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(ABSTRACT)

An (e,2e) electron scattering spectrometer has been

constructed and used for the first time to investigate the

spectral momentum density of the valence bands of a solid

target. This technique provides fundamental information

about the electronic structure of both crystalline and

amorphous solids. The three fundamental quantities, the

band structure, electron density of states, and electron

momentum distribution can be simultaneously derived from

the measured (e,2e) cross section.

A review of single electron and (e,2e) scattering

theory is given with an emphasis on scattering from solids.

The effects of multiple scattering are discussed and a

method of deconvoluting those effects from the measured

(e,2e) cross section is developed.

There is a detailed description of the spectrometer

design and operation with particular attention given to the



electron optics and voltage distribution. The algorithms

and software for computer aided data acquisition and

analysis are also outllned. as ls error analysis.

The techniques employed in the preparation and

characterization of extremely thin film samples of a—C and

single crystal graphite are described.

An analysis of the data taken for a—C samples is

given. The data are compared with the results of

complementary experiments and theory for graphite, diamond,

and a—C which are given in a review of the literature. The

existence of a definlte dispersion relation é‘(q) in

amorphous carbon is demonstrated. The a-C band structure

appears to be more similar to that of graphite than to that

of diamond, however it differs significantly from both in

some respects. The measured spectral momentum density

seems compatible with a model of a—C based on small.

randomly—oriented islands of quasi-2D graphite—like

continuous random network structures. However, no

definitive interpretations can be made until higher

resolution experiments are performed on both a-C and single

crystal graphite. .
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I. INTRODUCTIUN

‘ This dissertation presents the design and application

of an (e,2e) electron spectrometer for the investigation of

the electronic properties of solids. Application of this

technique is new to the field of solid state physics. It

is able to provide fundamental information about both

crystalline and amorphous solids by directly measuring the

spectral momentum density of valence electrons. The

spectral momentum density is the probability per unit

energy and unit volume of momentum space of finding an

electron in a system with an energy 6 and momentum q.

This fundamental quantity can be shown to be directly

related to the square of the momentum wave function of an

electron bound in the solid by making some familiar

approximations, namely the impulse, plane wave, and

independent electron approximations. It is also closely

related to three basic properties of solids, the band

structure, density of states, and electron momentum

density.

The concept of using (e,2e] scatterlng to lnvestlgate

the spectral momentum density was first suggested in the

early 1960's by nuclear theorists who saw a direct analogy

with (p,2p] scattering in nuclear physics [10, 68, 102,

l
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155]. The first (e,2e) spectra were observed by Amaldi et

al in 1969 [3]. Several of the earliest (e,2e) experiments

attempted to measure spectra from thin solid films [3, 30,

99, 100], however these efforts were not successful in

resolving the valence bands in solids. The initial

attempts at solid scattering were plagued by poor energy

resolution and severe problems with target degradation.

Several groups have recently begun new programs in this

field [175, 185, 63], however the only successful

experiments to date have been performed at VPI [144].

Studies of gaseous atomic and molecular systems have

been much more successful. The technique has become well

established and is now being extended to more complicated

atomic and molecular systems. Active groups are in

Australia [Welgold and McCarthy; 85, 109, 115, 177], Italy

[Guidoni; 29, 30, 159], British Columbia [Brion], and the

University of Maryland [Coplan and Moore; 117]. A

particularly impressive experiment on atomic H recently

found excellent agreement between the (e,2e) cross section

and exact quantum mechanical calculations of the hydrogen

momentum wave function [109]. Reviews of recent

experiments and theory of (e‘,2e) gas scattering are given

by Weigold and McCarthy [114, 175, 177]. These gas

experiments provide a good example for the development of



3

(e,2e] solid scatterlng. Many of the theoretical concepts

and experimental techniques described in this dissertation

have come directly from such analogy.

Measurements of (e,2e) spectra of solids contain a

wealth of information. Direct comparison can be made

between theoretical calculations of the square of the

momentum wave function I¢(q;8)I2 and the count

rate N(8,q) as a function of binding energy and

momentum. In addition, comparisons can be made with three

fundamental quantities that can be derived from the

measured count rate. A projection of the N(6',q)

peaks onto the (8,q) plane yields the dispersion

curve é‘(q). Summation of the count rate over all

momenta is directly related to the energy density of states

N(é‘]. Summation over all binding energies can be

directly related to the electron momentum density J(q).

Further, the simultaneous determination of the band

structure allows the possibility of calculating N(€] and

J(q) separately for each band. The prospect of

simultaneously obtaining the band structure, density of

states and momentum density from one sample is indeed

exciting, however the most important contribution of (e,2e)

spectroscopy may prove to be the comparison with

theoretical calculations of the fundamental quantity

I<¤(q)l2.
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Several techniques exist which measure various

integrals of the spectral momentum density. These

techniques provide important verification of (e,2e)

measurements. Measurements of the electron binding

energies through the density of states

N(8) ~
_|-N(6',q) dq can be obtained, for

example, by photoelectron spectroscopy (UPS and XPS).

However, no momentum information is available. Angle-

resolved photoelectron spectroscopy (ARPES) can in

principle provide some momentum information. However, the

theoretical understanding of this reaction is insufficient

to quantitatively relate the intensity from the angle—

resolved spectra to the spectral momentum density.

Instead, the technique can be used to map the dispersion

relation €(q). The electron momentum density

.I(q] ~ j·N(8,q]d•S—' can be studied by several

techniques including positron annihilation, x ray and y

ray Compton scattering, and high energy inelastic electron

scattering. In general, these techniques measure J(q)

integrated over one or two momentum directions. A more

detailed review of these techniques and their relation to

(e,2e) spectroscopy is given by McCarthy and Weigold [M4].

An (e,2e) experiment can be defined as an electron

ionization experiment in which the kinematics of all of the
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electrons is fully determined. The mechanics of (6,26)

scattering is conceptually straightforward. The reaction

can be viewed as a "billiard ball" experiment at the

energies typical of our spectrometer. A high-energy

electron of energy EU (typically 25 keV) and momentum

PU incident on the sample scatters from an electron in

the target and ejects this electron from the target. Those

events in which the scattered and ejected electrons leave

the target with equal energy are detected by coincidence

techniques. The precollision binding energy 6 = EID-

ES-Ele and momentum hq = PS+Pe-PO
of the target electron can be determined from the energies

and momenta of the two scattered electrons EIS, Ps

and Ea, Pe. This is illustrated schematically in
Figure I.l.

Our spectrometer consists of an input arm and two

output arms positioned at 45° with respect to the

incident beam. The input arm contains an electron gun and

electron optics to focus the beam onto a thin film target

mounted in the target chamber. The two output (e,2e) arms

(referred to as A and B] have complimentary electron optics

which focus the scattered beam into a Wien filter energy

analyzer. Momentum selection is accomplished by a set c·f

limiting apertures and electrostatic deflectors which vary

the beam angle on the target. Electrons with the proper



6

ENERGY ANALYZER

7)
.„ 6 BE°·P° I'] —

”° __ couucubsncsE2•P2

COUNTERTARGET t « _ _..
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scattering.
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energy and momentum are detected by electron multipliers

and the signals are processed by counting and coincidence

electronics.

The spectrometer operates in two modes referred to as

the elastic and inelastic modes. Elastically scattered

electrons are detected in the elastic mode by holding the

(e,2e) arms at the same potential as the input arm. The

(e,2e) arms are held at half the input potential in the

inelastic mode, therefore the kinetic energy of the

detected electrons is approximately half the energy of the

lncldent beam. (e,2e) events are coincidence events

measured in the inelastic mode.

Another feature of our spectrometer is a similar

output beam arm which is collinear with the input beam arm

that provides the capacity to study small-angle electron

scattering. This arm is referred to as the (e,e‘) arm.

The spectrometer can function as a high energy electron

diffractlon (HEED) instrument by measuring small-angle

elastically scattered electrons over a range of angles with

the (e,e') arm. Electron energy loss spectroscopy (EELS)

can be performed by analyzing the energy loss of small-

angle inelastically scattered electrons. These features

provide important calibration of the spectrometer and can

be used to quickly characterize a sample before attempting
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the more difficult and time—consuming (e,2e) experiment.

This dissertation can be divided into three major

topics. A review of single electron and (e,2e) scattering

theory with an emphasis on scattering from solids is given

in Section II. The effects of multiple scattering are

discussed and a method of deconvolutlng these effects from

the measured (e,2e) cross section ls developed. Next,

there is a detailed description of our spectrometer design

and operation with particular attention given to the

electron optics and voltage distribution. The algorithms

and software for computer aided data acquisition and

analysis are also outlined, as is error analysis. The

techniques employed in the preparation and characterization

of extremely thin film samples of a—C and graphite are

described. Flnally, the data taken for a—C samples are

shown and are compared with the results of complimentary

experiments and theory for graphite, diamond, and a—C.

Some conclusions are drawn regarding amorphous solids and

a—C in particular.



II. THEORY OF (e,2e) SCATTERING

There are three important electron scattering

processes that are pertinent to (e,2e) spectroscopy which

are referred to as elastic, inelastic, and (e,2e)

scattering. Inelastic scattering can actually be divided

into two regimes, small-angle and large—angie inelastic

scatterlng. The types of scattering are distinguished by

the different physical phenomena that are responsible for

them. Each of these cross sections can be determined

independently by the spectrometer. (e,2e) scattering is

actually an inelastic scattering reaction where the

kinematics of both the incident and target electrons are

fully determined. The measured (e,2e) count rate

includes contributions from the true (e,2e) cross section

and all other kinematically allowed multiple scattering

events. Elastic and inelastic measurements are used to

characterize the samples, to calibrate the machine, and

in the correction for multiple scattering.

The theory section discusses the physical origins,

kinematics, and cross sections of each of these processes

and relates them to (e,2e) theory and the operation of our

spectrometer. A detailed analysis of the (e,2e) cross

section and the approximations involved in its derivation

9
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follows. Some specific examples are used to lllustrate the

information available from the (e,2e) process. Finally, a

theory of multiple scattering is derived and relates the

measured cross section to the true (e,2e) cross section.

A. Summary of single electron scattering theory

Elastic scattering is characterized by no energy loss

for an incident electron upon scattering. At small angles

elastic scattering is prlmarily a result of coherent Bragg

scattering. However, at large angles the diffraction cross

section is almost featureless and incoherent scattering

becomes dominant. The fundamental process involved in

incoherent scattering is Rutherford scattering from the

nuclei of the target.

The kinematics of elastic scattering is illustrated

in Figure II.1. In incoherent scattering, an incident

electron with high energy EU and momentum PO is

scattered from a nucleus with final energy ES and

momentum Ps. A recoil momentum P,. and a small

energy Er are imparted to the nucleus. If the nuclei are

considered stationary, approximating M>>mc, then

Er··=··0 and we are left with Rutherford scattering.

In the Born approximation the cross-section for
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Rutherford scattering in the lab frame ls given by

¤¤c6.61 ¤2m„Z - . 6 "’
:7.-1,- (Tl rp. Smm]

2 (11.1)
where Z is the atomic number. In atomlc units

do(6,<I>) z 2 P6 . 6 -4
[$*1 ‘ (2] [¥S*“[2]] (*1-***)

measured in square Bohr radii.

The count rate is related to the cross—section by

1 Eil;] 66.A [cm-IR AQ (11.2)
where In is the incident charge current, p, t and A are

the target mass density, thickness and atomic weight, A0

is Avagadro's number, and AQ is the solid angle of the

detector. For the 45° arms the solid angle can be

related to the momentum resolution
211 Q z g 6},2 ~ (%] (II.3)

The elastic count rate then is proportional to the incident

current and the target thickness and to the square of the

momentum resolution divided by the sixth power of incident

momentum. The count rate is independent of azimuthal angle

qb and depends on the polar angle 8 through the Rutherford

cross section as illustrated in Figure II.2. For a typical
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experiment with a 100 Ä thick a-C film the count rate at

in the 45° arms is approximately 60 Mhz (see Table

VII.1).

In small—angle inelastic scattering, a small momentum

coupled with an energy loss is transferred to the target.

The kinematics are identical to elastic scattering except

that the energy loss is not necessarily zero. Potentially,

there are numerous physical processes involved including

bulk and surface plasmon creation, intra— and inter—band

transitions, atomic excitations, ionizations, thermal

diffuse scattering, and radiative losses which occur when

the electron enters and leaves the sample. Detailed

calculations of the total small—angle inelastic scattering

cross section are beyond the scope of this synopsis; the

reader is referred to papers by Rltchle [141] and Hattori

and Yamada [74] and Sevier's review [151]. Only bulk

plasmon creation and quasi—elastic phonon and imperfection

scattering make significant direct contributions to the

scattering considered here. This is the type of scattering

that is measured by electron energy loss spectroscopy

(EIEILS). The (e,e‘) arm in the elastlc mode in our

spectrometer acts as an EEILS instrument and measures the

combined cross sections of these effects. Reviews of the

basic theory of EEILS are given by Sevier [151] and

Flelds[59].
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It is advantageous to separate small—angle inelastic

scattering into elastic and inelastic components. Further,

the cross-sections can be separated into products of

independent functions of energy loss and momentum transfer.

This factorization is reasonable, despite the direct

connection between the energy and the component of momentum

parallel to the beam axis. because the incident momentum in

this direction is much larger than the momentum transfer.

It suffices to fix the parallel momentum and consider only

the momentum transfer perpendicular to the beam axis. This

separation allows direct connection with existing theory

and experiments and facilitates the multiple scattering

deconvolutlon [59]. No attempt is made to estimate these

absolute cross-sections because only the relative

intensities are important to our analysis.

In small-angle elastic scattering momentum is

transferred to the target without exciting the electrons.

Typically, cross-sections such as Bragg scattering are

broadened by quasi-elastic phonon scattering or from

imperfections in the sample. The term thermal—diffuse

scattering is used to describe multiple scattering

background involving a combination of elastic and inelastic

small—angle scattering.

The probability for small—angle elastic collisions can
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be factored as

P¢(8,q) é Fc(ql) ö(8) ö(q") (11.4)

The delta—function in energy loss 8 results from
8

considering elastic events and the delta—function in

parallel momentum transfer q" is a consequence of the

high incident momentum and small scattering angle as

discussed above.

The angular (momentum) dependence of small-angle

elastic scattering can be described in analogy with the

Rutherford cross-section for elastic scattering as

1%] = (%£]2 [—-#¤·]2 <Z · wi
[P¤f(6)]

f(6) = § sin(%] (11.5)
This can be expressed approximately in the parameterized

form

(11.6)(qf * C13)
Measurements of these parameters for a—C are given by

Brünger and Menz [25] and for graphite and many other

elements by Hartley [78]. Brünger and Menz also

empirically determine the value of the small-angle elastic

mean free path ke over a range of energies.

The probability for small-angle inelastic events can

be factored as
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Pu(é‘,q) 5 Fufqll U(é') ö(q") (11.7)

The energy-loss function U(é‘) for a-C has been studied

by Burger and Misell [26] who descrlbe the principle

features as a weak lowered loss in the region ~7 eV, a

strong, broad loss centered at ~25 eV (FWHM about 40 eV]

and a broad loss centered at about 50 eV. The small

lowered loss is associated with the rr electron

oscillations and no attempt is made to incorporate it into

the theory used to fit our data. The dominant loss

centered at ~25 eV is considered a volume plasma loss

involving principally, if not exclusively, the o-

electrons. Burger and Misell state that there is no

evidence for surface energy losses. They do cite, however,

some limited evidence for such processes as atomic

excitation, intra— and inter—band transitions and

_ ionization: these effects are not significant below energy

losses of about 200 eV and so no attempt is made to

incorporate them into the theory either. This analysis is

based on Bohm-Pines plasma oscillation theory [18].

The energy—loss function U(8] is fit to an

expression from the dielectric formulation of the total

scattering cross-section per unit volume for single

scattering of an electron of energy EO into scattering

angles with energy loss 6 [127]:
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An expression for Im(l/e[8)] from the Drude free-
electron gas model of a metal [104] can be used to descrlbe
the main energy loss as

w2 1 w (11.9]

where wp is the plasma frequency and 1 ls the half—life

of the electron plasma excitation (plasmon]. In
paramaterized form this can be expressed as

uw) - {
(62 - vg + 62 ° 8 > 0

} (11.10]
O { 8 < 0

There are no mechanisms for gaining energy, therefore

U((s‘) is zero for energy losses less than zero. Burger
and Misell [26] fit extensive a-C data to evaluate these
parameters which are in good agreement with theoretical

values calculated using the Bohm—Pines plasma oscillation

theory.

The angular dependence of the differential cross

section for volume plasmons has been derived by Ferrell

[57] as

1 61-:ä ' { Sc } (II.11]
O ;Ü > GC

where n is the free electron density,

OE = hwp/2EO, and SC = hwp/EF. The
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maximum scattering angle GC is related·to the momentum

just sufficient to cause an electron at the Fermi energy

EF to make a real transition, absorbing one plasma-

quantum of energy 'liwp. As the scattering angle

approaches the cut-off angle GC, damping effects,

primarily due to the transfer of plasmon energy to

individual electrons, cause the probability of excitation

of a plasmon to fall to zero. In the vicinity of GC

Equation II.1l must be multiplied by a correctlon factor

to account for damping [58]. In parameterlzed form this

can be expressed in terms of momentum as

Q < Q (II.12)(ql +qC)(ql +qc) L <=

in the limit that q§<<qä, that is that

EZ0>>EF [59].

The mean free path A, between small—angle inelastic

collisions can be calculated by integrating Equation II.1l

[57]. Its value ls

aoAi = (1]:.13)
This quantity is of importance in multiple scattering

analysis and has been measured by Brünger and Menz

[25] for a—C.

The total mean free path At is given by
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Q; - fg + ä (II.14)
For (e,2e) geometrlea, the average path length of an
electron through a target of thickness T ls approxlmately

[T d1 [1 + 242- (T - 1)]
T= = 1.91 T (II.15)

In d1
and the effective mean free path for the entire target ls_ 1 T + 42 M]>«= ·.T=_[D d1 [1>«0 + 242 (T — 1) AT] (II.16)
where ko and ki are the total mean free paths of an

electron before and after the (e,2e) event respectlvely.

The elastic and small-angle inelastlc count rates can
be measured with our spectrometer in the elastic mode. The

energy loss can be varied from O to ~80'eV by varying

the band pass energy of the energy analyzer. In the non-

coplanar geometry the spectra can be measured over a range

of ep -- typically : 5° —- about ep - 0° for

6 ·· 0° in the (e,e') arm and for 9 ·· :45° in the
(e,2e) arms. In the coplanar geometry the polar angle ls

fixed at ep = 0° and measurement can be made over a range
of 6 about 6 - 0° in the (e,e') arm and about

6 = 45° in the (e,2e) arms. This is equivalentto a

momentum range of :7 Ä-1 for an incident energy

of 12.5 keV.
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Large—angle inelastic scattering has the same
kinematics as elastic and small-angle inelastic scattering,
but ls distinguished from the latter by the much larger

_ momentum transferred to the target. In standard operation

of the inelastic mode of our spectrometer P, is

approximately equal to PS and Er ¤ ES for

electrons detected in the (e,2e) arms. For such high
momentum transfer the collision must involve comparable

masses, therefore the process involves the incident

electron scattering off of a single electron in the target.

At high energles where the plane—wave impulse approximation

is valid the large—angle inelastic cross-section is the

Mott cross-section given by

[we;] . [if ,,cm M 4Eo

[4cos9 [(sin6)”4 — (sin6cos6)”2 + (cos6)"4]} (11.17]

in the lab frame.
The count rate is related to the cross section by

[n]M A dQ]M AQ (1118)

This has the same dependence on target properties, incident

- energy, and energy resolution as the elastic count rate,

but differs with respect to the polar angle as shown in

Figure 11.2. For a typlcal experiment with a 100 Ä

thick a—C film, the Mott cross section at 4S° is
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approximately 0.4 MHz, a factor of l50 less than the

Rutherford scattering. This assumes that the target

electron is stationary and has no binding energy; the

cross section becomes almost uniformly spread over several

keV when those effects are included and the large-angle

inelastic count rate is then about 5000 times smaller than

the elastic rate.

Multiple scattering has no significant net effect on

the inelastic cross-section. Each electron which undergoes

a large-angle inelastic scatter can have one or more quasi-

elastic multiple scattering events occur before or after

the large-angle event. This results in a convolution of

the inelastic cross-section with a multiple scattering

broadening. However, the inelastic cross-section is so

nearly uniform in the region of 6 • 45° that the

convolution hardly modifies the distribution.

Inelastic scattering produces a background of counts

in the (e,2e) arms when the machine operates in the

inelastic mode. These events satisfy the energy

and momentum constraints of the analyzers, but are not

coincidence events. It is possible to produce false

coincidence events if an independent inelastic event occurs

in each arm within a given time interval. The false

coincidence background is subtracted from the measured

coincidence rate using the coincidence electronics
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described in Section IV. These lnelastic counts provide an

lndispensable means of adjustlng the tune conditions of the

electron optics, since the measured coincidence rates are

too low to provide feedback during tuning.

lnelastic scattering is measured with the spectrometer

in the lnelastic mode. The energy loss can be varied by

two independent methods. The band pass energy of the

energy analyzer can be varied over a range 0 to ~8O eV

or the negative high voltage HV_ can be varied. The band

pass energy can be varied manually or under computer

control, while the negative high voltage must be adjusted

by the operator. The two can operate together to cover a

wide range; the negative high voltage provides a course

adjustment to the energy loss and the band pass energy acts

as a fine adjustment under control of the automated data

acquisition system. The momentum transfer can be studied

over a range of angle about the beam arm axes, just as in

the elastic mode.
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B. [e,2e) scattering theory

I. Ktnemattcs

An (e,2e) scattering event can be defined as a single

ionization event in which the kinematics of all of the

electrons is fully determined. At the high electron

kinetic energies involved it is valid to consider "billiard

ball" kinematics to first order; such kinematics are shown

in Figure II.3

An incident electron with energy En and momentum

PU(O,¢») is incident on a target. This electron is

inelastically scattered off of a target electron with final

energy Ea and momentum Pa(6a,O). The ejected
target electron has energy Ea and momentum

Pa(0a,O). By convention, the z—axis is in the

direction of the incident beam axis, the x-axis is in the

scattering plane, and the y—axis is out of the scattering

plane, throughout this work.

If the kinematics is fully determined then energy and

momentum conservation lead to the equations

8 - EU - Ea - Ea - Er (II.l9a)

hä = PD — Pa - Pa (H.l9b]

The binding energy 8 is the energy difference between

the initial target state and the final ionic state. The

momentum transfer hä is the recoil momentum of
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the ion and Er is the recoil energy. If the incident

electron energy is sufflciently high, i.e. E¤>>6', and

the mass of the target is large in comparison with the

· electron mass, i.e. M>>m¢, then the recoil energy

Er ¤ O, and the momentum of the target electron prior

to collision is given by q = -3. °

There are two major kinematic divisions based on the

geometry of the scattering, the symmetric geometry and the

asymmetric geometry. The kinematic restrictions that

Gs = 6,,56 and that Es = Ea are applied to

the symmetric case; these are not required in the

asymmetric case. Our experiment and most standard (e,2e)

gas experiments utilize the symmetric geometry. A brief

review of some types of asymmetric experiments is given at

the end of this section. The reader is referred to the

review of McCarthy and Wiegold for further details [114].

Symmetric experimental arrangements have several

advantages in experiments designed to probe the momentum-

space wave function. The two outgoing electrons are

indistinguishable, hence the subscripts s and e can be

replaced by 1 and 2. The geometry maximizes the momentum

transferred to the ejected electron, thus ensuring close

electron—e1ectron collisions. Further, if the incident

energy is large, both outgoing electrons have high

velocities so that the effect of the other electrons can be
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largely neglected and the collisions regarded as one

between two free electrons. In this geometry the target

electron momentum can be expressed as

hqu - 2 P, cosö - PU coso (II.20a)

hqi · PU sin¢ (II.20b)

where qu and qi are in the 2 and y

directions respectively. There are two subdivisions within

the symmetric geometry, coplanar and non-coplanar.

In the symmetric coplanar geometry all the

trajectories lie within the scattering plane, that is

¢ = 0. Only target electron momentum parallel to the

incident beam axis is probed in this arrangement:

hqn = 2 P1 cosö - PD (II.2la)

Our spectrometer varies the angle 6 only a few

degrees on either side of 45°, therefore in the small

angle limit of small A6,

hq ¤ —p„ A6 (11.166)

where A6 E- 9 — 450 and Pl ¤ PU / Ö.

The symmetric non-coplanar geometry has a variable

angle ¢> while 9 is kept fixed at 6 = 90. The

momentum relations for this geometry are

'nqn - 2 Pl cosöo — PU coscp (II.22a)

hqi - PU sincp (II.22b]

In our spectrometer BO = 45° and ¢ is varied a few
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degrees about 0°. The parallel momentum transfer reduces

to zero to first order in the small-angle limit and

sql ~ PU ip (11.23)

There is an advantage to the non-coplanar mode in that

the (e,2e) cross section in this geometry depends on the

scattering angies only through the square of the momentum-

space wave function. In the coplanar mode, the value of

the Mott cross—section contribution to the cross—section

changes as a function of 6. This effect is illustrated in

Figure II.2; it amounts to only a :5% variation over a

range of :4Ä-l at E10 = 25 keV. This is

discussed further in the derivation of the cross section

which follows.

All of the data taken to date with our spectrometer

have been taken in the symmetric non-coplanar mode. The

spectrometer is designed to take data also in the coplanar

mode, however this option has not been utilized yet.

2. Cross section

A derlvation of the (e,2e) cross-section is quite

complex since it is at best a 3-body problem (hydrogen

atom) and is a many—body problem for solid targets. There

are two approaches taken in addressing the problem. In

this section, a crude set of approxirnations is employed
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which arrives at useful results in a stralghtforward

manner. A much more detailed derivation of the (e,2e)

scattering amplitude is given in Appendix A. This

derivation is more general than is used in practice for

(e,2e) calculations in solids, however it provides

important insights into the concepts and approximatlons

inherent in the cruder model.

The (e,2e) scattering amplitude MH can
bei

calculated using the plane—wave Born approximation

neglecting exchange effects, and using the independent-

electron approximation. The incident, scattered, and

ejected wave functions are assumed to be plane waves and

the orbital wave function of the electron in the target

prior to the collision is ~I¤n(r2). The potential

is just the Coulomb interaction between the two electrons.

The scattering amplitude is

(II.24]

Introducing the expansion
~

3 , .. (11.25)
and rearranging terms, Equation II.24 becomes
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X xynll-2)] (11,26)

The separatlon of the integration in rl and rz is

the equivalent of the factorization approximation, which is

exact for the plane-wave approximation. The integral over

rl provides a delta—function and the subsequent

integration over k yields

M„=(21t] 262 EFTEV “
where q - kl + kz - ko (II.27)

The first term results in the Mott cross—section upon

generalizing to include exchange effects. <I>n(q) is

the momentum wave function, that is the Fourier transform

of ~I/n(r) as defined in Equation A.19. Equation II.27

should be compared with Equation A.21 in conjunction with

Equations A.17 and A.19.

The approximations used in this derivation must be

justified for solid targets. For clarity the

approximations can be groupecl in three main categories

under the names impulse, plane-wave, and independent-

electron approximations. The reader is referred to

Appendix A for more details. ‘

Perhaps the most compelling evidence for their

verisimilitude is the spectacular agreement of many of the



31

(6,26] gas experiments with theory. As an example, the

agreement between measurements for atomic hydrogen and the

exact calculations for its momentum-space wave functions is

· exact within small experimental errors [109]. The cross

section was calculated in the plane-wave impulse

approximation and measurements were taken with the non<

coplanar symmetric technique at incident energies of 400 to

1200 eV. This provides strong evidence for the validity of

the plane-wave approximation, especially at incident

energies of tens of keV, but does not test the impulse and

single-electron approximations appreciably. Camillon et al

[29] have done a detailed study on the validity of the

eikonal approximation and the distorted-wave impulse

approximation as a function of EO and q for He. They

conclude that in these experiments the eikonal

approximation is valid for EU Ä 800 eV and q < 1

Ä-! and suggest thatithere may be a limit to the

impulse approximation for 9l+92 Ä 70°. Many

other gas experiments on more complex atoms and molecules

support the plane-wave and impulse approximations,

particularly for Eoäl k6V [114].

In addition to the three major approximations there

are a few initial approximations which are rather easily

justified. Relativistic effects are neglected; this has
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its most important implications with regard to the

treatment of electron spin effects. The highest velocities

involved in this experiment (EO - 25 keV] are about .3 c;

less than 4% error in the momentum results from neglect of

relativistic effects. At energies above ~5O keV or for

higher precision work, these effects may need to be

considered. Assuming an infinite target mass is satisfied

trivially for a solid target and is a very good

approximation even for the lightest atoms. This is

equivalent to neglecting the center—of—mass motion of the

target atoms caused by the collision. We assume that the

target is in the ground state which is equivalent to

ignoring finite-temperature effects. The density of

lattice vibrations and excited-state electrons is minimal

at room temperature; the few electrons in perturbed states

will produce an erroneous background which is well below

detection limits since kT is much less than our energy

resolution.

The impulse approximation is the most difficult

approximation to characterize and justify. In simplistic

terms, the impulse approximation hypothesizes that the

electron collision happens in such a way that it is

independent of all of the other electrons and atoms in the

target. The collision must happen fast enough that the

ion does not relax in response to the ionization before
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both scattered electrons are out of effective range of its

potential. The higher the electron veloclties, the less

time the electrons are in close lproximity to the ion. The

high incident energy, in our experiments typically at least

20 times that for gas experiments, reduces the time in

proximity. The electrons must also collide at close range,

which results in high momentum transfer. The symmetric

geometry with 6 =¤ 45° provides maximum momentum

transfer; momentum transfer is typically >s0A_‘

in our spectrometer.

A reasonable crlterion may be that the impact

parameter should be much less than the electron separation

in the target state [13*]. The separation distance of

valence electrons is in general significantly larger than

that of closely bound atomic orbitals. The extended

electron states in a solid should provide a screening

effect which limits the range of the ion potential. In

addition, the response time of the ion should be inversely

related to the energy imparted to the ion. Valence

electron energies on the order of tens of eV, are

comparable to H ionization energies rather than to those of

more complex atoms studled [176] which have much larger

binding energies. Taken together, the relatively long ion

response time and the short time of proximity of the

electrons seem ample justification for the impulse
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approximation, in light of lts validlty ln (6,26) gas

experiments.

The plane—wave approximation depends on the momenta of

the electrons involved. Our kinematics is optimum for the

highest scattered momenta in both arms. McCarthy and

Weigold review this approximation for gases of both atoms

and molecules [114]. They conclude that the plane—wave

approximation is at least adequate for incident energies

above 1200 eV for their examples. The energies weemploy

are significantly higher, so this approximation seems

reasonable despite the uncertainties introduced by a solid

target. The factorization employed ls exact in the eikonal

approximation, therefore its criteria are less demanding

than the plane-wave approximation. Early work on (e,2e) in

solids measured the angular correlations of oxygen ls core

electrons [30] and ls [30,99] and unresolved n=2 [99] bands

in carbon. Their results, over a limited region of q

space and at low resolution, agreed with calculations based

on the plane wave approximation. All of this work was done

at incident energies below 10 keV.

The independent—electr0n approximation is a familiar

one in solid state physics and has enjoyed widespread

success. Successful application is most dependent on a

careful choice of the basis state used in the expansion of
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the target electron wave function. Kzasilnikova and

Persiatseva’s measurements on oxygen and carbon ls orbitals

in solids were in agreement with calculations based on

either Slater determinants or l-lartree·F‘ock orbitals [99].

Camlllon et al found agreement with calculations based on

both Roothaan and minimal-basis—set wave functions [30].

In practice, most solid state calculations are

carrled out using the plane—wave Born approximation. The

requirements for this approximatlon are extensions of the

impulse approximation and the eikonal approximation

requiring large incident and exit speeds and large incident

and exit klnetic energies. Glassgold and Ialongo [69] look

at this for one- and two-electron atomic systems; Vriens

[171] extends this discussion somewhat. The only certain

test of this crude theory for solids will be comparison of

data with theoretical calculations for a well understood

system such as graphite.

The cross section is of course proportional to the

square of Mu and is given by

where use is made of Equation A.21. The delta function

involving 8 determines the binding,energy from the

measured quantities EU and El + E2 rather than
determining E11 from E2. This determines which bands
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will be included in the sum over n' in Equation 11.37. The

cross section can be reduced by one degree of freedom by

integrating over the energy shell for E2 - P2/2m°;
_ Levin et al [107] show that this results in

1: ? 6 -1
1- (11.29)

I-lere, k - 1:2-q, the momentum transferred to the

ejected electron. The count rate is given by

N(8,q) - [1!![%&Q]nv jAQ! AQ2 AE! (11.30)1 2 1
where nv is the number of electrons in an atom which

participate, i.e. the number ofvalence electrons. A rough

guide for the cross section dependence on important

experimental quantities can be obtained by using the

approximation that: l) ED ··= 2E! = 2E2; 2)

AP! 2: »[2APU; 3) the gradient term in

Equation 11.27 is negligible. The effective detector angle

is then
2 1AQ! = = (11.31)

where the total angular resolution (see Section 111] is
Aqz - APO2 + AP!2 - APZ2 - 1=>,2(6!, 2 -6, 2) (11.62)

¤ 1
Recalling that the Mott cross section is inversely

proportional to Eä, we arrive at the result

N ~ 1,, (11.33)
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3. Specific examples .

As a qualitative illustration of what the (e,2e) cross

section measures let us consider two simple cases, i.e.

scattering from a free electron and from a simple atomic

orbital.

For a simple atomic orbital the energy is a constant,

Ea and the allowed momentum extends over a finite range.

The form factor is simply equal to the momentum space wave

function. The cross section then is non-zero only for

8 = Ea and its amplitude is modulated in the momentum

direction by the square of the momentum wave function.

Figure 11.4 illustrates a typical distribution for a ls

orbital with a maximum at q = O. The nth s orbital will

have n maxima in q. The nth p orbital would have a

minimum at q = O and have n maxima.

The form factor for a free electron with momentum

ka is

Fkefql · (2103/2 ö(ka-q) (11.34]

Therefore, the cross section is a constant amplitude for

all values q which satisfy the dispersion relation
6‘(q]

= fizqz/2ma and will be zero for all

other comblnatlons of 8 and k. This produces a

parabolic cross section of constant height as shown in

Figure 11.4. Of course the delta function distribution is
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broadened by instrumental effects.

Let us now turn to the calculations for the (e,2e)

cross section of solids. There are two simple descriptlons

of electrons in solid which we can discuss, the nearly-free

electron which models metallic valence electrons and the

tight—binding description which models more tightly bound,

atomic—like orbitals for core and some valence electrons.

The fortuitous choice of the preceding two examples already

allows qualitative understanding of the results.

Let us start with the tight binding case and begin by

considering the problem of a single crystal target. The

expansion for the single—particle tight·binding wave

function (with crystal-momentum k in a band n) can be

written in terms of a Bloch sum of atomic wave functions

(Un a s

(II.35)

where N is the number of atoms in the crystal and the sum

is over all the crystal-lattice sites. If we introduce

this expansion for ~I/n_k(r) into the equation

for the form factor, Equation A.l9 we get

(11.36]

and the square of the form factor is



40

2 2|Fk_„(q)| - «l$1' (11.37)
The wave function <l>n,_k(k+G) is the Fourier

transform of ~I/n_k(r) and Gis a reclprocal
lattice vector. It should be noted that we measure

§IFk_n(q)I2 ö(6-6n(k)].

The summation over n' is over bands which are close to
n where either there is a degeneracy at a point k in the

first Brillouin zone or a near degeneracy where
instrumental resolution allows mixing of the bands. The

form factor Fk-n(q) will be non—zero at a given

binding energy 6 for some momenta q, provided that

these q satisfy the dispersion relation

6 - 6„(k) - 6„(q-G) - 1:0 — 1:, - 1:2 (11.38)
Restricting measurement of q to within the first

Brillouin zone (i.e., G·O), there will be at most one

non—zero form factor for a given q within a single band.
In essence, the form factor maps out the dispersion curve

6n(k) in the first Brillouin zone. Outside the

first Brillouin zone Fk_n(q) is non-zero for
G af O as well. This analysis is very complex if q

is not in the direction of one of the reciprocal lattice

vectors, Gi. If q is along (9, then the

form factor is non-zero for a series of equally spaced

momenta
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q = k + mG ; m = 0,1,2... (11.39)

at a given energy 8n(k). The magnitude of

Fk_n(q) depends on the magnitude of the

momentum-space wave function ¢k_n. Since
<1>k_n rapidly goes to zero for large momentum, the

form factor will vanish beyond only a few Brillouin zones.

The amplitude of the form factor measures the probability

of a given state with energy 8 and momentum q, therefore

the count rate can be interpreted as related to a two-

dimensional density of states N(€(k),k] within the

first Brillouin zone. Near the zone boundary there is a

dip in form factor. At the zone boundary the wave function

has the form

¢ =· 4-% [ |kZ>¢ I-kZ> ] (11.40)
Since the form factor is a function of momentum q, not

crystal-momentum, only one of these states contributes to

the form factor which falls to half its value at the

boundary. The width of the dip is dependent on the width

of the region of mixing of states which is given by

Ann ¤ kn (11.41)
where kn and En are the momentum and energy at th_e zone

boundary and V(G) is the matrix element which causes the

mixing of the two states in Equation 11.40.
1

For a polycrystalline sample the form factor is
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averaged over all directions and therefore is approximately

constant for q up to the Fermi momentum, i.e. the dips

will be smoothed out. For highly anisotropic materials,

however, the form factor should fall off more gradually and

approach zero as q approaches its maximum value on the

Fermi surface.

The case of nearly-free electrons is more nearly the

same as its simple counterpart example. The form factor is

given by

Fktql (II.42]
where V is the crystal volume and the dispersion relation

is

e(k] - e(0) (II.43)

where mm is the effective mass. The‘gradient term

in Equation II.29 is typically very small so the cross

section reduces to

mP 2 n V ök_q (II.44)
where n is the number of valence electrons per unit volume

of the crystaL

The distribution will extend up to the Fermi energy

and will be zero above it. There will be dips in the

distribution at the zone boundaries for the crystal case as

described above.
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There ls an interesting discussion of the (e,2e) cross

section for the hybrid s—d orbitals of Cu given by Levin et

al [107]. They present the s-band electrons as nearly free

i electrons modeled by an orthogonalized plane—wave method

and the d—band electrons modeled by the tight—binding

scheme. A more simple example of hybridization for the.

N2 molecule is discussed by Neudachin et al who also

include some discussion for solid Al and the ionic crystal

1<c1 [124].
Since the cross section depends on the momentum q

of the electron in the target and not the crystal momentum

k there is no reason why the spectral momentum density

cannot be mapped out for amorphous solids as well. The

only difficulty is interpretation of the results. There can

be no measure of the dispersion curve 8(k) for

amorphous solids because k is not a good quantum number

for them. The theory of band structure for crystalline

solids rest firmly on the assumption of crystal

translational symmetry, therefore there is no simple

justification for the presence of band structure for

amorphous solids. However, physical intuition would

suggest that amorphous solids must retain at least some

vestige of this fundamental property of crystalline solids,

which they resemble in so many ways.

Ziman has proposed a model for the valence bands in an
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amorphous material based on trial wave functions which are

constructed out of linear combinations of bond orbitals

(LCBO) [193]. The model ls quite similar to the tight-

blnding crystal calculations based on linear combinations

of atomic orbitals (LCAO) and has a slmilarly

straightforward interpretation for the (e,2e) cross

section. The expected nature of the band structure of

amorphous materials will be taken up in Section VIII on the

interpretation of our a—C spectrum.

4. Relation of measured cross section to (e,2e} cross

section

The measured scattering cross section of the

spectrometer is closely related to the (e,2e) cross

sections, but it is broadened and distorted by several

factors including inelastic background, instrumental

broadening, and multiple scattering. Through data

analysis, most of these effects can be deconvoluted and a

reasonable estimate of the spectral momentum density can be

extracted from the data. First we discuss the relation of

the measured cross section to the (e,2e) cross section and

the physical processes involved in the broadening. Then, a

formalism is outlined and derivations of the general
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formulas for deconvolution are given. Appendix B contains a

derivation of the scattering function and relates the

multiple scattering to the quasi-elastic functions

discussed in Section II.A. The details of the numerical

analysis technique used and an outline of the error

analysis are outlined in Appendix F'. Specific examples of

applications of these techniques are found in Section VIII.

Much of the theory developed here is based on work by

Fields on inelastic electron scattering [59]. The paper by

Jones and Ritter develops this approach for (e,2e)

scattering [90].

The corrections made to the measured cross section can

be separated into three categories: inelastic background,

instrumental broadening, and multiple scattering. The

background analysis is fairly straightforward and can be

accomplished by algebraic manipulations of the data. This

is described in Section IV. Corrections for instrumental

broadening and multiple scattering are much more

complicated. The analysis of these two effects can be

performed simultaneously using deconvolution techniques and

Fourier analysis. Multiple scattering in (e,2e)

scattering is caused by the processes referred to as quasi-

elastic scattering in Section II.A.

The kinematlcs of an ideal (e,2e) event were discussed

in Section III.B and are shown schematically in Figure
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a. Klnematlc dlagram of an Ideal (e,2e) event. AnIncIdent electron of energy E and momentum k, scattersI wlth large energy-momentum transfer off an electron ln the

target whose energy and momentum prior to the Interaction
was GD and qn. The two electrons emerge wlth
energies E', EI", and momenta k', k".
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b. Dlagram of (e,2e) scatterlng In a fllm of
thlckness T, which Includes multlple scatterlng effects.
The energy and momentum of each electron immediately before‘ or after the (e,2e) event Is shown ln parentheses.
Figure II.5 Kinematics of (e,2e) Multiple Scattering.
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II.5a. A more realistic picture of the scattering is

illustrated in Figure II.5b. The incident electron enters

a target of thickness T and travels a distance 1* before

the (e,2e) event. The electron losesl an energy 8, and

transfers a momentum ql to the target in traversing

this distance due to small energy-momentum transfer

collisions with the target. At some infinitesimal distance

before the (e,2e) event the incoming electron has an energy

E-8, and momentum k-ql. Thls electron

undergoes an ideal (e,2e) event and at an infinitesimal

distance afterwards, the two outgoing electrons have

energies (E'+é°2], (EI"+é‘3] and momenta

(k'+q2], (k"+q3). The two electrons lose

energies 82,83, and transfer momenta qz,

qa respectively as they traverse the target and exit

the target with energies E', EI" and momenta k‘,k".

Furthermore, there is an uncertainty in the measured values

E, k, E', k', E", k" due to the non—ideal

resolution of the beam source and the analyzers.

The measured cross section

R’(E,k,E’,k‘,E",k") is related to the ideal

(e,2e) cross section iR‘(E—8,,k-ql,E’+82,k’+q2,E1"+83,k"+q3)
A

with a measure dE’ d3k' dEI" dak" dr by
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r
R·(E,k,E·,k·,r~:··,k··) - I dr Idaql dgqz d3q3.[d€l dez dez

0d‘*§=° . . . .. ..

.. °X (II.45)
The effects on the incldent beam of smearing due to
multiple scattering and spectrometer resolution are

contained in the function 3*; the functions ?'

and $"' are similar functions for the two scattered
beams. T' and T" are the path lengths of the electrons
after the (e,2e) collision, where

r = 1-%k' • k
(11.46)

T" - ————Ä”‘ 1
k" • k

These are approximate relations, since the path lengths are
actually longer due to multiple scattering; this
approximation will be dlscussed further below.

The klnematics of the (e,2e) collision and the
geometry of the spectrometer actually limit these cross
sections to functions of four variables. The input energy

and momentum are independent variables. In terms of these
variables the kinematic relations from Section 1I.B require

that
E + eo - 6;* + E" (11.47e)
k + qo = k' + k" (11.47b)
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and the spectrometer geometry requires that

E' - E" (==» lk'! - lk"!)
ka. S — ka"
k0’ = le.0" (11.48)

since the arms are placed symmetrically about the

spectrometer axis. Therefore, the cross sections may be
written in terms of the variables E0 E -60,

and k0 E-qu as

(11.49]

There is an approximation in applying these conditions

since the finite resolution of the spectrometer

allowsuncertaintiesin the measured quantities. These

approximations are valid since the energies EI, E', E" are

on the order of keV and the scattering angles are near

45°, while the uncertainties are much smaller, on the
order of 5 eV and 0.2 milliradians.

The same approximations can also be used to simplify

the ? functions. The ? functions vary slowly

with electron energy, so the approximations

62 << E'
63 « E·· (11.50J

allow the substitution of EI' for E’+62 as an argument

of ?’ in Equation 11.45 (likewise for ?"). Further,

the approximations

60 << E, E', E"
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P · if - iS·· - iE (11.51) _
allow E/2 to be substituted for E' and E" as arguments of

?' and ?", respectively.

The increase in the electron path length due to

multiple scattering is negligible if the momentum transfer

for each scattering is small and only a small number of

multiple scatterings are considered in the analysis. The

approximation in Equation II.51 implies that T' · T".

We can now rewrite Equation II.45 with the new

functions R and 5{ including the approximations to the

arguments of the 3*-functions:

r
R(e„,k„) = I dr dez dez

0

x 3(E -q -q)
dql del l O 1 1 3

d‘*°§=°· E . d"§=°·· E .XBy

a change of variables,

€E€l'=€l+Q21-@3 qEql‘=q1+q2+q3

ez' = 6z + 63 q2‘ = qz +q3

ez' = 63 q3‘ = qa (II.53)

Elquation II.52 takes the form of a convolution between 3{

and the ZP functions and can be written in terms of a
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single smearlng function 5°(8,q;E,T) as

R(E§0,k°) -
fdgq ‘|-de {SRJEZD-e,kO-q) ?(e,q;E,T)}

r
where 3°(e,q;E,T) = In

dr nl-d3q2° d3q3‘ 1-de2’de3'{[e-e2',q—q2']

xor
in the more compact convolution notation

R(EZo,ko] - R ® fP(€,q:EI,T)
T 4* 4*. 4*..where fP(e,q;E,T] - 1-GJ0

2 3 2 3
(11.5412]

Two problems remain in the deconvolution. Equation

II.54 must be inverted so that an can be calculated from
the measured cross section and the smearing function.

First, however, the smearing function must be evaluated.

This long, but very important calculation is performed in

Appendix B based on the work by Jones and Ritter [90].

There, an analytic expression for the Fourier transform

2T of SP is evaluated in terms of the quasi-elastic

cross sections discussed in Section II.A and Gaussian
instrumental broadening functions. The Fourier transform

of the smearing function ZT can be evaluated in te_rms of

eleven experimentally determined parameters; ag, az,

ay,b8,bx,by,q0,qE,qc,V2 and V3 by
combining Equations B.6, B.7, and B.13. This can be
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lnverted using standard Fast Fourier Transform (FFT)

numerical techniques to give an expression for the smearing

function 5P.

The whole purpose of this analysis is to extract the

(e,2e) cross section from Equation 11.54. There are many

well established numerical techniques for performing this

deconvolution (see for example Reference 31). Two

approaches which we have used in the deconvolution of our

data are discussed in Appendix F. Further details can be

found in Jones and Ritter [90].



III. SPECTROMETER DESIGN

A. General Description

The spectrometer constructed at VPI is a prototype

machine for the investigation of (e,2e) spectroscopy in_

solids. It has much in common with other electron

spectrometers and incorporates many components used on such

machines, in particular atomic and molecular (e,2e)

spectrometers [3,30,114] and inelastic electron energy loss

spectrometers [67,142]. In fact, almost all of the

apparatus used are based on existing designs and were

chosen to fit the specific needs of this experiment.

All electron spectrometers share four basic parts; an

electron source, a detector, an analyzer, and an electron

optics system to link these together.

Figure III.1 shows a block diagram of our

spectrometer. The ultra—high vacuum chamber includes a

target chamber and four beam arms which house these basic

parts. The beam arms all lie in the scattering plane with

the (e,e’) arm colinear with the input arm and the two

(e,2e] arms fixed at 45° with respect to this axis.

Table III.1 lists some of the operation parameters for our

spectrometer and compares them to previous work by others

in the field.
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Figure III.1 Block diagram of (e,2e) Spectrometer
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Table III.1 Design Parameters for (e,2e) Spectrometer

VPI Sectrometer Preyious
Measured Design S • ectrometersm

Incident Current Io ~S0|.1A
10011AIncidentEnergy EO 10-30keV 25keV ~10keV
Energy Resolution AE 3-5eV 1eV 15-150eV
Energy Range |Eb| ~100eV <500eV -—

Momentum Resolution Aq 0.2-1.1Ä-l 0.2-1.1Ä-l 1-2Ä-1
-1 -1

Momentum Range q 4Ä 7Ä —-

Count Rate N 0.1:-0.2}-iz 0.1-1.01-lz 0.01-1.0Hz
Stastical Count Error AN ~5Z SZ ·-
Target Vacuum P 10"5Torr 10”STorr ä·5X10'7Torr

mßased on data collected by Amaldl et al
(Reference 3); Camilloni et al (Reference 30);
Krasilnikova and Persiatseva (References 100 and 101).
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Important guidelines for design of this spectrometer

are highlighted in the equation for (e,2e) count rate

N(E,q] derived from Equation 11.33.

N(E,q) ~ IO t I<I>(q]I2 (Aq)4 (III.1)
0

The inherent low count rates of coincidence experiments

place paramount importance on maxlmlzlng N(EI,q) which

can be varied by adjusting the incident current 10,

target thickness t, momentum resolution Aq, energy

resolution AE, and incident electron energy EO. The

count rate ls particularly sensitive to the incident energy

and momentum resolution.

The single most important constraint in choosing an

electron source was the need to maximize count rate. Our

spectrometer was designed to operate at an intensity of at

least one thousand times that of previous machines. In

addition to high intensity, our Pierce—type electron gun

with a space—charge-limited diode electron source offers a

well defined beam with reasonably low thermal energy

spread.

A high gain electron multiplier tube (EMT) is used as

a detector to meet the requirement of a low intensity,

coincidence detection scheme, i.e., the ability to detect

single electrons and the fast response time necessary for

compatibility with coincidence electronics.
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Both an energy analyzer and a momentum analyzer are

required. For both of these systems, our choices were

limited by the physics of the solids studied and further

constrained by mechanical considerations in building the

spectrometer. The dispersion curve for a typical valence

band spans an energy of tens of electron volts with a

Brillouin zone width of up to a few lnverse angstroms.

Based on these dimensions our spectrometer was designed to

have an energy range of several hundred electron volts with

a total energy resolution of 1 eV. The simplicity of the

Wien filter and its straight—through geometry facllltated

design of the other electron optics and such an analyzer

~is able to fulfill the modest energy resolution and angular

acceptance we need. The desire for 1eV resolution is

facilitated by utilizing a retarding field analyzer which

requires only a modest resolving power from the energy

analyzer. A momentum range of a few Brillouin zone widths

and momentum resolution of ~ 1/10 of the width of a

typical Brillouin zone is necessary for useful study of

momentum distributions. However the strong dependence of

the (e,2e] count rate on the momentum resolution means that

count rates are very low at this resolution. We opted to

design a variable range momentum resolution from

0.2 s Aq s 1.0
Ä-},

by using a variable

magnification constant—focus zoom lens. Determination of
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the momentum with a precision of Aq • 0.2 Ä-1

requires that the scattering angle be measured to better

than 3 mrad. It would be prohibitively difficult to move

the detectors mechanically and maintain this precision,

therefore we chose to employ electrostatic deflection in

our momentum selector with fixed beam arms.
.

The incident energy EO of the electrons striking the

target is another major design parameter. Again,

conflicting requirements act to narrow the range of useful

energies. At lower energies multiple scattering becomes a

serious problem even for very thin targets, so it is

advantageous to use as high an incident energy as possible.

However, the count rate decreases rapidly with increasing

energy. A reasonable compromise is achieved at incident

energies near 25 keV where the minimum thickness of self-

supporting films is on the order of one mean free path.

Together, the requirements for high voltage incident

electrons, a zoom lens, and compatibility with the electron

gun, energy analyzer, and momentum analyzer provide more

than ample guidelines for the electron optics system

design.

Several auxiliary systems are necessary to complete

the spectrometer. An ultra-high vacuum system is needed to

minimize target degradation and magnetic shield is required
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to reduce the effects of magnetic fields on the electron

beam trajectory. These place further restrictions on the

materials that can be used in construction of the machine.

The long collection times necessitate that the spectrometer

be interfaced with a computer to aid data acquisition.

B. Machine components

I. Overview of electron optics

The electron optics of the spectrometer form the

nucleus of the machine. The following section describes

the electron optics from a functional point of view,

describing the trajectory of the electron beam and the

operation of each of the components in order. The details

of theory and dimensions are relegated to Appendix C, so

that one can gain an appreciation for the overall system.

The basic concepts and definitions of electron optics are

also found in this appendix. Reference 143 offers a more

concise description of our electron optics, reviewing the

critical factors which have entered into the design of the

spectrometer.

Figures III.2 and III.3 trace the beam profile through

the lens columns. The images of the cathode (pupii) are

labeled with arrows, while the window images are denoted by

bars.
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The electron source employed in our spectrometer is a

commercial electron gun (Cliftronics modified 3k/SU). It

is a Pierce—type electron gun which employs a section of a

space—charge-limited diode with a soft-cathode filament as

its source. This type of gun was chosen over other more

conventional types, e.g. triode guns, because it produces a

beam of known current density and geometry and higher total

currents.

Under normal operating conditions, the electron gun

produces a virtual image of the cathode with an emittance

(see Appendix C for definition) of 0.2 cm—mrad and a beam

current of ~10—100pA at an anode voltage of 1.0 keV.

This image acts as the initial pupil image for the system

and is located 1.1 cm before the anode aperture in the

space—charge limit. The anode aperture, in general, acts

as the initial window image. A summary of the properties

of electron gun are shown in Table III.2 and a schematic

diagram and an outline of the theory are found in Appendix

C.3.

The Einzel lens in the electron gun assembly focuses

the virtual pupil into the center of another Einzel lens.

the Field lens. This lens is able to then adjust the

location of the window (or equivalently, the pencil angle

of the pupil) without affecting the location of the pupil.

The location of the image of any object positioned on the
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Table III.2 Properties of the Electron Gun under typical

operating conditions

Anode Voltage.: VAN=10O0V
Thermal Voltage
:Cathode—AnodeSeparation : D = 3.68mm ·
Anode Aperture Radius = rm = 0.775 mm
Cathode Aperture Raduis : rc = 0.394 mm -

Property Symbol Units Them-Y Experiment

Space
Charge

Normal Limit
Virtual Pupll

Radius rp mm 0.111 0.083 -—
Pencll Angle GP mrad l 7.5 7.5 ——
Beam Angle Gb mrad 53. 70. —-

Emzittance cm-mrad 0.17 0.13 0.4 : 0.2
Helmholtz-Lagrange l—lL cm-mrad-VV2 5.3 3.9 13 z 6

Constant
Perveance

uA-V”3/2 —— 0.32

Emission Current Im mA -- 10 1-5
Beam Current uA —- --
Current Density J mA-cm'2 —- 540
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first principle plane of a lens is unaffected by the focal

properties of the lens and any lens employing this

principle is called a field lens. The Field lens focuses

the window so that its final image from the High Voltage

lens is at infinity.

The next two Einzel lenses form a variable-

magnification constant-focus "zoom" lens similar to that

described by Gibbons et al [67] and Ritsko [142]. The

pupil image in the Field lens is focused by the zoom lens

to an intermediate image which, in turn, is projected by

the High Voltage lens onto the target. By using different

combinations of settings of the Zoom 1 and Zoom 2 lenses

the size of the intermediate image can be varied without

changing its position. Changing the size of the

intermediate image results in a proportional change in the

size of the image on the target. Since the emittance (the

product of the radius times the pencil angle) is a constant

for a given image, this amounts to being able to vary the

angle of incidence of the electron beam on the target.

Using only the Zoom 2 lens results in the largest angle of

incidence (as shown by the solid line trajectory in Figure

III.3), while using only the Zoom 1 lens results in

smallest angle (broken line trajectory], with intermediate

angles attainable by a suitable combination of both lenses.
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Under normal operating conditions (1 kV anode voltage, 25

kV high voltage) the angle of incidence on the target is

variable from 1.3 to 7.7 mrad with corresponding beam radii

of 304 to 62 um.

The angular divergence of the beam on the target is

directly related to the momentum resolution Aq in the

small angle approximation (see Equation 11.32). The stated

angular limits of the zoom lens correspond to a range

0.2 S Aq S 1.1 Ä_l. The count rate for

(e,2e) scattering is proportional to Aq", thus the zoom

lens provides important flexibility in balancing the

conflicting requirements of higher count rate and maximum

momentum resolution. The factor of 6 in momentum

resolution translates to an increase of over 1000 in the

count rate.

The intermediate pupil image from the zoom lens is

focused onto the target by a high voltage modified gap

lens. The Field lens is adjusted so that a window image is

placed on the low voltage focal point of the High Voltage

lens; this projects the focal image of window to infinity,

Therefore, the beam angle is zero and that the angle of

incidence on the target is equal to the pencil angle. The

high voltage lens operates in a range of 20 to 30 keV in

the (e,2e) mode and half that in the elastic mode.

Within the target chamber there are several four-
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quadrant cylindrical alignment deflectors that adjust the

position of the beam on the target. There are two 1.3 cm

long sets of deflectors at the entrance to the chamber and

a set of 2.5 cm long deflectors at the exits for each

output arm. Just to the target side of each of these sets

of deflectors are 2.5 mm diameter alignment apertures. The

size (Ä 1.5 times beam diameter) of these apertures

is large enough to avoid vignetting, but is sufficiently

small to aid in alignment of the beam. The momentum

analyzer is also in the target chamber; it will be

described at the end of this section.

The (e,e') beam arm High Voltage lens and Zoom lens

are mirror images of the input arm. The beam spot on the

target is imaged into the first aperture of the output arm

by the High Voltage and Zoom lenses. The second aperture

defines the accepted solid angle (window position ] for

electrons leaving the target. The initial output window

which is focused into this aperture is at infinity (zero

beam angle at target). The first aperture is also the

Field lens which allows the necessary degree of freedom to

focus the window into the second aperture. This field lens

is a three—aperture lens. The filllng factor in the Field

lens is unity, since this lens itself acts as a limiting

aperture. This is, in general, a bad design for electron
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optics because of the resulting aberrations. This

unorthodox approach is used because: (1] there is an image

in the first aperture which reduces the aberrations

associated with large filling factors; (2] it is possible

to obtain short focal lengths with quite low voltages

between the elements of an aperture lens due to the small

diameter of the lens: (3] the total number of lenses

necessary is reduced considerable by this approach. No

significant effects of excessive aberration have been

observed as a result of this technique.

There is a set of four—quadrant cyllndrical alignment

deflectors between the Zoom lens and the Field lens to

position the beam in the center of the first aperture.

The function of the energy analyzer is to select a

small range of the energy spectrum from the image of the

target defined by the first and second apertures. The

most fundamental component of our analyzer is the energy

dispersing element, the ExB velocity analyzer of the

Wien filter [183]. The characteristics of the Wien filter

are what ultimately determine the properties of the energy

analyzer. The analyzer also has a decelerating lens,

accelerating lens, and other optics elements designed to

adjust the images. A retarding field analyzer design is

utilized, which greatly reduces the requirements for energy

resolving power.
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The Wien filter was chosen as the energy dispersing

element of our system primarily because of its simple

design and straight—through geometry which facilitated
‘ construction. The dispersion factor for the Wien filter is

not as good as that of other analyzers that might have been

chosen [73,98,150], i.e., hemispherical, cylindrical, or

Möllenstedt analyzers. However, we require only

modest energy resolution and limited angular acceptance.

The low count rates involved require that the analyzer has

a high transmission efficiency ; our analyzer ls as good

as or better than other types in this respect.

The Wien filter disperses the electron beam in the y-

direction, that is in the direction of E out of the

scattering plane. An image of the first aperture is formed

at the entrance of the Wien filter in this dlspersive

direction. The analyzer is designed to focus this image on

the exit plane of the filter. Chromatic aberration of the

image results in an energy dispersed image. A virtual

aperture at the exit plane determines the energy resolution

of the spectrometer.

The Wien filter is configured to pass electrons with

an energy eVE with respect to the common point of the

output arms. This common point is held at a voltage Vb

above room ground, so varying Vb selects the energy [with
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respect to room ground) of the electrons that pass through

the filter.

The energy analyzer has several subunits in addition

to the Wien filter as shown in Figure III.3. These

additional elements are designed to focus the electron beam

for optimum operation of the Wien filter. Electrons from

the target are decelerated to a voltage Vzo,

typically 500 V, by the output High Voltage lens. They

are further decelerated by a gap lens located between the

first and second apertures to a voltage Vgi,

typically 100 V. This arrangement has the advantage that

the actual analysis is carried out at low energy with a

moderate resolving power (eVEl/AEZ ·«—= 200) After

leaving the Wien filter the electrons are accelerated back

to the voltage Vzo and are focused on the energy

slit.

Quadruple lens are incorporated into the energy

analyzer to compensate for the asymmetric focusing of the

Wien filter. Quad lenses (see Appendlx C.2 for- a

discussion of the geometries and focal properties of Quad

lenses) act as converging lenses in the non—dispersive

plane and as diverging lenses in the dispersive plane

before the Wien filter and vice versa after the filter.

An einzel lens is added immediately before and after

the Wien filter to allow the image of the first aperture to



70

be focused at the correct location. For optimum operation,

as illustrated in Figure III.3, the decelerator, quad lens

and input Einzel lens should combine to place an image of

the first aperture at the entrance to the Wien filter in

the dlspersive plane. The Wien filter focuses this image

at the exit of the filter and the output Einzel, quad lens

and accelerator combine to focus a final image of the first

aperture on the energy slit. In the non-dispersive plane,

the decelerator and quad lens form an intermediate image

which the input Einzel focuses at the center of the Wien

filter. In this plane the Wien filter is transparent to

the electron beam. This image is focused to an

intermediate image by the output Einzel which is then

projected on the energy slit by the quad lens and

accelerator.

The width of the energy slit in the dispersive

direction defines the energy resolution of the analyzer.

The size of the virtual image of the energy slit produced

by the accelerator, quad lens, and output Einzel at the

exit of the Wien filter relates directly to the dispersion

width yD of the Wien filter (see Appendix C) in

determining the energy resolution. The analyzer was

designed to have a resolution of 1 eV (FWHM) and has a

typical measured resolution of 3-5 eV (FWI-IM).
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The resolution of the energy analyzer has been

empirically determined from a scan of the count rate versus

energy loss for quasi—elastic events in both the (e,e’) and

(e,2e) arms. The width of the zero energy loss peak is a

good measure of the energy resolution of the spectrometer,

including the energy analyzer and the thermal spread of the

electron gun. The measured width of the elastic peak has

been as small as 3 eV (FWHM) at beam current of 40 pA,

however typical operation has a measured width of 5 to 7 eV

(FWHM) (see Figure V.1).

Electrons which pass through the energy slit continue

down a 10.7 cm long magnetically-—shielded drift tube to the

EMT. Another set of four-quadrant cylindrical alignment

deflectors is located just after the energy slit to deflect

the beam onto the first dynode of the EIMT. A description

of the detector and the coincidence pulse electronics is

given in Section IV.

There are some minor differences between each output

arm's electron optics. In the (e,2e) mode the outgoing

electrons in the 45° arms have half the energies of those

in the (e,e’) arm. This is primarily compensated for by

lowering VZU and all the other voltages in the_ (e,2e)

arms by a factor of two so as to maintain the voltage

ratios. Minor differences in the high voltage insulators

in juxtaposition to the High Voltage lenses necessitated
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slight modiflcations in the design of the (e,2e) High

Voltage lenses; these lenses were computer modeled to

achieve similar focal properties to the (e,e') lenses (see

Appendix C).

Another difference relates to the size of the target

beam spot imaged by the output optics. The spectrometer

was designed so that the Helmholtz—Lagrange constant (see

Appendix C for definition) of input and output beams are

equal. The size and pencil angle of the (e,e') beam spot

is equal to the input beam spot. However, geometry

dictates that the optimum spot size of the 45° arms is a

factor of 1/42 smaller than the incident beam

diameter; conservation of the emittance requires that the

pencil angle be a factor of 45 largeruin the (e,2e)

beam. The beam spot size of the target is determined by

the Field lens aperture, therefore these apertures are

different for the (e,e‘) and (e,2e) lens columns.

The momentum analyzer selects the momentum q which

will be accepted by the detectors by controlling the angles

8 and ¢ of the electron beam. This is accomplished with

electrostatic deflection by using sets of two pairs of

parallel plates which act in tandem to vary the beam angle

of the electron beam at the target without appreciably

changing the position of the beam spot on the target.
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There is one set of deflectors before the target with the

plates oriented parallel the scattering plane which varies
the angle ¢ thereby selecting momentum q in the y-

1 direction perpendicular to the incident beam. There are

two sets of deflectors after the target along the (6,26)

beam arm axes. These plates are oriented perpendicular to

the scattering plane and select momentum q in the z-

direction parallel to the incident beam. Figure III.4

shows the relative position on these deflectors in the

target chamber and Figure III.5 illustrates the geometry

involved.

A detailed analysis of the electron optics of these

deflectors (see Appendix C) shows that if the deflector

voltage V2 = 3V, and the distance between the pairs of

plated S is twice the distance between the plates and the

target D then to first order the beam spot location of the

target is independent of the incident angle (see Figure

C.12). Further, in the small angle approxlmation, the

deflection angle 6 (i.e. either ¢) or 6), is given by

6 ~ (111.2)
where e"V is incident energy, L ls the plate length, and

A is the plate separation. Higher order effects and

specific dimensions are discussed in Appendix C. The

deflection angle can be directly related to the momentum
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q by Equations II.21 and 11.23.

The deflector plate voltages are controlled by the

computer. The automation is described in Section IV and
the electronics are described in Appendices C and D. The

momentum transfer was calibrated versus the computer

controlled voltage by measuring the Bragg diffraction

spectra of thin microcrystalline Al films (see Appendix C).

2. Voltage Distribution

A fundamental feature of high—energy (e,2e) scattering

is the necessity of having two of the three major elements

of the spectrometer -- electron gun, target chamber, and

detectors -— at a high potential. We chose to place the

output arms near room ground to facilitate coupling the

signal pulses from the detectors to the pulse electronics.

The target chamber is held at a positive high voltage HV,

(typically +12.5 kV). The cathode of the electron gun is

at a negative high voltage HV_ (typically -12.5 kV) and

all the input electron optics voltage supplies float on

this potential. The output arms, including the electron

lenses, energy analyzer, and EMT, float on a variable

voltage Vb which has a range of 0 to 80 V. —

In the elastic scattering mode, the input arm ground

(HV_) ls set to room ground and the target chamber ground

is set to HV,. Electrons from the gun are accelerated
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towards the target through a potential difference of l-IV,.

These electrons can undergo an elastic collision and/or

lose a small fraction of their energy through small angle

scattering within the target. They are then decelerated by

an amount (HV, — Vb) as they move down the output arms.

The energy analyzer is floating on the potential Vb, thus

electrons with a potential energy eVb (relative to room

ground) are allowed to pass through the Wien filter into

the detector. Therefore, the energy loss is Elbss -
V b. In the elastic mode the only voltage that must be

accurately known then is Vb.

The situation is somewhat more complicated in the

inelastic mode. The electron gun cathode is held at HV_

and the target chamber at l-lV,_, so that an electron

striking the target has an energy e(HV+ — l-lV_). In

inelastic scattering the incident electron loses a small

energy in an inelastic collision with an electron. In an

(e,2e) collision at ~45° scattering angle the incident

energy ls shared approximately equally between the

scattered and recoiled electrons. The electrons entering

the output arms are decelerated by an amount (HV, —

Vb). The kinematic energy conservation expression for

(e,2e) events, Equation II.9a can be expressed as

Eb = (2Vb — AHV)e (III.3a)
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where

AHV = HV, + HV_ = IHV+| — IHV_I (III.3b)

An accurate determinatlon of the binding energy Eb in an

. (e,2e) event requires knowledge of both Vb and AHV.

Determination of Vb poses no serious problem since

it is a relatively small voltage. A standard voltmeter can

measure Vb by recording the potential difference between

the output arms common point CPC and the computer control

rack common point CPC. This voltage difference can be

monitored to within Ä 10 mV by the meter used

(Weston, Model 1240).

There is some discrepancy between the digital voltage

signal from the computer, Vbbm, and the actual

binding voltage, when the binding energy is under computer

control. This can be expressed as

vb - 7 vbbm + Avbbm (III.4)
The offset AVCbm and the scallng factor 7 depend on

the range of the Voltage Booster (VPI Electronics Shop)

used to amplify the computer DAC voltage. A typical value

for 7 is 1.01 1 .01 and for A\/Com is
0.47 1 .01 V at 4X amplification.

There is also an offset due to the energy analyzer. In
practice, the Wien filter does not pass electrons with

energy EW = 0 straight through, but rather electrons with

a small energy offset eVÜ. The value of V0 can be
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determined by measuring the count rate in the elastic mode

as a function of Vb; the peak in transmission

corresponds to a value of Ew = e(Vb - VU) = 0.

Typically, V0 is 1.0 1 .25 V.

The precise measurement of AHV is a more complex

problem due to the high voltages involved. It is measured

by a voltmeter using two high voltage probes in a bridge

configuration. The potential AHV can be expressed in

terms of the meter voltage Vm as

AHV - 2000 Vm - 12.1 (III.5)

to within less than 1%. Details are given in Appendix D

The drift in AHV over long periods of time during

data collection is an important source of uncertainty in

the determination of Eb. The high voltage probes are

stable to within 0.001% per month and have a temperature

coefficient of 0.001% per °C which can result in an

uncertainty of 1 .5 V over a typical run. The high

voltage power supplies drift up to 1 V per 48 hours. The

drift is monitored and the supplies readjusted to their

initial values from time to time over the course of a run.

Altogether, drift introduces an uncertainty of 1 eV in the

binding energy.

Finally, the quasi—elastic energy loss EIOSS and

the (e,2e] binding energy Eb may be expressed in terms of
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measured quantities as

Eloss ' epyvcom + Avcom - VU]
(III.6]

Eb · e[2(·yVc°m + AVc°m) - (V3 + V3) - (czVm — |3)]

The electron gun, target, and detectors are each

associated with a control rack which houses the electronics

that float on the voltage of that element. This

electronics includes the power supplies for the electron

optics, the momentum deflectors, the energy analyzer, and

the EMT‘s. A fourth control rack contains the computer,

pulse electronics and 25-£/s magnetic ion pump power

supply. Each control rack is isolated from room ground;

the local grounds on each rack are connected to a common

point. This feature is designed to eliminate ground loops

and to facilitate floating the racks on their respective

voltages. The main features of the voltage distribution

system are illustrated in Figure III.6 and details and

schematics are found in Appendix D.

As a crucial safety feature the entire input arm and

target chamber and their control racks are surrounded by a

removable Faraday cage approximately 1.6 m by 2.0 m.

Controls must be adjusted remotely through windows in the

cage.
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3. Vacuum System

The spectrometer is equipped with an ultra—high vacuum

system which provides a base pressure of 3 x 10'5

Torr. The vacuum is quite stable at this pressure over the

weeks required to take typical data sets. Magnetic ion

pumps were chosen for the ultra—high vacuum pumping to

avoid vibrations in the system and possible target

contamination from gettering pumps. Sorption pumps are

used as roughing pumps to avoid the chance of diffusion

pump backstreaming. A schematic diagram of the vacuum

system is shown in Figure D.l and details are found in

Appendix D.

4. Other components

As with all systems involving charged particle beams,

care must be taken in the (e,2e) spectrometer to minimize

the effects of magnetic fields. This affects the choice of

materials used in construction of the spectrometer and

necessitates the addition of magnetic shielding. The

primary sources of the magnetic fields are static fields

from the earth, the magnetic ion pumps, and magnetized

materials in the lens columns. The shielding consists of

extensive external mu-metal shields surrounding the beam

arms and target chamber, mu—metal rings near the high
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voltage insulators [67], and internal mu-metal shields

around the energy analyzer and the entrance to the EMT.

The target chamber shield is split in half for target

· access and provides insufficient shielding of the vertical

component of the magnetlc field. A 58 cm diameter

Helmholtz coil concentric with the vertical axis of the

target chamber ls used to further reduce this component.

The mu-metal shields were degaussed in situ.

The overall effect of these measures was to reduce

the magnetic field transverse to the beam axis by a factor

of 50 — 100 below that of the earth‘s magnetic field to

<50 mG in the beam arms and target chamber and by another

order of magnitude near the energy analyzer and EMT.

Details of the magnetic shielding and magnetic profiles

along the beam axes are given in Appendlx D.

Thin film targets are mounted on individual metal

sample holders which in turn are mounted on the target

holder. The sample holders serve to support the thin film

samples and provide electrical contact to the target

chamber ground. The thin films are placed over holes in

the sample holder (1.5 cm by 2 cm by 1-2 mm thick) which

vary in size from 1.6 to 4.8 mm dlameter. Most of the

films studied were self-supporting, however some samples

have been supported by high transmission fine copper
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microscope grids. There were no discernible effects due to

these grids in the (e,2e) data collected. The a—C films

are mounted on Cu sample holders. l-lowever, the graphite

samples are mounted on Al and Mo sample holders, because

trace amounts of Cu were found to strongly lnhibit

sputtering of carbon [170]. Care must be taken to orient

the thin films towards the analyzer side of target holder

or else the edges of the sample holders can block the

scattered beam.

Up to four sample holders can be mounted on the target

holder. The target holder is a removable jlg which aligns

the samples in specific locations and fits into a cradle

attached to the linear-motion feedthroughs (LMFT). The

target holder can be moved in the x- and y-directions while

the spectrometer is in operation to move different samples

into the beam and to accurately center the samples in the

beam. The maximum travel of the LMFT's is 6 cm in the x-

direction (horizontal) and 4 cm in the y-direction

(vertical). There is some play in the LMFT's which limits

reproducability to ~l mm.

There are two sets of 45°-deflectors which are also

mounted on the target holder. These deflectors can deflect

the main unscattered beam into either of the (e,2e) arms.

The deflectors consist of two parallel plates (2.15 cm by

2.15 cm; 0.44 cm separation) oriented at 6 · =•=22.5°
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connected to a high voltage supply (Bertan model 602B-15P).

These 45°-deflector have proven invaluable in obtaining

the initial electron optics settings for the (e,2e) beam

arms. The current in the deflected beam is sufficient so

that the current incident on various elements along the lens

column can be directly measured with a picoammeter. Without

the use of the 45°—deflectors the scattered beam in the

(e,2e) arms can only be detected at the end of the lens

column using the EMT.

A 4 cm diameter quartz viewport is provided to see

inside the target chamber, particularly the target holder.

There is a telescope that fits over the viewport which

provides a means to view the beam spot on the target from

outside the Faraday cage. This has proven useful in

alignment and focusing of the beam spot. The 5 cm diameter

lenses are configured as a condenser lens and mounted in a

100 cm long plastic tube. The image is brought to within

about 20 cm of the viewer for a "brightness magnification"

of 9X.

Very long time periods for data collection necessitate

the interface of the spectrometer to a micro-computer.

These time periods, measured on a scale of days or weeks,

result from the low count rates inherent in coincidence

experiments. The computer is designed primarily for
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controlling real—time data acquisition and data storage.

Although some data reduction and analysis is done on the

micro—computer, most of this is reserved for more powerful

mainframe computers. During real-time operation the

computer controls the range and duration of data collected,

selects the binding energy and momentum, and stores the

data on floppy disk.

Operation of the spectrometer is controlled by a LSI

ll-based MINC (DEC, Mobile INstrument Computer). The MINC

is interfaced to a terminal (DEC model VT 105), two 8—inch

floppy disk drives (DEC model RXO2), and through a modem

to the mainframe computer network. Control and coincidence

electronics are interfaced to the computer by two methods :

several MINC Lab Modules are connected directly to the MINC

bus and other components are interfaced by standard CAMAC

hardware.

Data acquisition and the interface electronics are

discussed in Section IV; details of the software are found

in Appendices E and F and details of the coincidence

electronics in Appendix D. Figure IV.1 shows the

configuration of the computer hardware and related

electronics. _
Precision alignment of the spectrometer is very crucial

to successful operation. The most precise angular

alignment is required for the momentum analyzer deflectors
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relative to the target and each other. To achieve the

desired momentum resolution these angles must be accurate to

within 3 mrad. This is accomplished by mounting the target,

momentum analyzer, and beam alignment apertures together on

a carefully machined stainless steel plate (27.9 cm

diameter) which is mounted in the target chamber. The

position of all of the elements on this table is determined

klnematically by precision—ground sapphire balls.

The alignment of the components of each individual lens

column is also very important. These elements are aligned

relative to each other by bracing them against insulating

alumina rods which are in turn braced against stainless

steel tubes which are welded to the base flanges of the lens

columns and extend the full length of the lens columns. The

only exception to this, is the alignment of the electron gun

assembly with the rest of the input lens column. This

problem is of yet not fully resolved.

The alignment of each of the lens columns with the

correspondlng beam alignment aperture on the target chamber

table does not require as precise alignment, because some

misalignment can be compensated for by the beam deflectors

at the entrance to the target chamber. However, this was

still responsible for many of the problems in the initial

operation of the machine and is still not sufficiently
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aligned to avoid some systematic errors in the momentum

determination. The arms have been aligned using a laser

beam which was directed down the beam arm vacuum jackets

through a series of apertures. The vacuum jackets were

adjusted by alignment jacks located beneath the small

magnetic ion pumps. There is still a degree of freedom in

the alignment, however, since the base flanges which mount

on the vacuum jacket are not at exactly right angles with

respect to the stainless-steel support columns. I
Incorporating adjustable-angle flanges into the beam arm

vacuum lines may provide a means to remove this error. The

alignment can be accurately tested in the two colinear arms

by measuring Bragg diffraction spectra.

The design of components for the (e,2e)_ spectrometer is

complicated by many things. Each component may have to be

compatible with the ultra-high vacuum, high voltages,

precision alignment and machining, magnetic shielding, and

space limitations. For example, a component of the electron

optics must be made of a non-magnetic material to avoid

producing stray fields; it must be conducting to avoid

charging effects; it must be compatible with ultra—-high

vacuum requirements; it must be readily machinable to

maintain the precision tolerances needed; and the part must

be designed to minimize the potential for breakdown under

application of high voltage. All of the components that
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went inside the vacuum were first cleaned with organic

solvents in an ultrasonic cleaner and then assembled with

"white gloves and tweezers" to avoid vacuurn

contamination.



IV. DATA ACQUISITION

Data acquisition for the (e,2e) spectrometer consists

of two main components, real—time data acquisition and the

software used to combine the collected data. The real-time

data acquisition is subdivided into two parts. The first

part consists of the apparatus and computer software used

to control the collection timing, momentum selection, and

energy selection in the spectrometer. The second part

consists of the detectors, coincidence pulse electronics,

and software designed to collect the scalar count rates

which comprise the raw (6,26) data. This collected data is

processed by a series of programs that combine the raw

count rates into a single data file which is suitable for

data analysis. The following section outlines the

apparatus, software, and algorithms used in data

acquisition; more details are given in the appendices as

noted. A block diagram of the electronics for data

acquisition is shown in Figure IV.l.

The operation of our spectrometer during data collection

is controlled by a MINC (Digital Equipment Corporation,

Mobile INstrument Computer) computer. Once the spectrometer

has been calibrated and the electron optics manually tuned,

the MINC allows complete automation of the data collection.

This automation is necessitated by the low count rates of

90



9 1

FibarOptic
Link

>UART (I)«»„„ @ ;·=J
Mgmgmum BIN Ülllr
um Canstant

-

··-··•·°'°“ Fractian Scala:.l ‘‘‘‘‘‘‘
/1, $#,21 ”rg)

_. =···•·
\s °°"'°"°'°Q Canstant Scaiar

Fractian

-

••'••••
Disc. Rats kI•••r

HV, HV ‘
+ q

‘
2

E- --.....-- -i ST I S 2T T Variabla ESigg Gain Amplifisr 0
' ß I¢um @ --..---S Q·bus‘ Sc ial CrataE UART pän Gantrallsr

Fwmv
Disk

Main Frama Campatar

Figure IV.1 Electronics for data acquisition under
computer control.



92

the coincidence experiment which result in data collection

times on the order of days or weeks. Typically, the

spectrometer can run for a few days between slight manual

realignment of the beam.

The program PHYS controlling the spectrometer

operation is a FORTRAN algorithm wlth several machine code

subroutlnes [43]. Control parameters are set using PHYS

which determine the range of energy and momentum over which

data is collected and the timing of data collection. PHYS

performs a wide range of functions. The program was

written by Ben Cline and is described in detail in Appendix

E and reference 45.

The scanning range of the binding energy is controlled

by the MINC. The user selects the range by entering the

minimum energy, maximum energy, and energy increment as

parameters for PHYS. The MINC converts an energy value to

a O-80 VDC analog signal using a Digital-to-Analog

Converter (DAC] and a variable gain amplifier. The voltage

from the amplifier is connected to the common point of the

(e,2e] control panel and floats the (e,2e) electron optics

ground at a voltage Vb above room ground. The energy

analyzer is described in more detail in Appendix C. _

The scanning range of crystal momentum is also

controlled by the MINC. The user selecta the range by

entering the minimum momentum, maximum momentum, and
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momentum increment in units of inverse Angstroms as

parameters for PHYS. The MINC converts a momentum value to

an 8-bit digital control valve using a calibrated

conversion factor CF. The control value is transmitted

over a fiber optic link to the target chamber. The fiber

optic link uses optoisolators to provide the necessary

isolation of the computer from the target chamber high

voltage. This digital signal operates a relay and a DAC.

The DAC drives two power supplies for the momentum

deflector plate voltages; the relay determines the

polarity of the plates. The momentum analyzer is described

in more detail in Appendix C.

Collection timing is also under computer control.

Input parameters for timing are the settling time before

data collection, the length of data collection at each

(E,q) point, and the number of data collection sequences

completed before the data are stored on a disk file.

The program PHYS controls the order and timing of

data sampling in the following manner. First, the energy

and momentum of a given (E,q) point are set by sending

the correct signals to the analyzers. The electron optics

are allowed to stabilize by waiting the settlingutime

before data collection begins. The count rates which

comprise the raw (e,2e) data are collected at the (EZ,q)



94

point for a given length of time, the sample collection

time. Data are collected in this manner over the entire

(E,q) range in a random order. When all of the (E,q)

_ points in the sampling range have been sampled, the program

performs another iteration of data collection. After a

specified number of iterations,. Pl-IYS writes the raw data

to a disk SUMMARY file.

This elaborate sampling pattern is designed to minimize

systematic errors in the count rates due to drift in the

tuning of the spectrometer. This drift includes variations

in the beam current, in the transmission efficiency through

the electron optics, and in the voltages supplied to the

electron optics. The systematic error can largely be

ellminated by sweeping over the entire (EI,q) range with a

sweep period that is chosen to be much less than the drift

time of the spectrometer. The random order of sampling

within each sweep reduces systematic errors due to drift if

the drift continues for several iterations. Oscillations

on time scales less than the sample collection time are

reduced by measuring each count rate for many sampling

periods.

In general, the settling time is on the order of a few

seconds, the sample collection time on the order of a

minute, and the number of (E,q) points on the order of

one hundred points. This means that the iteration period



95

for sampling the entire (E,q) range is on the order of a

couple of hours. Electron optics voltage drifts over this

time span are small. The high voltage drift was measured

as less than 1 V (z 5 x 10-3%) over a 48 hour

period. Significant drifts in the beam current and

transmission efficiency occur in times on the order of

days, once the system has stabilized.

The function of the pulse electronics in our

spectrometer is to identify and record the coincidence

electron events. Standard coincidence techniques are used

employing commercial electronics components. Two types of

information are recorded for each (E,q) point during

real time data acquisition, the coincidence time spectrum

and the individual electron counts in each arm. The path

of the pulse signal is traced chronologically in the

following paragraphs.

Single electrons within the selected energy and

momentum range are detected by fast, linearly focus,

discrete—dynode electron multipliers located at the end of

the output lens columns. The signal pulses from each

electron multiplier go to a preamplifier through a high

voltage decoupling capacitor and then to a discriminator.

Coincidence detection is performecl by a time—to-digital

converter (TDG), which measures the time delay between a
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pulse in one arm and a pulse in the other arm. The TDC is

set to a full range of 128 nsec and has a time resolution

of 250 psec/channel. The output pulse from one

discriminator is used to start the TDC. The coincidence

pulse from the other discriminator acts as the stop pulse

for the TDC. The second pulse passes through a variable

delay box before going to the TDC to reduce spurious noise.

The pulses from each of the discriminators are also counted

by a scalar and measured by a rate meter. The scalars

record the singles count for each arm. The rate meters are

used primarily for tuning the spectrometer‘s electron

optlcs. Details of the coincidence electronics are found

in Appendix D.

The raw data is transferred from the TDC and scalars to

the MINC which stores the data on a floppy disk. The TDC and

scalars interface to the MINC by standard CAMAC hardware.

Data is transferred via a CAMAC crate controller to the LSI

11—based MINC using standard CAMAC commands.

During the run time, the MINC stores a complete

coincidence time spectra and a total scalar count value for

both arms for each (E2,q] point. The coincidence time

spectra consists of the count of total coincidence events

occurring at each of the time interval channels over the TDC

range (see Figure IV.2). During the settling time, after

the MINC has set the momentum and energy, the computer
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retrieves the appropriate coincidence time spectra and

scalar counts from a data file stored on a disk. After a

coincidence is registered by the TDC, the MINC increments

the appropriate time coincidence spectra channel count. At

the end of the sampiing interval the MINC transfers the

updated data back to the disk file.

The raw (e,2e] data is processed by several programs

which ultimately produce a normalized array of count rates

for the (E,q] range studied, together with an estimate of

the error associated with each (E,q) point. This array

is the final form of the coincidence data that is used in

the data analysis. The software, data files, data

reduction and merging algorithms, and error analysis are

described in detail in Appendix E.



V: ERROR ANALYSIS

A. Count rate V

The measured (9,26) count rate is closely related to

the actual (8,26) count rate, but includes effects due to

background counts and multiple scattering, as was discussed

in the theory section earlier.

The elastic cross section at 45° is quite high

(typically 60 Mhz; see Section II.A). It does not

introduce any significant background into the measured

(8,26) rate, however, because the energy analyzer will not

transmit these electrons which have energy e(H‘gJ+)

greater than the energy of (6,26) scattered electrons.

Inelastically scattered electrons also have a high

count rate at 45° (typicaliy lO Khz). These electrons

can have the correct energy and momentum to pass through

the analyzers. It is possible to mimic an (6,26) event if

two such electrons are independently scattered into each
(9,28) arm almost simultaneously. These accidental

coincidences produce a coincidence background which is

constant over the range of delay times of the TDC because

of the random nature of the events (see Figure IV.2).

In the region of the coincidence time spectrum where

the true coincidence peak is found there is also a

99
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contribution from the uniform background given by

Nr - NA NB tC (V.1)

where NA and NB are the measured singles (non-

coincidence) count rates in the (e,2e) arms and tC is the

time width of the coincidence window. The true coincidence

count rate Nt is equal to the measured rate in the

coincidence window NC minus this uniform background.

An accurate measure of the count rate Nt. can be

obtained by measuring the background count rate over a wide

time window tb away from the coincidence peak. The count

rate for this background window is given by

NB = $-2 Nr = r

Nt.wherer · tb/tC is the ratio of the window wiciths.

The true coincidence count rate is then

Nt = NC - NC = NC — Nb/r (V.3]

and the standard deviation of Nt is

ot · (NC + Nb/r)"‘·’ 0/.4)
if Poisson distributions are assumed. The improvement of

signal—to—noise that can be obtained by using large values

of r is obvious. Typically, we use a coincidence window of

5 nsec (20 channels) and a background window of 50 nsec

(200 channels).

Appendix F' details the computer algorithms that
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perform this background subtraction and discusses the error

analysis in more concrete terms.

There are several limits that the signa1—to—background

ratio imposes on (8,26) experiments. The background count

rate is proportional to the product of the inelastic count

rates in each arm given by Equation 11.18. For the

symmetric geometry these are theoretically identical rates.

On the other hand, the true (6,28) count rate is given by

Equation 11.30. The ratio of signal—to—noise reduces to

N 0gti = E (V.5)
M

where 05 is the (6,26) cross section given by Equation

11.28, n is the number of target atoms in the interaction

region, and 2 is the atomic number.

The signal—to—noise ratio will decrease rapidly for

higher atomic numbers and will become a limiting factor

beyond perhaps the third row of the periodic table.

The coincidence count rate N, oc n10, while the

oc Therefore, the optimum

product of beam area times beam current times target

thickness for an (6,26] experiment must be a compromise

between these two rates. The incident beam current has an

upper limit set by the apparatus presently at ~100 uA:

this current is used near its maximum value. The beam area

is determined by the electron optics. This leaves the
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target thickness as the adjustable variable. In actuality,

the upper limit on target thickness is set by multiple

scattering, which is proportional to an expotential of the

thickness, rather than the signal-to—noise ratio. The

optimum target thickness is less than or approximately

equal to one mean free path, because the deconvolution

techniques we employ are rather crude. If this technique

could be improved significantly, then the optimum target

thickness could be larger resulting in a highly desirable

increase in coincidence count rate.

Beyond the random errors in the count rate, there are

several potential systematic errors which have been

identified. Drifts in the tune conditions, changes in the

transmission efficiencies of the beam arms, and drift in

the incident beam current can result drifts in N, and/or

Nr. Most such systematic errors are eliminated by the

sampling algorithm described in Section IV. Long term

drifts are reduced by merging the data sets on the basis of

the total coincidence counts in a given region, rather than

on the basis of total collection time as described in

Appendix F.

The position of the beam spot on the target changes

slightly as a function of the momentum selection (see

Appendix C.3). This can cause a systematic error in the
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count rates NA and NB and hence on Nt and Nr. If
sample thickness varies appreciably over this range of

distances, it can cause such errors. It is more likely

that most such errors are caused by the mismatch between

the focused areas on the target of the input and output

beams as the beam spot moves. This can result in a

systematic error of ~5—107i in the count rates over a

typical range of momenta. The count rate should be

constant for the non-coplanar geometry used to take this

data.

It is possible that the target itself changes

character over the time of exposure to the electron beam.

Analysis of coincidence patterns on samples before and

after several weeks of data collection have shown no signs
of such changes. A better determination of this is

possible by examining the sample in the elastic mode.

Again, the energy loss spectra in the 45° arms showed no

suggestions of sample degradation.

The errors introduced into the coincidence count rate

by the deconvolution routines are uncertain. The primary

justification for minimal deconvolution errors is that it

does not appreciably alter the features or peak locations

present in the original data. The deconvolution tech_nique

used and their potential errors are discussed more fully in

Appendix F and in Jones and Ritter [90].
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B . E n e r g y

. The energy resolution for the spectrometer is equal to

the resolution of the input arm and the two output arms

added in quadrature. The overall energy resolution is

typlcally ~5-7 eV (FWHM).

The input arm energy resolution is a combination of

the thermal spread from the electron gun -- typically only

~ 0.1 eV —- and the energy spread that results from the

electron optics. The latter is primarily a space charge,

or Beorsch [17,154] effect which increases the overall

uncertainty in the input arm to ~ 2 eV [FWHM] (see

· Appendix D). This is modeled by a Gaussian distribution of

width bg in the deconvolution routine.

The energy resolution in the output arms can be

estimated from measurements of the energy loss spectra in

the elastic mode (see Figure V.1). The main energy loss

feature in this spectrum is at ~25 eV loss and has a

width of ~20 eV. Therefore, the broadening of the zero

energy loss peak is due almost exclusively to instrumental

broadening. The broadening includes both the input arm and

one of the output arm resolutions.

The shape of this peak can be approximated by a
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Gaussian distribution. The peak is slightly asymmetric and

a Lorentzian line shape may provide a better model in

future analysis. Typically, this peak width is 3 to 5 eV,

although it has been measured as low as 2 eV. The energy

resolution ag of each output arm alone is typically

2.5 to 4.5 eV. The overall energy resolution then is 4 to

7 eV.

The uncertainty in the binding energy relative to the

Fermi energy is 1 1 eV. The value of the binding energy

in terms of voltages measured by the spectrometer is given

by
Eb - e[2Vb — AHV]

= ei2(^yVC„m + AVCM,) · (V„° +V„°) — (dl/m -I3)] (V.6)

by combining the equations in Section III.2. The overall

errors in Eb is typically 2% of Vbbm 1 0.7 V or

~1 1 V. The errors for the individual values in

Equation V.6 are listed in Section III.2 and Appendix D.

There is a drift in Eb due to the drift in the high

voltage difference 01Vm. This drift can be up to

1 0.5 V over an average data collection period.

There is some difficulty in determining the position

of the Fermi Energy. For a semiconductor, the Fermi energy

is midway between the top of the valence band and the

bottom of the conduction bend. The band gap for a·C is
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~ 0.5 eV [79] and ~ 1.5-2 eV for a-C:}-l [89] (see

Section VII.C). The value of the band gap in our a-C film

can only be estimated as approximately 1 t 1 eV. There
is also a potential systematic error in the implicit

assumption that the Fermi energy is at the target chamber

ground. It is possible that the target can be at a slight

negative voltage relative to the target chamber ground due

to charging effects.

Taken together, these uncertainties allow the position

of the Fermi energy to be assigned with an estimated

accuracy of :4: 2 eV. There is experimental evidence to

support this estimate. The [e,2e) count rate should fall

to zero above the top of the valence band [i.e. ~ 0.5 eV

below EF) and does at Eb = O to within == 2 eV. The
calculated density of states falls to zero at

Eb ¤ 3 eV above the assigned Fermi Energy.

C. Momentum

The momentum resolution of the spectrometer is a

variable quantity. The zoom lens described in Section

III.1 can vary the pupil angle of the image on the target.

The overall momentum resolution Aq is related directly to

the pencil angles and incident momentum by Equation II.32.

The theoretical range is 0.2 s 6 s1.1Ä_1
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at 25 keV lncident energy.

The momentum resolution has not yet been empirically

verified. At present the value is calculated from the

electron optics voltages using theoretical electron optics

models in the program MODEL (see Appendix C.2). The

computer simulations agree well qualitatively with

experiment. The estimated accuracy of these models is 10

to 20%.

Momentum selection is described in Appendix C.3e. The

momentum analyzer has been calibrated for the non-coplanar

geometry by measuring the Bragg diffraction spectra of thin

microcrystalline Al films (see Figure C.13]. The

experimental and theoretical calibration factors for the

analyzer differ by about 10%. The estimated error in the

momentum increment is then ~15%. This could be reduced

to perhaps 5% by careful recalibration. The coplanar

deflectors have not be calibrated, although they should be

similar to the non—coplanar deflectors.

There is an uncertainty in the zero of momentum. This

is most likely a result of misalignment of the beam arms,

and in particular the electron gun as was discussed in

Section 111.4. The misalignment shifts the momentum

analyzer setting which produces an incident beam normal to

the target. The lowest band of a—C is approximately
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parabolic and should be symmetric about the true q - 0.
The minimum is in fact shifted to

-1q = 0.75 1 0.25 Ä. A recalibrat°ion using
_ Bragg diffraction should be able to determine this momentum

offset to within 5-10%.



VI. SAMPLE PREPARATION AND CHARACTERIZATION

Preparation of samples for (e,2e) analysis is no small

feat and characterization of the films is an equally

difficult task. The techniques employed in making the thin

films and in measuring their characterlstics are described

below. To date (e,2e) measurements on have been

successful only on a—C films. However, significant effort

has been directed toward preparation of single crystal

graphite films and therefore they will also be discussed.

Samples for (e,2e) analysis must have several

important properties. Foremost, the sample must be thin in

order to minimize multiple scattering effects. Typically,

the films must be about 1 electron mean free path thick,

that is approximately 100 Ä or 30 atomic layers thick

for carbon. There must be a minimum of structural damage

induced by the thinning techniques employed. The samples

must have a reasonably uniform thickness over an area of

~1 mm2 so that the finite beam spot size and small

shifts in its location do not produce significant

variations in the count rates. It is particularly

important to avoid surface contamination, because even a

few monolayers of an oxide, etc. represent a significant

fraction of such a thin film. Further, the film must be

110
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self—supporting to allow electron transmission.

A. Amorphous carbon

Amorphous carbon films were purchased commercially

from Arizona Carbon Foil Company. The manufacture and

characterization of these films is described in detail by

Stoner [160]. The fllms are made using an arc deposltion

evaporation technique whereby an arc is struck between

spectroscopic grade carbon electrodes in a vacuum and the

carbon is evaporated onto a glass microscope slide (25 mm

by 70 mm) at room temperature [50]. The films contain

small impurities including a few atomic percent H, ~1%

0, and trace amounts [ppm) of heavy metals [161]. The

films are highly uniform with variations of typically

1 10% or less over the slide area. The surface density

is supplied with each film with an accuracy of 11

ug/cmz as measured by a quartz oscillator. Stoner

verified these surface density by using a combustion

technique together with optical transmission measurements

[160]. This ls converted to a thlckness by dividing by the

density of these a—C films 1.82 1 0.01 g—cm"3

[93]. The conversion factor is 55 Ä per 1
ug-cm’2

for a-C.
One of the most important characteristics of thin
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films is of course their thickness. This determines both

the count rates, the signal—to—background ratio, and the

extent of multiple scattering. Optical transmission

measurements of the average thickness were made which

agreed with surface density measurement to within <207!.

Thickness variations were shown to be less than SZ over the

sample area using a highly focused laser beam (~ l0i1m

spot size) scanned over the sample. Details of this

procedure are given in Section VI.C. Several types of

measurements of these a-C films were made to confirm their

thickness and uniformity using the facilities of the

National Research and Resource Facility for Submicron

Structures (NRRFSS) on the campus of Cornell University.

A surface profile of a typical a—C film mounted on a

glass microscope slide is shown in Figure VI.1. The
Ä

surface varies by ~:200 Ä over lengths of a few

tenths of millimeters. The large variations are cracks in

the films. Much of the smaller variations are due to

surface irregularities in the glass slide. The profile was

measured by an Alpha—Step Surface Profiler (Tencor

Instruments) which uses a mechanical stylus.

Surface uniformity was measured by an Ä-scope

interferometer (Varian, model 980-4020). This instrument

employs a sodium vapor lamp (x - 5892 Ä) and optics to

direct light through a specially coated Fizeau plate, which
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contacts the specimen at a slight angle and forms an air

wedge. An interference fringe pattern is set up which

effectlvely creates a contour map of the specimen. The
„ fringes are parallel and evenly spaced for uniformly thick

samples. A distortion of one fringe spacing corresponds to

a thickness variation of one half wavelength.

Interferograms were taken which show that the purchased

a-C films are uniform on the scale of a couple of hundred

A .
The average thickness of an a—C sample was measured

using Rutherford backscattering (RBS) by Craig Galvin at

NRRFSS. RBS uses ~2 MeV He" ions as a probe and

measures the energy loss EL of the ions which are

directly backscattered:

1;—[]21~: -2i@ cvruY- ” MS + MH9 ¤ dx '

where EO ls the incldent He" energy, Ms is the mass

of the scatterer, and t is the depth of the scatter below

the surface. The first term results from a direct

collision with the scattering atom and the second term

models inelastic energy losses due to collisions with the

sample electrons. The beam spot is ~1 mm square.

Therefore, the measured thickness of the sample is an

average value. A best fit to the experimental curve in

Figure VI.2 yields an estimate of 930-990 Ä for a 21.5
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pg—cm’2 (1180 r 130 Ä) a·C film. The 20%

difference is almost within the stated experimental errors.

Analysis of the small-—angle inelastic scattering data

also provides an estimate of the film thickness. The

thickness is derived from the extent of multiple

scattering, i.e. plasmon creation, described by Equation

A.4. There is a significant systematic difference between

the thickness obtained by this method and all other

methods. Details are discussed in Section VIII.A.

Surface contamination is not a serious problem with

a-C or graphite. Graphite is very chemically inert; it is

insoluble in acids, bases, and organic solvents [26]. The

oxides of carbon, CO and CO2, are both volatile gases,

therefore no oxide layer can form under ordinary

circumstances. However, a chemisorbed oxygen layer can

form when the graphite surface is exposed to reactive

oxygen [83] and layers of loosely bound CO and CO2

molecules can form during reactive ion etching.

B. Graphite

I. Preparatton

Preparation of single crystal samples pose a
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slgnificantly greater challenge. These samples must

maintain a crystal integrity over a surface area of

~1 mm2. It is quite difficult to maintain this

crystal structure down to the thlcknesses needed as

thinning techniques often result in target damage. In

addition, there is the added problem of the alignment of

the crystal axes with the spectrometer axes.

Natural crystals are used for the graphite samples,

since no source of synthetic large single crystal graphite

is available. The crystals are from the Ticonderoga Mine in

Ticonderoga, New York and were purchased from Ward‘s

Natural Science Establishment, Inc., Rochester, New York.

The crystals have surface areas of up to ~ 5 cmz and

are up to several millimeters thick. They are embedded in

calcite, which is removed with a solution of hydrofluoric

acid. Synthetic, highly-oriented pyrolytic graphite (HOPG)

was used during the development of the thinning techniques

since it is readily available in larger samples (Union

Carbide Corporatation Parma Technology Center, Parma, OH),

but was not used as a target since the crystalites within

the planes are randomly oriented on a scale srnaller than

the electron beam diameter [95] (see Section VIII]._

Initial thinning of graphite is done using the

"standard Scotch-tape method." Crystalline graphite and

HOPG have a sheet-like structure similar to mica, therefore
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they can readily be thinned by pulling layers apart with

pieces of cellophane tape. Successive applications of this

can result in a thin (~ .1-1 um) film of graphlte

adhered to cellophane tape. The adhesive is dissolved in

toluene and the crystal and cellophane are transferred to

methyl alcohol to remove any residue. The cellophane is

lifted off and the sample is floated onto a sample holder.

Some of these graphite samples with estimated

thicknesses of a few hundred Ä were examined with the

(e,2e) spectrometer, however no coincidence counts were

observed. It was evident that additional thinning was

needed.

Several different approaches to the thinning of

graphlte from ~ 1 um to 100 Ä have been attempted.

None of these efforts have yet produced acceptable samples

for (e,2e) analysis, however the techniques are outlined es

a guide to future efforts in sample preparation.

The first final thinning method developed was that of

ion milling. An ultra-high vacuum ion milling chamber was

constructed at VPI based on initial design work by Melissa

Anderson. Amorphous carbon test films were milled using

both Ar (physical ion milling) and O2 (reactive ion

milling) plasmas. Serious equipment problems delayed use

of the machine. It was ultimately decided that the
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structural damage to the crystal resulting from high energy

(~ 500-3000 eV) ions was unacceptable [126,34,35,188,

192,86].

_ Attempts at DC sputter etching (Edwards S150B Sputter

Coater] were conducted at Poly-Scientific in Blacksburg, VA

with the aid of Barry Witherspoon. Physical plasma etching

using an Ar plasma and reactive ion etching using an air

(N2/02) plasma were tested with a DC blas of 500 V and

a total power of ~ 10 W at pressures near 200 mT. Some

samples were etched to a few hundred Ä, however

uniformity was poor and surface charging proved an

insurmountable problem. The retardation of C sputtering in

the presence of trace amounts of Cu was confirmed [170].

There was also evidence of a surface layer being formed on

the carbon by the etching process.

Another attempt at final thinning used a Tunnel Plasma

Etching (TPE] chamber [61]. The technique employs dry

chemical etching where a chemical reaction takes place on

the surface to be etched with a reactive plasma gas and the

resulting volatile gas is pumped off. Plasma etching of

carbon and organic polymers is a well established field

[81] used primarily in the semiconductor industry. An

oxygen plasma is produced and excited oxygen atoms and ions

react with the carbon to produce CO and CO2 [83].

Figure VI.3 shows the TPE chamber built at VPI. The
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system has an oxygen source (welding grade oxygen with a

purity of >99.97! with CO2 and inert gasses as the major

lmpuritles) with a metering valve to control the flow of

gas into the reaction chamber. A cryo—sorbent vacuum pump

is attached to the opposite end of the chamber. This type

of pump is sufficient since only a modest vacuum is needed

and is used to avoid potential oxygen explosions that can

result from the use of diffusion pumps. The plasma is

produced with rf power which is supplied by a Tesla coil

with a maximum output of ~10 kV at ~ 5 MI-Iz. The rf

power is coupled to the plasma through an antenna formed

from a 3 cm diameter coil of copper wire. Grounded

aluminum screens are used to limit the plasma within a

pyrex reaction chamber ~20 cm long with a ~1.3 cm

I.D. Glass was used for the reaction chamber to reduce

interactions of the oxygen plasma with the walls. Aluminum

is used for the grounding shields and sample holder; a

thin layer of solid aluminum oxide is formed on these

surfaces which then masks them from further oxidation. The

sample is placed 0-5 cm downstream from the copper coil.

Typical operating parameters for the TPE chamber include:

Oxygen Flow Rate: 104 scc/sec (10 rn/sec)

Operating Power: 100 mTorr (at lnlet TC)

Base Pressure: 20 mTorr

Plasma Power: ~ 1 mW
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Etch Rate: ~ 10 Ä/sec

Several natural Graphite films of thicknesses of ~

75 to 300 Ä and surface areas of ~ 1 mm2 were made

with the TVPE. Three of these samples were tested in the

[e,2e] spectrometer, but proved unsatlsfactory. The

characterization of these films is discussed below.

Reactive ion etching (RIE] with an rf power source was

the latest thlnnlng technique to be tried [81]. This ls

similar to DC sputter etching in its mechanical

configuration and employs the chemical etching principles

used in the TPE. The RIEI was done using an Applied

Materials reactive ion etcher at the NRRFSS. The use of rf

power eliminated the charging problems encountered with DC

sputtering and also reduced the crystal damage by lowering

the incident kinetic energy of the ions to below 100 eV.

Initially only O2 was used in the plasma, however it

was found that a surface layer was produced on the carbon.

This surface layer is most likely either chemisorbed O2
Ä

or loosely bound CO and/or CO2 molecules. Argon was

introduced into the plasma to provide a mechanism for

physical plasma etching in addition to the chemical_plasma

etching. In principle the carbon is chemically etched by

the O2 to form an oxide loosely bound to the surface and

the argon physically sputters the oxide from the surface.
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The argon should have enough energy to knock off the

chemisorbed oxide (~ 10 eV] but not enough to sputter

the carbon directly. This combination should significantly

reduce damage to the graphite crystal structure. Samples

etched with O2 and Ar mixtures did not have visable

surface layers which were present after etching with only

02. The best samples were produced under the following

conditions:

Oxygen Flow Rate: 30.0 1 .2 sccm

Argon Flow Rate: 10.0 1 .1 sccm

Operating Pressure: 60 : 2 mT

Base Pressure: 10-5 T

rf Power: 15 W (0.05 w—cm2]

D C Bi a s: 110 1 10 V W

Etch Rate: ~ 35 Ä/min

Several graphite and HOPG samples of thicknesses rv

100 to 200 Ä were produced using this technique. These

samples are in the process of being tested in the (e,2e)

spectrometer. Evaluation of their characteristics is given

below.

2. Characterization

A study of the optical transmission of a—C as a

function of thickness was performed to provide an indirect
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method of measuring thickness of graphite films. A I-Ie—Ne

laser (k · 6328 Ä] beam was apertured and focused on

the film with a spot size of ~ 0.5 mm. The transmission
' was measured with a standard silicon photocell and a

voltmeter. Figure VI.4 illustrates measurements of the

transmission coefficients of a wide range of a-C films and

list a linear regression analysis to an exponential decay.

These measurements are in good agreement with published

data [160]. The estimated accuracy of the method is

t 25% over a range of 60-1400 Ä thickness.

An estimate of average thickness of graphite films can

then be obtained by measuring the optical transmission

coefficient of a sample. The optical properties of the a-C

films are estimated by Stoner [160] to be similar to those

for graphite [162]. The thickness of the graphite is

obtained from Figure VI.4 by multiplying by a factor of

0.81 to correct for the difference in densities. Again,

the estimate of thickness is only accurate to about

r 25%. There is good agreement between Figure VI.4 and

published data [160,79].

Initial measurements of the transmission provided only

a measurement of the average thickness of the samples,

because the laser was focused to a spot size of ~ 0.5 mm

which is about twice the electron beam spot size. A more
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refined system was able to focus the laser to a spot size

of ~ 10 um. The sample was mounted on an x—y—z

positioning stage which allowed movement of the sample to

within : 10 um in this system.

Transmission measurements determined that the samples

prepared using the TPE were from ~ 75 to 300 Ä in

average thickness and samples prepared using RIE were from

~ 100 to 200 Ä in average thickness.

Sample uniformlty proved to be a difficult thing to

achieve in the graphite samples. Interferograms of freshly

cleaved graphite surfaces show that the surface has

irregularities on the order of Ä 1 um over areas of

~ 1 mm2 before etching. The TPE samples were vislbly

uneven under a 10X optical microscope. Analysis of elastic

scattering spectra and the signal-to-noise ratio in (e,2e)

measurements seemed to suggest variations in thickness of a

factor of 2 or more over surface areas of ~ 0.25 mm2

for these samples. The RIE samples appear to have smooth

surfaces using a 10X optical microscope. Refined optical

transmission measurements demonstrated that the RIE samples

varied significantly over small areas. Areas of up to 0.1

mm2 with thicknesses of 150 r 50 Ä were located on

several samples.

It was not possible to use the Alpha—Step Surface

Profiler on graphite because the material was too soft.
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However, a-C films mounted on glass coverslips (see Figure

VI.la) were etched simultaneously with the graphite RIE

samples. A surface profile of the a-C film after etching

(see Figure VI.1b) exhibited variations of 50-100 Ä over

~ 1 mm surface distances. This is less that variations

in the film before etching. Elvidently, RIEI does not

introduce significant surface variations in a-C films and

may actually act to smooth the surface somewhat. It is

reasonable to expect the same to hold for graphite.

Attempts to use RBS on graphite films were not

successful. This may have been due to the wrinkled surface

of the sample or channeling effects of the ions.

Further thickness information may be gained by using

an electron beam to probe the graphite thin films, e.g.

EEILS or a STEM with an energy analyzer.

The damage to the crystal structure of graphite caused

by thinning techniques can be estimated using Raman

spectroscopy. The Raman spectrum of single crystal

graphite and I-IOPG has two Raman active modes at 42 zb 1
cm‘l

("rigid layer shear", Ezsl mode)

[120,121] and 1581 t 1 cm'] (high frequency

E282 mode] [122,166,120]. The frequencies
of-

these

two in-plane modes are in exact agreement with theory

developed by Al—Jishi and Dresselhaus [2]. Tuinstra and
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Koenig [166] were the first to note the exlstence of a peak

near 1355 wavenumbers present in microcrystalline graphite.
The peak results from a breakdown ln the k—section rule
which activates a normally-inactive (in-plane, breathing

Am mode] Raman mode. The exact origin of this peak

is still an open question [52,106,123]. However, it is

agreed that the relative intensity of the 1355 cm'1

mode with respect to the 1581 cm“1 mode varies as the

inverse of the crystal planar domain size La [166] over a

range 25 Ä Ä La Ä 1 um [123]. Dillon

et al have claimed that the 1355 cm°l peak

intensity increases in the Raman spectra of a-C films as

they are annealed up to the point where ~ 20 Ä

islands of graphite are formed, at which point the

intensity ratio begins to decrease upon further annealing

[52]. The ratio of the intensities of the 1355 cm 'I

mode and the 1581
cm“‘

mode then provides a direct

measure of the in—plane domain size of graphite

microcrystals.

Raman analysis was performed by R. Zallen and Mark

Holtz at VPI on samples of graphite and a—C. The spectra

were obtained at room temperature in a near-backscattering

or reflection geometry. Excitation was primarily buy the

5145 Ä green llne of an argon ion laser (Coherent model

90), however spectra were confirmed using the 4880 Ä
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blue argon ion laser line. The power of the incident beam

ranged from 10 mW to 100 mW at the sample. Scattered

light was collected by an elliptical mirror or using a

. Micromate microscope attachment which allows the probe beam

to be positioned to within t 10 pm in the sample plane.

The light was analyzed using a double monochromator (SPEX

model 1403) with the spectra! band pass consistently set at

5.0 cm
”1.

A photomultiplier tube operating in the

photon counting mode was used for detection. The

background of the photomultiplier was less than 25 cps.

The spectrometer is computer controlled and repetitive

scans were taken in most cases to improve the signal—to—

noise ratio. Scanning rates ranged between 0.4

cm'1—sec“‘ and 2.5 cm"—sec".
The measured spectra for crystalline graphite and a

graphlte sample thinned with tape to ~ 1000 Ä both

exhibit a single band at 1581 cm"! wavenumbers in

Figure VI.5. The figure also shows spectra of crystalline

graphite thinned using TPEI and RIE which have additional

peaks at 1360 cm“‘ (50 cm"1FWHM) and 1364

cm“‘ (38 cm'1FWl··lM) wavenumbers respectively.

The ratio of the 1360 cm
”‘

integrated peak intensity

to that of the 1581 cm“1 peak is 1.1 for the TPE

sample. This corresponds to an in—plane domain size of 45
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Ä according to Tunistra and Koenig [166]. This ratio is

2.9 for the RIE sample which corresponds to La ¤ 120

Ä. Both of these etched samples exhibit a small peak at

~ 1622 cm"] which Nemanich and Solin [123] also

identify as a disorder—induced feature.

The width of the 1581 cm'! band remained

constant (14 cm" FWHM) in the natural graphite,

HOPG, tape-thinned graphite, and the RIE graphite spectra.

The TPE graphite sample exhibited a width of 20 cm']

FWHM. Defects and buckling within the microcrystallite

platelets can cause bands to broaden and/or shift.

Evidence suggests that this type of damage is not induced

by RIE, but does result from TPE.

These Raman spectra clearly show that damage was

introduced into the graphite films during etching, however

the films remain microcrystalline and graphitic in nature.

It is likely that the domains show preferential alignment

within the plane, because they originated from a single

crystal as opposed to HOPG where the microcrystals are

randomly oriented within the plane. The c-axes in the

etched films are probably also somewhat misaligned due to

etching.

Figure VI.6 shows Raman spectra of graphite, I-IOPG, and

a-C. The a—C spectra has a broad amorphous band from 1000

cm'] to 1650 cm"l centered at 1525 cm“‘.
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This spectrum is in good agreement with measurements of

other evaporated and sputtered a—C films [52,172].

The graphite crystal orientation in the spectrometer

is crude, but adequate, given the resolution of the

machine. The c—axis of the crystal is well known since it

is perpendicular to the sheets. However, the specimen is

wrinkled badly when mounted on the holder which introduces

an uncertainty of at least :5° in the alignment of the

c—axis with the incident z—axls. Smaller uncertainties

from the target holder alignment and crystal irregularities

are therefore insignificant.

It is possible to align the in—plane axes to some

extent in a simple manner. There are hexagonal crystal

faces in the cleaved natural graphite visible with either

the naked eye or a low power optical microscope. Noting

these faces before etching the graphite allows orientation

to within a few degrees. These crystal faces are still

visable after RIE.

Ideally, the orientation can be found quite precisely

by examining the Bragg diffraction patterns with the [e,e']

arm in the elastic mode. Here, our spectrometer acts as a

high energy electron dlffractlon (HEED) spectrometer. No

attempt has been made to do this with the graphite sample

yet. The present instrumental resolution of the spectrum

makes it insensitive to the in—plane orientation.



VII. PHYSICS OF CARBON

Carbon has three common stable solid forms, graphite,

diamond, and amorphous carbon (a—C). These form a very

interesting system which exhibits perhaps the most varied

range of physical properties of any element. Diamond is

renowned for both its optical brilliance and extreme

hardness, while graphite is a very soft material and is

black in color. From a solid state vlewpoint, diamond is a

semi-conductor with a 3-dimensional (3D], 4-fold

tetrahedrally bound crystal structure. Graphite is a semi-

metal with a 3—fold bonding which is almost 2D in nature.

Amorphous carbon has properties which vary over a wide

range depending primarily on the temperature and method of

formation. It exhibits similarities to both graphite and

diamond and also has some unique properties. A fourth

solid form, hexagonal diamond or white graphite, has been

synthesized under high pressure and also found naturally

occurring in small amounts in meteorites [42].

Crystal forms of carbon are very difficult to

synthesize and to date natural crystals are of superior

quality. This is due in large measure to the extremely

high melting points of diamond and graphite, Ä 3530

134
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°C [28,167]. Large single crystals of both graphite and
diamond are rare. The properties of a synthetic form of

graphite, highly oriented pyrolytic graphite (HOPG), are

discussed since a significant amount of the research on

graphite has been carried out on this material.

This section presents a summary of the physics of the

three common forms of solid carbon, including a description

of their physical properties, crystal structure, bonding,

band structure, and density of states. Table VII.l

compares some important properties of these materials.

These materials have been studied extensively by numerous

techniques. Graphite and diamond can be characterlzed as

well understood systems, while a-C still lacks a good

theoretical framework to describe its structure.

A. Graphite

Graphite has a hexagonal crystal structure which can

be considered nearly 2D. There are planes of hexagonal

rings which are widely separated. The intraplanar nearest

neighbor distance, 1.42 Ä, is less than half of the

interplanar spaclng. These layers, or basal planes, are

stacked with an ababab scheme that produces two

distinct types of lattice sites. These two sites are

illustrated in Figure VII.la. The solid vertical lines

connect lattice sites that are located directly above and
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Table VII.1 Physical properties of carbon

Property Graphite Diamond a-C
Crystal Structure Hexagonal Diamond

Space Group C6/mmc"* Fd3m[°* -—

Lattice Constants (Ä) a0+2.4612(1)(°* 3.S670(1)(°* -—
c¤=6.7079(10)@15°C(°*

Coordination number 3 4 3 or 4

Nearest naignbor 1.416 (1n1rap1anar1‘°* 1.6446‘°* --
separation (Ä) 3.3S4(interplanar)(°*

Meltlng Point (°C) ~3530(°* >3550
"‘*

Density (gm-cm‘3) 2.2670(4)"* 3.51SS(3)["‘* L7—2.2"*

Index of refraction:
real 2.2‘°* 2.4173w] 1.4—2.7“'J°k)
imaglnary 0.7[°* O.O3—O.75“‘J'k)

Hardness
(Mohs scale) 1-2w 10m ~6[°*

Resistivity
(room temp.) 4x10'5 (lnterplanar)(°* 1-10m
(Q-cm) 5x10”2 (intraplanar)(°* 0.6(m*

Hau Coefficient -0.06‘°* 0.26 to -0.06‘°*
(room temp.)
(cm3—C°1)

Band cap (av) 0.0“* 6.6*-*** a—c 0.6****
a-Cil-l 1.6—2‘°*

I') l-limpsel et al (Ref. 82)
[8) R°b*° et al (Reh 147* 0** Painter et al (Ref. 130)“’* Ubbeiohde and Lewis (Ref. 167) (11 Smith (Reh 157)(°* Taft and Phillips (Ref. 162) ul Storm (Reh 160)‘°* cnc Handbook (nor. 28) 111 Kahn et al (Rep 91)
tc) mein (Ren 95* (U McLintock and 0rr (Ref. 118)
U) wuus et al (R°f· 187* (m* Measured for our sample



137

O I O O

·~J1I•¢i—IIl·Ti~lIl•Q

,IIlIII,| ,8 „·•v~J·•v—4•¢—.b••r—!4•r~•
<¤> smwmrs ·

~ ebimmouu
¤ u 2 a 4 sl

Figure VII.l Crystal structures of carbon.



138

below sites in adjacent planes, whereas broken lines

connect sites that are above and below empty carbon hexagon

centers. The crystal has a C6/mmc space group with a basis

of two atoms and four atoms per unit cell.

This planar structure is responsible for the 2D nature

of graphite and for the anlsotropy in many of its physical,

electrical, and optical properties. Extensive reviews of

the properties of graphite are given by Ubbelohde and Lewis

[167] and Klein [ssl.
The crystal structure has been very accurately

determined by x ray diffraction and is reviewed in

reference 167. Reference is made to early work on graphite

by ploneers in the field including Ewald [55] and Debye and

Scherrer [51]. An excellent study of the valence—electron—

density distribution compares x ray diffractlon data [38]

with pseudopotential calculations [84] and finds that the

overall agreement between the two density distributions is

1 0.15 e/Ä3 throughout the entire unit cell.

The Brlllouin zone (B2) of graphite is also hexagonal.

The BZ is shown in Figure VII.2 with points of symmetry

labeled. The lattice vectors and reciprocal lattice

vectors are also listed. ·

The six electrons of each carbon atom form 2 core

bands and four valence bands in graphite. The two ls

electrons form nearly atomic orbitals with a binding energy
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of 284.5 eV [49,116,62]. The four valence electrons form

two types of bonds. -

The upper valence band results from the 7I bond formed

between layers. In the 2D approximation to graphite this
l

band is formed simply by the 2pz atomic orbitals with

their nodal plane being the basal plane and their axes of

symmetry perpendicular to the plane. The bond can be

visualized as a lobe extending at right angles to the basal

plane. More careful calculations show that this band is

split when one considers the two independent types of

lattice sites. Electrons in these loosely bound orbitals

are primarily responsible for conduction.

A second 7I band is the conduction band with a zero

direct energy gap at the K point on the Brillouin zone

boundary. The bond configurations are illustrated in

Figure VII.3 where the sign of the wave function at the

lattice points is designated by + or — signs. Note that

the valence TT band has S—symmetry whereas the conduction

band has P—symmetry. This is evident since adjacent unit

cells are identical for the valence band, but are of

opposite phases for the conduction band. TI bonds are odd

with respect to the basal plane and 0 bonds are even. It

should also be noted that the bonding configurations in the

unit cell are degenerate for the conduction and valence

bands at K, as is expected.
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·
The other three valence electrons form hybridized

sp2 orbitals. These 0 electrons form tight covalent

bonds with nearest neighbor atoms within the basal plane.

In a simple tight binding (TB) picture, these orbitals have

the form

(26) + 42 1 = 1, 2, 6 (VII.1)
where ~P(2s) is the carbon 2s atomic orbital and

~I»·6i(2p) are 2p orbitals whose axes are in the

directions 0, joining the graphite atom to its three

nearest neighbors [173]. There are three distinct bonding

configurations which produce the three 0 valence bands.

Figure VII.4 illustrates these configurations where the

phase of the bond wave functions are designated by + , -,

and 0 signs representing phases of + 211/3, · 211/3, and 0,

respectively. At the F-point, the upper two valence

bands are composed of wave functions with equal numbers of

these three bonding coefficients and the bands have P-

symmetry. At the F-point, the lowest valence band is

composed of all similar bonding coefficients and the band

has S-symmetry. At the K—point, all three bands are

composed of wave functions with equal numbers of the three

phases. Again, note that the bonding configurations in the

unit cell are degenerate for the two upper valence bands at

I" and for the lower valence band and one of the upper
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valence bands at K. Another configuration composed of

anti-bonding orbitals is responsible for a 0 conduction

band with S-symmetry. The 3D splitting of the 0 bands is

much less than for the 7I bands.

Band structure calculations of graphite have been the

focus of extensive efforts over many years. Early TB

calculations by Wallace [173] have been refined and

extended as listed in Table VII.2. [11,84,164,111,187].

Pseudopotentlal calculations by Holzwarth et al [84] and

discrete variation method calculations by Willis et al

[187] and Tatar and Rabii [164] are in good agreement with

each other and best agreement with experiment. The band

structure is illustrated in Figure VIII.12.

Table VII.3 list experimental determinations of the

binding energies at symmetry points usingiangle-resolved

ultra-violet photoemission spectroscopy (ARUPS) [112,163,

186,53,105], integrated—angle photoemission spectroscopy

[PES] [15], and x ray photoemission spectroscopy (XPS)

[116]. These experiments have been performed on both

single crystals [163,15,112,116,105] and HOPG samples

[186,53]. Synchrotron radiation [15,112,53] and Helium

lamps [163,186,105] were used as ultra—violet sources and

the Al Ko: line was used as the x ray source [116].

The conduction and valence bands density of states has

been calculated by Painter et al [129] using a
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Table VII.2 Graphite Band Structure ·— Theory°

Pseudopotential Cellular Dlscrete
(a) (b) (e) (d) Variational

(e) (f)

Upper l" 3.3 4.1 2.5 1.2 4.2 4.7
0 M 7.0 7.6 5.3 4.7 7.3 8.1

K 11.2 11.6 6.0 8.8 11.0 11.9
A 3.2 4.0 4.1 °

~ L 7.2
— Middle ( I‘ 3.3 4.1 2.5 1.2 4.2 4.7

0 M 14.0 14.7 11.2 11.4 14.1 14.5
K 13.3 14.3 12.3 ‘ 10.8 13.7 13.9
A 3.2 4.0 4.1
L 12:2

Lower I' 20.8 21.5 13.8 19.5 20.8
0 M 15.1 16.1 13.0 12.5 14.9 15.7

K 13.3 14.3 12.3 10.8 13.7 13.9
A 20.7 21.4 19.1
L 14.6

Upper l' 7.1 7.1 5.8 6.4 6.6
rt M 2.2 2.7 1.8 2.0 2.0

K -0.2 0.0 0.0 0.0 0.0

Lower F 9.1 8.7 8.0 8.1 8.2
1t M 3.1 3.9 2.6 2.5 2.7

- K 0.5 0.6 0.7 0.5 0.5

Both A 8.1 7.9 6.9 7.3
TI L 2.7 3.1 2.2 2.3

H -0.2 0.0 0.0

° Energies in eV below top of valence band
(a) Hedlin—Lundquist exchange correlatlon potential;

Holzwarth et al (Ref. 84)
(b) Slater exchange correlatlon potential; Holzwarth et al

(Ref. 84)
(c) Blanconi et al (Ref. 15]
(d) Spherically symmetric potential; Mallett (Ref. 111)
(e) Tatar and Rabii et al (Ref. 164)
(f) Willis et al (Ref. 187); Painter and Ellis (Ref. 129)
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Table VII.3 Graphite band structure--experiment.

Upper l' 5 5.7 5.3 4.3 4.6
0 M 8 8 8.8 8.3 8.3

K 13.8 ° 10.5 11.5
A
L

Middle I' S 5.7 4.3
0 M 13.6 14.5_ K 17-19 14.6

A
L

Lower l' 24
0 M 17-19 16.0

K 17-19 14.6
A
L

7.6 (6.1) (6.0) 7.2
2.4 (2.8) (2.9)
0.35 (1.2) 0.2

Lower l" 9.3 8.9 8.6« M (2.8) (2.9)
K 1.2 0.6 0.7

Both A 8.3 8.1 8.0 8.2
1: L 2.7 2.8 2.9 2.7

H (1.2) 0.2 (1.5) 0.2

‘ (6) McFee1y et al Ref. 116) (e) Wllllams Ref. 186)
(b) Blanconl et al Ref. 15) (f) Eberhardt et al Ref. S3)
(c) Marchand et al Ref. 112) (z) Law et al Ref. 105)(d) Takahashi et al Ref. 163)
' Enerzles ln eV below top of valence band. Uncertaln

measuraments In parentheses.
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variational method. A more detailed calculation for the rr

band density of states has been performed by Tatar and

Rabii [164] using the Johnson—Dresselhaus model [88]. The

structure of the density of states is well correlated with

symmetry points in the band structure.

Photoemission measurements of N(E] have been made by

Bianconi et al [15], McFeely et al, [116] and Thomas

et al [165] which are in agreement with theory (See

Figure VII.5]. Willis et al performed secondary—electron

emission spectroscopy and found their results in good

agreement with calculations for the conduction band density

of states [187]. An x ray emission spectrum was taken by

cnaikin [36].
The relative contributions to the valence density of

states from s and p orbitals can be inferred from

comparisons of the intensities of x ray and photoemission

spectra. The 2s—>1s transition is forbidden in the K

emission spectrum while 2p electron K x ray emission is

completely allowed. By contrast, the cross section for

photoemission for a 2p electron is lower by a factor of 13

than that of a 2s electron [66]. McFeely et al [116]

were able to demonstrate that states with binding energies

greater that ~ 15 eV —- corresponding to the lower 0

bands —— were almost exclusively S—bands whereas states

with EZB Ä 4 eV —- corresponding to the pz
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carbon.
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orbitals in the TI bands —- were almost exclusively from 2p

orbitals. The intermediate energies —— correspondlng to

the upper 0 bands -- were mixed in origin with gradually

more 2p character nearer the 7I bands.

The electron momentum density of pyrolytic graphite

summed over all bands for both q parallel and

perpendicular to the c-axis have been calculated from

several models [179,48,139]. Cooper and Leake calculated

the contributions from the 7I and 0 bands separately [48].

The band—resolved calculations show significant differences

in the two directions, while the total momentum density is

almost identical for both directlons (See Figure VII.6).

In principal, (e,2e) measurements of the momentum density

can be separated by band and this difference should be

apparent.Measurements of the total electron momentum density

have been made using Compton scattering [179,48,178] and

positron annihilation [14] for both momentum directions in

pyrolytic graphite. These are in agreement with theory.

Berko et al [14] have calculated the total momentum

density for polycrystalline graphite and found that it

agrees well with their positron annihilation results.

Measurements of polycrystalline graphite with Compton

scattering produced a broader peak [179,139].

Electron energy loss spectra have been taken by
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several groups [62,40,25,26,78]. These have been used to

calculate dielectric functions and optic properties. They

are discussed in more detail in Section II.A. Reflectivity

measurements were performed by Greenaway et al [70]. A

detailed studied of optical properties was done by Taft and

Phillip [162]. Raman spectra are discussed in Section VI.

Highly oriented pyrolytic graphite [HOPG) is a

synthetic form of graphite which is often used in studies

of graphite properties. It is made up of small

crystallites of graphite with basal plane dimensions on the

order of ~ 1000 Ä. The c—axis of the crystallites

are very highly oriented, however they are randomly

oriented within the basal plane. A review of the

properties of HOPG is given by Klein [95].

B. Diamond

Diamond has a diamond crystal structure with fcc

symmetry. The atoms exhibit 4—fo1d tetrahedral bonding

with a nearest neighbor distance of 1.5445 Ä [167]. The

crystal structure is illustrated in Figure VII.1b. Diamond

has a F‘d3m space group with a basis of two atom and two

atoms per unit cell.

The crystal structure has been very accurately

determined by x ray diffraction and is reviewed by
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Llbbelohde and Lewis [167]. Early measurements were

performed by Bragg and Bra88 [23].

The BZ of diamond is a truncated octahedron. It is

shown in Figure VII.7 with points of symmetry labeled. The

primitive lattice vectors and reciprocal lattice vectors

are also listed.

The ls core bands of diamond are similar to the

graphite core bands. There are four valence bands which

result from the spa hybridized orbitals. The bottom

band is a wide dispersing band with S—symmetry, very

similar to the lowest valence band in graphite. The upper

three bands are degenerate at l" and disperse downward,

characteristic of P-symmetry bands. In the l"—L and F-X

directions the upper two bands are degenerate.

The wave functions at the l"—points can be described

in terms of 3D networks of positive and negative bonding

coefficients similar to the description of graphite given

above [184]. At the lower l“—point the wave functions are

formed with all positive bonding coefficients, analogous to

the lowest l"-point in graphite. These orbitals result is

the S-symmetry of the lowest diamond band. The wave

functions at the upper l“—point, which is triply

degenerate, are formed by three distinct configurations of

equal numbers of positive and negative bonding



153

The first Brillouin zone for diamond. The point F is
at the center of the zone. The names K, L,_W, and X are
points of high symmetry on the zone boundaryn

Primotiva I0tiic0 vaciors Racigr0c0I I0ttic• vector:
-· 9:. SL2 ·'* tl
* TG ‘¤¤z=(¤„§„-5) Ü;·§‘f(·|•!•!)

g
" 0 " ZH -
°•'(’é’·°·%) *>•*¤.('· '·') ·

00••3.567A

Figure VII.7 Briilouin zone of diamond.
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coefficients. These configurations account for the P-

symmetry nature of the upper three diamond bands.

Band structure calculations have been performed using

a variety of methods including the discrete variational

method [123], LCA0 [39,194], augmented plane waves [94],

tight binding [37], pseudopotentials [9], and variational

cellular method [56]. Table VII.4 shows that all these

theories are in approximate agreement with each other and

the limited experimental measurements available [82]. It

is interesting to note that calculations based on s2p2

and spa orbitals yield very similar results. The band

structure is illustrated in Figure VIII.14.

Himpsel et al have made measurements of the binding

energies at several symmetry points using ARPEIS with

synchrotron radiation [82].

It should be noted that energies listed in Table VII.4

are referenced to the top of the valence band. The band

gap in diamond is 6 eV, [56,82,l30,194] therefore the Fermi

level should be ~3 eV above this reference.

The conduction and valence bands density of states has

been calculated by Painter et al [130] using a discrete

variational method. This calculation is in very good

agreement wlth XPS measurements by McFeely et al [116] and

x ray emlssion spectra measured by Wlech and Zöpf

[182].
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The relative contribution of s and p orbitals to the

density of states of diamond was also examined by McFeely

et al [116] as discussed above. The fractional p mixing

varied from 16% for binding energies between 24 and 20 eV

monotonically to 92% for binding energies between 4 and O

eV. Thus, the bottom band is primarily 2s in character,

the middle band is of mixed character, and the upper bands

are primarily 2p in character. An average hybridization of

s‘·2p2·8 was derived, which is in remarkable

agreement with chemical intuition which would favor spa

o v e r s2 p2.

The electron momentum density of diamond summed over

all bands for several momentum directions have been

calculated [194,138,139]. As with graphite, the total

momentum densities do not differ a great deal in different

momentum directions, but should show significant

differences when the bands are separated. The total

momentum density of diamond is quite similar to graphite

although it is somewhat broader.

Experimental measurements with Compton scattering

[138,178], and positron annihilation [102] for crystalline

and powdered diamond are in good agreement with each other

and in reasonable agreement with theory.

The theory of diamond‘s optical properties are

discussed by Painter et al [130] and other theoretical
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and experimental work is reviewed by Roberts and

Walker [145]. Raman work is discussed in Section VI.

C. Amorphous Carbon

The nature of a—C is a very complex problem. Beyond

the difficulty arising from the random long—range ordering

in typical amorphous materials, carbon is complicated by

the coexistence of the tetrahedrally bonded diamond crystal

structure and the 3—fold planar structure of graphite. A

central issue in understanding a—C is the relative

importance of three- and four-fold bonds. Extensive

experimental effort has yet to achieve a unified

interpretation and theory is only in its infancy. Some

possible structure models are discussed below.

Deciding exactly what materials are a-C is not an easy _

task. For our purposes, we can distinguish four types of

carbon which will be discussed. The family of materials

known as turbostatic carbons appears to be very fine

grained graphitic powders. Many evaporated and sputtered

a—C films appear to be primarily graphitic in character.

Another class of a—C films are referred tc· as "diamond-

like." Finally, there are hydrogenated amorphous carbons

[a-C:l—l) which are prepared from chemical vapor deposition

of organic materials.

Turbostatic carbons include carbon black [soot] and
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coke. X ray [16,140,153] and electron diffraction

measurements indicate that such carbons have a very finely

dispersed graphite structure, i. e. small graphite regions

with very little a—axis correlation. Short and Walker

[153] estimate the in-plane crystal dimension of carbon

black to be 15-20 Ä and the c—axis thickness to be about

15 Ä. They estimate a 5-10% increase in the inter-

planar spacing which is consistent with reductions in bulk

density. X ray PES [116], EELS [116], and Compton

scattering [178] measurements for turbostatic carbons are

in good agreement with data for graphite. Raman spectra

show a gradual transition from crystalline graphite through

microcrystalline graphite to a—C as discussed in Section

VI.

The properties of a-C films differ greatly and appear

to depend on the method of formation and the deposition

temperature. In general, evaporated and sputtered

films prepared at higher temperatures [room temperature and

above) can be classified as graphite-like, whereas

evaporated and sputtered films deposited at low

temperatures and films prepared by chemical vapor

deposition (CVD) can be classified as diamond—like [7'9].

Many of the diamond-like properties become more graphitic

in nature upon annealing of the films.

It should be remembered that the films used in our

[e,2e] study were prepared by arc evaporation at room



159

temperature (see Section VI]. Therefore, these films

should be expected to fall in the graphite—like category.

The measured EELS and Raman spectra for these films are

supporting evidence for this claim.

The hardness and semiconducting nature of graphite-

like a-C films were early evidence for tetrahedral bonding.

More recent measurements indicate that some a-C films are

primarily graphitic in nature although some diamond-like

bonding can not be ruled out.

Electron diffraction by Boiko et al of electron—beam

evaporated films exhibits pronounced graphitic

character [19]. They propose that their film consists of

regions of oriented and unoriented graphitic islands [with

coherent sizes of ~ 10 Ä and planar spacings of

~ 4-4.5 Ä) cemented with disordered carbon. Mildner

and Carpenter conclude from neutron—diffraction data that

tetrahedrally bonded atoms in a-C account for at most 10%

and probably less than 5% of the atoms [118a]. XPS

measurements by McFeely et al are very similar to graphite

and differ from diamond (see Figure VII.5] [116]. The EELS

spectrum of a-C shown in Figure VII.8 is also much more

similar to graphite than diamond [146,172]. The EELS data

of our a-C films taken by Schnatterly [149] (see Figure

VIII.3) and measurements by Burge and Misell [26] are even

more similar to graphite and exhibits both characteristic

graphite peaks at 7 eV and 25 eV (see Section Ii.A).
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Extended e1ectron—energy—loss fine structure measurements

by Batson and Craven on carbon I<—ionization edges also show

a graphite-like structure [12]. Raman spectra for

evaporated and sputtered a—C were also found to be much

closer to graphite than that of diamond (see Section VI)

[52,172]. Based on Raman data, Wada et al have proposed

a model for a-C which is based on random—network—type

planar clusters of graphite structures ~ 20 Ä in

size, which have dangling bonds around the clusters' edges

[172].

Grigorovici et al have measured the temperature

dependence of electrical conductivity, piezoresistance,

andthermopower,as well as optical reflectivity and

transmission, for electron beam evaporated a-C films [71].

Based on electrical conductivity and optical measurements

they estimate an energy gap of .65 eV. Their reflectivity

measurements also show features which can be attributed

solely to diamond and graphite alone. They conclude that

a—C is made up of interconnected islands of both diamond

and graphite structure, with a predominance of graphite.

Beeman et al [13] reviewed the radial distribution

functions from electron diffraction [19,92], and the Raman

and vibrational density·of-states spectra [52,172] for a-C.

Their comparison of computer models of a—C structures with

varying percentages of tetrahedral bonding lead them to

conclude that this percentage was not likely to exceed 10%.
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ENERGY LOSS

Diamond

Graphite

40 30 20 I0 0

eVFigureVII.8 Comparison of EELS spectra of a—C, graphite,
and diamond! ·

·•· After Robertson (Ref. 146).
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They propose a variation of the model by Wada et al ——

similar to that mentioned by Robertson [146] —— which

consists of three-coordinated planar regions with

occasional four-coordinated atoms allowing changes in

orientation of the planes. These graphitic regions have

fairly randomly oriented planes so that the bulk material

would be isotropic. Their model regions had little

distortion in bond length and bond angle, yet they found

that there were significant numbers of five- —and seven-

membered rings incorporated into the model structures.

These planar regions are quite similar to the 2D random-

network structure discussed by Zallen [191]. Further

reference to this model is made in Section VIII.C.

Many properties of "diamond-like" a-C have been

studied including, conductivity [148], resistivity [79],

optical properties [79,91,148], electron diffraction [79],

and electron microscopy [128]. In general, these films

exhibit properties which can be attributed to the presence

of both 3-fold and 4-fold bonding in varying amounts. The

interested reader is referred to the literature for

details.

The optical [157,89] and dielectric [103] properties,

conductivity [89], EEILS spectrum [60], and electron

diffraction patterns [60] of a—C=H films have been studied.

These films are produced from CVD from various organic

compounds. In general, they exhibit significant amounts of

tetrahedral bonding.



VIII. ANALYSIS OF DATA

A. Description of data

An extensive set of data has been taken for an a-C

sample [Sample 1.D.zz‘ C24) which extends previous

measurements [144]. The normalized data, deconvoluted

data, and ancillary measurements for this sample are

presented below. These data are compared to published

theory and experimental results for the band structure,

density of state, and electron momentum density of both

diamond and graphite. Finally, some conclusions are drawn

regarding the structure of a-C based on this data.

Table V111.1 lists the experimental parameters

particular to the C24 data set. The incident electron

energy was 20 keV. Data was collected for a range of

energies 8 between -7.7 and 40.8 eV below E}- [binding

voltages Vb between 2 and 25 V with a 1V increment, see

Equation 111.6). The range of momentum q was -4.2 to 3.1

Ä-! with a momentum increment {of 0.28

A". ‘
Data were collected over a period of approximately two

months in units of approxirnately one week duration. Each

of the 648 (E,q) points had data collected for between

0.3 and 1.7 hours, with the central region of interest

Table V111.1

163
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Table VIII.1 Experimental parameters for C24 data

ENERGY

Range of binding energy E -7.7 to 40.8 eV
~ Range of binding voltage V 2 to 25 V

Energy increment 2.0 eV
Meter voltage Vm 12.0 mV 1 <1%
Meter scaling factor 01 2000.1 1 <1%
Meter offset voltage ß -12.08 1 0.1 V
Computer scaling factor 7 1.01. 1 0.01 '
Computer offset voltage AVCM 0.47 1 0.01 V
Wien filter offset voltages Voa 0.4 1 0.5 Vvob 0.4 1 0.s v
Fermi energy relative to binding E}- -0.5 2 V

energy zero
Incident beam energy E 20.0 kV
Energy resolution AE 6 eV

MOMENTUM
Range of momentum q -4.2 to 3.1

Ä_1

-1
Momentum increment öq 0.28 1 0.05 Ä -1Momentum offset QSHIFT -0.84 1 0.28 Ä
Momentum conversion factor CF 0.064 Ä-1/step 1 10%
Momentum resolution Aq 0.6I-1

COUNT RATE
Maximum coincidence count rate äz
Average peak coincidence count rate . z
Average background count rate 0.015 Hz
Maximum signal-to-noise ratio 15Average signal-to-noise ratio 5
Collec ion lme per (E,q) point 0.32 to 1.68 hours
Statistical error 5 to 10%
Systematic error 10%
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having the longer sampling times. The maximum coincidence

rate was 0.23 Hz. The average coincidence count rate for

(E,q) point in a band was approximately 0.07 Hz and the

average background count rate was 0.015 Hz which is a

signal—to—noise ratio of about five. The statistical error

of the count rates for points in a band was from 5 to 10%.

There was also a systematic uncertainty in the count rates

of ~ 10%, due primarily to variations of the count rates

as a function of momentum.

A three-dimensional plot of the merged normalized

(6,26] data is shown in Figure VIII.l.

The parameters used in the deconvolution of multiple

scattering are listed in Table VIII.2. Deconvolution was

performed for the energy loss variable only, because

momentum broadening was not as significant for the data set

as was energy broadening. A discussion of the momentum

parameters is included, however, for the sake of

completeness. It should be noted that we determined all of

the parameters used in the deconvolution empirically, with

the exception of the mean free paths. All of these values

are in good agreement with other work where it is

applicable.

The four momentum broadening functions are shown in

Figure VIlI.2. The momentum resolution parameters were

determined by theoretical electron optics modeling of the
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Table VIII.2 Deconvolution parameters for C24 data

Input arm energy resolution ag 0.85 eV (2 eV FWHM)
Input arm momentum resolution az 0.5Ä_! (1.1 Ä-! FWHM)

ey 0.51%.-1 (1.1 K1 rw}-(M}
Output arm energy resolution bg 2.4 eV (5.7 eV FWHM)
Output arm momentum resolution bx 0.3 Ä-! (0.8 Ä-! FWHM)

by 0.3 Ä ! (0.8 Ä-! FWHM)
Inelastic normalization constant V1 0.8217 (al
Inelastic peak position V2 24.3 eV [Ü
Inelastic peak width m2 15.4 eV (FWHM) ta)
Inelastic width parameter V2 0.00422 m
Elastic momentum parameter qu 3.0 Ä-! [C)

Plasmon momentum parameter qg 0.040 Ä-! (8)

Cutoff momentum qc 20.0 Ä·! (dl

Target thickness (surface density) t S5 Ä (1pg—cm°2)
(EELS fit) 140 Ä

Elastic mean free path Ye 530 Ä (25 keV) (C)
275 A (12.5 keV)(°)

Inelastic mean free path Yi 300 Ä (25 keV) °•°*Ü160 Ä (12.5 keV) ‘°·=-ll
Total mean free path Y1- 192 Ä (25 keV)

101 Ä (12.5 keV)
Average mean free path Y 125 Ä

‘“l senneiieriy, (Ref. 149)‘°‘ i-iertiey, (Ref. 78)[°) Brünger and Menz, (Ref. 25)"” Fields, (Ref. 59}[fl Penn, (Ref. 132)(Ü Burge and Missell, (Ref. 26) °
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Figure VIII.2 Momentum Broadening functions. LL .
Illustrates the four momentum broadening functions

used in deconvolutlon normallzed to one at q=0. Fc (see
Equation 11.6) is the small angle elastic scattering
distribution. Fu (see Equation II.12) is the small-angle
inelastic scattering distribution. Pa and Pb (see
Equation B.10) are the output and input arm resolution
Gaussian distributions, respectively.
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lens systems. The input and output resolution functions

are Gaussian distributions with FWHM of 1.4 and 1.0

Ä-1 raspactivaly. A value of 3.0
Ä_l

[90] was used for the elastic momentum parameter qu based

on measurements of a—C [25]. The plasmon momentum

parameter qE =· 0.040
Ä_1

based on Schnatterly°_s

determination of hwp for a—C [149]. An empirical fit

of the inelastic data of Brunger and Manz [25] to Equation

11.12 yields qE=0.144 •ß [90]. The discrepancy

in these values can be understood by noting that Equation

11.11 is based on the assumption that the plasmon peak is

narrow, which is not the case for a-C. The cutoff momentum

was estimated as qc - 20.0
Ä_1

from Equation

11.13. The input arm energy resolution ‘was estimated to

have a 2 eV FWHM. The output arm energy resolution was

determined from EISWEEP data shown in Figure V.2 to be 5.7

eV FWHM.

Parameters for the energy dependence of small—angle

inelastic scattering were determined from high resolution

EELS data taken by Cafolla and Schnatterly at the

University of Virginia [149]. The data for our a-C films

shown in Figure V111.3 was taken at 150 keV and has been
corrected for multiple scattering. The solid line in the

figure is a fit to the data using
U(€]

from Equation

11.10 with a main energy loss peak position of 24.3 eV and
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Figure VIII.3 Energy dependence of small-angie inelastic
energy loss function U(8).

The points represent high resolution EIEILS data taken
by Steve Schnatterly (University of Virginia) on a·C films.
T e solid line is the fit to the data using Equation II.10.
The vertical scale is arbitrary and normalization has been
adjusted to give agreement at the peak.
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a FWHM of 15.4 eV. The peak position is in good agreement

with graphlte data reported by Hartley [49] and a—C data in

Burge and Misell [26]. However, the width is less than the

value obtained by Burge and Misell (21.8 =•= 0.5 eV ).

The Fourier transform V(t] of U(é°] is shown in Figure

VIII.4.

The Fourier transform iT(t) of the smearing function

is shown in Figure VIII.5b. This is calculated from the

fß—functlons shown in Figure VIII.5a and the coefficients

in Table VIII.3 using Equation B.7. The smearing function

ff’(E], i.e. the inverse Fourier transform of fT(t], is

shown in Figure VIII.6.

The elastic and inelastic mean free paths of a—C as a

function of energy are graphed in Figure VIII.7. The data

are adequate for high incident energies, but must be

extrapolated below about 20 keV. This introduces

significant error into the mean free path estimates.

However, the mean free path only enters into deconvolution

calculations as a ratio of the sample thickness to mean

free path. This ratio can be determined independently from

ESWEEP data similar to that in Figure V.2. Comparison was

made between ESWEEP data and the thicknesses for the

theoretical function S°(é'] which produced the same

plasmon ratio (the ratio of the height of the first plasmon

peak to the zero loss peak height). Analysis of several
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a) shows the first four f£(t] functions (M•0,1,2,3)

for the sum in Equation B.7 where M ls the number of
multiple s'catters that occur. Note that the M=0 curve has
a reduced scale.
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Figure VIII.S The Fourier transform T(‘t) of the smearing
function and its compoenet functions ZU.)
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Figure VIII.7 Mean free path vs. incident energy for
Carbon

Elastic mean free path curve based on data for a-C
from 20<Ei°<60 keV after Brunger and Menz (ref. 25).Inelastic mean free Bpath curve based on data for a-C from
20<E°<7O keV after runger and Menz (Ref. 25) [ ]; Burge
and Misell (Ref. 26) [x]; Bohm-Pines theorgr in Burge and
Misell [ ]; and data for graphite from .2<E¤<2.4 kev
after Penn (Refs. 132 and 133) and Quinn (Ref. 135]. _
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thicknesses of a-C film suggest that estimates obtained

from this method are approximately 2.5 times larger than

measured film thicknesses (see Figure VIII.8]. These

estimates are used only in the deconvolution.

Ten iterations of the deconvolution routine were

performed. Further iterations amplified noise in the data

and produced larger negative count rates.

The deconvoluted data are presented in Figure VIII.9.

B. Comparison with previous results

The general trends found in the present data are the

same as those we reported previously [144]. The resolution

in these previous measurements was less and data were not

taken at as fine an increments. The only significant

discrepancy was in the assignment of the position of the

Fermi level which appear to differ by about 4 eV.

The energy density of states can be calculated from

the [e,2e) cross section using

N(E] = -I.|<I>(q]|2 daq CVIII.1]

For an isotropic distribution this can be expressed as a

sum over all momentum points
_

N[EI] - E N(E,q) 21rq2 öq (VIII.2]cl

where öq is the spacing between momentum points. It



178

08 ll° 2 ..1

3‘•" €
Ü(D

0 1:1.I 3 *·'U19 Q .ILIQ N Z cnN 3 >S 9* '°2 2-2 E
¤°S2 E E „

. O2 ., " E:0 . ,; O3{S!ua «> g·•
C-¢
.1:

" .2 °‘?
,§ •-•

1* ZI
>
mv
I-«

• Q glQ ...q· •0 Q °7 Q ¤—Ö Ö O
°

Ö
S 0E:•°¤
En:0. .



°@
äkäßw

äßyäiw
{Öää ‘ ä

Z UU «> U
T, EU äU U U

WWW!••WW
U



1 8 0

· Q‘}'.

:°:• Q E
. ° • 3

•••°•••
'U

°° ul. es 2
> EMI ° Q 6äé ,5

•• Q

°
3
-6 IE••••••I

ä “6••°°°°••
GJ‘¤

3 Q Ü·0 c••O1E

••E OE >E •<°° ¢> m E‘ •••··••
EO °: c: zw¢ .§ w 1:••••••••••••
U

•Ö:•• • • • Ö O°°••• "f QS : °°
Q ZTQ °‘? *9 *9 **4 Q Q **1—= 9 0 0 0 0 0 E 3g :1
..'E.° (1)

S8|.D1$ ],O ÄQSUGQ ‘*·
°°



181

should be noted that there is an ambiguity in this

expression for N(E) for amorphous states which are

degenerate in E and q, but can not be assigned a quantum

number n. This may produce a dlscrepancy at small q due

to the overlap of the wavefunctions of delocalized

degenerate states. Figure VIII.lO shows N(E) calculated

from the normalized and deconvoluted a—C (e,2e) spectra.

The (e,2e) cross section is not measured on an absolute

scale, therefore there is an arbitrary normalization factor

in the calculated density of states. There is a further

uncertainty in assigning the position of the Fermi Energy

as -0.5 t 2 V above the zero of the binding energy as

was discussed in Section V.

Comparison of the deconvoluted a—C density of states

with those of graphite [15,129] and diamond [130] are shown

in Figure VIII.1l. There is not enough resolution in the

[e,2e] data to make detailed comparisons, however, several

general conclusions can be drawn.

The [e,2e) density of states appear shifted by about

2 eV to energies above EF. This could be an artifact of

the energy resolution, be a result of a systematic error in

energy measurement, or be caused by charging due to the

presence of a larger energy gap. In any event, the

dlscrepancy is within experimental error. The (6,26)

density of states is significantly wider than either
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graphite or diamond densities of state. This could also be

partially a result of instrumental broadening. The small

peak centered at ~ 32 eV is most likely a remnant of

lncomplete deconvolution, because it is one plasmon energy

(24 eV) below the main feature in the density of states at

8 eV. -

The 1D electron momentum density is given by

Jlql = I I*I>(q]I2 cr-: (VIII.3]
which can be expressed as a sum over energy points as

J(q) - E
N(E,q) GE (VIII.4)

where GE is the spacing between energy points. Figure

VIII.12a shows J(q) calculated from the normalized and

deconvoluted a—C (e,2e) spectra. A crude effort was made

to calculate J(q) separately for the two bands

distinguished in the data. The sum over

ll S EB S 32eV includes the bottom portion of the

lower parabolic band. The other sum over

-2 S EB S 9 eV illustrates the upper band for

IqI§·1Ä-1. However, for larger q,

contributions of approximately equal magnitude are present

from both bands.

The electron momentum density is about twice as wide

as those measured for graphite and diamond. There is some

instrumental broadening in momentum, however this alone

probably can not account for the marked increase in the
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width. The electron momentum density also exhibits a very

broad plateau at IqI<l Ä-1 which differs from the

sharper shape of the crystal distributions. Here also the

(6,26) resolution is insufficient to draw any direct

conclusions.

An estimate of the band structure of a-C is obtained

by projecting the location of the peaks in the deconvoluted

(e,2e) intensity onto the (E,q) plane. Figure VIII.13

shows the location of these points. The peaks for positive

(circles) and negative momenta (squares) are mapped onto

the same quadrant. These represent peaks (solid symbols)

and shoulders (open symbols) in constant—momentum plots of

the (e,2e) data. The triangles designate peaks in

constant—energy plots of the (e,2e) data in a region where

it was difficult to distinguish structure in the constant·

momentum plots. Experimental resolutions (FW}-{M) are shown

by the error bars at the bottom of the graph. Statistical

errors in the count rates are shown in Figure VIII.14 by

error bars, however systematic errors and errors introduced

by deconvolution are not included.

There are two bands clearly visible in the data. The

lower band has a minimum at q=0 with EBM 18 eV below

the Fermi energy. The band is roughly parabolic and has a

momentum width of ~ 2.5 Ä-! extending upward to

_ near EF. A plot of the peak heights along the band as a
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function of momentum (Figure VIII.14) shows that the band

intensity decreases monotonically. This is characteristic

of S-symmetry bands as discussed in Section II.B.

. The upper band is not as prominent, but it is clearly

visible. This band also has a minimum at q=0 with

EB¤¤6eV. Again, the band is upwardly dispersing to

near EF, but has an apparent momentum width of only

~ 1.7 Ä-1. However, the juxtaposition of the

upper and lower bands near the Fermi level limits the

certitude of this statement. A plot of the peak height

versus momentum shows that there is a maximum in intensity

at q··=1Ä-1 which is ~5OZ larger than the q-O

peak intensity. Therefore, the band appears to have a

mixture of S- and P—symmetry characteristics.

Most of the positive momentum peaks in the bottom band

have lower binding energies than the corresponding negative

momentum points. This suggests that the momentum offset is

incorrect. A further shift of -1/8 to -1/4 Ä-!

improves the agreement, however the position of the band

remains unchanged.

The theoretical valence band structure of graphite

[187] is superimposed on the (e,2e] data in Figure VIII.13.

The graphite bands in two directions, I"—M and l"-K, are

illustrated. The 3D splitting of the bands is also

included; in particular both 1: bands are shown. The
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areas between each of the bands in the two directions are

shaded. This formally represents the fact that isotropic
a—C must be some kind of average over all directions. The

M (1.48
Ä_1)

and K (1.70
Ä—1)

boundaries are included for references.

The comparison shows striking similarities. The lower

0 band is comparable to the lower a-C band out to q~1.7

Ä-]
(near the graphite BZ boundary). The curvature

of the two bands are quite similar, however, the a-C band

is about 3 eV above the graphite band at q-O. The a—C band

extends beyond the graphite BZ boundary to larger momentum.

This a—C band appears to display S-symmetry as does the

lowest 0 band. The 7I bands of graphite are also in good

agreement with the upper a-C band. The binding energy at

q-O for a—C is ~2 eV above the value for the center of ”

the TI bands. The upper a-C band does exhibit some P-

symmetry characteristics which are contrary to the S-

symmetry of the TI band. The difference between the two

measured a-C band energies at q-O (~12 eV) agrees

remarkably with the value for the averages of the graphite

bands (~13 eV). It should be noted that earlier a-C data

[144] positioned the lower band at 2 eV below the graphite

band at q = O, but had the same value for the separation of

the two a-C bands at q - O. This again emphasizes the
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problem of establishing the Fermi level and suggests that

there may be an error of ~ 2 eV in the assignment of the

Fermi level of a—C.

The apparent absence of a-C bands corresponding to the

upper two 0 bands is also striking. The two upper 0

bands account for one half of the states in the graphite

valence band, so some explanation of their absence is

required. It is possible that some vestige of these bands

is present, but not resolved. The width of the upper peak

at q-0 (FWHM shown by error bars in Figure VIII.13) is

sufficient to encompass both the rr and upper 0 bands.

The 0 bands have P-symmetry, which might help explain the

P—symmetry characteristics of the upper a-C band. However,

their P—symmetry would also imply that they should have

high intensities at 0.5

Iqlwherethey would be most easily resolved from the other

bands.

A similar comparison of the a-C data with diamond band

structure is shown in Figure VIII.15. As before, the

dispersion curves are illustrated for two directions, i.e.

the l"—L and I"—X directions and the L(1.53
Ä—1)

and X(1.76
Äq)

boundaries are shown for

reference. The similarities are considerably less. The

lower a-C band is in comparable agreement with the lowest

diamond band as it was with the lowest graphite band.
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Their energies differ by about 4 eV at q=O. The upper

bands differ markedly and disperse in opposite directions.

Their energies differ by ~3 eV at q=O. The difference

between the two diamond energies at l“ is ~2O eV for

diamond which is significantly larger than the

corresponding ~12 eV measured for a—C.

The total number of states in the valence bands

integrated over all momentum directions is 2nvNv where

nv is the number of valence electrons per unit cell and

Nv is the number of unit cells in the crystal volume.

An integration of the density of states N(E) over all

valence energies should also equal 2nvNv. This is of

course equivalent to integrating the 1D density of states

along all reciprocal space directions over the BZ.

Individually, each band accounts for 2Nv states in the

density of states.

It is sometimes possible to further separate the

valence bands into individual bands or groups of bands if

the bands are not degenerate with respect to energy over

all momentum directions. This is illustrated in diamond

where it is possible to equate the states with

8 Ä 15 eV with the upper three bands and the

states with 8 Ä 15 eV with the lowest o band.

There are three times the number of occupied states

associated with the upper three bands as with the lower
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band.

The theoretical density of states for diamond [130]

in Figure VIII.11b shows that the number of states

associated with the upper three bands (6 Ä 15 eV)

is approximately three times that of the number associated

with the lowest 0 band (6 Ä 15 eV). Similarly,

Figure VIII.11a [129] shows that the number of states in

the vr-band of graphite (6* Ä 6 eV], the two upper

0-bands (6Ä 6 Ä 14 eV), and the lowest 0-

band (8 Ä 14 eV) are in the approximate ratio

1:2:1. The separation of the graphite bands is less clear,

because the rr-band and upper 0-bands cross.

In an amorphous sample of equal size, there must be

the same total number of occupied states as in a crystal

because the number of valence electrons is the same.

However, the number of states in a given band is no longer

predicted by Bloch's theorem, because amorphous materials

lack long range order. The amorphous momentum density of

states is the same along all momentum directions due to the

isotropic nature of amorphous materials in real space.

The relative number of states in 3D associated with

each a—C band can be determined from the density of states

in Figure VIII.10. Three regions are distinguished in the

band diagram in Figure VIII.13; those states with binding
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energies below E = 8 eV can be assigned to the lower a—C

band, those above E = 8 eV and with qä·1.'7Ä—1

can be assigned to the upper band, while states with

E < 8 eV and q > 1.7
Ä_1

cannot be unambiguously

assigned. Figures VIII.9 and VIII.14 show that the cross

section above E = 8 eV is approximately constant out to

q = 2.8
Ä-}

at which point the probability drops

rapidly to zerc·. Under this approximation the number of

states in the unassigned region account for 407 of the

occupied area of (8,q) space above 8 eV in Figure

VIII.9. A momentum weighted sum, as in Equation VIII.2

determines that 637 of the states above E = 8 eV in the

density of states are in the unassigned region. The

premise that the upper band terminates near the BZ boundary

would clearly assign these unassigned states to the lower

band. In this case the ratio of lower band states to upper
A

band states is 5:1. If the unassigned sta.tes are shared

equally by the two bands this ratio is 2.4:1. Shifting the

cutoff energy from 8 eV to 6 eV or 10 eV changes this ratio

by only approximately 207. Therefore, we can state that

the ratio of the number of states in the lower band to

those in the upper is between 2:1 and 5:1.

In a crystalline solid it also follows from the Bloch

theorem that there are 2N states in each band in the

dispersion curve along any reciprocal space direction,
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where N is the number of unit ceils along the corresponding

crystallographic direction. Therefore, each band has an

equal number of states in any given momentum direction

(unless there are degenerate bands, as is the case for

diamond along the l'-L and I‘-X directions). For semi-

metals (graphite) and semi- conductors (diamond), all

valence states are occupied states.

(e,2e) measurements also provide information on the

relative number of occupied states in each band along the

measured momentum direction. It is possible to estimate

the probability that an electron will be found with some

energy and momentum associated with a given band by simple

summation of the probabilities at each appropriate (EI,q)

point, i.e. adding the measured N(E,q) for each point in

the band. Estimates can be based on the relative band peak

heights of the curves in Figure VIII.l4 or based on the

relative volumes under the curve in Figure VIII.9

associated with the two bands. In both of these cases the

ratio of the lower band to the upper is 3 1 ä

to one. Again the uncertainty results from the ambiguity

of assigning the large momenta states. However, this

uncertainty is reduced considerably by the fact that the

unassigned region is not heavily weighted by the qz

factor present in the density of states calculation.
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C. Interpretation

It can now be stated on the basis of our data that a

dispersion relation
€($25q)

does exist for a—C. This in

itself is a significant conclusion. The existence of this

relation must now be integrated into any theory for such

amorphous materials. Such theories may well lead to other

significant results, just as the Bloch theorem which

predicts bands in crystals has lead to the explanation of

many other properties of crystalline solids. Most of the

present morphological theories, e.g. random close packing

and continuous random networks can only begin to address

the existence of bands.

Ziman [193] has discussed the existence of bands in

amorphous solids in the context of the expansion of wave

functions in terms of linear combinations of bonding

orbitals [75]. In particular, Ziman predicts the existence

of bands similar to their crystal counterparts for

continuous random networks (crn) of tetrahedral glasses,

e.g. a—Si and "diamond-like" a—C. These glasses still

possess 4—fold bonding and nearly constant bond lengths,

but have a distribution of bond angles which produces long

range disorder. From topological arguments, Ziman is able

to demonstrate the existence of four distinct bonding

configurations compatible with the amorphous structure.
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The bonding configuration formed from all positive bonding

coefficients is associated with the lowest 1“—point in the

diamond dispersion curve. The other three amorphous

bonding configurations have equal numbers of positive and

negative bonding coefficients and are associated with the

upper l"—point in diamond. The existence of these bonding

configurations, Ziman claims, is evidence for the existence

of similar states in the amorphous and crystalline band

structures at q = O.

Further, it is argued that at small q, that is for

wavelengths much longer than the nearest neighbor distance,

electrons in amorphous materials propagate in an effective

medium which is not significantly different from the

crystal lattice. Therefore, similar band structure should

exist near q ·= O for crystalline and amorphous states of a

particular material. The electron can be represented by a

wavepacket constructed from a narrow distribution of

momentum eigenstates, however this distribution broadens as

the wavelength of the electron approaches the correlation

length for fluctuations in the one—electron potential, that

is as the wavelength becomes comparable to the short range

order in the amorphous solid. This implies that in the

disordered phase the bands will broaden and coalesce as

q approaches the Brillouin zone boundary. This can be



198

pictured as broadening the sharp delta functions from the

dispersion function 8(k] in the crystalline spectral

momentum density into a distribution function

9
‘(

8 , k ) .

If we accept these arguments, then the band structure

for "diamond-like" a—C should resemble that of diamond,

particularly for small q. Figure VIII.14 indicates that

this is not the case for our a—C sample. A comparison of a

similar set of arguments based on "graphite—like" a—C seems

in order.

Let us consider a model similar to that proposed by

Beeman et al [13] described in Section VII.C. In this

model, graphitic islands with basal dimensions of 10 to 20

Ä are cemented together with four-coordinated atoms.

These cementing atoms allow for changes in the orientations

of the planes of the graphitic islands without the

necesslty for dangling bonds and voids that would result

from unconnected, randomly oriented planes. This

distribution of planes produces a long range isotropic

structure. The graphitic islands are composed of layers of

three-coordinated atoms arranged in a 2D continuous random

network. This crn structure is discussed by Zallen [191]

and is based on the work of Zachariasen [190]. In a crn,

bond lengths are held nearly constant while bond angles

are allowed to vary. This means that long range order is
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absent, while the three—fold bonding is maintained. It is

possible to form five, six, seven, and eight member rings

as shown in Figure VIII.16. In a real system there would

be the possibility of warping or bending of the sheets.

This model, taken together with Ziman's hypotheses,

would suggest a band structure for a-C that would be

similar to graphite. The pz orbitals out of the crn

planes should remain essentially unchanged, although

bending or warping of the planar regions would change the

distance between the out—of-plane p orbitals. Therefore,

vestiges of the graphite 7I band should be present in the

a-C band structure, which spread out at larger q.

In graphite the bonding of the lowest 0 band at l" is

composed of all similar bonding coefficients (see Figure

VII.4b). It ls easy to picture a bond configuration of all {

similar bond coefficients for the crn structure in Figure

VIII.16. This should be associated with the 1"—point of

the lowest graphite 0 band. The upper 0 bands of graphite

at l" are composed of equal numbers of bonds with three

phase factors (see Figure VII.4a). However it is not

obvious that there are any possible bond configurations

with either two or three discrete phase factors that can be

fit to the 2D crn structure. It would appear that such

configurations can not be satisfied for distorted graphite
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planes with 5- and 7- member rings. This is illustrated by

considering the simple example of one five—member ring in a

"sea" of six—member rings. This could lead to frustration

in the bonding of the amorphous structure.

If it can not be shown that there are distinct bond

configurations for the amorphous structure which can be

associated with the crystal l"-point states, one of the

cornerstones of Ziman's arguments for the existence of the

band structure is removed. Clearly there is a need for

theoretical calculations using the TB and LCBO methods t.o

study the 2D crn model of a—C.

One possible explanation for the apparent absence of

the a-C band analogous to the upper 0 bands of graphite

rests with the apparent continuation of the lowest a-C band

to large q, well beyond the graphite BZ boundary. In the

extended zone scheme the upper 0 bands are extensions of

the lower 0 band for k in the second BZ. These bands

can be folded back into the first BZ in the reduced zone

scheme as a result of the periodicity of the crystal. It

is not true cz priori that the bands can be folded

back for amorphous materials. If the upper 0 bands are

not folded back into the first zone, then one would expect

the lowest 0 band to extend upward beyond q equivalent to

the first BZ boundary. Again, the amorphous band should

broaden for large q. It must be noted that our resolution
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is insufficient to determine the presence of any small band

gap between the parts of the lower a-C band near the

remnant BZ boundary.

The folding of the upper 0 bands in graphite into the

first BZ can be explained by the repeated zone scheme. A

further consequence of a crystalline repeated zone scheme

is that there will be mirror images of the bands in second

and higher order BZ. For instance, the lowest graphite 0

band repeated in the second BZ will produce a band

dispersing downward from the zone boundary to the first

reciprocal lattice vector. As discussed in Section II.3

there will be a corresponding finite probability in the

spectral momentum density. The probability will fall off

rapidly at larger momentum as the form factor decreases.

However, the form factor should decrease continuously so

that the height of the spectral momentum density should be

approxlmately the same on both sides of the zone boundary

near the boundary.

In contrast, the data in Figure VIII.9 shows the

apparent absence of the remnants of the repeated zone

scheme lowest 0 band. At 1.7 Ä-! (approximately

the graphite and diamond BZ boundaries) the peak intensity

of the lower band is still 60% of the maximum peak

intensity at 0 Ä-1. This lowest a-C band and its
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extension have a continuously decreasing probability across

the zone boundary remnant as shown in Figure VIII.9 and

‘»/111.14. There is no apparerit evidence for the downward

dispersing band that should occur if there are remnants of

the repeated zone scheme in a-C. The resolution of the

data is insufficient to state conclusively that this band

is absent, particularly in light of the probable band

broadening at larger momenta in amorphous materials.

However, the absence of a downward dispersing band at

q > 1.7Ä-l and the presence of an upward

dispersing band with a continuously decreasing probability

taken together do provide convincing evidence to discount

the repeated zone scheme for a-C.

Further, this extended lower band should account for

three fourths of the valence states, that is the total

number of states in the three graphite 0 bands. Likewise

the upper a-C band should account for one fourth of the

valence states, that is the states associated with the

graphite rr band. This is in agreement with our data.

While the model considered above may provide an

explanation for the main features of the a-C (6,26) spectra

it must be viewed with some skepticism. It is by no means

the only consistent explanation. It is still not entirely

possible to rule out significant amounts of tetrahedral

bonding. Neither is it certain that no weak bands
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analogous to the upper o bands of graphite exist.

A detailed analysis of the measured band structure is

limited by two major factors. The first is instrumental

resolution. The present energy and momentum resolution is

simply not sufficient to measure details of the bands. The

other limiting factor is the fact that (e,2e) spectroscopy

on solids is an unproven technique. The analysis of a—C

would be greatly aided by measurements on crystalline

graphite. The measurements would serve a dual purpose.

They could provide a check on the (e,2e) technique by

allowing the (e,2e) data to be compared with other

measurements and theory for a well understood system. Such

measurements would also be invaluable in addressing the

question of the extent to which a—C resembles graphite. ‘



IX. CONCLUSIONS

There are two primary sets of conclusions to be drawn

in this dissertation. The first concerns the successful

operation of an (e,2e) spectrometer for the investigation

of the valence band structure of solids. The major

improvements over previous efforts are summarized and a

brief discussion is given concerning the future

improvements for our spectrometer. The secc·nd set of

conclusions is in regard to what ha.s been lea.rned about the

physics of carbon and amorphous materials in general. In

addition, some suggestions for future systems of study are

outlined along with a discussion of what physics the

technique may potentially be able to study.

Our instrument is the first (e,2e) spectrometer with

sufficient resolution to study the valence band structure

of solids. The 3-5 eV energy resolution is approximately

° an order of magnitude better than in previous instruments.

This allows the separation of the individual valence bands.

Momentum resolution has also been improved by a factor °of

between two and ten. Our design incorporates a constant—

focus variable—magnification zoom lens which provides

important flexibility in balancing the conflicting

205
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resolution. The electrostatic deflection method used for

momentum selection is a major improvement over systems

which employ movable detectors. The electrons are incident

with energies of approximately 25 keV, which is about 3

times that of earlier spectrometers. This higher energy

facilitates sample preparation and reduces multiple

scatterlng effects by increasing the electron mean free

path.

The coincidence count rate in our spectrometer is on

the order of 0.1 Hz, which is comparable to count rates for

other (e,2e) spectrometers, including gas spectrometers.

The count rate was maintained at this level, despite

reductions due to the increased energy and momentum

resolution, by increasing the incident current by almost

three orders of magnitude. Early problems with sample

degradation, even at the lower beam currents, have been

mitigated by the use of an ultra—high vacuum system. There

is no evidence of sample damage from 50 uA beam currents

incident on the target for weeks at a time.

At present work is underway to design and install an

upgraded energy analyzer which has an estimated energy

resolution of 0.5 eV. Recalibration and realignment is

also being done which should significantly reduce the

systematic errors in momentum selection. This increased
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resolution should prove sufficient to investigate many of

the details of the band structure that are presently

inaccessible.

The low count rate is presently the major impediment

to further application of the technique. This will become

an even more serious problem if the energy and momentum

resolution are improved or if the incident energy is

increased. There appears to be no technical reason that

data at different. energies and momenta could not be taken

simultaneously. Moore et al [117] have successfully used

a multi-detector system with their gas (e,2e) spectrometer.

A multi-detector system utilizing multi—channel plate

arrays and position—sensitive detectors is being considered

for our system. We estimate that to double the incident

energy, the energy resolution and the momentum resolution

simultaneously will require approximately 64 data

collection channels to maintain the present data rate. It

is not inconceivable to have several hundred data channels.

In principle, the count rate can be increased by use

of even higher beam currents. The present electron gun can

deliver more current at higher anode voltages, however this

would necessitate major revisions in the input lens optics

to avoid electrical breakdown. Magnetic focusing lenses

may allow significantly higher beam currents. Sample

degradation is a potential problem at higher incident
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currents.

Operation of the spectrometer at higher incident

energies is also desirable. The major difficulty is the

problem of electrical breakdown mentioned above. Again, it

will be necessary to make major revisions to the input lens

optics. This must be coupled with some way to maintain the

present count rate.

Much has been accomplished in the field of data

manipulation and analysis that will be useful in studying

other systems. A more accurate method of multiple

scattering deconvolution must be developed and the analysis

needs to be generalized to include inhomogeneous structure

in single crystals.

The analysis of extensive data on a—C has lead to

several interesting conclusions. The existence of a

dispersion relation é'(q) in a—C has been clearly

demonstrated. Two distinct bands are discernible in the

data. One band has a minimum at approximately 6 eV below

the Fermi level at q=O and disperses upward to near the

Fermi level at q ¤ 1.5 Ä_1. the lower band is

much more prominent, extending from a minimum of ~ 18 eV

below the Fermi energy at q=O to near the Fermi level at

q ¤= 2.5 Ä-1.

These two bands are similar to the lower cr band and
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the rr band in graphite. However, the instrumental

resolution is not sufficient to exclude the possibility of

4-fold bonds as are found in diamond. There are several

notable differences between the a-C band structure and

either graphite or diamond. The lower band extends well

beyond the momenta corresponding to the B2 of graphite and

diamond and appears to account for about three times the

number of occupied valence states as does the upper band.

There is also an absence of any downward dispersing bands

that might correspond to the middle bands in graphite and

diamond.

Some conjectures have been made as to possible

explanations for these differences. In particular, a model

for a-C based on small randomly-oriented islands of quasi-

2D graphite-like continuous—random—network structures may

offer an explanation compatible with the data. It must be ·

noted, however, that the inadequate resolution and lack of

concrete theoretical frameworks make such explanations

speculative. No definitive interpretations can be given

until higher resolution experiments are performed on both

a-C and single crystal graphite.

Work is presently continuing on single crystal

graphite, both as an extension of the work on a-C, as a

characterization study of a well studied system, and as an

interesting measurement on a semi-metal. Work has begun on
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the study of microcrystalline Al, which will probe the

physics of a simple metal. Al has also been extensively

studied with other techniques and some limited theoretical

studies of the [e,2e] cross section have been performed

[124]. Another interesting system is the semiconductor Si,

in both crystalline and amorphous forms.

In addition to studying the properties of specific

materials, there is a wealth of physical phenomena which

may be able to be studied. The comparison of amorphous and

crystalline samples of the same material should provide

valuable information about the structure of amorphous

materials. It may be possible to study the nature of the

transition from localized to delocalized states in

amorphous solids. The momentum broadening of the spectral

momentum density as the states become localized is a

characteristic signature which may be observable with

higher resolution measurements. It may also be possible to

study the nature of hybridized s—•:l orbitals in transition

· metals [107] and the evolution of the valence electron wave

function in the metal-insulator transition.

It is obvious that the tremendous potential of [e,2e)

spectroscopy in solids has just begun to be explored.
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Appendix A. Derivation of (e,2e) Scattering

A m pl i t u d e

The object of the following analysis is to derive an

expression for the (e,2e) scattering amplitude MH

and in so doing keep track of all of the necessary

approxirriations. This analysis is specific to solids and

the approximations necessary for this are emphasized.

The work by McCarthy, Weigold, et al has been used as

a guideline throughout this derivation. Their review

article [114] contains an excellent explanation of their

analysis and further details are found in other works by

them [29,109,177]. They have concentrated on the theory of

atomic and molecular targets, however much of the analysis

can be generalized to the case of solid targets. In

relating the scattering amplitude to the cross section and

calculating the form factor for specific situations with

solid targets, use has been made of several early sketches

of theories for the (6,26) reaction in solids, in

particular work by Smirnov, Neudachin, and collaborators

[107,124,155].

The (e,2e) scattering amplitude MM can be

formally expressed in terms of a scattering matrix S as

M1, - (4/ [ s [ ~1/*:> (A.1)
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The initial wave function I~I/i(x1,x2,E)> is an

(N+l)-body wave function which describes the initial state

of the incident electron and the target. The target is an

N—body system which includes the electron to be ejected and

all of the other electrons in the target. The coordinates

xi include the position ri and spin 01 coordinates

of the incident electron (i=1) and the ejected electron

(i=2). All of the internal degrees of freedom of the ion

are included in the coordinates E.

The term ion is used here as a general expression for

the (N-l)—body system of the target after an electron has

been ejected.

The final wave function Ill/£(x1,x2,E)) is

also an (N+l)—body wave function which describes the final

states of the scattered electron, ejected electron, and

ion.

It is advantageous to make a few initial

approximations at the outset. These are not too

restrictive. First, the problem is considered as non-

felattvtsttc. The major implication is that spin-

orbit coupling is unimportant which implies that electron

spin enters into the problem only through the Pauli

exclusion principle. In most of the equations below,

explicit spin dependence is not shown. The center of mass

motion of the target and ion are neglected; this amounts



229

to an assumption of tnfinite target mass. Finally,

the target is assumed to be initially in a ground

state. This implies that finite temperature effects

are ignored.

The Schrodinger equation for the (e,2e) reaction can

formally be expressed as

+ V2(E2 ;x2.El + v(r)}] il/‘(x,„x2.E) = 0 (A2)

where l—lI(E) is the Hamiltonian of the ion, Ki are the

electron kinetic energy terms, and Vi are the electron-

ion potentials. The electron-electron Coulomb potential

v(r), which includes a non-local exchange term, depends

on the relative coordinate of the electrons r. At the

outset the potentials Vi are generalized as non-local and

energy dependent to allow for the possibilities of

inelastic channels in the reaction.
O

The (N+1)-body wave functions can be written in a

multi-channel expansion as

Iu> (A.3)

where the sum is over all possible channels. The expansion

is in terms of the bases of target wave functions lp)

which satisfy the Schrodinger equation

[8,, — (K2 · HI + V2) il lu'.) = 0 (A.4)

We want to separate the wave function for the incident
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electron from these general target wave functions. In

fact, we are only interested in two channels, that

involving the target ground state |g> and the channel in

which the target eigenstate Iw> represents an ejected

electron-ion system with a well defined energy and

momentum. To achieve this separation, we make the

approximation of weak coupltng between channels.

This approximation depends on the experimentally—observed

fact (for gases] that elastic scattering is much more

probable that any particular non-elastic channel [114].

This allows the separation of the incident electron wave

function from the target wave function.

A further two-body weak coupltng approxtmatton

allows the separation of |w> into a product of an ejected

electron wave function and an (N-1]-body wave function of

the final ion state If(E)] which satisfies the Schrodinger

equation

[ 6, - HIIE] ] |rrzi] = 0 [A.5)
° At this point an optical potential model is introduced

with the goal of reducing the (e,2e) amplitude from an

(N+l]-body system to one involving wave functions computed

in the optical model potential (distorted waves] and the

structure wave functions of quantum chemistry. This is

done in a series of approximation referred to by McCarthy
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and Weigold [114,85] as the dlstofted-wave 0ff°—s/zell

impulse approximatlorz. An optical model potential

VW is derived [114] for two target states [pc-

and Iv>. The optical model potential allows the separated

wave functions for the incident, scattered and ejected

electrons to be expressed in terms of distorted wave

functions which are products of a spatial wave function and

a spin wave function. For the incident electron

ibplxl] =Xlilrllwhere

the spatial wave function satisfies the approximate

Schrodinger equation of the optical model potential

[iz — 6,, — K, - i7,,,,] x,‘(r,) s 0 (A.?)
The spin component is not explicitly expressed in the rest

of this section. There are analogous expressions for the

scattered and ejected electron distorted wave functions

X§(x,) and X;(x2).

Combining the weak coupling approximations and the

optical potential model allow the initial and final (N+l)—

body wave functions to be written as

il/‘(x,,x2.E) = X,‘(x,) X2I(X2) |f(x2.E)] (A-8]

Using these wave functions and expressing the optical model

potential explicitly, the scattering amplitude can be
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expressed as

>< (rczil ö + «» + «» G3(E) «» |g1x2.61j:> |x,‘<»«,1;·>
· (A.9)

Antisymmetry is implied in this equation. The electron-

electron potential is v. The potential fü)

produces inelastic scattering of the incident electron from

the ion which is responsible for exciting non—elastic

channels by changing the state of the ion and gives rise to

a term representing ionization by core excitation. The

total 3-body Green function is

16 - (K, + 1<2 + 1-1, + 7, +
172Itis still necessary to reduce the problem further,

to a 2-body problem. A simple albeit crude, approximation

reduces the entire operator to only the electron—electron

potential 1;. This is known as the dz'storted—wave

Born approximation [110]. The addition of the plane-

wave approximation for the distorted waves yields the

plane-wave Born approximation; Reference 69

dlscusses the (e,2e) cross-section with regard to this

approximation. A derivation of the scattering amplitude in

this approximation is given in Section II.

McCarthy and Weigold [114] describe a less drastic

approximation for reducing the problem to a form which
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contains only 2-body wave functions and operators; the set

of approximations is referred to as the quasi-three body

approxtmation. The inelastic potential term in the

Green function is assumed negligible. The electron—ion

potentials Q; are expanded in a Taylor series about

the electron-electron center—of—mass coordinate R. For

equal energies E,=E2, i.e., for symmetric geometries,

the first term in V,(R) vanishes. Higher order terms,

i.e., gradient
li);

terms, are expected to be

ineffective if the electron-electron potential is short

range. However, v is a Coulomb potential; higher order

terms will be small only if the experiment is designed to

have high energy incident, scattered, and, ejected

electrons. For atoms the gradients are quite small except

at the canter of the atom where the integrand is cut off by

bound-state orbitals except for the ls case. The reduced

two-body Green function is

G2(E) = [p2 — K, — vl'] (A.1l)

where p= %(p,—p2) and K, is the
electron kinetic energy in relative coordinates. The

scattering amplitude is given by

M„ e 4 xfnq x2‘•[6|a; + r„rp21|g:>ux,‘:> cA.12)
where TM(p2) is the two—body Coulomb t-matrix including

exchange (Mott scattering) which describes the removal of
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the ejected electron by the incident electron. This

Coulomb t-matrix is given by
”

1 TM(p2] = (1 — P12) [lv + 12 G2(E) v] (A.13)

where P12 is the exchange operator.

All of the approximations made thus far constitute

what McCarthy and Weigold refer to as the distorted-wave

off—shell z'mpulse approxlmatlorz for the (e,2e)

reaction[114].An

additional effect of the quasi—three—body

approximation is that the term involving Ü in

Equation A.12 may be neglected. Weigold and McCarthy

[114,177] review neglect of this term extensively from both

a theoretical view and by examining extensive data on

atomic and molecular systems. They conclude that it is

negligible above an incident energy EU Ä 100 eV.

Note that the scattering amplitude now depends on the

target and ion structure only through the overlap function

(fIg> since TM is independent of the internal coordinates

E. The operator TM·commutes with (fl and

M,. e <: x,‘¤< x2‘|r„cp2i|[r|g:>¤x,*> cA.1«u
Evaluation of the scattering amplitude using the fully

distorted optical model wave functions is limited to only

very simple cases. The primary difficulty in evaluation of

this integral arises from the complexity in transforming
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the t—matrix to the same coordinate system in which the

distorted waves are expressed. A series of approximations

to these wave functions provides less and less exact

alternative wave functions; the less exact approximations

are valid for higher and higher electron energies.

McCarthy and Weigold provide a detailed description of

these alternative wave functions and discuss the validity

of the approximations and the accuracy of theoretical fits

to gas scattering data using them [114].

The pha.s'e—dz’st0fti0rz appf0xz°matz'0n is a five

parameter approximate wave function. It has been used

particularly for low—incident energy high-atomic number

atoms and molecules and provides excellent fit to all

symmetric non-coplanar data. It is, however, too complex

for present theories in (e,2e) solid scattering.

The efkorzal approxtmattorz describes a distorted

optical model wave as a plane wave with an effective

propagation constant Yi = (1+ß+iy]k,

X(k,r) E exp(-·ykR) exp[i(1 + ß + i·y)(k • rl] (A.15)
~

The phase modification parameter ß represents an average

change of wave length in the relevant region. The

attenuation parameter ·y represents loss of flux due to

excitation on nonelastic channels. The model wave function

is normalized so that its magnitude is one at a point R,

just before the beam enters the interaction region.
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The plane-wave approxtmattorz is simply a special

case of the eikonal approximation where ry -· B ·= 0. All

present calculations of (6,26) reactions in solids use this
approximation.

The expression for the scattering amplitude can be
greatly simplified by factoring the t—matrix and overlap

function components; this is called the factorzjzation

czppfoxtmatiorz. In the eikonal approximation this

factorization is exact:

g 62 2 1M11 'Kz' ]|‘2(K0 r Q3)
>< <x,‘¤<x2‘1[r|g>ix,‘:> (A16)

Including the effects of the exclusion principle, the t-

matrix term is given by

<T:> =c21niÜ _ +1

ix + 1<·12]]— -————————— cos 11 ln[——————
ix + 1<·12 ux —- mz ux — mz

2 = 2 vr ri

2E m e1] 2 az x·
K E ä (KO + q)

x' — K2)
(A.1'7)

McCarthy and Weigold [114] have determined empirlcally that

this term is described adequately by the plane wave

approximation for realistic values of B and ·y by reducing
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the effective propagation constants EQ to the

momenta This term is then related to the Mott

electron-electron cross section [see Equation 11.17]. In

the non-coplanar symmetric geometry the Coulomb t—matrix

term is essentially constant over a relevant range of q but

varies somewhat more rapidly in the coplanar symmetric

geometry.

We can now turn our attention to the overlap function

[f[g> which remains as the last quantity to calculate.

Evaluation requires that the dependence on the coordinate

x2 be separatecl from the target wave function. To do

this we must evoke one final approximation, the single

parttcle or independent electron approxtmatzon. It

is at this point that the analysis for solid targets begins

to differ significantly from that of gasses.

The target wave function can be expanded either in

term of a Hartree-Fock configuration [114] or in the form

of a Slater determinate made up of the single electron wave

functions [124]. Employing the Hartree-Fock configuration,

the overlap integral can be expressed as a sum over these

states

[:f|8:.‘J = gi fc ¤[·•C(x2) (A.18)

where fc are the coefficients for the expansion in terms

of the Hartree—F'0ck wave functions for the target ground
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state. This expansion makes the implicit assumption that

there are no significant cc·nfiguration interactions in the

ion. The single particle approximation consists of

assuming that only one of the expansion coefficients is

non—negligible. Then the overlap integral reduces to the

characteristic wave function of the electron in the target

befc·re it was ejected 1l»n(x2): n denotes the specific

characteristic wave function.

It is often useful to use the Slater determinate form

to express the characteristic wave function of an electrc·n

in a solid in terms of the atomic orbital basis functions.

In this case the expansion coefficients for the overlap

integral are just the coefficients derived in the tight-

binding model expansion of the target electron orbital.

In the eikonal approximation the overlap function can

be expressed as a form factor

qExtendingthis to the plane wave approximation, the form

factor is equal to the Fourier transform ¢>n(q) of

target electron wave function where the momentum

q = 141 + kz - 140 (A.20)
as we found from kinematic arguments earlier.

The final expression for the (e,2e) scattering

amplitude is

MH -· (TM) Fßfql (A.2l)



Appendix B. Derivation of Multiple Scattering

F u Il c t i 0 Il

In order to evaluate the smearing function ff, we

must have some knowledge of the ?—functions.

4 4 6* §·”·· .12 1 is the probability density
d qde d qde d qde

that an electron traveling in the direction k, k',

k" with initial energy E will lose energy E and

momentum q in traveling through a target of thickness T.

Considering the approximations in Equations 11.50 and

I1.51, it can be seen that
?’, and

are all the same function, except that their

coordinate systems are rotated with respect to each other

to align them with their qcorresponding beam axis. We need

to find an expression for in terms of more

elementary functions.

Consider first the function ?, related to

which does not include the effects of

instrumental energy-momentum broadening. When the

scattering thickness goes to zero,

239
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::149 - 2ég;j;·(e,q:E,0) = P0(e,q) = 6(E) 6 (q] (B.1)

This insures the normalization of 9 and express the fact

that no energy or momentum was exchanged. Extending this

to include instrumental broadening,

649 -&5;—é—g(e,q;E,O) = $„[e.q) (B.2) .

where $0 is the resolution function of the

spectrometer normalized to unity. In the limit of thin

films

C14? —
gggrgg-(e,q;E,6v] = [1-{l«1(E)6·r] P 0(e,q) + lzl(E) 6v P1(e,q] (B.3)

where $,(e,q) is also normalized to unity and

fi·1[E) is the probability of single scattering per unit

thickness of the scatter (the reciprocal of the mean free

path). Equation B.3 shows that the unscattered beam is

depleted by the amount scattered and that the function
I

$1 describes the distribution of the scattered

particles. This equation is valid for thicknesses such

that fb1[E)6t<<1, i.e. for films of thickness much

less than the mean free path. The equation is extended to

finite thiclenesses using the Poisson distribution [26] in

the form

(e.q;E.r) = exp(-{bl(E)·r) $„(6,q) (B.4]

where $n(e,q) - P, C9 $n_l ; ri - 1,2,3...
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In practice it will be advantageous to separate the

function

h1(El P,(6,q) · JLIIEJ „,P,(6,ql + ,hl(E) 1Pl(€,q]

f1·1(EI]

·=wherethe prescript 0 refers to elastic processes and 1

refers to inelastic processes. DPI and IP! are

separable into product functions of 6 and q separately,

whereas P1 is not. The literature also reports DPI

and IPI separately. This separation was discussed in a

physical context in Section 11.A. The approximations of

Equations 11.50 and 11.51 are somewhat relaxed when applied

to elastic and inelastic scattering separately and are in

good agreement with experiment. Equation B.4a is modified

so that

C9 6,,,
ln - 1,2,3... (3.461

_ Making use of the expansion

am bn
m·0 m l

n-m

m-O 1 1

x UPm ® 1Pn_m ® 15;] ;n = 1,2,3... (B.4c]
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where the notation ..Pn means UP. convoluted with

itself (n—l) times. All of the Pr. can now be

calculated solely from the functions UP., .P., and

PD and the inverse of the mean free paths at the

appropriate beam energy.

The smearing function can now be expancled in terms of

the P; functions by substituting Equation B.4c into

Equation II.54 as
_ oo ooff’(é,q.E,T) - U E I E C.¤j,0_,°(E,T) J€.¤_k0_.°(6,q)

T
where C. _.. .(E,T) = dr {exp[-fz. (E)? — 2f1.(E/2]T’]

O
0’Ü 1 1

Ü

...1:1+11 ·.-•k¤*k1*lo*11}

J 1. 1;+10 1;.+1.
X „{l1.(E]° .h.(E) 0{l».(E/2]° ./1..(E/2)

jo! jl! ko! lo! k.! I.!

and J{.O_k¤_.O(6,q) = {[P—¤ ® OP.:} ® .P.1] ® [FO' ® OPRO ® .Pk.]
j.,k.,1.

(-3)The

subscripts ju and j. refer to the number of elastic

and inelastic multiple scatterings in the input beam; 1;

and 1 refer to the output beams. Evaluation of the

distance integral yields
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C (ET) _ dj [56+1 X -2111 ,1.1+12+1
2,,%-*0 * ° 221-2211 212 12 122 12,2 12 121 6

1 · 1+12+1>< J 2* 12 112 2-11* —;————L————
[TEL]

‘+J

* 2* 12 (-21* rJ"_ E-qT 2221—¤1**"*‘

where j E jo + jl , etc.

oc E {willi)

f2»,2E;/21
[3 '=-'Z 7-%- CB.6b)

212 · 12*1
The convolutions in the expression for the smearing

function are most easily evaluated by using the convolution

theorem of Fourier analysis [22]. Let x and t be the

Fourier transform pairs of q and e, respectively.

Since the Fourier transform is linear, operation on

Equation B.6 yields the Fourier transform of the smearing

function,
CD CD

_j1,k1,ll=O jl1k11l1 jl 1kl 1

1 1
Qu'. 60**.00

11,12,,1,
1· 2 „O,'lk° · 2 ,c1,·1"* - 2 „o,··1‘=· · 2 1O,"l‘}

(B.7]
ft? is the Fourier transform of J£(e,q) and the O-
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functions are the Fourun transforms of the corresponding

P—functions.

Nine functions are required to describe the three

?—functions. This can be reduced to four independent

functions; by noting that the DPI and {Pl functions

are the same for each beani with an appropriate rotatuni of

axes and that the two output arms have idenücal resohnion

functions. These four basic functions are:

Pa(6,q]: the norrnalized protaability <1ensity

that the output analyzers wiH detect a

parücle atrnomentum q and energy 6 below

its selected value.

&j6,q): the normalized probabiHty density

that an electron in the inctdent beam is

at an energy 6 and momentum q below the

selected value.

P€(€,q]: the norwnalized prolaability edensity

that an elasttcally scattered electron

wiH lose energy 6 and rnomentuni q to the

target.

Rj6,q): the normalized probabiHty density

that an tnelasttcally scattered electron

wiH lose energy 6 and.rnomentun1 q to the

target.
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By introducing three rotation matrices, the nine P-

functions can be expressed as

P„(€,q) = P,,(e,Üq) P0’(e,q) = Pa(e,Ü’q) PD"(6,q) = Pa(e,Ü"q)

„P,(e,q) = Pe(e,”Üq) „P',(e,q) = P,,(e,”Ü'q) „P",(e,q) = Pe(e„Ü"q)

,P1(e,q) = Pu(e,Üq) ,P‘1(e,q) = P„(e,Ü’q) ,P",(e,q) = P„(e,Ü"q)

(B.8]

The rotatic·n matrices Ü, Ü', Ü" rotate

the fixed target axes into the beam axes. The fixed target

axes as illustrated in Figure B.l are:

dz
:V

In the direction of the input arm axis

parallel to the beam arm plane.

dx : Perpendicular to dz and in the beam

arm plane.

dy : Perpendicular to dz and the beam arm
Ü

plane.

Each of the three beam coordinate systems have axes=

du: Parallel to the beam direction.

dl = Perpendicular to du and parallel

to the beam arm plane.

d2 : Perpendicular to du and dl

The rotation matrices for the fixed coordinates into the

beam coordinates are:
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_ BInputax 6. 6. 6. ‘·
fb

9•

•°’» '6,gb; °¢>
(a) In the plane of the beam arms

. In ·•

I gl · !
Beam arm lane ·°

. ¤,<'i, ati:
(b) Out af the plane af the beam arms

Figure B.l Spectrometer coordinate systems.
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1 O O
E- 0 cosqb sinqb

O —sin¢ cosqb

cos0 0 —sin0
E" - Ü" - 0 1 0 (0.9)

sin0 O c0s6
In the symmetric geometry 0' = G" E 0.

The instrumental broadening functions Pa(6,q)

and Pb(€,q) can be model as Gaussian distributions

2 _ 2-2 *13, qP(6,)=——L—-é-——ex —L+—+-L 61)2 q r2¤32’2 ax ay a6 P 2ö€2 2axZ 203,2 qz

- 2 —q21 1 -62 qx yP(6.)=—-——-—-——ex -—+—+—— öl)
"

q r2m2"2 bx by 2*6 qz

(B.10)
where a and b are the widths of the Gaussian distributions.
The delta function in qz is a result of the negligible

effect of broadening on the large momentum along the beam
axis.

The elastic and inelastic distributions can be

expressed as
ö(6) ö(q,,)

P„(€„q) = F„(q3) U(€) ö(q,,) (B.11)

These are the normalized versions of the quasi—elastic

scattering cross sections described in Section 11.A. Using

the parameterized forms (see Equations 11.6, 11.10, and

11.12) together with the added constraints imposed by

normalization
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qoz / vr
P,,(6,ql = -;--2-; ö(6) ötql

[qi -•- qoj ll

2_ 2
l_ (qc qe)2** *¤t¤.*¤3JPu(€,q) *2 2 2

>< ölqu)[Q2 ·V32] V3 + 62

where qi < qc and E > O (B.l2)

Here qo, qc, qE, V2, and V2 are free parameters

left to fit data for quasi—e1astic scattering; V1 can be

determined from normalization.

To find the O—functions for the evaluation of Equation

B.7 one needs to merely find the Fourier transform of the

four functions above. The Fourier transform of a function

whose coordinates have been rotated is equal to the Fourier

transform of the function prior to rotation with the

transform coordinates rotated in the same manner;

therefore the O-functions can be constructed in an

identical manner as the P—functions in Equation B.8 from

- 1 1 2 :1 :1 2

1 -1 2 2 -1 2 -1 2Qb(t,x)-=-Zßexp [E- be t +7bx x2 +§-by y2]
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qo L 2Q,,(t.x) = ; L E AIX + y2

’ Ou(t,><) = Iguixii Ü(t)

where?(x) =——————¥—— K( L) —K( L)

with L E .„|x2 + y2

rv
·and U(t) = §m[cos(p) C1(p)

2 2 -‘]

+ sin(p) Si(p)] - exp ;-il sin(t,,|\/22 — (4\/3)%)LE

with p E —ltl ,,|V_2 — (4V3 3 LE
(B.13]

where KO and Kl are modified Bessel functions of order

zero and one and Si and Ci are the sine and cosine integral

functions, respectively [1]. Plots of these functions for

parameters characteristic of a—C are found in Section XIII.



APPENDIX C: ELECTRON OPTICS

This appendix relates to electron optics. The first

section provides a review of the basic principles of

electron optics and the definitions of terms used in this

work. It is not intended to be a thorough treatise on the _

subject; for that, the reader is referred to the more

complete treatments by Klemperer [96], Grivet [66], and

Kuyatt [97]. The second section discusses the matrix

method of calculations for electron optics trajectories and

some of the software developed to model electron optics

systems. -Section three contains specific information on

the theory of electron optics components used in our

spectrometer together with diagrams and dimensions of the

system.

1 . Th e 0 r y

The fundamental concepts of electron optics are based

on the identity of the optical description of the path of

a light ray through a refractive medium and the mechanical

description of the motion of a point mass through a

potential field. This follows from a comparison of Fermat's

principle of least time as applied to the path of a light

ray, with Maupertuis‘ principle of least action as applied

to any mechanical motion. In direct analogy with light

250
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optics, a refractive index of an (non-relativistic)

electron in an electrostatic field of potential V can be

written as

n = (C.1)mc

which leads to an analog of Snell‘s Law for an elect.ron

traversing the boundary of two regions of constant

potential V1 and V2;

sinoz, V2= 4;; (C.2)

A similar, though somewhat more complicated, treatment of

the motion of electron can be performed for motion of an

electron in a magnetostatic field [96]. These "indices of

refraction" provide the necessary ties to light optics.

This analogy becomes particularly useful for

cylindrically symmetric fields. The paraxial approximation

limits the theory to rays which are close to the axis and

make a very small angle with it. For electron lenses, this

. in effect, is equivalent to assuming that all the rays pass

through potentials gradients equal to the axial potential,

that is that there are no radial fields. For such fields,

it can be shown that the equations of Newtonian or thick

lens light optics can be applied directly (see for instance

Born and Wolf [21]). Thick lens optics must be used since
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the finite extent of potential distributions imply that all

electron lenses are fundamentally "thick lenses." The

cardinal elements of a thick lens are shown in Figure C.l.

Newton's lens equation states that

fl fz = P q (C.3]

Another useful relation that follows is

(Q4)

The electron optics form of Abbe’s sine law is

JT yl sinB, = E y2 sinB2 (A.5)

where B1 and B2 are the semi—aperture angles of the

bundles of rays at the object and image respectively (that

is the pencil angles BP). We can define the Helmholtz-

Lagrange constant as

HL - W 2 y BP (C.6l

which is a conserved quantity for images, assuming the

small angle approximation. The quantity 2yBP is defined

as the emittance.

An image in electron optics can be described by three

parameters. One method of characterization is to specify

the image radius rP, its pencil angle BP, and its beam

angle BP. Another equivalent method uses two apertures

to define the image, specifying the pupil radius rP,
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window radius rw, and the distance between the pupil and

window d [97]. Figure C.2 illustrates the relationship

between these methods.

— R—9 diagrams [97] provide a convenient method for

displaying the trajectories of the rays from an image (see

Figure C.6). Radius is plotted versus angle of slope for

the nine principle rays at a given point along the beam

axis. These nine rays delimit the maximum range of radii

and angles for all rays emanating from the image, that is

there are rays from the image for all (r,9) inside the

region bounded by the parallelogram formed by the principle

rays. It should be noted that the sides of this

parallelogram are parallel to the 6—axis when an image is

formed at the given axial position z.

An alternate approach to trajectory calculation is the

ballistic method. The differential equations of motion for

a given set of fields are solved for the trajectories of an

electron with some initial position and velocity. This

approach is useful for system where the paraxial

approximation is invalid. The theory of deflector plates

and the Wien filter described below use this approach.

Grlvet [66] derives the theories of electron optics using

the differential equations of motion.

As with light optics, the quality of electron lenses

suffer from aberrations. I-lawkes [80] identifies five
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common types of aberrations. Mechanical aberrations result

from imperfections in the machinery and alignment of lens

elements; this is the most important type of aberrations

in most electron optics systems. Chromatic aberrations

result from different focal properties of an element for

different energy electrons. Geometrical aberrations are

caused by discrepancies that arise from using the Gaussian

and paraxial approximations. Assuming non—relativistic

electron properties results in relativistic aberrations.

Interaction between the electrons in the beam themselves

can produce space-charge aberrations, particularly in very

high current density beams. The requirements for the

precision of the electron optics in our spectrometer are

not that demanding, and for the most part aberrations can

be neglectecl.

A standard convention for the coordinate system for

electron optics calculations has been aclopted: The

positive z-axis is chosen as the forward beam axis; the

positive y—axis is chosen as up out of the plane of the

. spectrometer; the x-axis then lies in the spectrometer

plane.

2. Matrix method

The matrix method is a standard technique borrowed

from thick lens optics that allows the radial distance y
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and slope y' of a ray at some later position to be

calculated by multiplying the initial radial distance yo

and the initial slope yö by an appropriate matrix. In

general the matrix is derived by reducing the differential

equations of motion for the fields to equations for y and

y' which are linear in yo and yb. Several important

matrices are discussed below and additional use of the

matrix method is made in Section C.3. References 97 and 64

provide a good outline of the matrix method for electron

optics.

As a trivial example, the radial distance y and the

slope y' after traversing an axial distance z in a field

free region are given by the equation

ccm
In analogy with Newtonian Optics, the matrix for an

electrostatic lens can be written as [97]

Y 1*2 1*2 yo

where fl and fz are defined in Figure C.l. This matrix

propagates a ray from the first principle plane P1 to the

second principle plane P2. There are a wide range of

electrostatic elements which constitute lenses and are

described by this matrix in one form or another: these
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include gap lenses, einzel lenses, aperture lenses, and

deflector plates which will be discussed later

individually.

For a traverse through a region of length L with a

constant electric field E perpendicular to the axis, the

equation of motion is

eE L 2

Lwherethe zero of the potential energy is chosen such that

the potential energy e“V is equal to the kinetic energy

i.e., e“I/ -= mvä/2. This yields a matrix form

= [5 5] · + %· [%L‘—2] (C.10)
If the electric field is instead parallel to the beam

axis the matrix equation can be written

Y ‘ [‘°‘L"—] ’WJVÜT (cm
¤ JVTTW °

where V1 and V2 are the voltages at the entrance and

exit to the region [64,67].

When an electron beam traverses a discontinuity in the

axial electric field, the beam is focused. This is the

situation illustrated in Figure C.3, where three

equipotential planes V1, V2, and V3 define two

regions of uniform electric field with a field
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Figure C.3 Voltage distribution for VFIEILD.
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discontinuity at the V2 plane. Kuyatt [97] shows that

traversing the discontinuity from one side of the V2

plane to the other can be represented in the matrix form as

1 0 nc.12i
Comparison with Equation C.8 shows that this

isequivalentto a lens with fl = f2 and f2 =

4V2/(El—E2). Lenses based on this concept, known as

Calbick or aperture lenses, are in common use; such lenses

are formed by placing a thin plate with a small axial

aperture held at a potential V2 between two beam tubes

both held at the same potential, V2.

The matrices for uniform axial fields and field

discontinuities can be used together to provide a way of ·

estimating the focal properties of optics elements with

arbitrary shape and voltage distribution [65]. For a given

geometry and potential, the axial voltages at given

intervals can be calculated by solving Laplace‘s or

Poisson's equation using numerical techniques. Once the

axial potential is known, the paraxial approximation allows

the entire optics element to be treated as a series of

stepwise applications of the matrix
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15{1+2Vz·(Vi*V3l} 2L[V]: MJVÜVÄ]
y 2 V2 - (V1+ V2)

(6.131yo

This matrix is derived by multiplying the matrix for

uniform axial field by the one for a field discontinuity;

assuming that L1 = L2 = L and describes a ray which

propagates from the left of the V2 plane to the left of

the V2 plane as illustrated in Figure C.3. Multiplying

the matrices for each potential step, yields a single

matrix which describes the entire lens element. It is a
simple matter to calculate the thick—lens cardinal elements

for the lens element from the final matrix [64].
Two programs were written to calculate the matrix for

an arbitrary lens element. The first, VFIELD, uses a

successive overrelaxation (SOR) method to iteratively solve
Laplace’s Equation for the lens element geometry. The SOR

.
method uses a finite difference equation to successively

estimate the potential at a given grid point based on the

potential at neighboring points. Convergence is greatly

enhanced by using an accelerating factor, B. An
overview of numerical methods for partial differential

equations is given by Ames [4] and the specifics for
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solving Laplace's Equation using the SOR method are given

by Weber [174]. Details of calculating the optimum

acceleration factor are given by Carre [32]. In VFIELD,

a subroutine specific to the lens element defines the

geometry and potential distribution of the lens element

with regard to a 2-D rectangular grid (radius and z) of

points. The voltage on the lens elements are held fixed

and the potential at the rest of the points are then

calculated for these boundary conditions. Once the

solution has converged, the grid density can be increased

by a factor of H2 (typically a factor of 16) and the

values from the previous grid used as initial values for

the denser grid. When an adequate solution is found, the

voltages for the grid points on the lens axis are

transferred to a second program, AXMATRIX. AXMATRIX

calculates the matrix and thick-lens cardinal elements of

the lens element as outlined above. These programs were

used to calculate the focal properties of several lenses

for the spectrometer including the High Voltage lenses and

the electron gun Einzel lens (details of these lenses are

given in section C.3). As an example of results from

AXMATRIX, the cross-section potential distribution for the

input High Voltage lens are shown in Figure C.4 along with

plots of the axial potential.
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Table C.1 Results of AXMATRIX: input High Voltage lens.

(E•E') HV LENS: 25 / 1 VULTAGF RATIU C
TIME: 13:50:51 DATFs 27-OCT•83
SEE RUvATT:_P:2:£: Fun ngrxurrous UF PARAMETERS,
LENGTH UF LENS = 1:77ö00F+01 CMDISh%NCL ULTNEEN VULTAGE INCRFMENTS = 0:12700E+00 CM
INIT AL MUMENTUM = 0,5$7n7£•10 G•CM/S

. 0.810§PE+00 1/A
FINAL MUMENTOM = 0:£6ö49F•l3 G-CM/S

. _ 0:“05£3F•0S 1/A
Fül = 0:ö7$80E+01 CM
FME = •0:1227£E+01 CMFui 0:1ö¤u7£+01 CM .FM2 0:93229E+01 CM

. Pal 0:böl33E+01 CM
PUZ CM

. ‘ · ( ' J
MARTIX _ 2 •0:108S2E+0i 0,1b¤73E+01 ;(cGS UN_

{ ·0:10786E+00 •0,lb306E•0l g IIS)
DET 1MATRIx: = 0:19bS3E+o0

F1 I F2 = 0:2000lE+00
1

PERCENT ERROR = 0:000 2
INITIAL RADIUS = 0:l0000F•02 CM'
Wllät ibäääväm »«8:«é3$33"°‘ 0 6;:9:.; Io 6..cmI I

RAD! S · 0 108 SE ° CM 0:ö1006E+0z 1/A
FINA U = · 3 + PFINAL TRANSVERSE MUMENIUM =

0 •0:19¤¤0E•13 G•CM/S
•0,29b¤2E+05 1/A

FINAL SLOPE = •0:107d8E+01„ ELATERAL MAGNIFICATIUN = •0.l3ü03E+02ANGULAR MAGNIFICATIUN z 0.3331ßE+01
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Computer modeling of electron optics calculations can

greatly facilitate the often complex and laborious

calculations necessary for the design and use of such

systems. The program MODEL is designed to calculate ray

diagrams and image positions for electron optics elements

using the matrix formulation described above. The two main _

purpc·ses of the program are to model the experimental

settings for the spectrometer and to aid in design of other

electron optics assemblies. There are two corresponding

modes of operation of MODEL.

The spectrometer mc·de of MODEL calculates ray

diagrams, .r—9 diagrams, lens focal properties, and pupil

and window positions, angles, radii, and l—lelmholtz—Lagrange

factors for user—input lens voltages. The program stores

the position and dimensions of all of the elements of the

lens columns and has subroutines to calculate the cardinal

lens elements and/or matrix elements for each of these lens

elements. Beginning with either a pupil and window or a

radius, beam angle, and pencil angle the nine principle

rays are traced through the lens column. The

characteristics of the pupil and window images of each lens

are also calculated from these initial conditions. R-6

diagrams can be plotted for a number of locations along

each lens column. A representative set of output for the

input lens column from MODEL is shown in Figures C.5 and

C.6 and Tables C.2 and C.3.
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Figure C.5 Ray diagram of input lens column using MODEL.
The solid lines are ray trajectorles of the nine princlple
rays. The lens column profile is outlined with dashed
lines. The P‘s and W’s locate the positions of pupil and
window images, respectively. The arrows indicate each of
the positions of lens elements listed in Table C.2.
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Table C.3 Input lens column locations using MODEL.

a] pupil image characteristics

Input Lens (clean
Lens Celculations frcn Pucil lmag to Target (I)
Puoel Image Locations IEgagee••••••••;:;€;•••••••••g••••••••••••••g•••••••••••••••••••••••••••••••••••

L L EAM PUFIL PUPIL FUPZL
ANGLE ANGLE „ POSITICN RÄSIUS bEL'LAGRh•••••••••e••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••nenne

PUDII Ina- (.01323 ·0.C0162 (.00 6.6 8.975-02
Gun znzl E C.3(£03 -0.00073 -2665.77 9.é 5.935-02Inn Fld L E.01¢1S 0.00197 7095.31 -3.¢ 8.935-C2
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This mode has proven useful in two different ways.

Experimentally obtained lens voltages can be input into the

computer and the calculated trajectories used to aid in

analysis of the optical properties of the beam. In

particular, MODEL can determine the location of the pupil

image near the target and yields a theoretical value for __

the pencil angle at the target. This theoretical value

determines the momentum resolution. MODEL can alternately

be used to calculate the lens voltages that give a. desired

output, and these voltages used as initial values to begin

experimentally tuning the system.

The theoretical properties of the electron lens

elements calculated by MODEL are only accurate tc· within

about 10Z. We have had quite good success with using the

program to model the optics, particularly for the input

arm. I
The second mode of MODEL allows the user to custom

design his own lens column from a list of possible electron

lens elements. This list includes most of the matrices

described above, allowing for arbitrary dimensions and

voltages. The lens elements specific to the spectrometer,

e.g., the High Voltage lenses and the Electron Gun Einzel

lens, can also be incorporated in the custom lens columns.

The voltages on the lens elements can be modified and the

entire custom lens column design can be stored in a data

file for later reference and modification. Output similar
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to that shown for the spectrometer mode can be generated.

In addition, the focal properties of any of the lens

elements can be listed and plotted; this option was used

to produce the graphs for the individual lens elements

described above.

3. Description of components

cz. Defiector plates

In many different regions along its path, the electron

beam is directed by electrostatic deflectors. These

deflectors are basically parallel plate capacitors with an

electric field E, perpendicular to the beam axis due to a

voltage 2V applied across the plates. Ritsko [142] gives a

nice discussion of the design of such deflector plates

where he shows that to first order the transverse momentum

transfer to an electron of velocity vz and energy

e"l/Ü is

qa.ndthat the angle of deflection is

- .1/. . L T
6 - 1/Ü A (C.15)

where L is the length of the plates and A is the separation

(see Figure (1.7). The matrix for a deflector plate from

Equation C.lO is given by
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role)
There are two important higher order effects to be

considered for these deflectors. The first is that fringe

fields result in an increase in the effective length of the

plates. Recknagel [137] has shown that this increase in

length is

61. = Q · [1 (ol?)
The second effect is that parallel plate deflectors

act as an astigmatic lens focusing the beam only in a plane

perpendicular to their surfaces. The focal length is given

by Ritsko [142] as

62 rc.16i
For the deflector plates in our system the focal lengths

are quite long and the angular aberration is negligible at

present momentum resolution. The electric field plates of

the Wien filter, however, do focus the beam significantly:

the Wien filter is treated separately below.

There are two types of deflectors employed in the

system. The momentum deflectors and 45° deflectors use

actual parallel plates. The alignment deflectors in the

target chamber and the lens columns are actually two sets
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of deflectors formed by longitudinally splitting a

cylindrical piece into four equal isolated parts. The two

sets can be controlled separately and provide deflection in

the two orthogonal transverse directions.

b. Eiectrostattc lenses

The simplest type of electrostatic lens is a gap lens.

This lens is formed by two cylinders of equal diameter held

at different potentials V1 and V2, whose separation is

small compared with their diameter. The focal properties

depend on the voltage ratio; note that lenses with voltage

ratios of and V1/V2 have the same fc·cal

properties where fl <—-> fz and F1<—-> F2.

Tabulations of empirical values of the thicl<.—lens cardinal

elements can be found in many references [97] and are

plotted in Figure C.8. The decelerating (accelerating)

lens at the entrance (exit] of the energy analyzer is of

this type. The High Voltage lenses are modified gap

lenses.

An einzel lens is a symmetric combination of two

identical gap lenses with the first and third voltages the

same. Einzel lenses have the advantage of being able to

focus the beam without changing the final velocity of the

electrons. The dimensions and a plot of the cardinal

elements of an einzel lens are shown in Figure C.9. The
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two identical lenses must be sufficiently far apart so that

the electric fields of the two gap lenses have a small

overlap; a two diameter spacing is sufficient. Kuyatt

[97] shows that an einzel lens can be treated as a single

lens with effective thick—lens cardinal elements related to

the component gap lens cardinal elements by

I; Lois)

Therefore, the matrix for an einzel lens is simply

1 0 YK?«’·]‘[s1]·[»«E] Im
Most of the lenses in the spectrometer are einzel lenses.

The Electron Gun Einzel lens has a length of less than

twice its diameter, so its focal properties were calculated

using AXMATRIX.

A three-aperture lens is a modification of the einzel

lens which has three small diameter apertures in place of

the cylindrical tubes of the standard einzel lens (see

Figure C.10]. In this type of lens the thickness of the

electrodes is very small compared with the spacing between

the electrodes or the diameters of the apertures. Read

[136] gives the theory and details of focal property

calculations of these lenses. The output Field lenses are
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three—aperture einzel lenses.

The quadrupole (quad) lens has two distinctive

properties different from other electrostatic lenses

discussed. The most important of these is that the quad

lens allows different focusing in the two orthogonal

transverse planes; in fact, it acts as a diverging lens in

one direction and as a converging lens in the other. One

can, however, combine two or more quad lenses, each rotated

90° about the beam axis with respect to the previous

lens, and with potentials and geometric dimensions chosen

in such a way that the same converging effect results in

both planes. Quad lenses, also known as strong—focusing

lenses, produce a much stronger convergence than circular

symmetrical lenses since the transverse nature of the quad

lens' active fields is more effective than those of the

latter which are primarily longitudinal with respect to the

beam axis. Detailed discussions of the properties of quad

lenses are found in Grivett [66] and Klemperer and Barnett

[ssl.
Cross—sections of several geometries for quad lenses

are shown in Figure C.ll. The two pole pieces perpendicular

to the x-axis are held at a positive potential +\/q, and

the other two at a potential —Vq, which results in

convergent focusing in the x—plane and diverging focusing

in the y—plane. The potential distribution for the
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hyperbolic geometry can be solved exactly and the other

geometries can be considered as perturbations expressed as

2 _ 2v1x,yJ = = vq{1<1[%L] +

Kzl: XEa

Figure C.ll lists the values of the expansion coefficients

for the different geometries. In general all these types

of quad lenses are similar to the hyperbolic case and the

exact solutions for the hyperbolic case provide an aclequate

approximation. For the hyperbolic case it can be shown

inet 1961

(C.22]

F „ —.J„. - ..-L F = ......;l.._.... .,. .-L.¤¢ B tan(BL) 2L Y B tanh(BL) 2L
where the excitation constant B is related to the

accelerating voltage of the electron beam 7/Ü by

- gz = (6.22)
and the effective length L is equal to

L = LD + 1.1 a ~ (C.24) I

where LU is the actual length of the lens and a is its

characteristic radius. The matrices for a quad lens can be

written as
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= cos·ßL é-sinßL] _ [:1;]
-|3 s1nßL cos|3L Ü

[X] _ coshßL ésinhßL] • [V9]
Y ß sinhßL coshßL yo

(c.25l
For the special case of convex circular electrodes [6]

fx_y ‘·=

1Fora doublet, comprised of two identical quadruple lenses

arranged coaxially, separated by a small distance D and

rotated by 90° with respect to each other the focal

length of the doublet is [96]

fx = fy ((:.27)
In the (e,2e] spectrometer, single quad lenses are

used before and after the Wien filter to compensate for the

astigmatic converging focusing of the electric field

plates.

c. Electron Gun

Space-charge-limited theory must be used to describe

our electron gun. The gun has a perveance

0.3
uA—V”3/2

under normal operation which is above

the limit of 0.1 uA-V-:]/2 cited by Brewer [24] above

which space-charge effects are of predominant importance.
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The perveance is the ratio of the total current to the

anode voltage to the three—halves power.

The details of the space-charge·limited diode type

electron gun are given by Kuyatt [97] and Brewer [24]. The

theory is based on the assumption that the electrons have

space-charge-limited laminar flow with such effects as

thermal velocities and lens aberrations treated as

perturbations of this laminar flow condition.

The space—charge—limited current density can be

calculated from the geometry of the gun and the anode

voltage \/An as

3/2
2.33 Yääri (C.28)

where D is the cathode—anode apertures separation. If we

consider the anode aperture as a Calbick lens (see Section

C.2), it can be shown that the virtual cathode image is at

a distance 3D before the anode aperture in the space—charge

limit (4D below the space—charge limit] [97]. It follows

that the initial pupil conditions are:

Vrp = 3D 4;%
tan6 = r / 3D (029)

P P
tanöb = rw / 3D

where rw is the anode aperture radius and eVK = kT is
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the thermal energy of the electrons. For this type of

electron gun, eVk == 1.0 eV. It should be noted that

in our spectrometer under normal operating conditions the

las_t aperture in the electron gun assembly, not the anode

aperture, is the limiting window aperture; this does not

change the theory.

The total current from the diode is just the product

of the current density times the beam area, that is,

2
1,0,8, = 1 A = 7.32 vffj (6:.30)
The emittance of the electron gun was crudely measured

using a thin aperture and Faraday cup pri-or to use in the

spectrometer. The emittance value was 0.4 1 0.2 cm—mrad

which agrees with theoretical calculations to within the

limits of error.

d. Energy analyzer

The basic principle of a Wien filter is quite simple.

The filter has a homogeneous electric field E =Ey

perpendicular to the beam axis and the plane of the

spectrometer and a homogeneous magnetic field B -BS”c

_ in the spectrometer plane perpenclicular to both E and

the beam axis. A normally—incident charged particle of

velocity vÜ=E/B will be subject to equal and opposite

forces due to these two fields and will pass undeflected

through the filter, while particles with other velocities
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will be dispersed. A slot at the exit of the filter can

then provide energy selection and the size of the aperture
V

can determine the energy resolution.

Determination of the optical properties of the Wien

filter requires a sophisticated analysis which will only be

outlined here. Bonham and Fink [20] go through a detailed
·

derivation of the electron optics of a Wien filter,

beginning from the differential equations of motion. Their

analysis is greatly simplified by five approximations= l)

the influence of space charge is neglected; 2) no

relativistic effects are considered; 3) electric and

magnetic fields are assumed to have sharp cutoffs at the

edges of the analyzer; 4) the acceptance angle is assumed

to be small; 5) the initial velocity distribution can be

written in the form v=v¤(l+ß) where ß is a small '

correction representing the spread of the electrons emitted

from the source.

The equations of motion in the field region can be

written as;

ii - 0 (C.31a)

$5 =- %? (Ilz! + ißlic) (C.31b)

2 - ä [lßly] (C.31c)

It is obvious from Equation C.3la that the Wien filter does
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not affect trajectories in the x-plane; this plane is

referred to as the non-dispersive plane. On the other

hand, the Wien filter acts as a converging lens in the y-

plane, that is the dispersive plane. The focal properties

of the Wien filter are symmetric and can be expressed as

F = a cot(L/a)

where L is the length of the electric field plates and a is

a parameter which describes the radius of an electron in

the magnetic field alone:

a (6.66)
Since F is a periodic function, the focal point can

have the same value for many different values of a and the

magnetic field, each corresponding to a different mode of

operation of the filter. The first mode is when l/a is

between O and rr, that is when a trajectory crosses the

beam axis only once. The maximum dispersion occurs for

L/a = 7l which is the mode used in our spectrometer. An

object at the entrance of the analyzer is focused to the

exit of the analyzer with unity magnification. An object

at infinity is focused to infinity in this mode.
A

The key principle of the energy dispersion can be

understood as an exploitation of the chromatic aberration

of this focusing effect. A point image on the axis at the
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entrance to the Wien filter is focused at a distance

2mBvÜyu = = Zßö (C-34)

from the axls. In our spectrometer the image from the Wien

„ filter is at the exit plane of the filter, therefore the

width of the image of the energy slit on this plane

directly determines the range of energies that pass through

the slit. The finite size of the image at the entrance

plane results in a finite image size at the exit plane

related by a magnification (assuming ß=O) of

y = —cos(L/a) (C.35)

The energy distribution at the exit plane can be thought of

as a convolution of the point-wise spectrum with this

finite image size. This suggests that the transmission

curve as a function energy will be Gaussian—like with a

maximum transmission of electrons with energy eVE, and

tapering off symmetrically for both higher and lower

energies.

Further aberrations due to the finite size of the

image at the entrance plane and the angle of incidence to

this plane provide a limit to the ultimate resolution of

the Wien filter. Sevier [151] states that the ultimate

theoretical resolution for a Wien filter such as the one

used in our spectrometer is given by
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1/2
Asmn, = (C.36]

where VE! is the potential of the analyzer tube.

For our spectrometer operating at 67/ = 25 keV this

gives AEth:m. = 70peV. In practice this ultimate

resolution can not be achieved with any reasonable

transmission efficiency.

The Wien filter electric field is produced by two 2.54

cm x 2.54 cm square stainless steel electric field plates

with a separation of 0.508 cm held at a voltage difference

VM: which floats on VE!. The magnetic field

is produced by a current IM: through two pairs of

coils wrapped on the surface of a 1.27 cm diameter

cylindrical form. The coils are wrapped in a manner

described by Anderson [3] which maximizes the homogeneity

of the magnetic field. The analyzer voltage and current

are supplied by a hybrid voltage-current supply [VPI

electronics shop). Details of the voltage distribution are

given in Section III.B and schematics are found in Appendix

D. A mu—metal shield fits closely around the analyzer

extending from before the entrance plane to just before the

accelerating lens. The energy slit is a 0.635 x 2.54 mm

slit in a 0.254 mm thick molybdenum disk; the slit is

longer in the non—dispersive direction.

6. Momentum analyzer
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The momentum deflectors consist of two sets of square

parallel plate deflectors which act in tandem to vary the

beam angle of the electron beam at the target without

changing the position of the beam spot. The design goal

was to do this in such a way that the electron trajectories

were independent of the absolute voltages and the absolute

distances of the momentum selector. Figure C.12 shows a

schematic of the momentum deflectors and their dimensions.

Using the matrix for a field free region, Equation C.?

and for a displacement through a region of electric field

perpendicular to the beam axis, Equation C.l0, the matrix

for the region from the entrance of the momentum deflectors

to the target can be written as,

Y _V1L L(1—nl+2[s+1.+¤(1-nl}I: v' I] ‘ EW ‘ [ 2(1 — nl ] (9-37)
where

e“V
is the electron kinetic energy,

1] E V2/V1, and it is assumed that

yo ·· yé =· O. The constraints that y =· 0 and that

y' is independent of S and D and dependent on only the

ratios L/A and n are satisfied when n = 3 and S = 2D.

The matrix thus reduces to

(C.38)

The major error in Equation C.38 is due to fringing

fields about the plates; according to Recknogel T13?] the
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fringing increase the effective length of the plates by

~ 33% . In practice, this correction probably somewhat

overestimates the increase due to fringe effects because

both sets of plates are in close proximity to grounded

surfaces in one direction and separated from each other by

less than 1 1/2 times their length in the other direction.

The increase in effective length results in a corresponding

increase in the theoretical momentum conversion factor

discussed below. This effect is uniform for all deflection

angles and is therefore incorporated into any empirical

determination of the momentum conversion factor.

Higher order errors are included in the expression

Y„ [(1) (2L 5 am] , ,
@ _ [5 (L + 2D) · (3 — nl] fC·39‘AV (1 — nl ‘ '

The first term in this equation allows the beam to enter

the momentum analyzer with a non—zero initial radius and

slope. Since this is independent of deflector voltage, it

is unimportant in determination of the momentum conversion

factor. The second term in Equation C.39 allows for n to

differ from the ideal value of 3. A 1% deviation in the

deflector voltage ratio would result in a displacement of

0.2 mm over the full deflector range at 67/ - 25 k6V.

The voltage distribution for the momentum analyzer is
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controlled by the MINC computer via an opto-isolated fiber

optic llnk (see Section IV). The signal from the MINC ls

converted to an 8-bit digital signal by a UART ( universal

asynchronous receiver-transmitter) located on the target
' chamber control rack. The lowest 7 bits of the signal are

then converted to a 0 to -5 VDC signal by a DAC; this

voltage is used to drive the output of two high voltage

power supplies (BEIRTAN, models 602B-15P and 602B-15N].

These power supplies produce 0 to #600 VDC which are

connected to the momentum deflector plates via a voltage

divider network. (Schematics and power supply

specifications are given in Appendix D). The supplies are

designed to provide a positive voltage on one deflector

plate and a negative voltage of equal magnitude on the

other plate; both voltages float on the target chamber

high voltage. The eighth bit of the digital signal

controls a relay which determines the polarity of the

deflector plates.

The momentum voltage correction panel on the target

chamber rack is an additional feature that allows for

adjustment of the momentum voltages to minimize movement of

the beam spot on the target as a range of momentum voltages

are swept. The ratio of the deflector voltages to the

computer momentum control step and the ratio 11 are varied

with two dua1—tandem potentiometers as shown in the
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schematic in Figure D.6. These ratlos were adjusted to

minimize the beam spot movement as viewed through the

viewport telescope and the variation in count rate as a

function of momentum as controlled by Q5WEZEIP (see Appendix

E).

A theoretical expression for the momentum calibration

factor can be derived from Elquation C.39 and the relation

q = y‘P0:

CF (1 — n) (C.40.a)

where momentum is expressed as a wave number,

O s N s 255, andCF is in units of
Ä_1

per

incremental step of the computer momentum control number N.

At the time when momentum calibration was performed,

measurements of the characteristics of the perpendicular

momentum analyzer plate voltages showed that AV,/AN =

1.555 V and n = 2.967, both to within Ö 0.1%.

At an incident energy of 25 keV, CF is equal to 0.0398
Ä—1

per step using the actual length of the plates

and 0.0532
Ä-}

per step using the theoretical

Leif. The momentum calibration factor is

proportional to the inverse of the square root of the

incident electron voltage; therefore, corresponding

theoretical values for‘ CF at 20 keV are
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0.0445 Ä-! per step and 0.0595 Ä-1 per

step, respectively.

The coincidence data for both the a-C and graphite

were taken after the momentum voltage correction panel was

adjusted to minimize motion of the beam spot on the target.

For these measurements AVI/AN = 1.750 V and n = 2.745

which yield values of CF which differ by < 0.5% from

those listed above.

Alternately, the momentum calibration factor can be

expressed in terms of mrad/V as

cg = %ä = eg Ifää (1 — nl (c.40b1
1

For a 25 keV incident energy electron this is

cg = 0.421 mrad/V, with n = 2.967 and

Leif = 1.336 L for perpendicular deflection.

The momentum calibration factor C; for the
parallel momentum will be a factor of two larger than that

for perpendicular momentum deflection because the energy of

the outgoing electrons in the (e,2e) mode is half that of

the incident electrons. However, the resistance divider

network is designed so that AV]/AN is approximately

twice as large for perpendicular deflection as for parallel

deflection. This means that the perpendicular momentum

calibration factor CF will be 42 times that of the

parallel momentum deflectors when expressed in Ä-!
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per step.

The momentum deflectors were calibrated by measuring

the Bragg diffraction spectra of thin microcrystalline Al

films. The spectrometer was operated at 25 kV in the

elastic mode using the (e,e'] beam arm as the detector and

acted as a I-IEEZD apparatus. A typical diffraction pattern

is shown in Figure C.l3. Comparison of the peak positions

of the first four Bragg peaks from these measurements to

published values for Al [134] predlct that the calibration

factor is 0.057 1 .001 Ä—1per step at 25 keV

incident energy. Adjusting for the difference in incident

momentum, this corresponds to an experimental value of

0.064 z .01
Ä_l

per step at 20 keV. The

experimental conversion factor is about 8% larger than the

theoretical estimate using the theoretical effective plate

length; it corresponds to an effective plate length of

Laß = 1.4 L. Similar comparisons of theory and

experiment for ThCl and a-C [134] were in approximate

agreement.

The coincidence data shown in this dissertation all

use a value of 0.064
Ä—1

per step with an

estimated uncertainty of
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f. Electron lens assemblles

The electron gun assembly includes the electron gun

filament, cathode, anode, and an einzel lens. The fllament

~ is a soft—cathode oxide filament which is heated by a

voltage supply (VPI electronics shop) driven typically with

S to 7 VDC at ~ 3 A. The anode is held at a voltage

VAN (Bertan model 602B SOP) typically from 1.0 to 2.S

kV above the input common point. There are four apertures

in the assembly designated, from left to right as shown in

Figure C.14, as the cathode, anode, first gun, and second

gun apertures.

The Electron Gun Einzel lens has a length to diameter

ratio of less than two and therefore must be modeled using

an axial step-wise potential. The results of an analysis

using VFIELD and AXMATRIX are shown in Figure C.lS. The

input Field lens, Zoom 1, and Zoom 2 lenses are

conventional Einzel lenses.

The high voltage lenses are modified gap lenses which

have a complex geometry (see Figure C.4). Their axial

potential distributions were modeled with VFIELD and

AXMATRIX and calculated cardinal elements are shown in

Figure C.16. The input and (e,e’) high voltage lenses are

identical and differ slightly from the (e,2e) high voltage

lenses.

The output Field Lenses are 3—aperture lenses. These
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lenses differ slightly for each beam arm. The differences

are noted and each set of cardinal elements plotted in

Figure C.17.

The first and second apertures and the energy slit are

made of 0.25 mm thick Mo stock. Molybcienum is used because

its oxide is also a metal. This limits the aberrations

that could result from even a small surface charge of such

tiny apertures.

The cardinal elements for the quad lenses, which

differ slightly in the (e,e') and (e,2e] arms, are shown in

Figure C.l8.

Figure C.19 is an approximate scale drawing of the

input lens column from the electron gun to the target. The

drawing includes the dimensions of the various pieces. A

similar drawing of the output arm from the target to the

EMT is shown in Figure C.20.
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APPENDIX D: SPECTROMETER SUBSYSTEMS

1. Vacuum system

The (e,2e) spectrometer is equipped with an ultra-high

vacuum system to provide a base pressure of 3 x 10-3

Torr. A schematic diagram of the vacuum system is shown in

Figure D.l. The vacuum jackets are constructed of

stainless steel and all materials inside the vacuum were

designed to meet the ultra-high vacuum requirements.

Standard Conflat flanges with Cu gaskets are used

throughout the system. The vacuum system has a volume of

approximately 65 L The chamber and beam arms can be

isolated by gate valves (Thermonics Laboratory, Inc., 2

inch Viton Sealed Gate Valve) so that samples can be

changed without cycling the electron gun and EMT to

atmosphere each time.

Rough pumping is done by two 40 { sorption pumps

(Thermonics Laboratory, Inc. model SP-ll). These pumps

are isolated from the main chamber by an ultra—high vacuum

shut off valve (Varian, model 951-5091). On occasion a

dry—vane vacuum pump (Gast Manufacturing Co., model 0522-

Vl03) has been employed.

The high vacuum is accomplished with 5 magnetic ion

pumps, a 200-{/s pump (Thermonics Laboratory, Inc.; pump

model IP—200, power supply model PS-1000) on the target

308
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chamber and a 25-{/s pump (Thermonics Laboratory, Inc.;

pump model IP-025, power supply model PS-150) on each of

the four beam arms. The large pump is configured so that

it can operate floating at the target chamber high voltage

once a good vacuum has been established. The input arm

pump is electrically isolated by a ceramic beam arm

insulator made by National Electrostatics Corporation.

To achieve the base pressure the system must be baked

out at ~ 200°C for 2-3 days after each time it is

opened to atmosphere. In general the vacuum turn around

time for opening the system is 4-5 days.

Pressure is monitored by measuring the current drawn

by the magnetic ion pumps; the ion pump is essentially a

large Penning type cold cathode gauge in which the current

drawn is a function of the pressure in the system. Since

the four small pumps are all connected to the same power

supply, only a pressure reading in the target chamber and

the average pressure in the arms are available. At times a

quadrupole residual gas analyzer (Spectrum Scientific,

Ltd., model SM 100) has been connected to the vacuum; this

has verified the pressures measured with the magnetic ion

pumps. _

In general, the pressure is quite stable in the low

10-9 Torr range. There is a slight rise in the

pressure as a function of the electron beam current.



311

2. Magnetic shielding

This section of Appendix D describes the magnetic

environment for the spectrometer, including the sources of

the magnetic fields, the types and designs of magnetic

shielding employed, and measurements of the effectiveness

of the shielding.

The magnetic fields to be shielded are almost

exclusively static fields. Three primary sources are the

earth’s magnetic field, fields from the permanent magnets

in the magnetic ion pumps, and stray fields due to

magnetized materials in the spectrometer. The earth‘s

field has an approximate strength of ~500 mG and a

declination of ~60° below the horizontal at a latitude

of 35° N [77]. The strong fields of the large permanent

magnets in the five magnetic ion pumps are localized and

are on the same order as the earth’s field along the beam

axes.

Stray magnetic fields due to magnetized parts of the

electron optics column provided some difficulty, since they

were hard to identify and in general were produced within

the mu-metal shielding. Care was taken to use non—magnetic

materials, e.g., Everdur, 304 stainless-steel, Cu, and Mo,

in construction of the optics parts. However, some

stain1ess—steel parts became magnetized and had to be
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replaced or de—magnetized. Other magnetized parts, i.e.

the gate valves and Ni leads of some vacuum feedthroughs,

were unable to be corrected.

. Magnetic shielding is accomplished with high

permeability mu-metal shields. Most of the electron optics

are surrounded by such shielding and critical areas have a

second layer within the vacuum chamber.

The target chamber is shielded by a mu-metal can that

fits tightly over the target vacuum chamber. This shield

is constructed of 1.6 mm thick mu-metal with an ideal

attenuation of ~700 (shielding efficiency ~55 dB)

[142] with overall dimensions of 36 cm diameter and 35 cm

height. The shield has a number of openings for vacuum

ports and is split in half horizontally to allow access to

the target chamber. This reduces the efficiency of the

shield, particularly for the vertical component of the

magnetic field. A Helmholtz coil (58 cm diameter)

concentric with the vertical axis of the target chamber is

used to buck the vertical field component.

The beam arms are surrounded by continuous cylindrical

mu-metal shields (15 cm diameter] that extend from the end

flange to just past the 25—£/s magnetic ion pumps. This

shielding is 1.6 mm thick and has an ideal attenuation of

~800 (shielding efficiency ~6O dB). There are

sections of O.25 mm thick mu-metal foil wrapped around the
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vacuum tube walls at the entrance to the small magnetic ion

pumps, on either side of the high voltage insulators

underneath the mu—metal rings, around the gate valves, and

at the beam arm entrances to the target chamber. These

foils have an ideal attenuation of ~250 (shielding

efficiency ~45 dB).

Continuous mu—metal shielding cannot extend across the

high voltage insulators. These sections were shielded with

a series of mu—metal rings (30.5 cm 0.D., 17.8 cm I.D., and

1.6 mm thick) which are spaced 1.9 cm apart and are mounted

on Plexiglass rods. These rings shield the components of

the field perpendicular to the beam axis by factors of 10

to 100. The parallel component is not shielded, but the

effect of this component on the electron beam trajectory

can be compensated for by the electron optics. The theory

of this shielding technique is described in Gibbons et

al [67].

Local magnetic shielding is added inside the vacuum

chamber at two critical locations on the output beam arms,

around the energy analyzer and at the entrance to the EMT.

The energy analyzer is particularly sensitive to magnetic

fields because the electrons are decelerated to much slower

velocities there than at any other point in the system.

The energy analyzer shield is a solid mu—metal cylinder
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(3.4 cm 1.0. and 1.6 mm thick) that fits closely over the

lens column. It is 12 cm long -— the energy analyzer is

8.5 cm long —— with an ideal attenuation of ~3500

(shielding efficiency of ~70 dB). The entrance to the

EMT is a critical region because the electrons are still

moving with low velocity and fringing fields due to the end

of the main beam arm shield are present. The EMT shield is

also a solid mu-metal cylinder (95 mm 1.0. and 1.6 mm

thick); it extends 11 cm from the entrance of the EMT with

an ideal attenuation of ~125OO (shielding efficiency

~80 dB).

All the external magnetic shielding was degaussed

in situ using a 60 Hz AC signal.

The magnetic shielding reduced the magnetic field in

the beam arms and target chamber by an overall factor of

approximately 100. Magnetic beam arm profiles (Figure 0.2)

show that the maximum fields were on the order of 70 mG and

that the rms field was about 10 mG. Using an impulse

approximation, the effect of small magnetic fields on the

electron path can be expressed as

-8 B 2 2y = -3.02 x 10 x (D.1)
where x is the distance of flight along the beam axis (in

cm), y is the perpendicular deflection distance, B is the

magnetic field (in Gauss), and V is the accelerating
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1

voltage of the electron (in kV). The approximate

trajectory of an electron along the beam axes is also

plotted.

3. Voltage distribution

Two high precision high voltage probes (Fluke model 80

F-15) are connected to a voltage bridge which measures the

voltage difference between the two probes as shown in the

schematic in Figure D.3a. The voltage measured acrossRmis

equal to one thousandth of the voltage difference
lHV+I — |HV_| with an accuracy of t 0.01%.

To achieve this high precision, the voltage bridge is

calibrated periodically. Calibration is performed by

measuring the voltage difference over a wide range with the

connected probes in different arrangements. With Probe #1

connected to HV+ and Probe #2 connected to l-lV_ analysis

of the equivalent circuit in Figure D.3b shows that the

meter voltage is

vm = IR = R2 I R1 R2 (D12)
By reversing the position of the HV probes, the measured

voltage is

V1; z R1 I R1 R2 (D13)
and
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Table D.1 High Voltage Probe Specifications

Fluke Model 8OF-15 High Voltage Pr0be°

Input voltage range 1-15 kV
Input resistance IOOMQ
Division ratio 1000:1
Ratio Accuracy #0.01% of input
Stability of ratio :0.001Z/month

:0.05%/year
Temperature coefficient 0.001%/°C
Voltage coefficient <:0.002Z

° John Fluke Manufacturing Company, Inc.
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vm + vr; - (HV, + HV_) · [SR · SR2 + 0(SR3)l (D.4)
where

EFI; = 1000 t <1% (D.5)
To avoid the necessity of reversing the probes during

operation, (Vm + VI;) was calibrated as a function of

Vm;

(Vm =· 0zVm + B (D.6)

where oc = 2000.1

B = -12.078 V

Finally,

1-lV+ + HV_ - 2000 Vm - 12.1 (0.7)

to within less than 1% (or .1 V if greater) uncertainty.

4. Pulse electronics

The purpose of the pulse electronics in our

spectrometer is to identify and record the coincidence

electron events. This section of the appendix describes

the pulse electronics in detail, tracing a pulse from the

electron multiplier to the MINC computer where it is

recorded as data. Details of the components are also

given. Refer to the text section on data acquisition for a

general description of the pulse electronics and to Figure

IV.1 for a block diagram of the system.

Electron detection is performed by a fast, linearly
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Table D.2 Power Supply Specifications

P¤~¤¢r Supply
V¤l¢¤¤¢Acoplan‘) Range: 0-600V Temp. Coeff.: 0.01Z/°C

Bertanm Rang: 0-1.5kV Max: l0mA egulatlon:0.00lZllne:0.001>!Ioad
6028-15P,N Max. lpple: 1SmV Stablllty: 0.011/hr:0.02>!/8hrs.

Temp. Coeff.: 50ppm/°C
Bertanm Ranläe: 0-3kV Max.: 2mA same as 6028-15
6028-5P,N Max. pple: 30mV
Bertanm Ranäe: 0-15kV Max: 0.6mA same as 6028-15
6028-ISOPN Max. pple: 150mV

CPS‘°) Range:0·30kV Max: 1mA egulatlon:0.001Zllne:0.001Zload
100PA,100NA Max. Rapple: 150mV Stabillty:0.005Z/hr:0.0lZ/8hrs.

Repeatablllty: 0.05z
Temp. Coeff.: 25ppm/°C

Hewlett-Packardw Range:0-100V Range:0-100mA Regulatlon:4mV,500uAllne
6212A Max.Ripple:200pVm• Max.Rlpple:1S0pAm 8mV,S00pAload

Stablllty:Voltage 0.1Z/Bhra.
Current-1.3mA/Bhrs.

emp. Coeff.: Voltage-0.02%/'C
Current—0.5mA/°C

Hewlett-Packardw Range:0-1.6kV Max:5mA ' egulatlon:0.001Zllne:0.00IZlo•d
6516A Max lpple: 5mV $tablllty:0.05t/Bhra.

. Temp.Coeff.: 0.02%/°C

Heater Supplym Range=0-10V Range:0-10A
Hybrid Voltage- Range:0-200V Range: 0-3A
Current Supplyw

Soräälgeäng) Range:0-40V Range: 0-800mA

(a)Acopian Corporation ml-lewlett—Packard Company
(b)8•rtan Associates, Inc. (')VPI Electronics Shop
(c)CPS, Inc.
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focused, discrete-dynode electron multiplier (EMI Gencom,

model D233). The electron multiplier is housed in a glass

envelope which is attached by a glass-t0—meta1 adapter to a

standard (3.4cm 0.D.] Conflat flange at the end of the

beam arm vacuum jacket. The electron multiplier tube (EMT]

has 14 BeCu0 dynodes that operate at a maximum of 4 kV

anode—to-cathode voltage with a typlcal gain of 2 x 106.

The detection efficiency is rated at 90-100% for electrons

of energy of 300 to 500 eV [156]. This is the typical

energy of the electrons reaching the EMT. The anode pulse

typically has a width of 4 nsec (FWHM) with a rise time of

2.5 nsec.

The signal from the EMT goes to a preamp (EMI Gencom,

model VA.02] through a high voltage decoupling capacitor

[189]. The preamp uses an integrated circuit amplifier

(LeCroy Research Systems, model VVIOOB) with a gain of 10.

Pulses from the preamp have a typical width of 2 nsec and a

rise time of 0.7 nsec. A schematic of the EMT circuitry is

shown in Figure 13.8.

The signal pulse from each preamp goes to a

discriminator (Canaberra, model 1428A] operating in the

constant fraction timing mode. The discriminator level is

adjusted to slightly above the background level, so that

the singles scalar rate is negligible when the beam is

deflected out of the beam path. The discriminator produces
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a negative—going pulse with a rise time of <3 nsec and a

pulse width of 20 nsec nominal that is used to trigger the

TDC. The discriminator also produces two independent

y positive-going pulses with rise times of <10 nsec that

drive the scalars and rate meters. This positive pulse has

a width of ~ ??? nsec, which determines the dead time o_f

the discriminator following a given pulse.

Each discriminator is connected to a 32-bit scalar

(Kinetic Systems, model 3640) which records the singles

count for each arm. Each discriminator is also connected

to an analog ratemeter (TENNELEC, model TC 525). The rate

meters are used primarily for tuning the spectrometer’s

electron optics to a maximum transmission level.

Coincidence detection is performed by a time-to-

digital converter (LeCroy Research Systems, CAMAC model

2228A). The signal from one discriminator acts as a start

pulse for the TDC. The TDC waits up to 128 nsec to receive

a stop pulse from the second discriminator. The signal

from the second discriminator passes through a variable

delay box (VPI Physics Electronics Shop) before it reaches

the TDC. The signal is delayed approximately 25 nsec to

minimize false stop pulses and to compensate for internal

delays in the TDC. If a stop pulse is received, the TDC

records a potential coincidence event by transferring to

the MINC computer a digital number which is proportional to
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the time between signals. The TDC is set to a full scale

range of 128 nsec with a time resolution of 250

psec/channel. There are 512 TDC channels. The conversion

time of the TDC is Ä 30 iisec, which determines the

dead time of the TDC. Using the signal from the arm with

the lower single scalar rate as the start pulse will

increase the coincidence rate by reducing the dead time in

the pulse electronics.

The TDC and scalars interface to the MINC by standard

CAMAC hardware. Data is transferred via a CAMAC crate

controller (Interface Standard, model IS—11/CC) to the LSI

l1—based MINC using standard CAMAC commands. The transfer

takes ~30 msec to execute. The data transfer accounts

for the limiting dead time of the pulse electronics system.

Some data is lost as the rate of the TDC start pulse

exceeds ~3 kl-iz and at ~32 kl-lz the transfer becomes

inoperable.



APPENDIX E: DATA ACQUISITION SOFTWARE

The program PHYS provides the real—time control of the

spectrometer during (e,2e) data acquisition. performs the

initial data reduction, and displays a listing and graphics

of the data [43]. PHYS is an RS—l1 FORTRAN program with a

number of machine code subroutines. Standard CAMAC

commands and MINC lab module subroutines facilitate the

control of peripheral devices. The process of real—time

data acquisition is described in the main text section on

data acquisition. This appendix details the software,

data files, data reduction, and merging algorithms, and the

error analysis associated with count rates. A flow chart

of the (e,2e] data acquisition software is shown in Figure

E.l.

Data are collected by the MINC at each (E,q] point;

the range of (E,q) points defines an (EI,q) space over

which data is collected. PHYS directs the MINC to sample

each (E,q] point in a random order that eventually

samples all of the (EI,q) space. After a specified

number of sweeps through (E,q) space, the time

coincidence spectrum for each (EI,q) point undergoes a

data reduction process and a SUMMARY data file is created.

Only four numbers per (E,q) point are stored in the

summary file; the total counts in the coincidence—plus—

Figure E.l Flowchart of data acquisitiori software.
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background time window, the total counts from the

background time window, and the total scalar counts from

each beam arm. The significance of the time windows is

discussed in the main text section on data analysis. The

software allows the user to set the ranges of these time

windows before data collection has begun. Typically, the

coincidence—plus—background window is 5 nsec (20 TDC

channels) and the background window is 50 nsec (200 TDC

channels).

PHYS allows the user to graphically display the time

coincidence spectrum of each (E,q) point during the data

collection process. Once a SUMMARY data file is created

the coincidence-minus—background count at each (E.,q)

point can be listed. .

The program TOTAL2 combines data from one or more

SUMMARY files, together with a listing of Pl-IYS control

parameters and annotations, into a TOTALS data file [42).

This data file is in a form that can easily be printed.

read by other FORTRAN programs, and transferred to the main

frame computer. The TOTALS data file contains a listing of

the data from each SUMMARY data file which includes the

energy, momentum, coincidence-plus—background window count,

background window count, and scalars counts for each

(E,q) point. A summation over all SUMMARY files

combined of the four counts at each (EI,q) point is also
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included in the data file.

The TOTALS data files are transferred to the VPI

mainframe computers, a DEC VAX 11/780 and an IBM 370, for

· further analysis. Elaborate data transfer packages are

used which check the transferred data byte by byte, using

appropriate handshaking and transmission error detection

[46].

There are several related real—time command programs

that control operation of the spectrometer while it

performs auxiliary functions. This section briefly

outlines the most important of these programs [45].

PHYS is designed to operate in two modes, the

coincidence mode described above and the pulse mode. In

the pulse mode, PHYS scans an (E,q] space just as

detailed in the text section on (e,2e] data acquisition.

However, only the scalar count output for one channel is

monitored; there is no coincidence detection. The mode is

designed primarily for use in [e,e'] data acquisition when

our spectrometer acts as an EELS instrument.

QSWEEP is used to collect scalar count data over a

range of momenta at a fixed energy value. Momentum

selection is performed in sequential order over the range;

only one sweep of the momenta is made. The collected data

can be displayed graphically by the MINC or it can be
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stored in a data file, transferred to the mainframe

computer, and plotted and listed by EOPLOT. OSWEEP is used

prlmarlly as an aid ln measurlng the momentum callbratlon

factor (see Appendix C.3) and in aligning the spectrometer.

ESWEEP is used to collect scalar count data over a

range of binding energy at a fixed momentum value. ESWEEZP

is similar to QSWEZEP in operation and data display. The

program is used to collect (e,e') data. It also looks at

wide angle inelastic scattering in the (e,2e] arms which is

used to measure the resolution of the energy analyzer.

ZEROMD is used to set the momentum and energy

analyzers to zero.



APPENDIX F. DATA ANALYSIS SOFTWARE

1. Data merging

The program EQPLOT analyzes the data stored in the

TOTALS data files by the MINC computer. EQPLOT uses the

four measured counts, coincidence-plus-background,

background, and the two scalars rates, to combine one or

more TOTALS data files into a single array of the

coincidence count rate over (E,q) space. The program

also calculates the random error associated with the

coincidence count rate at each (E,q) point.

EQPLOT establishes an (EI,q] array that covers a

range of energy and momentum large enough to incorporate

all of the TOTALS data to be combined. The data is merged

into this array one SUMMARY data file at a time. After the

data from each SUMMARY file is read into EQPLOT, a check is

made for suspect data points that may represent glitches in

the data collection process. A comparison is made between

the scalar (background) count at each (E,q) point and

the average scalar (background) count for the entire

summary file. Data not within tolerance (typically

x 10%) can be rejected as invalid data.

334
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The background count at each valid data point is

subtracted from the coincidence-plus—background count using

the technique described in Section V. This coincidence

count data is incorporated into two arrays. One array,

CTOT(I,J), contains the total number of actual coincidence

counts from all of the combined SUMMARY files at each

(EI,q) point. Note that I and J are the energy and

momentum indices of the (E,q) point, respectively.

The second array, CNORM(I,J], that utilizes the

coincidence count data is a merged, normalized coincidence

count rate. This array is designed to merge data file

collected over different subspaces of (E,q) space for

varying time periods in such a way as to minimize errors

and accurately weight the contribution of each SUMMARY data

file to the complete data set. Data is often taken in

several subsets that cover different regions of (E,q)

space. Each subset, or TOTALS data file, overlaps adjacent

data subspaces; this overlap region plays a key role in

merging the data.

One column of the overlap region, with momentum index

J=JMERG, is designated as the merging column. All (E,q)

points with J=JMERG and that have both old and new data

comprise the merging region. NRMNEW is the sum of the

coincidence counts in the merging region for the new data,

i.e. the SUMMARY data file which is being merged. NRMOLD
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i.e. the SUMMARY data file which is being merged. NRMOLD

is the sum of the CNORM(I,J) values in the merging region

based on only the old data which has been previously

merged. Figure F.1 illustrates the data regions in

(E,q) space used in the merging procedure.

The merged coincidence count is equal to the total

coincidence count times a scaling factor, R21. The

merged coincidence counts are scaled so that counts at

different (E.,q) points sampled for varying lengths of

time can be compared directly. The total coincidence count

and scaling factor are used to calculate new, merged

coincidence counts and the error associated with those

counts. The program EQPLOT uses the following algorithm to

calculate a value for the merged data at each (E,q)

point,

• COINA(I,J) ; only old data
• COINB(I,J) ; only new data

· [COINA(I,.I) ·•· COINBÄLJJ]
; both old and new data

O ; no data

(F.1)

1) At (E,q) points where there is only old data

(unshaded part of Region A in Figure F.1) the mergedvalue

is equal to the total coincidence count of the old data,

COIN^(I,J),times a weighting factor. The weighting
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Figure F.l: Diagram of data regions in (E,q) space
used in the merging procedure.

This is a diagram of the (E,q) data regions used in
merging a new SUMMARY data file (Region B) with other data
that has already been merged into the (E,q) array
(Region A). The overlap region where there is both old and
new data is shown shaded. The merging column is indicated
and the (E2.q) points in the merging region are denoted
by x.
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factor equals the inverse of NRMOLD divided by R.

2) At (E,q) points where there is only new clata

(unshaded part of Region B in Figure F.l) the merged value

is’equal to the coincidence count of the new data,

COINB(I,J), times a weighting factor. The weighting

factor equals the inverse of NRMNEW.

3) At (E,q) points where there are both old and

new data (shaded overlap region in Figure F.1) the merged

value is equal to the sum of the old and new coincidence

counts times a weighting factor. The weighting factor

equals the inverse of the sum of NRMOLD divided by R plus

NRNEW.

4) At (E,q) points where there is no data (outside

Region A union Region B in Figure F.l) the merged value is

equal to zero.

The scaling factor R is equal to the ratio of the

normalized data CNORM(I,J) to the total number of counts

COIN^(I,J). If, by chance, COINA(I,J) equals zero, R

is calculatecl using the sums of CNORM and COINA over all

energies for their momentum. In the unlilcely event that

this sum of COINA is zero, R is arbitrarily set to one.

Finally, the merged counts are normalized such that

the total coincidence rate over all(E,q) space sums to

unity. It is this merged, normalized coincidence rate

array, CNORM(I,J), that is used for all further data
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analysis.

The standard deviations for the raw (e,2e) data, i.e.

the coincldence—plus-background, the background, and the

two scalar counts for each (E,q) point from each SUMMARY

file, are the square root of the counts. This follows from

the assumption that these counts follow a Poisson

distribution. The relative error in the raw data is the

reciprocal of the square root of the counts.

The error for the individual coincidence count for

each (E,q] point from each SUMMARY file is equal to the

error of the raw coincidence-plus—background count plus the

error in the raw background count divided by r added in

quadrature,

A(Coin) = {[A(Coin—plus-Back)]2 + [A(Back)/r]2}1/2 (F.2]

where r is the ratio of the coincidence—plus—background ·

time window to the background time window (see Section V).

The error in the total coincidence counts at each (EI,q)

point is the sum of the errors of the coincidence count for

each SUMMARY file added in quadrature. Thus, the standard

deviation in the total coincidence count is given by

c N l 1 1/2
ccm]- · {I-§1[I(C0in—plus—back)r]I + • I(Back)nl] }

(rs)
where the sums are over N SUMMARY files.
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If we assume that R is exact and that the error in
NRMOLD and NRMNEW are small compared with the errors in the

total coincidence counts at each (E,q) point (i.e.,

there are a large number of points in the merging column
summed to obtain NRMOLD and NRMNEW], the relative error in

the merged, normalized array is equal to the relative error

in the total coincidence count. The relative error of the
merged, normalized coincidence rate, CNORM, is

N l 1 1/2
{ E [l(Co1n—plus—back)nl + 7 • I(Back)nI] }A(c1~1ox2MJ = n=1 V

CNORM N 1r§l[i(Co1n—plus—Back)n — 7 • (Back)n]

FF.4)
If there is a relative systematic error in the measured

count rates AS, then the error in CNORM is

N
ACNORM = {EQE + Ai] (Coin-plus-Backläl-I

1/2
+ + Ai) (Back)ä]} (F.5)

The errors in the total background count and scalar
_ counts are equal to the square root of the total counts.

2. Deconvolution techniques

The problem of deconvoluting the instrumental

broadening and multiple scattering from the measured (e,2e)

data was formally solved in Section II.B4. However, the
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problem of how best to carry out the numerical inversion of

Equation 11.54 was left to this appendix. Many possible

approaches exist.

One approach is the Fourier transform method. Taking

the Fourier transform of equation 11.52 it follows from the

convolution theorem that

A(t,x) = M(t,x) · ff(t,x) (2102 (F.6)

where A and M are the Fourier transfc·rms of R and

TR, respectively. In theor·y, this can be immediately

inverted to find M; the inverse Fourier transform of

M is $1, which is the function sought. In reality the

problem is not this simple for several reasons [31]:

1) Including random noise errors in the measurements,

described by N(EU,kU), requires that Equation 11.54

must be rewritten as

R(E.U,kU] = 17% GJ T + N(EÜ,kU) (F.7)

Since N is not known, one must solve the now approximate

Equation 11.54, neglecting the random noise. This problem

can be alleviated somewhat by using smoothing procedures to

improve the quality of the measured cross section, R.

In practice, this smoothing can be accomplished by clipping

the high—frequency components of the function A before

taking the inverse Fourier transform to find R; this

results in R being evaluated at wider intervals in
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energy—momentum space.

2) Deconvolution does not yield a unique solution,

since any function M(EIU,kÜ), whose convolution with

the smearing function is either exactly or approximately

zero, can be added to ER without greatly affecting its

convolution with 3°. Random high—frequency noise [87],

for example, satisfies the condition on M. Again, clipping

the high—frequency components of A can help alleviate

this problem.

3) In general, we do not take data over all

dimensions of energy—momentum space. This does not present

a serious problem as long as R does not vary

appreciably in these unmeasured dimensions over the width

of the smearing function, or simply that the experimental

resolution is sufficient to see the important features in

R. In essence, this results formally in approximating

the dependence of 3 on these unmeasured dimensions by a

delta function when performing the Fourier transform to

calculate M; this results in a factor of

in M for each such dimension. This
is of course an approximation, and does introduce unknown

errors into the calculation.

4) The measurecl data does not extencl over an infinite

range of energy or momentum. Formally, 52 is equivalent

to convoluting a hypothetical function extending the
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measured data to infinity ${00 with two rectangular

functions limiting the range of ${00

0 ${ ~ ${00 ® rect (emwemaxl ® rect (qmhvqmax) (F.8)

Then the Fourier transform of ${ is

A ~ A00 • sinc(t) · sinc (x) (F.9)

that is the Fourier transform of the extended data

broadened by two sine functions.

As the range of data is extended, the "width" of the

sinc functions decrease, however so does the spacing of the

points in Fourier space. Beyond the nth point away from a

given point in Fourier space, the sinc function associated

with the given point is nearly zero. By considering only

every nth point of A, the broadening is minimized. If

A is then calculated using only every nth point of A,

then R will extend over one nth of the range of ${.

However, if SR is artificially extended in energy and

momentum space to a function ${0:, which is n times

as wide as ${, A is calculated from Reif, and

A is then calculated at every nth point, then the

Fourier transform of A, R, will extend_over the full

range of measured data.

It is relatively straightforward to extend the

measured data. Beyond a certain point in momentum space
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the (e,2e) form factor goes monotonically and quickly to

zero. Beyond the measured data, 3 can be extended

smoothly to zero by splicing an error function to the last

measured momentum data point. Likewise, above the Fermi

energy the count rate fall to zero and an error function

can be splicedn to the last measured energy data point

[180]. At high binding energy the ideal 3 should fall

to zero, however the count rate is held at an approximately

constant level rate by multiple scattering for at least the

width of the first plasmon peak beyond the last true [e,2e]

band. An error function of the width of the plasmon peak

width is a reasonable approximation to the extension of

3 in this direction.

This technique is crude and has the potential for

disastrous results. It introduces unknown errors into the

value of R and can diverge unpredictably byamplifyingnoise

in the data. However, it is numerically simple to

perform. It has been used with good results on a-C data as

described in reference 144.

Another, more conservative, deconvolution technique is

the van Cittert iterative method [169]. We have made use

of the variation of this method described by Wertheim which

incorporates a smoothing of the data into the iterative

process [181]. Application of this method to (e,2e]

spectroscopy is described in Reference 90 where examples of
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its application are shown. This technique has the same

pitfalls as noted for the Fourier transform method and also

has a problem with divergence of solution and introduces

unknown errors into the value of R This is the

deconvolution method used for the data described in Section

XIII.

Another method of deconvolution, a hybrid Fourier

Transform technique has been developed by Rick Jones and

is in the process of being implemented. This technique

offers the potential to keep track of the errors introduced

by the deconvolution.



APPENDIX G= DATA COLLECTION PROCEDURES

Careful planning and the proper order of data

collection greatly facilitates the execution of an

experiment. The following section provides a suggested

order of collecting the necessary data. This includes a

logical sequence for determining the parameters listed in

Tables VIII.1 and VIII.2. First, however, it is important

to know what range of parameters is acceptable by

researching the literature. Useful studies include the

band structure, density of states, electron momentum

density, angle resolved PES spectra, plasmon energies, and

mean free paths.

Once the spectrometer is tuned in the elastic mode on

the sample, a series of measurement should be taken to

characterize the sample and tune conditions. The tune

conditions should be recorded. The Fluke probe calibration

should be checked and the probe carefully monitored

throughout the experiment. The sample thickness can be

measured with ESWEEP using the (e,e‘) arm. The sample

orientation and the momentum calibration factor and offset

are determined from QSWEEP data from the (e,e’)
arm.

ESWEEP data extending beyond at least the first two plasmon

346
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peaks and on both sides of the zero loss peak should be

taken for both (e,2e] arms. This data provides information

on the target thickness, the energy resolution and the

Wien filter offset voltages. OSWEEP data should be taken

over the full range of momenta for a number of fixed

binding energies for both (e,2e) arms. This data

determines the extent of the systematic error in the count

ra.tes as a function of momentum.

The spectrometer should next be tuned to the inelastic

mode. The existence of coincidence counts should be

established first. This is done by taking data at only a

few points over a range of binding energies at zero

momentum. Once this is confirmed a finer energy grid of

data at q = 0 can be used to determine an approximate Fermi

level. Next a set of data at several widely spaced momenta

should be taken to determine the momentum offset and the

extent of the data in momentum—space. A final scan at the

true momentum zero over a wide range of energy is used to

better define EF and to establish the lower limit of

data. These measurements define a region of interest in

(E,q] space. It extends in energy from approximately one

plasmon energy above the Fermi level to about one and a

half times the plasmon energy below the bottom of the

valence band. In the momentum direction, it extends

approximately one FW}-IM of the momentum resolution beyond
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where the cross section falls to zero.

It is best to first take a set of coarse data over

this entire region of interest. This confirms the extent

of the region of interest and provides a framework for

merging the finer data. The finer grid data should be

taken in sets that take approximately 3-6 hours to sample

once. It is crucial that all (E,q) points in the region of

interest be sampled and that each scan overlap the initial

course grid at at least one momentum value which can be

used to merge the data. The final (e,2e) data set should

repeat the first coarse data set to provide a check for

sample degradation and systematic errors. Finally, ESWEEP

and QSWEEIP data should be repeated.
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Preparation of Thin Graphite Samples

I. Extracting Graphite from surrounding rock

T A. Choose large, flat crystals with little
twinning.

B. Remove excess rock with pliers or a hammer
and chisel.

C. Dissolve the remaining rock in concentrated
hydrofloric acid in a wax—lined glass
beaker.

D. Rinse the crystals in distilled water.

I1. "Standard Scotch—tape method" of cleaving

A. Choose a large crystal (Ä 3 cm2
surface area) with a smooth surface. If
necessary, the crystal can be cleaved with a

‘ razor blade. Do not try to polish the
crystaL

B. Mount the crystal on a piece of cellophane
tape with the smooth surface towards the
adhesive. Note that cheap cellophane tape
(as opposed to Scotch—brand tape) must be
used, since it only has toluene soluble

adhesive.C.

Cleave with another piece of tape. The
freshly cleaved surfaces facing up are the
best surfaces to continue working with.

D. The goal_ is to continue cleaving the sample
with successive applications of tape until
you get a large (~ 1 mm2) uniform area
that you can see through. Holding the tape
up to a light or over a light table is a
good way to see the thin spots.

E. Patience is the most important ingredient.
Alternating directions in which the graphite
is peeled improves the chances for thin
samples. The tape can be applied lightly to
remove small graphite flakes and to smooth
the crystal surface.
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III. Removing the tape.

A. Once you have a thinned sample, place it
adhesive face down on e microscope slide.
Remove the excess tape and graphite with a
razor blade. A rectangular piece of tape
twice the size of the thin area should be
left. This facilitates removal of the
sample from the microscope slide and
subsequent handling. In this state, the
sample can be more closely examined or
stored with less likelihood of damage.

B. Fill a glass petri dish with approximately l
cm of toluene. Remove the sample from the
microscope slide and place it tape face down
in the petri dish. Cover the dish and wait
until the adhesive dissolves, typically 4-6
hours. It is best to have only one sample
in a dish because the mounting process will
tend to break other samples in the dish.

IV. Mounting the sample

A. This is the most delicate operation; do it
carefully. Using tweezers, gently lower a
sample holder into the toluene. Reise the
sample by holding the tape and turn it over
onto the sample holder, taking care not to
break the surface. If you are lucky, the
sample will be properly mounted and the tape
can be lifted off.

B. If the sample stays on the tape slowly raise
the tape out of the liquid allowing surface
tension to separate the film. Move the

. holder under the target and align the hole
with the thin spot. Raise the holder
straight out of the dish. It is best
to use two pairs of tweezers.

C. Once the sample has been removed from the
liquid it must be dried. It is best to
place the holder on clean absorbent paper at
an angle with one edge resting on a
microscope slide. The hole should be
positioned so that it is not in contact with
the paper or slide.
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D. After the sample has dried, it should be
placed on a slide or in a container. Air
currents caused by movement can break the
sample.






