynamics with a simple damped harmonic

oscillator. Both the added mass and the fluid damping are

frequency dependent and when placed in water these effects

become significant making this analogy only approximate.

The analytical predictions using a straight uniform beam

are Q� ¼ 0:68 and xf =x0 ¼ 0:23 as shown in Table II.

Again the actual geometry has a larger quality factor than

the predicted value where Q > Q�. In this case, there are two

contributing factors. First is the geometry where the curva-

ture of the nanobeam and its double beam configuration

yields less fluid damping than for a single straight beam

oscillating in a fluid. Second is the amount of mass loading

on the nanobeam due to the added mass of the fluid. The

reduction of the resonant frequency for the theoretical pre-

diction is much lower than what is found for the actual ge-

ometry where x�f =x0 < xf =x0. This indicates that the added

mass due to the fluid motion is less for the actual geometry

than for the straight uniform nanobeam. We could not find

an equivalent straight nanobeam to yield the same values of

the quality factor and the reduction in resonant frequency.

TABLE III. Results from numerical simulation of the nanobeam in air

where xf is the resonant frequency in fluid, x0 is the resonant frequency in

vacuum, and Q is the quality factor of the fundamental mode. These quanti-

ties are found by fitting the numerical results to an underdamped simple har-

monic oscillator.

Fluid xf =x0 Q

Air 0.99 44 Without microdisk

Air 0.99 3.7 With microdisk

FIG. 5. The stochastic dynamics of the nanobeam when immersed in atmos-

pheric air in the presence of the microdisk. The solid curve is the result from nu-

merical simulation and the dashed line is a curve-fit using a simple harmonic

oscillator approximation. The notation used is the same as that of Fig. 4(a).

144901-5 S. Epstein and M. R. Paul J. Appl. Phys. 114, 144901 (2013)
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When the microdisk is included the dynamics become

strongly overdamped with Q� 0:5 as indicated in Fig. 6. In

this case, the gap separation is still small where sg=d0

¼ 0:77 < 6 which again indicates the importance of the

interactions with the microdisk. The dynamics now signifi-

cantly deviate from that of a damped simple harmonic oscil-

lator. As a result of the strong over damping, it would be

difficult to use the current design in water if the experimental

approach requires a well defined peak. However, this could

be improved by increasing the value of R0 which would

increase the quality factor (c.f. Ref. 28). For example, R0

could be increased by stiffening the fundamental mode to

increase the value of the resonant frequency. This could be

done by shortening L2 or increasing the height h.

IV. CONCLUSION

We have computed the stochastic dynamics of a nano-

beam with a complex geometry that is placed near a micron

scale optical disk. Despite the complexity of the problem, we

are able to compute the stochastic dynamics using only

deterministic calculations and the fluctuation-dissipation the-

orem. Our results indicate that the presence of the microdisk

is a significant source of dissipation. In air, this reduces the

quality factor of the oscillations by an order of magnitude. In

water, this results in a strongly over damped oscillator. An

analytical theory using a straight and uniform beam approxi-

mation can be used to gain some insight into the dynamics.

The complex geometry and the small gap between the nano-

beam and the microdisk result in deviations from simple

harmonic oscillator behavior. Our numerical results do not

rely on this approximation and qualitatively represent what

would be measured in experiment. We would like to point

out that externally driven dynamics, as would be the case for

tapping mode type operation, would be qualitatively similar

to the results we present here (c.f. Refs. 16 and 29). Our

results quantify the dynamics of this emerging nanoscale

technology and we anticipate that our findings will be useful

in guiding future theoretical and experimental efforts to push

these ideas further.
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