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Lattice thermal conductivity of a silicon nanowire under surface stress
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The effects of surface stress on the lattice thermal conductivity are investigated for a silicon

nanowire. A phonon dispersion relation is derived based on a continuum approach for a nanowire

under surface stress. The phonon Boltzmann equation and the relaxation time are employed to

calculate the lattice thermal conductivity. Surface stress, which has a significant influence on the

phonon dispersion and thus the Debye temperature, decreases the lattice thermal conductivity. The

conductivity varies with changing surface stress, e.g., due to adsorption layers and material

coatings. This suggests a phonon engineering approach to tune the conductivity of nanomaterials.
VC 2011 American Institute of Physics. [doi:10.1063/1.3583668]

I. INTRODUCTION

Low-dimensional systems, such as silicon (Si) nano-

wires, display unique mechanical, electrical and optical

properties that are not displayed by their bulk counterparts.1,2

The smaller feature sizes of devices based on these nano-

structures also lead to thermal management issues, e.g., due

to the increase in the power dissipation per unit surface area,

or the need to reduce the phonon thermal conductivity in

thermoelectric devices. Thus, strategies to tune the thermal

conductivity of nanomaterials can help optimize the per-

formance and reliability of nanoscale devices.3

The thermal conductivity can be decreased by doping a

material (i.e., by substituting atoms of another element in its

lattice) or by increasing the phonon scattering.4 Phonon engi-

neering approaches, such as those that control and manipu-

late the phonon group velocity, and the polarization and

density of states, also influence the thermal properties of a

device.5 These approaches can involve the spatial confine-

ment and boundary scattering of phonons in quantum wells,6

and variations in the cross sectional geometry of nano-

wires.3,7 The phonon properties of a nanostructure, such as a

nanowire,8 can be tailored through a proper selection of

acoustically mismatched materials.9–13 The surface rough-

ness of a nanowire can also significantly influence its thermal

conductivity.14,15 For instance, the room temperature phonon

thermal conductivity has been reported to be reduced for

roughened silicon nanowires to 1.6 W m�1 K�1 from the

corresponding bulk value of 150 W m�1 K�1 (Ref. 14).

When mechanical stress is varied in confined nanostruc-

tures, this alters the velocity of acoustic waves.16 Hence, it

should be possible to also employ such a variation for pho-

non engineering. The acoustoelastic effect that the stress pro-

duces is negligible in bulk materials where its values are

typically below �100 MPa. These account for only a 0.1%

change in the phase velocity of acoustic waves.17 A consid-

erably larger stress, e.g., as much as 1 GPa, can arise in

layered nanostructures through surface intermolecular forces

when there is a misfit between the film and substrate lattices.

This larger stress can induce much more significant changes

in the phonon phase velocity.

The different coordination of atoms on the surface of a

material with those inside it leads to a redistributed charge

density below the surface.18 As the charges rearrange in

response to missing atoms, the resulting net forces on the sur-

face atoms induce surface stress. The stress depends on the

electronic structure of the material and the crystallographic

orientation of its surface. Depending on the bond strengths

between the surface and neighboring atoms, surface stress can

be either tensile or compressive. Atoms on the topmost sur-

face layer of a lattice are subject to tensile surface stress when

they attract one another and tend to shrink the surface.18 In

other words, surface stress in a thin film system can occur due

to the adsorption of atoms or molecules on surfaces.19,20

Surface stress can be modeled as an external loading on

the free end of a beam,21 or by distributing a load along

it.21,22 The influence of stress on the natural frequency of the

beam,19,20,23,24 its stiffness,25 and deformation20 can, in turn,

be used to tune other physical properties through secondary

effects. Examples include the surface wave velocity, and

electrical and thermal conductivities.

The literature does not discuss the influence of surface

stress on phonon dispersion. Therefore, its consequences for

a silicon nanowire, which is a promising nanoelectronic and

thermoelectric material,26 are investigated. The phonon

wavelength is assumed to be much longer than the lattice

constant (which represents the characteristic distance

between atoms) for acoustic phonons in the sub-THz fre-

quency range. For such cases, the macroscopic theory of

wave scattering from rough surfaces is in good agreement

with the acoustic phonon-interface interaction method.27 We

employ this continuum approach to understand how modifi-

cations of acoustic phonon dispersion by the surface stress in

nanostructures can alter the phonon thermal conductivity.

Longitudinal and flexural wave propagations due to surface

stress have also been previously investigated in nanofibers

within a continuum framework.28,29
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II. METHODOLOGY

A. Phonon dispersion

The equations of elastic vibration in an isotropic me-

dium are

q€ui ¼ kþ lð Þ~h;i þ lr2ui; (1)

where k denotes Lamé’s first parameter, q mass density, l
Lamé’s second parameter, ~h ¼ eii ¼ ui;i, and r2 ¼ @2=@x2

1

þ @2=@x2
2 þ @2=@x2

3. Differentiating Eq. (1) with respect to xi

and summing over i provides a wave equation for the

dilatation ~h,

@2 ~h=@t2 ¼ c2
ar2 ~h; (2)

where ca ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kþ 2lð Þ=q

p
denotes the wave speed. For a

structure undergoing rotation wi about its axis xi,

wi ¼ �1=2eijkuk;j. In terms of the rotations wi, Eq. (1) may

be written in the form

@2w1=@t2 ¼ c2
br2w1; (3)

where cb ¼
ffiffiffiffiffiffiffiffi
l=q

p
: The velocity ratio v0 ¼ ca=cb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kþ 2lð Þ=l
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 2mð Þ= 1� 2mð Þ

p
, where the Poisson’s

ratio m relates the two types of bulk waves in an isotropic

elastic media, one associated with volumetric changes and

the other with shear motion.

A wave traveling with a velocity ca is a dilatational or

primary wave (P-wave) while that with a velocity cb is the

shear or secondary wave (S-wave). Considering the wave

propagation of a plane wave along the x1 axis, ui

¼ f x1 � ctð Þ ¼ f s1ð Þ, where c denotes the wave velocity,

Eq. (1) can be expressed as

qc2u001 ¼ kþ 2lð Þu001; qc2u002 ¼ lu002; and qc2u003 ¼ lu003: (4)

Here, the primes denote differentiation with respect to s1.

The above equations can be also written as

q€u ¼ kþ lð Þr r:uð Þ þ lr2u: (5)

Employing the identities r2u ¼ r r:uð Þ � r� r� uð Þ and

qu;tt ¼ kþ 2lð Þr r:uð Þ � lr� r� uð Þ, we next consider

an axially symmetric compression wave in an infinite rod for

which

ur ¼ ur r; z; tð Þ; uz ¼ uz r; z; tð Þ; and uh ¼ 0: (6)

The displacement equations for cylindrical waves provide

the relations30

ur ¼ @P=@r þ 1=r@w=@hþ l@2v=@r@z;

uh ¼ 1=r@P=@h� @w=@r þ l=r@2v=@h@z;

and

uz ¼ @P=@z� l 1=r@=@r r@v=@rð Þ þ 1=r2@2v=@h2
� �

: (7)

With w ¼ 0 in Eq. (7), the displacements are described

through the relations

ur ¼ @P=@rþ@2~v=@r@z;and uz¼ @P=@z� 1=rð Þ@=@r r@~v=@r;

(8)

where ~v ¼ lv. The stresses involved in the boundary condi-

tions are

rrr ¼ k=c2
aP;tt þ 2l @2P=@r2 þ @3~v=@r2@z

� �
;

and

rrz ¼ l 2@2P=@r@zþ @3~v=@r@z2 � @=@r @=r@r r@~v=@rð Þð Þ
� �

:

(9)

We assume the solutions to these equations to be of the form

P ¼ AJ0 garð Þei kz�xtð Þ; and ~v ¼ BJ0 gbr
� �

ei kz�xtð Þ; (10)

where g2
a ¼ x2=c2

a � k2; g2
b ¼ x2=c2

b � k2. The boundary

conditions at the traction-free surface r ¼ a must equal zero,

i.e., rrr ¼ rrz ¼ 0. Substituting Eq. (10) into Eq. (9),

rrr ¼ � kx2

c2
a

J0 garð Þ þ 2l
d2J0 garð Þ

dr2

� �
Aþ i2lk

d2J0 gbr
� �

dr2
B;

and

rrz ¼ i2lk
dJ0 garð Þ

dr
A

� k2
dJ0 gbr
� �
dr

þ d

dr

d

rdr
r

dJ0 gbr
� �
dr

 !" #( )
lB : (11)

A and B are eliminated by taking the conditions at r ¼ a to

obtain the Pochhammer equation, i.e.,

4k2gagblJ0 gba
� �

J1 gaað Þ= 4p2lgb

� �
� 2gal k2 þ g2

b

	 

� J1 gaað ÞJ1 gba

� �
= 4p2algb

� �
þ �k2 þ g2

b

	 

J0 gaað Þ

� J1 gba
� �

kx2 þ 2g2
alc2

a

� �
= 4p2lgbc2

a

� �
¼ 0;

or k2 � g2
b

	 
2 aJ0 gaað Þ
J1 gaað Þ þ 4k2g2

a

bJ0 gba
� �

J1 gba
� �

� 2g2
a g2

b þ k2
	 


¼ 0:

(12)

Next, we consider the nanowire under surface stress (tension)

to be governed by the Euler-Bernoulli beam equation,28

@t;tuz ¼ E=qð Þ � 2mr= qRð Þ½ �@z;zuz; (13)

where E denotes the Young’s modulus, R the nanowire ra-

dius, and r the surface stress. The value of uz obtained from

Eq. (8) must satisfy Eq. (13), or,

k2aE� 2k2mr� aqx2ð Þ 2ikaJ0 gaað Þ½ �
2qa2

Aþ
k2aE� 2k2mr� aqx2ð Þ ag2

bJ0 gba
� �

þ 2gbJ1 gba
� �

� ag2
bJ2 gba
� �h i

2qa2
B ¼ 0: (14)
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where R ¼ a and rrr vanishes for the free-surfaces at the

ends. Hence,

rrr ¼ � kx2J0 gaað Þ= c2
a

� �� �
þ 2l � 1=2ð Þg2

a J0 gaað Þ½
��

�J2 gaað Þ�
��

A� iklg2
b J0 gba

� �
� J2 gba

� �� �n o
B ¼ 0:

(15)

Based on Eqs. (14) and (15), we obtain the dispersion

relation,

gb k2aE� 2k2mr� qax2
� �

2c2
agagblJ0 gba

� �
J1 gaað Þ

�
�J0 gaað Þ � agb 2c2

a k2þ g2
a

� �
lþ kx2

� �
J0 agb

� ��
�2c2

ak2lJ1 agb

� ���
= c2

aa2q
� �

¼ 0: (16)

Defining, k� ¼ ka, x�2 ¼ qa2x2=l, a ¼ gaa, and b ¼ gba in

terms of dimensionless parameters, Eq. (16) assumes the

form,

bk�2 E=lð Þ� 2mr=lað Þ½ ��bx�2
� �

2abJ0 bð ÞJ1 að Þ�J0 að Þ
2k�2bþ2ba2þ kbx�2ð Þ= qc2

a

� �� �
J0 bð Þ�2k�2J1 bð Þ

� �
( )

¼0:

(17)

B. Calculation of the lattice thermal conductivity

Acoustic phonon relaxation can be modeled in resistive

processes by considering three-phonon Umklapp scattering,

mass-difference scattering, boundary scattering, and phonon-

electron scattering.31 The combined scattering relaxation

rate can be determined from Matthiessen’s rule,3

1=sc ¼ 1=sU þ 1=sM þ 1=sB þ 1=sPh�e; (18)

where 1=sU, 1=sM, 1=sPh�e, and 1=sB are the phonon relaxa-

tion rates for the three-phonon Umklapp, mass-difference

(due to impurities), phonon-electron, and boundary scatter-

ing processes, respectively.

The Umklapp scattering rate,

1=sU ¼ 2c2kBTx2= lV0xDð Þ; (19)

where c denotes the Grüneisen anharmonicity parameter, l
the shear modulus, V0 the volume per atom and xD the Debye

frequency. The phonon relaxation rate for point defects,

1=sM ¼ V0x
4C= 4pV3

� �
¼ V0x

4= 4pV3
� �X

i

fi 1�Mi=M
� �2

;

(20)

where C denotes the measure of the strength of the point-

defect scattering, V the phonon group velocity, fi the relative

concentration of the ith atoms, M ¼
P

i
fiMi the average

atomic mass, and Mi the mass of the i-th impurity atom. The

relaxation frequency for the intravalley and intervalley inter-

actions between electrons and phonons,

1=sPh�e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pm�V2= 2kBTð Þ

p
� exp �m�V2= 2kBTð Þ

� �
nee

2
1x= qV2kBT

� �
; (21)

where m� denotes the electron effective mass, ne the concen-

tration of conduction electrons, and e1 the deformation

potential. The frequency based on the geometrical sample

size is

1=sB ¼ V 1� pð Þ=D; (22)

where D denotes the nanowire diameter, and p describes the

probability that a phonon is subjected to a specular scatter-

ing at the interface.31 It characterizes boundary scattering

effects due to the interface roughness. The boundary scat-

tering rate is zero when there is purely specular scattering,

or p¼ 1, and for purely diffuse scattering p¼ 0. Purely

specular scattering (p¼ 1) refers to an idealized case when

all phonons travel through the nanowire without any bound-

ary reflections. For p¼ 0, all phonons are scattered at the

interface.

The Klemens-Callaway’s expression provides the lattice

thermal conductivity in a nanowire,

jl ¼ kBT=�hð Þ3 kB= 2p2V
� �� � ðhD=T

0

scx4ex= ex � 1ð Þ2dx; (23)

where kB denotes the Boltzmann constant, �h the Planck

constant, T the temperature, hD the Debye temperature, sc

the combined phonon relaxation time derived from

Eq. (18), and x ¼ �hx=kBT. To characterize the influence

of the interface roughness on the phonon-boundary scatter-

ing, p represents the probability that the phonon is subject

to a specular scattering event at the interface. Hence, (1-

p) is the probability that a phonon undergoes diffuse scat-

tering. Thus, for a nanowire, the lattice thermal conductiv-

ity jwire
l can be expressed in terms of the bulk thermal

conductivity jl as,31

jwire
l T; pð Þ ¼ jl T; pð Þ � Djwire

l T; pð Þ: (24)

The deviation of the thermal conductivity from its bulk

value,

Djwire
l ¼ 12ðkBT=p�hÞ3kB=V

ðhD=T

0

scx4exG g xð Þ;p½ �= ex � 1ð Þ2dx;

(25)

where g denotes the ratio between the wire diameter D and

the phonon mean free path K; i.e.,

g xð Þ ¼ D=K xð Þ;with K xð Þ ¼ V xð Þsc xð Þ: (26)

The function

G g xð Þ;p½ � ¼ 1�pð Þ2
X1
j¼1

jpj�1

ð1

0

1� y2
� �1=2

S4 jgyð Þdy; (27)

where

Sn uð Þ ¼
ðp=2

0

e�u= sin h cos2 h sinn�3 hdh: (28)
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Substituting Eqs. (25)–(28) in Eq. (23) and using Eq. (24),

jwire
l T; pð Þ ¼ kBT=�hð Þ3kB= 2p2V

� � ðhD=T

0

scx4ex= ex � 1ð Þ2

�f1� 24G g xð Þ; p½ �=pgdx: (29)

For purely specular scattering, p! 1 and G! 0. Hence, jl

equals the thermal conductivity from by Eq. (24) with

Djwire
l ¼ 0. Likewise, Djwire

l ! 0 as the wire diameter

D!1.

III. RESULTS AND DISCUSSIONS

We select nanowires of 2 and 4 nm diameters to investi-

gate surface stress effects on phonon dispersion. While

silicon pillars as small as 2 nm in diameter have been suc-

cessfully fabricated using stress-limited oxidation,32 a nano-

wire of such small dimensions is not typically freestanding.

Our intention in proposing an ultrathin nanowire is to exhibit

the interesting influence of surface stress on thermal conduc-

tivity, e.g., on a thin surface coated with another material

(that induces surface stress), which helps in conceptualizing

and clarifying stress effects.

The material parameters for a semiconductor nanowire

are taken to be ca ¼ 8:47� 103 m s�1, and cb ¼ 5:34� 103

m s�1(Ref. 31). The Young’s modulus has been reported to

decrease from 90 GPa for bulk h100i silicon to 18 GPa for

silicon nanowires that have diameters smaller than 10 nm.33

Thus, we use E¼ 18 GPa in the dispersion relations for 2

and 4 nm diameter nanowires. Figure 1 presents this relation

for acoustic phonons in a freestanding 2 nm diameter silicon

nanowire. The dispersion is linear for very small values of k
for the first branch. This is called the acoustic branch since

its dispersion relation has the form x ¼ ck for small k, where

c denotes the sound velocity. Here, the group velocity of the

first branch (or the slope of the curve at small values of pho-

non energy) nearly coincides with the sound velocity in the

bulk material. Each phonon dispersion branch corresponds to

a longitudinal vibration mode for the nanowire.

Figure 2 presents acoustic phonon dispersion relations

for silicon nanowires with and without surface stress. Wires

of 2 nm diameters are considered in Figs. 2(a) and 2(b) and

of 4 nm diameter in Figs. 2(c) and 2(d). We compare the

influences of 1 N m�1 and 5 N m�1 surface stresses for nano-

wires of both diameters. The first two branches show linear

dispersions for all values of k when the nanowire is stressed

(represented by solid lines). Increasing the surface stress

reduces the energy associated with the first acoustic branch.

Changing the surface stress for the larger diameter nanowire

does not diminish the energy as significantly. This can be

explained by considering the decrease in the surface area to

volume ratio as the characteristic object size increases,

which greatly decreases the global influence of the surface

stress. These results also show that phonon dispersion can be

modified through surface stress, more significantly so for

nanowires of smaller diameters.

A thermal resistance is produced when the phonon mo-

mentum is not conserved. This can occur through phonon

scattering due to (1) impurities, defects, boundary surfaces,

and electrons, and (2) phonon-phonon Umklapp processes

when two phonons merge into one or a single phonon splits

into two. Since longitudinal phonons usually contain more

energy than transverse ones, the former can decay either into

a longitudinal and a transverse phonon, or into two trans-

verse phonons. The resistance to thermal transport can be

created through three such Umklapp processes.34 These are

described based on the phonon polarization, i.e., T þ T $ L;
T þ L$ L; and Lþ T $ L, where L and T refer to the longi-

tudinal and transverse acoustic branches.34 Such a mecha-

nism has been theoretically predicted in zigzag single-walled

carbon nanotubes.35

Since a single phonon can split into two phonons, the

longitudinal acoustic phonons in a stressed nanowire should

also behave similarly. The shift in the first branch in Fig. 2

suggests that the phonon Umklapp scattering lowers the

energy (or frequency) as the surface stress increases. How-

ever, as the nanowire diameter increases, phonon boundary

scattering over the larger surface area dominates over

Umklapp scattering. This is consistent with the literature

which reports that the phonon dispersion relation of a silicon

nanowire can be modified for diameter size below 10 nm

due to reduced phonon group velocities and phonon

confinement.6,7,36

Equation (19) shows that the scattering rate due to

Umklapp process is inversely proportional to the Debye

temperature. When the phonon dispersion relation is modi-

fied, it changes this temperature. The cutoff wave number

qD for an isotropic crystal with a lattice constant a is given

by 4pq3
D=3 ¼ 4 2pð Þ3=a3 (Ref. 37). We employ a lattice

constant of 5.43 Å for the Si nanowire. The corresponding

Debye frequency xD, which is the maximum allowed

vibration frequency for atoms in a crystal, is determined

by using qD in the phonon dispersion relations. The Debye

temperatures hD ¼ �hxD=kB for the 2 nm diameter nanowire

are, respectively, 417 K and 222 K for the stress free case

and for a 5 N m�1 surface stress. Hence, hD is altered

when the phonon dispersion relation is modified by surface

stress. The lattice thermal conductivity calculated from

FIG. 1. Acoustic phonon dispersion relation in a free-standing 2 nm diame-

ter silicon nanowire. The dotted line denotes the linear (bulk) dispersion

relation for the longitudinal polarization.
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Eqs. (23)–(25) is therefore also expected to decrease as hD

is reduced.

From Eq. (17), the difference E=l� 2mr=la signifi-

cantly influences the first branch of the dispersion relation.

Of these parameters, only r can be varied once a material

and its dimensions are specified. The ratio E=l compares the

Young’s modulus to the phonon pressure l ¼ qc2
b. A phonon

is the quanta of energy associated with the vibrating atoms.

The phonon frequency, thus the thermal energy, decreases

when the volume of a material increases. While the phonon

pressure tends to expand the material, its lattice is held to-

gether by internal forces (for which E is a measure of the ma-

terial stiffness). The term 2mr=la compares the work done to

stretch a unit area of the nanowire surface to that done by the

acoustic phonons that travel transversely across the cross

section of the nanowire. Another term in Eq. (17),

kbx�
2

= qc2
a

� �
can be simplified as kbx�2= kþ 2lð Þ for which

k= kþ 2lð Þ is related to the material properties alone.

Figure 3 presents the dispersion relations for a silicon

nanowire in terms of the dimensionless parameters k�

and x�. Three cases for which ratio 2mr=la is taken to be 0,

0.05, and 0.1, respectively, are represented by the dotted,

solid, and dashed lines, whereas E=l¼ 0.2 for all cases.

Varying the surface stress through 2mr=la only influences

the first branch notably. Increasing stress reduces the phonon

energy for this branch. The averaged group velocity for all

branches is smaller when the nanowire is subject to a larger

stress because of the reduction in the slope of the first

branch. As the surface stress increases, the energy difference

between the first and the second phonon dispersion branches

becomes larger, since the first branch now is associated with

lower energy.

The lattice thermal conductivity can be calculated once

the relationship between the phonon group velocity and pho-

non frequency is known. The averaged phonon group veloc-

ity can be determined by differentiating the dispersion

FIG. 2. Acoustic phonon dispersion relations for silicon nanowire that are stress free (dashed lines) and subject to surface stress (solid lines). A 2 nm diameter

nanowire is subject to (a) 1, (b) 5 N m�1 surface stresses, respectively. Similarly, a 4 nm diameter nanowire is subject to (c) 1, (d) 5 N m�1 stresses.
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relations. This can be used to determine the relaxation times

for mass difference and boundary scattering as well as for

acoustic phonons scattered by electrons from Eqs.

(20)�(22). Since each branch has different group velocities

at different energies, contributions from all branches are

required to calculate the average group velocity correspond-

ing to a specific frequency x, namely,37

V xð Þ ¼
X

n

Vn exp �n�hx=kBTð Þ
" #
 X

n

exp �n�hx=kBTð Þ
" #

:

(30)

Here, the group velocity of the nth mode Vn ¼ dxn=dk
As shown in Fig. 4, the averaged group velocities for a

silicon nanowire that does not experience surface stress are

almost identical at small frequencies to the bulk material ve-

locity ca¼ 8,470 m s�1. As the frequency (or energy)

increases, the group velocity for the stress-free nanowire first

abruptly decreases and then increases before exhibiting a

gradual decline. The group velocities for both stressed and

stress-free nanowires are almost constant at smaller frequen-

cies. Unsurprisingly, those for the nanowire with a 5 N m�1

stress are smaller, reflecting the decrease in the lattice ther-

mal conductivity. However, unlike for the stress free nano-

wire, the group velocities for nanowire experience stress

increase and fluctuate around 5000 m s�1, eventually

decreasing to 2000 m s�1. This final value is below the trans-

verse velocity cb¼ 5,340 m s�1 in the bulk silicon.31 This

reflects how surface stress alters the phonon waves inside the

nanostructure.

Once the group velocities are known, phonon scattering

rates can be evaluated from Eqs. (19)–(22). The material pa-

rameters taken from the literature for this calculation are

listed in Table I. The scattering rates due to the three-phonon

Umklapp, mass difference, boundary (for which the case of

purely diffuse scattering, or p¼ 0 is considered), and pho-

non-electron scattering mechanisms are expressed as a func-

tion of phonon frequency. The dominant low frequency

mechanism is boundary scattering 1=sBð Þ. The mass differ-

ence and Umklapp scattering both increase significantly at

higher frequencies. Among these mechanisms, phonon-elec-

tron scattering rates are relatively small. Changes in the aver-

aged group velocities for the stress free and stressed

conditions also influence these differences in the scattering

rates. Overall, a reduction in the group velocity decreases

phonon relaxation, thus leading to a reduction in the lattice

thermal conductivity.

Next, the parameter p is varied between zero and unity

to characterize the influence of boundary scattering on the

lattice thermal conductivity. For instance, a rougher bound-

ary has a smaller p value than a smoother one. The variation

in the lattice thermal conductivity with changing p is pre-

sented in Fig. 5 at 300 K. When p¼ 0, this conductivity

decreases when a 5 N m�1 surface stress is imposed to about

75% of its corresponding stress free value. As p increases,

the thermal conductivities in the stress free and stressed

nanowires both increase. However, influence of surface

stress diminishes with increasing p so that Djwire
l decreases.

The two (stress free and surface stress related) conductivities

are virtually identical when p¼ 1, i.e., Djwire
l � 0. This is in-

tuitive, since increasing p decreases the role of boundary

FIG. 3. Dispersion relation for a silicon nanowire in terms of k� and x�.
The ratio 2mr=la is 0, 0.05 and 0.1, respectively, for the dotted, solid, and

dashed lines while E=l¼ 0.2 for all cases.

FIG. 4. Phonon group velocity as a function of phonon frequency (in log

scale) for a 2 nm diameter silicon nanowire. The dashed line represents the

surface stress free condition and the solid line when a 5 N m�1 surface stress

is imposed upon the nanowire.

TABLE I. Parameters used for the phonon scattering rate calculation for a

silicon nanowire.3,31

Parameters Values

Number of atoms per unit volume na � 7:3

Atomic mass M (kg) 46:6� 10�27

Grüneisen parameter c 0.56

Lattice constant a (Angstrom) 5.45

Crystal density q (kg m�3) 2:33� 103

Strength of the mass-difference scattering C 8:357� 10�4

Shear modulus l ¼ v2
t q

� �
, (GPa) 66.4

Deformation potential e1 (eV) 9.5

Concentration of conduction electrons ne (cm�3) 1018

Boltzmann constant kB (m2 kg s�2 K�1) 1:38� 10�23

Young’s modulus E (GPa) 18
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scattering so that boundary effects such as surface stress

become less important.

Once the phonon group velocity, the various relaxation

times, and the Debye temperature and frequency are known,

the lattice thermal conductivity can be calculated. Equations

(20) and (22), show that a reduction in the averaged group

velocity increases the mass difference scattering rate and

decreases the boundary scattering rate. A reduction in the

Debye frequency xDð Þ increases the Umklapp scattering rate

[Eq. (19)], thus decreases the phonon relaxation time. There-

fore, phonon dispersion is influenced by surface stress not

only through a decrease in the averaged phonon group veloc-

ity, but also by a decrease in the Debye frequency and Debye

temperature. All of these effects combine to reduce the ther-

mal conductivity.

For sake of illustration, Fig. 6(a) presents the variation

in the thermal conductivity with changing temperature due

to the Umklapp, mass difference and phonon-electron scat-

tering mechanisms based on Eqs. (19)–(22). We again

assume that a 2 nm diameter silicon nanowire is either stress

free or experiences a 5 N m�1 surface stress, and there is

completely diffuse scattering, i.e., p¼ 0 because of the very

small diameter nanowire and the potential irregularities at

the interface due to the surface stress. The thermal conduc-

tivities due to Umklapp scattering are the largest contributors

for both conditions and decrease with increasing tempera-

ture. At 300 K, the thermal conductivity due to Umklapp

processes drops from �55W m�1 K�1 (for the stress free

case) to �28W m�1 K�1 (for the nanowire with surface

stress). This stems from the reduction in the Debye tempera-

ture that leads to a smaller phonon relaxation time, as is

apparent from Eq. (19). Adding mass-difference scattering to

the combined relaxation time sc decreases the overall con-

ductivity, which is further diminished when phonon-electron

scattering is also accounted for.

The associated lattice thermal conductivities for all

mechanisms are presented in Fig. 6(b) when the boundary

scattering is included. The dominant mechanism here is

boundary scattering. It significantly reduces the thermal con-

ductivity below the values attributed to the three mechanisms

discussed in Fig. 6(a) by �20� 50 W m�1K�1 to values

smaller than 2 W m�1K�1. Thus, boundary scattering

decreases the thermal conductivity by one and two orders of

magnitude for the stress free and stressed nanowires, respec-

tively. It is important to consider all scattering events consid-

ered in Eq. (18) to determine the combined phonon

relaxation time scð Þ before calculating the thermal conduc-

tivity from Eq. (29). The corresponding thermal conductivity

is proportional to the integrated value of sc from zero to the

upper limit that is the ratio between the Debye temperature

and room temperature (300 K). Hence, decreasing sc results

in a reduction in the overall thermal conductivity.

Figure 6(b) presents the lattice thermal conductivity as a

function of temperature when p¼ 0. The conductivity of the

stressed nanowire increases with temperature but less signifi-

cantly �300 K. The imposition of 5 N m�1 surface stress

produces a large decrease in the thermal conductivity over

the entire temperature range, which is a significant result.

Our analysis can also be used to evaluate surface stress

effects on the lattice thermal conductivity of a thin film. Sur-

face stress can be generated on a clean surface or a thin film

system, such as a nanowire, by coating it. The magnitude of

the stress can be varied by selecting specific coating materi-

als that induce different forces on the surface. Figure 3

shows that for a given nanostructure, the larger the surface

stress is, the more it decreases the phonon frequency for a

specified wavenumber. Thus, differing magnitudes of the

stress produce different changes in the averaged group veloc-

ity and Debye temperature, leading to variations in the ther-

mal conductivity as a function of stress.

Molecular dynamics (MD) simulations38 have predicted

the temperature dependence of the thermal conductivity of

FIG. 5. The variation in the lattice thermal conductivity for a 2 nm diameter

silicon nanowire that is stress free (dotted line) and under a 5 N m�1 surface

stress (solid line) of the specular fraction p varied at T¼ 300 K.

FIG. 6. (a) Lattice thermal conductivities for 2 nm silicon nanowires that

are stress free and experience surface stress (denoted by the subscript s)

when different scattering mechanisms are considered for purely diffuse scat-

tering, i.e., p¼ 0. The subscripts U, M, and Ph-e denote the Umklapp, mass-

difference (due to impurities), and phonon-electron processes. (b) The ther-

mal conductivity calculated with p¼ 0 and after considering the U, M, Ph-e,

and B (boundary scattering) mechanisms for these nanowires.
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crystalline silicon and silicon core-shell nanowires that are 2–

3 nm in diameter and compared with results obtained from

the Boltzmann transport equation (BTE), and Allen and Feld-

mann (AF) theory.38 The thermal conductivity predicted by

all these approaches has values between 2–5 W m�1 K�1.

Our results, presented in Fig. 6(b) for p¼ 0 at 300 K, are

somewhat different. This is most likely due to the different

values of various material parameters used to calculate the

thermal conductivity, which for our case are reported in Table

I. Since values of some parameters are not reported in Ref.

38, and since it is also possible that only some phonon relaxa-

tions were taken into account by that investigation, it is diffi-

cult to pinpoint the exact source of the discrepancy. Selecting

p¼ 0.6 at 300 K, the lattice thermal conductivity predicted by

our model, shown in Fig. 5, varies between 1-7 W m�1 K�1

for two cases, one with a 5 N m�1 surface stress and the other

stress free. While this range is wide, it approximates the results

obtained by MD, BTE, and AFþBTE.38

Figure 7 compares the thermal conductivities for 22, 37,

56, and 115 nm diameter wires with experimental measure-

ments.36 Our model assumes a 5 N m�1 surface stress and

purely diffuse scattering (p¼ 0). As mentioned earlier, the

Young’s modulus varies between 18 and 90 GPa for silicon

nanowires.33 Therefore, we assume E¼ 32, 60, 80, and 80

GPa for the 22, 37, 56, and 115 nm diameter nanowires,

respectively. The thermal conductivities of the smaller

(22 and 37 nm) of these nanowires are in good agreement

with experiments. However, discrepancies arise for the larger

diameter nanowires because the major contributor to heat

transport at these dimensions is now volumetric so that the

influence of surface atoms diminishes. Thus, as is intuitive,

surface stress has a much more significant influence on pho-

non transport for smaller diameter nanowires.

IV. CONCLUSION

Surface stress arises when thin films or surface atoms

undergo dynamic structural changes, e.g., such as those in

the density of atoms attached to a substrate. However, even a

clean surface or a thin film can be subject to a stress that is

generated from the redistributed charge density on its sur-

face. We investigate the effect of surface stress on the lattice

thermal conductivity in a silicon nanowire. Surface stress

strongly influences the phonon dispersion although its effect

diminishes in significance as the nanowire diameter

increases. An applied surface stress reduces the averaged

group velocities of phonons and the Debye temperature, thus

increasing Umklapp phonon scattering and decreasing the

overall phonon relaxation time. Phonon scattering also

depends upon its specular fraction p, and decreases with

increasing p. When surface stress is applied on a silicon

nanowire, it reduces the material lattice thermal conductiv-

ity. This finding can be used for phonon engineering

approaches that seek enhanced thermal management in nano-

structures, and to optimize thermoelectric devices.
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