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(ABSTRACT)

An (e,2e) electron scattering spectrometer has been
constructed and used for the first time to investigate the
spectral momentum density of the valence bands of a solid
target. This technique provides fundamental information
about the electronic structure of both crystalline and
amorphous solids. The three fundamental quantities, the
band structure, electron density of states, and electron
momentum distribution can be simultaneously derived from
the measured (e,2e) cross section.

A review of single electron and (e,2e) scattering
theory is given with an emphasis on scattering from solids.
The effects of multiple scattering are discussed and a
method of deconvoluting those effects from the m(easured
(e.2e) cross section is developed.

There is a detailed description of the spectrometer

design and operation with particular attention given to the



electron optics and voltage distribution. The algorithms
and software for computer aided data acquisition and
analysis are also outlined, as {s error analysis.

The techniques employed in the preparation and
characterization of extremely thin film samples of a-C and
single crystal graphite are described.

An analysis of the data taken for a-C samples is
given. The data are compared with the results of
complementary experiments and theory for graphite, diamond,
and a-C which are given in a review of the literature. The
existence of a definite dispersion relation &(q) in
amorphous carbon is demonstrated. The a-C band structure
appears to be more similar to that of graphite than to that
of diamond, however it differs significantly from both in
some respects. The measured spectral momentum density
seems compatible with a model of a-C based on small,
randomly-oriented islands of quasi-2D graphite-like
continuous random network structures. However, no
definitive interpretations can be made until higher
resolution experiments are performed on both a-C and single

crystal graphite.
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I. INTRODUCTION

This dissertation presents the design and application
of an (e,2e) electron spectrometer for the investigation of
the electronic properties of solids. Application of this
technique is new to the field of solid state physics. It
is able to provide fundamental information about both
crystalline and amorphous solids by directly measuring the
spectral momentum density of valence electrons. The
spectral momentum density is the probability per unit
energy and unit volume of momentum space of finding an
electron in a system with an energy € and momentum gq.
This fundamental quantity can be shown to be directly
related to the square of the momentum wave function of an
electron bound in the solid by making some familiar
approximations, namely the impulse, plane wave, and
independent electron approximations. It is also closely
related to three basic properties of solids, the band
structure, density of states, and electron momentum
density.

The concept of using (e,2e) scattering to investigate
the spectral momentum density was first suggested in the
early 1960's by nuclear theorists who saw a direct analogy

with (p,2p) scattering in nuclear physics [10, 68, 102,



155]. The first (e,2e) spectra were observed by Amaldi et
al in 1969 [3]. Several of the earliest (e,2e) experiments
attempted to measure spectra from thin solid films [3, 30,
99, 100], however these efforts were not successful in
resolving the valence bands in solids. The initial
attempts at solid scattering were plagued by poor energy
resolution and severe problems with target degradation.
Several groups have recently begun new programs in this
field [175, 185, 63], however the only successful
experiments to date have been performed at VPI [144].
Studies of gaseous atomic and molecular systems have
been much more successful. The technique has become well
established and is now being extended to more complicated
atomic and molecular systems. Active groups are in
Australia [Weigold and McCarthy; 85, 109, 115, 177], Italy
[Guidoni; 29, 30, 159], British Columbia [Brion], and the
University of Maryland [Coplan and Moore; 117]. A
particularly impressive experiment on atomic H recently
found excellent agreement between the (e,2e) cross section
and exact quantum mechanical calculations of the hydrogen
momentum wave function [109]. Reviews of recent
experiments and theory of (e,2e) gas scattering are given
by Weigold and McCarthy [114, 175, 177]. These gas

experiments provide a good example for the development of



(e,2e) solid scattering. Many of the theoretical concepts
and experimental techniques described in this dissertation
have come directly from such analogy.

Measurements of (e,2e) spectra of solids contain a
wealth of information. Direct comparison can be made

between theoretical calculations of the square of the

momentum wave function I¢(q;8)|2 and the count
rate N(6,q) as a function of binding energy and
momentum. In addition, comparisons can be made with three
fundamental quantities that can be derived from the
measured count rate. A projection of the N(&,q)
peaks onto the (&,q) plane yields the dispersion
curve €&€(q). Summation of the count rate over all
momenta is directly related to the energy density of states
N(&). Summation over all binding energies can be
directly related to the electron momentum density J(q).
Further, the simultaneous determination of the band
structure allows the possibility of calculating N(€) and
J(q) separately for each band. The prospect of
simultaneously obtaining the band structure, density of
states and momentum density from one sample is indeed
exciting, however the most important contribution of (e,2e)
spectroscopy may prove to be the comparison with

theoretical calculations of the fundamental quantity

lo ()2



Several techniques exist which measure various
integrals of the spectral momentum density. These
techniques provide important verification of (e,2e)
measurements. Measurements of the electron binding

energies through the density of states

N(&§) ~ [N(&,q9q) dq can be obtained, for
example, by photoelectron spectroscopy (UPS and XPS).
However, no momentum information is available. Angle-
resolved photoelectron spectroscopy (ARPES) can in
principle provide some momentum information. However, the
theoretical understanding of this reaction is insufficient
to quantitatively relate the intensity from the angle-
resolved spectra to the spectral momentum density.
Instead, the technique can be used to map the dispersion

relation &(q). The electron momentum density

J(q) ~ [N(&,q)dé can be studied by several
techniques including positron annihilation, x ray and vy
ray Compton scattering, and high energy inelastic electron
scattering. In general, these techniques measure J(q)
integrated over one or two momentum directions. A more
detailed review of these techniques and their relqtion to
(e,2e) spectroscopy is given by McCarthy and Weigold [114].

An (e,2e) experiment can be defined as an electron

ionization experiment in which the kinematics of all of the



electrons is fully determined. The mechanics of (e,2e)
scattering is conceptually straightforward. The reaction
can be viewed as a "billiard ball” experiment at the
energies typical of our spectrometer. A high-energy
electron of energy E; (typically 25 keV) and momentum
Py incident on the sample scatters from an electron in

the target and ejects this electron from the target. Those
events in which the scattered and ejected electrons leave
the target with equal energy are detected by coincidence
techniques. The precollision binding energy & = Eg-

E, - E

s and momentum h q = P

e s * Po - Py

of the target electron can be determined from the energies

and momenta of the two scattered electrons E P

s s

and E,, P,.

This is illustrated schematically 1n
Figure I.1.

Qur spectrometer consists of an input arm and two
output arms positioned at 45° with respect to the
incident beam. The input arm contains an electron gun and
electron optics to focus the beam onto a thin film target
mounted in the target chamber. The two output (e,2e) arms
(referred to as A and B) have complimentary electron optics
which focus the scattered beam into a Wien filter energy
analyzer. Momentum selection is accomplished by a set cf

limiting apertures and electrostatic deflectors which vary

the beam angle on the target. Electrons with the proper
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Figure 1.1 Schematic representation of (e,2e)
scattering.



energy and momentum are detected by electron multipliers
and the signals are processed by counting and coincidence
electronics.

The spectrometer operates in two modes referred to as
the elastic and inelastic modes. Elastically scattered
electrons are detected in the elastic mode by holding the
(e,2e) arms at the same potential as the input arm. The
(e,2e) arms are held at half the input potential in the
inelastic mode, therefore the kinetic energy of the
detected electrons is approximately half the energy of the
incident beam. (e,2e) events are coincidence events
measured in the inelastic mode.

Another feature of our spectrometer is a similar
output beam arm which is collinear with the input beam arm
that provides the capacity to study small-angle electiron
scattering. This arm is referred to as the (e,e') arm.
The spectrometer can function as a high energy electron
diffraction (HEED) instrument by measuring small-angle
elastically scattered electrons over a range of angles with
the (e,e') arm. Electron energy loss spectroscopy (EELS)
can be performed by analyzing the energy loss of small-
angle inelastically scattered electrons. These features
provide important calibration of the spectrometer and can

be used to quickly characterize a sample before attempting



the more difficult and time-consuming (e,2e) experiment.
This dissertation can be divided into three major
topics. A review of single electron and (e,2e) scattering
theory with an emphasis on scattering from solids is given
in Section II. The effects of multiple scattering are
discussed and a method of deconvoluting these effects from
the measured (e,2e) cross section is developed. Next,
there is a detailed description of our spectrometer design
and operation with particular attention given to the
electron optics and voltage distribution. The algorithms
and software for computer aided data acquisition and
analysis are also outlined, as is error analysis. The
techniques employed in the preparation and characterization
of extremely thin film samples of a-C and graphite are
described. Finally, the data taken for a-C samples are
shown and are compared with the results of complimentary
experiments and theory for graphite, diamond, and a-C.
Some conclusions are drawn regarding amorphous solids and

a-C in particular.



II. THEORY OF (e,2e) SCATTERING

There are three important electron scattering
processes that are pertinent to (e,2e) spectroscopy which
are referred to as elastic, inelastic, and (e,2¢)
scattering. Inelastic scattering can actually be divided
into two regimes, small-angle and large~-angle inelastic
scattering. The types of scattering are distinguished by
the different physical phenomena that are responsible for
them. Each of these cross sections can be determined
independently by the spectirometer. (e,2e) scattering is
actually an inelastic scattering reaction where the
kinematics of both the incident and target electrons are
fully determined. The measured (e,2e) count rate
includes contributions from the true (e,2e) cross section
and all other kinematically allowed multiple scattering
events. Elastic and inelastic measurements are used to
characterize the samples, to calibrate the machine, and
in the correction for multiple scattering.

The theory section discusses the physical origins,
kinematics, and cross sections of each of these processes
and relates them to (e,2e) theory and the operation of our
spectrometer. A detailed analysis of the (e,2e) cross

section and the approximations involved in its derivation
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follows. Some specific examples are used to illustrate the
information available from the (e,2e) process. Finally, a
theory of multiple scattering is derived and relates the

measured cross section to the true (e,2e) cross section.

A. Summary of single electron scattering theory

Elastic scattering is characterized by no energy loss
for an incident electron upon scattering. At small angles
elastic scattering is primarily a result of coherent Bragg
scattering. However, at large angles the diffraction cross
section is almost featureless and incoherent scattering
becomes dominant. The fundamental process involved in
incoherent scattering is Rutherford scattering from the
nuclei of the target.

The kinematics of elastic scattering is illustrated
in Figure II.l. In incoherent scattering, an incident
electron with high energy E; and momentum Py is
scattered from a nucleus with final energy Eg; and
momentum Pg. A recoil momentum P, and a small
energy E, are imparted to the nucleus. If the nuclei are
considered stationary, approximating M>>m,, then
E,#0 and we are left with Rutherford scattering.

In the Born approximation the cross-section for
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Rutherford scattering in the lab frame is given by

do(e.o)] (ezmz] [ r. sin(2 ]]
(#F L)1 o

where Z is the atomic number. In atomic units

L' do(e $) - [%)2 [%‘l sin(%) ]-4 (I1.1a)

R

measured in square Bohr radii.

The count rate is related to the cross-section by

[pm] [$& ] AQ (I1.2)

where Iy is the incident charge current, p, t and A are
the target mass density, thickness and atomic weight, Ag
is Avagadro's number, and AQ is the solid angle of the
detector. For the 45° arms the solid angle can be

related to the momentum resolution

AP
1 2 .
& Q ~ 3 6y ~ (p"

(I1.3)

The elastic count rate then is proportional to the incident
current and the target thickness and to the square of the
momentum resolution divided by the sixth power of incident
momentum. The count rate is independent of azimuthal angle
¢ and depends on the polar angle ©® through the Rutherford

cross section as illustrated in Figure II.2. For a typical
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experiment with a 100 A thick a-C film the count rate at

in the 45° arms is approximately 60 Mhz (see Table
VII.1).

In small-angle inelastic scattering, a small momentum
coupled with an energy loss is transferred to the target.
The kinematics are identical to elastic scattering except
that the energy loss is not necessarily zero. Potentially,
there are numerous physical processes involved including
bulk and surface plasmon creation, intra- and inter-band
transitions, atomic excitations, ionizations, thermal
diffuse scattering, and radiative losses which occur when
the electron enters and leaves the sample. Detailed
calculations of the total small-angle inelastic scattering
cross section are beyond the scope of this synopsis; the
reader is referred to papers by Ritchie [141] and Hattort
and Yamada [74] and Sevier’'s review [151]). Only bulk
plasmon creation and quasi-elastic phonon and imperfection
scattering make significant direct contributions to the
scattering considered here. This is the type of scattering
that is measured by electron energy loss spectroscopy
(EELS). The (e,e’) arm in the elastic mode in our
spectrometer acts as an EELS instrument and measures the
combined cross sections of these effects. Reviews of the
basic theory of EELS are given by Sevier [151] and

Fields{59].
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It is advantageous to separate small-angle inelastic
scattering into elastic and inelastic components. Further,
the cross-sections can be separated into products of
independent functions of energy loss and momentum transfer.
This factorization is reasonable, despite the direct
connection between the energy and the component of momentum
parallel to the beam axis, because the incident momentum in
this direction is much larger than the momentum transfer.
It suffices to fix the parallel momentum and consider only
the momentum transfer perpendicular to the beam axis. This
separation allows direct connection with existing theory
and experiments and facilitates the multiple scattering
deconvolution [59]). No attempt is made to estimate these
absolute cross-sections because onlyi the relative
intensities are important to our analysis.

In small-angle elastic scattering momentum is
transferred to the target without exciting the electrons.
Typically, cross-sections such as Bragg scattering are
broadened by quasi-elastic phonon scattering or from
imperfections in the sample. The term thermal-diffuse
scattering is used to describe multiple scattering
background involving a combination of elastic and inelastic
small-angle scattering.

The probability for small-angle elastic collisions can
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be factored as

PLE.q) = Flq,) 5(8) 5(q)) (11.4)

The delta-function Iin energy loss & results from
considering elastic events and the delta-function in

parallel momentum transfer q, is a consequence of the

high incident momentum and small scattering angle aé
discussed above.

The angular (momentum) dependence of small-angle
elastic scattering can be described in analogy with the

Rutherford cross-section for elastic scattering as
2
d_o] = [mez] 1 2 Z - f)z
da 2 [P£(6)]° x

i) = % sin(( ) (IL.5)

This can be expressed approximately in the parameterized

form

Ge
(a7 a2)

Measurements of these parameters for a-C are given by

Felq) = (11.6)

Briinger and Menz [25] and for graphite and many other
elements by Hartley [78]. Bringer and Menz also
empirically determine the value of the small-angle elastic
mean free path A, over a range of energies.

The probability for small-angle inelastic events can

be factored as
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Py(&.q) = F,(q) U&) 6(q") (11.7)

The energy-loss function U(&) for a-C has been studied
by Burger and Misell [26] who describe the principle
features as a weak lowered loss in the region ~7 eV, a
strong, broad loss centered at ~25 eV (FWHM about 40 eV)
and a broad loss centered at about 50 eV. The small
lowered loss is associated with the =nn electron
oscillations and no attempt is made to incorporate it into
the theory used to fit our data. The dominant loss
centered at ~25 eV is considered a volume plasma loss
involving principally, if not exclusively, the o-
electrons. Burger and Misell state that there is no
evidence for surface energy losses. They do cite, however,
some limited evidence for such processes as atomic
excitation, intra- and inter-band transitions and
ionization; these effects are not significant below energy
losses of about 200 eV and so no attempt is made to
incorporate them into the theory either. This analysis is
based on Bohm-Pines plasma oscillation theory [18].

The energy-loss function U(&) is fit to an
expression from the dielectric formulation of the total
scattering cross-section per unit volume for single
scattering of an electron of energy E; into scattering

angles 0<6<O ., with energy loss & [127]:
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do N | Omax ( 1 J
le]u o m[ 32 ) m( (IL.8)

An expression for Im(1/€e(&)) from the Drude free-
electron gas model of a metal [104] can be used to describe

the main energy loss as

27‘(0

d0] ~ () - e

o) ]u Im[ew] (wpz _ wZ)Z 12 . (A)z (II.g)
where w, is the plasma frequency and 7 is the half-life
of the electron plasma excitation (plasmon). In

paramaterized form this can be expressed as

v, & ¢ 0
: >
uee) - &% - v,9% v, + € (11.10)
0 ; § <0

There are no mechanisms for gaining energy, therefore
U(8) is zero for energy losses less than zero. Burger
and Misell [26] fit extensive a-C data to evaluate these
parameters which are in good agreement with theoretical
values calculated using the Bohm-Pines plasma oscillation
theory.

The angular dependence of the differential cross

section for volume plasmons has been derived by Ferrell

[57] as
1 O
6 < O
e - 28N g 2 + o © (IL11)
0 ;e > 8

where n is the free electron density,

g = Hw,/ 2E, and O = % wp, / Ep . The
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maximum scattering angle 6. is related to the momentum
just sufficient to cause an electron at the Fermi energy
Er to make a real transition, absorbing one plasma-

quantum of energy 'hwp. As the scattering angle

approaches the cut-off angle 6., damping effects,
primarily due to the transfer of plasmon energy to
individual electrons, cause the probability of excitation
of a plasmon to fall to zero. In the vicinity of 8,
Equation II.1l must be multiplied by a correction factor
to account for damping [58]. In parameterized form this
can be expressed in terms of momentum as

GU
(q-LZ + qu) (qLZ . qc2)

Fulq) = i q, < q (I1.12)

c

in the limit that gl<<g’, that is that

Eq>>E [591.
The mean free path N, between small-angle inelastic

collisions can be calculated by integrating Equation II.ll

[57]. Its wvalue |is

a

N, = o (I1.13)

t 8g In(6_/8g)
This quantity is of importance in multiple scattering
analysis and has been measured by Briinger and Menz

[25] for a-C.

The total mean free path A, is given by
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Xlz v x% (11.14)
e
For (e,2e) geometiries, the average path length of an

electron through a target of thickness T is approximately

]: dr [1 + 242 (T - 7)]

T- _
j': dr

=191 T (I1.15)

and the effective mean free path for the entire target is

[2- 2]

1.91

(I1.16)

-,}.—j; dr [Thg + 242 (T - 1) ) =

where Ag and A, are the total mean free paths of an
electron before and after the (e,2e) event respectively.
The elastic and small-angle inelastic count rates can
be measured with our spectrometer in the elastic mode. The
energy loss can be varied from 0 to ~80 eV by varying
the band pass energy of the energy analyzer. In the non-
coplanar geometry the spectra can be measured over a range
of ¢ ~-- typically + 5° -- about ¢ = 0° for
8 = 0° in the (e,e’) arm and for ® = *45° in the
(e,2e) arms. In the coplanar geometry the polar angle is
fixed at ¢ = 0° and measurement can be made over a range
of 8 about ® = 0%° in the (e,e’) arm and about

® = 45° in the (e,2e) arms. This is equivalent to a

-1
momentum range of t7 A for an incident energy

of 12.5 keV.
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Large-angle inelastic scattering has the same
kinematics as elastic and small-angle inelastic scattering,
but is distinguished from the latter by the much larger

momentum transferred to the target. In standard operation

of the inelastic mode of our spectrometer P, is
approximately equal to P, and E, = E; for
electrons detected in the (e,2e) arms. For such high

momentum transfer the collision must involve comparable
masses, therefore the process involves the incident
electron scattering off of a single electron in the target.
At high energies where the plane-wave impulse approximation
is valid the large-angle inelastic cross-section is the

Mott cross-section given by

2
do(8,9) _ g2
—dno ]M - [4_120:] X
{4cose [ (sin@)™* - (sinBcose) 2 + (cose)'q]} (11.17)

in the lab frame.

The count rate is related to the cross section by

[nly = I, [—TQ“‘] d—Q-]M AQ (I1.18)

This has the same dependence on target properties, incident
energy, and energy resolution as the elastic count rate,
but differs with respect to the polar angle as shown in
Figure II.2. For a typical experiment with a 100 A

thick a-C film, the Mott cross section at 45° is
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approximately 0.4 MHz, a factor of 150 less than the
Rutherford scattering. This assumes that the target
electron is stationary and has no binding energy; the
cross section becomes almost uniformly spread over several
keV when those effects are included and the large-angle
inelastic count rate is then about S000 times smaller than
the elastic rate.

Multiple scattering has no significant net effect on
the inelastic cross-section. Each electron which undergoes
a large-angle inelastic scatter can have one or more quasi-
elastic multiple scattering events occur before or after
the large-angle event. This results in a convolution of
the inelastic cross-section with a multiple scattering
broadening. However, the inelastic cross-section is so
nearly uniform in the region of ® = 45° that the
convolution hardly modifies the distribution.

Inelastic scattering produces a background of counts
in the (e,2e) arms when the machine operates in the
inelastic mode. These events satisfy the energy
and momentum constraints of the analyzers, but are not
coincidence events. It is possible to produce false
coincidence events if an independent inelastic event occurs
in each arm within a given time interval. The false
coincidence background is subtracted from the measured

coincidence rate using the coincidence electronics
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described in Section IV. These inelastic counts provide an
indispensable means of adjusting the tune conditions of the
electron optics, since the measured coincidence rates are
too low to provide feedback during tuning.

Inelastic scattering is measured with the spectrometer
in the inelastic mode. The energy loss can be varied by
two independent methods. The band pass energy of the
energy analyzer can be varied over a range 0 to ~80 eV
or the negative high voltage HV_ can be varied. The band
pass energy can be varied manually or under computer
control, while the negative high voltage must be adjusted
by the operator. The two can operate together to cover a
wide range; the negative high voltage provides a course
adjustment to the energy loss and the band pass energy acts
as a fine adjustment under control of the automated data
acquisition system. The momentum transfer can be studied
over a range of angle about the beam arm axes, just as in

the elastic mode.
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B. {e,2e) scattering theory

1. Kinematics

An (e,2e) scattering event can be defined as a single
ionization event in which the kinematics of all of the
electrons is fully determined. At the high electron
kinetic energies involved it is valid to consider "billiard
ball” kinematics to first order; such kinematics are shown
in Figure II.3

An incident electron with energy E; and momentum

P,(0,¢) is incident on a target. This electron is

inelastically scattered off of a target electron with final
energy E, and momentum P, (8;,0). The ejected
target electron has energy E, and momentum
P.(6..0). By convention, the z-axis is in the
direction of the incident beam axis, the x-axis is in the
scattering plane, and the y-axis is out of the scattering
plane, throughout this work.

If the kinematics is fully determined then energy and
momentum conservation lead to the equations

& -E; - Eg-E, -E (11.19a)

r

43 = P, - P, - P (11.19b)

The binding energy & is the energy difference between

the initial target state and the final ionic state. The

-—
momentum transfer £#82 is the recoil momentum of
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the ion and E, is the recoil energy. If the incident
electron energy is sufficiently high, i.e. Eg>>§, and
the mass of the target is large in comparison with the
electron mass, i.e. M>>m,, then the recoil energy

Er % 0, and the momentum of the target electron prior

—_
to collision is given by q = - 2.

There are two major kinematic divisions based on the
geometry of the scattering, the symmetric geometry and the
asymmetric geometry. The kinematic restrictions that

) = 0, =06 and that E E

< o are applied to

S e

the symmetric case; these are not required in the
asymmetric case. Our experiment and most standard (e,2e)
gas experiments utilize the symmetric geometry. A brief
review of some types of asymmetric experiments is given at
the end of this section. The reader is referred to the
review of McCarthy and Wiegold for further details [114].
Symmetric experimental arrangements have several
advantages in experiments designed to probe the momentum-
space wave function. The two outgoing electrons are
indistinguishable, hence the subscripts s and e can be
replaced by 1 and 2. The geometry maximizes the momentum
transferred to the ejected electron, thus ensuring close
electron-electron collisions. Further, if the incident
energy is large, both outgoing electrons have high

velocities so that the effect of the other electrons can be
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largely neglected and the collisions regarded as one
between two free electrons. In this geometry the target

electron momentum can be expressed as

ﬁq" = 2 P, cos@ - Py cose (11.20a)
fq, = Py sine (11.20b)
where q and q are in the 2 and §

directions respectively. There are two subdivisions within
the symmetric geometry, coplanar and non-coplanar.

In the symmetric coplanar geometry all the
trajectories lie within the scattering plane, that is
¢ = 0. Only target electron momentum parallel to the
incident beam axis is probed in this arrangement:

kq, = 2 P, cosb - Py (I1.21a)
Our spectrometer varies the angle 6 only a few

degrees on either side of 45°, therefore in the small

angle limit of small A9,

hq = -Py 46 (I1.18b)
where A6 = 98 - 45° and P = Py / N2 .

The symmetric non-coplanar geometry has a variable
angle ¢ while 6 is kept fixed at 6 = 6,5. The
momentum relations for this geometry are

ﬁq" = 2 P, cosé, - Py cose (11.22a)

ﬁql = Py sing (11.22b)

In our spectrometer 65 = 45° and ¢ is varied a few
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degrees about 0°. The parallel momentum transfer reduces
to zero to first order in the small-angle limit and

1=:ql # Py ¢ (11.23)

There is an advantage to the non-coplanar mode in that
the (e,2e) cross section in this geometry depends on the
scattering angles only through the square of the momentum-
space wave function. In the coplanar mode, the value of
the Mott cross-section contribution to the cross-section
changes as a function of 8. This effect is illustrated in

Figure I1I.2; it amounts to only a 57 wvariation over a

range of 143_1 at Eg = 25 keV. This is
discussed further in the derivation of the cross section
which follows.

All of the data taken to date with our spectrometer
have been taken in the symmetric non-coplanar mode. The
spectrometer is designed to take data also in the coplanar

mode, however this option has not been utilized yet.

2. Cross section

A derivation of the (e,2e) cross-section is quite
complex since it is at best a 3-body problem (hydrogen
atom) and is a many-body problem for solid targets. There
are two approaches taken in addressing the problem. In

this section, a crude set of approximations is employed
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which arrives at useful results in a straightforward
manner. A much more detailed derivation of the (e,2¢e)
scattering amplitude is given in Appendix A. This
derivation is more general than is used in practice for
(e,2e) calculations in solids, however it provides
important insights into the concepts and approximations
inherent in the cruder model.

The (e,2e) scattering amplitude M,y can be
calculated using the plane-wave Born approximation
neglecting exchange effects, and using the independent-
electron approximation. The incident, scattered, and
ejected wave functions are assumed to be plane waves and
the orbital wave function of the electron in the target
prior to the collision is ¥ ,(r;). The potential
is just the Coulomb interaction between the two electrons.

The scattering amplitude is

M, = —m=— d’r, d°r, e e e (r,)
" (2m)in? _[ _[ L= 2 REN W o,

(11.24)
Introducing the expansion
3 -
1 1 d’kx _tker;-r))
Foryl = 272 J-kz e (11.25)

and rearranging terms, Equation II.24 becomes
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M _-2pe? j' d% J' ¢, o &k ~kghr)
T 2m¥? 8 (2n )3
1 1k,-k)r
[(21:)3’2 J.darz 272 Iy (2)] } (11.26)

The separation of the integration in r, and r,
the equivalent of the factorization approximation, which is
exact for the plane-wave approximation. The integral over

rr provides a delta-function and the subsequent

integration over k yields

) -me? 1
My = om¥2 k- K ¢n(q)

where q = k, + k; - kg (11.27)

The first term results in the Mott cross-section upon
generalizing to include exchange effects. ¢.(q) is
the momentum wave function, that is the Fourier transform
of ¥, (r) as defined in Equation A.l19. Equation I1I1.27
should be compared with Equation A.21 in conjunction with
Equations A.17 and A.1S.

The approximations used in this derivation must be
justified for solid targets. For clarity the
approximations can be grouped in three main categories
under the names impulse, plane-wave, and independent-
electron approximations. The reader is referred to
Appendix A for more details.

Perhaps the most compelling evidence for their

verisimilitude is the spectacular agreement of many of the



31

(e,2e) gas experiments with theory. As an example, the
agreement between measurements for atomic hydrogen and the
exact calculations for its momentum-space wave functions is
exact within small experimental errors [109]. The cross
section was calculated in the plane-wave impulse
approximation and measurements were taken with the non-
coplanar symmetric technique at incident energies of 400 to
1200 eV. This provides strong evidence for the validity of
the plane-wave approximation, especially at incident
energies of tens of keV, but does not test the impulse and
single-electron approximations appreciably. Camillon et al
[29] have done a detailed study on the validity of the
eikonal approximation and the distorted-wave impulse
approximation as a function of E; and q for He. They

conclude that in these experiments the eikonal

approximation is wvalid for E; R 800 eV and q < 1

_l .
A and suggest that there may be a limit to the

impulse approximation for 6,+8, ~ 70°. Many

other gas experiments on more complex atoms and molecules
support the plane-wave and impulse approximations,
particularly for Eugal kev [114].

In addition to the three major approximations there

are a few initial approximations which are rather easily

justified. Relativistic effects are neglected; this has
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its most important implications with regard to the
treatment of electron spin effects. The highest velocities
involved in this experiment (E; = 25 keV) are about .3 c;
less than 47 error in the momentum results from neglect of
relativistic effects. At energies above ~50 keV or for
higher precision work, these effects may need to be
considered. Assuming an infinite target mass is satisfied
trivially for a solid target and is a very good
approximation even for the lightest atoms. This is
equivalent to neglecting the center-of-mass motion of the
target atoms caused by the collision. We assume that the
target is in the ground state which is equivalent to
ignoring finite-temperature effects. The density of
lattice vibrations and excited-state electrons is minimal
at room temperature: the few electrons in perturbed states
will produce an erroneous background which is well below
detection limits since kT is much less than our energy
resolution.

The impulse approximation is the most difficult
approximation to characterize and justify. In simplistic
terms, the impulse approximation hypothesizes that the
electron collision happens in such a way that it is
independent of all of the other electrons and atoms in the
target. The collision must happen fast enough that the

ion does not relax in response to the ionization before
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both scattered electrons are out of effective range of its
potential. The higher the electron velocities, the less
time the electrons are in close .proximity to the ion. The
high incident energy, in our experiments typically at least
20 times that for gas experiments, reduces the time in
proximity. The electrons must also collide at close range,

which results in high momentum transfer. The symmetric

geometry with 8 = 45° provides maximum momentum

transfer; momentum transfer is typically >501‘3\_l
in our spectrometer.

A reasonable criterion may be that the impact
parameter should be much less than the electron separation
in the target state [13']. The separation distance of
valence electrons is in general significantly larger than
that of closely bound atomic orbitals. The extended
electron states in a solid should provide a screening
effect which limits the range of the ion potential. In
addition, the response time of the ion should be inversely
related to the energy imparted to the ion. Valence
electron energies on the order of tens of eV, are
comparable to H ionization energies rather than to those of
more complex atoms studied [176] which have much larger
binding energies. Taken together, the relatively long ion
response time and the short time of proximity of the

electrons seem ample justification for the impulse
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approximation, in light of {ts validity in (e,2e) gas
experiments.

The plane-wave approximation depends on the momenta of
the electrons involved. Our kinematics is optimum for the
highest scattered momenta in both arms. McCarthy and
Weigold review this approximation for gases of both atoms
and molecules [l114]. They conclude that the plane-wave
approximation is at least adequate for incident energies
above 1200 eV for their examples. The energies we.employ
are significantly higher, so this approximation seems
reasonable despite the uncertainties introduced by a solid
target. The factorization employed is exact in the eikonal
approximation, therefore its criteria are less demanding
than the plane-wave approximation. Early work on (e,2e) in
solids measured the angular correlations of oxygen s core
electrons [30] and Is [30,99] and unresolved n=2 [99] bands
in carbon. Their results, over a limited region of q
space and at low resolution, agreed with calculations based
on the plane wave approximation. All of this work was done
at incident energies below 10 keV.

The independent-electron approximation is a familiar
one in solid state physics and has enjoyed widespread
success. Successful application is most dependent on a

careful choice of the basis state used in the expansion of
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the target electron wave function. Kzasilnikova and
Persiatseva‘’s measurements on oxygen and carbon Is orbitals
in solids were in agreement with calculations based on
either Slater determinants or Hartree-Fock orbitals [99].
Camillon et al found agreement with calculations based on
both Roothaan and minimal-basis-set wave functions [30].

In practice, most solid state calculations are
carried out using the plane-wave Born approximation. The
requirements for this approximation are extensions of the
impulse approximation and the eikonal approximation
requiring large incident and exit speeds and large incident
and exit kinetic energies. Glassgold and Ialongo [69] look
at this for one- and two-electron atomic systems; Vriens
[171]) extends this discussion somewhat. The only certain
test of this crude theory for solids will be comparison of
data with theoretical calculations for a well understood
system such as graphite.

The cross section is of course proportional to the

square of M, and is given by

do mPa( do -k +ko-k )| -
dNdR,dEOE, ~ #2 | 4R ]M | Figlamk;rkykg) | 8(6+E,+E,-E)(11.28)
where use is made of Equation A.21. The delta function

involving & determines the binding .energy from the
measured quantities E; and E + E, rather than

determining E, from E,. This determines which bands
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will be included in the sum over n' in Equation II.37. The
cross section can be reduced by one degree of freedom by
integrating over the energy shell for E; = P,/2m,;:

Levin et al [107] show that this results in

-1
do mpz k2 ké'[k)
dNdQ,dE, - ﬁa[ ) |F @] [ =, (I1.29)

Here, k = k,-q, the momentum transferred to the

ejected electron. The count rate is given by

tA
N(&,q) = [10["79]% ]WAQ‘ AQ, AE, (11.30)

where n, is the number of electrons in an atom which
participate, i.e. the number ofvalence electrons. A rough
guide for the cross section dependence on important
experimental quantities can be obtained by using the
approximation that: 1) E = 2E = 2E;; 2)
AP = NZAP;: 3) the gradient term in

Equation I11.27 is negligible. The effective detector angle

AP ia
( L ] 2 (11.31)

where the total angular resolution (see Section III) is

is then

aq? = AP2 + AP + aP,? - P R(e, ? 8, ) (11.32)

Recalling that the Mott cross section is inversely

proportional to Ez, we arrive at the result

N ~ I, (‘—’Ai] (ag)* E—A,—E,-z- |F,J(q)|2 (11.33)
o
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3. Specific examples

As a qualitative i{llustration of what the (e,2e) cross
section measures let us consider two simple cases, i.e.
scattering from a free electron and from a simple atomic
orbital.

For a simple atomic orbital the energy is a constant,

E_ and the allowed momentum extends over a finite range.

a
The form factor is simply equal to the momentum space wave
function. The cross section then is non-zero only for

€ = E, and its amplitude is modulated in the momentum

a
direction by the square of the momentum wave function.
Figure I1I.4 illustrates a typical distribution for a lIs
orbital with a maximum at q = 0. The nth s orbital will
have n maxima in q. The nth p orbital would have a

minimum at q = 0 and have n maxima.

The form factor for a free electron with momentum

Fy @ = @m*? 8(k,-q) (11.34)

Therefore, the cross section is a constant amplitude for
all values q which satisfy the dispersion relation
§(q) = #°¢®/2m, and will be zero for all

other combinations of & and k. This produces a
parabolic cross section of constant height as shown in

Figure I11.4. Of course the delta function distribution is
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broadened by instrumental effects.

Let us now turn to the calculations for the (e,2e)
cross section of solids. There are two simple descriptions
of electrons in solid which we can discuss, the nearly-free
electron which models metallic valence electrons and the
tight-binding description which models more tightly bound,
atomic-like orbitals for core and some valence electrons.
The fortuitous choice of the preceding two examples already
allows qualitative understanding of the results.

Let us start with the tight binding case and begin by
considering the problem of a single crystal target. The
expansion for the single-particle tight-binding wave
function (with crystal-momentum k in a band n) can be
written in terms of a Bloch sum of atomic wave functions

\.bn a s

v, ) = ‘.}"ﬁ % e’kR y (r-R) (I1.35)

where N is the number of atoms in the crystal and the sum
is over all the crystal-lattice sites. If we introduce
this expansion for ¥,,(r) into the equation

for the form factor, Equation A.19 we get

R ig-(r,-R)
Fiyl@) = F (@) = W ; Id%z ¥ (r,-R) e'bR 9702

(I1.36)

and the square of the form factor is
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|1-*“,(q)|2 - AN GZ 8qi+G| 2rr (c*6) : (11.37)

The wave function Qn'.k““"G) is the Fourier
transform of ¥,,(r) and G is a reciprocal
lattice vector. It should be noted that we measure
Z Iy (@12 5(8-E (k).

The summation over n' is over bands which are close to
n where either there is a degeneracy at a point k in the
first Brillouin zone or a near degeneracy where
instrumental resolution allows mixing of the bands. The
form factor Fp,(q) will be non-zero at a given
binding energy € for some momenta q, provided that
these q satisfy the dispersion relation

& - & k) - 6(q-G) - E; - E - E, (11.38)
Restricting measurement of q to within the first
Brillouin zone (i.e., G=0), there will be at most one

non-zero form factor for a given q within a single band.

In essence, the form factor maps out the dispersion curve
€,(k) in the first Brillouin zone. Outside the
first Brillouin zone Fk.n(q) is non-zero for

G = 0 as well,. This analysis is very complex if q

is not in the direction of one of the reciprocal lattice

N
vectors, G;. If q 1is along G, then the

form factor is non-zero for a series of equally spaced

momenta
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q=%k + mG; m = 0l,.2.. (11.39)
at a given energy & (k). The magnitude of
Fyn(q) depends on the magnitude of the

momentum-space wave function & . Since

$yn rapidly goes to zero for large momentum, the

form factor will vanish beyond only a few Brillouin zones.
The amplitude of the form factor measures the probability
of a given state with energy & and momentum q, therefore
the count rate can be interpreted as related to a two-
dimensional density of states N(&(k),k) within the
first Brillouin zone. Near the zone boundary there is a
dip in form factor. At the zone boundary the wave function

has the form

L -
¢ N [ k> |-k> ] (11.40)

Since the form factor is a function of momentum q, not
crystal-momentum, only one of these states contributes to
the form factor which falls to half its value at the
boundary. The width of the dip is dependent on the width
of the region of mixing of states which is given by

Ak, = V—E(;:'] kn (11.41)

where k, and E, are the momentum and energy at the zone
boundary and V(G) is the matrix element which causes the
mixing of the two states in Equation II.40.

For a polycrystalline sample the form factor is
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averaged over all directions and therefore is approximately
constant for q up to the Fermi momentum, i.e. the dips
will be smoothed out. For highly anisotropic materials,
however, the form factor should fall off more gradually and
approach zero as q approaches its maximum value on the
Fermi surface.

The case of nearly-free electrons is more nearly the
same as its simple counterpart example. The form factor is

given by

3
Fe@ = AZE- siq-k) (11.42)

where V is the crystal volume and the dispersion relation

is
2
elk) - e(0) + SBkL (11.43)
Mgy
where mg is the effective mass. The gradient term

in Equation I1I.29 is typically very small so the cross
section reduces to

do _ mP, do
ME0EE, - 53 [anl ]M 2nVdg (I1.44)

where n is the number of valence electrons per unit volume
of the crystal.

The distribution will extend up to the Fermi energy
and will be zero above it. There will be dips in the
distribution at the zone boundaries for the crystal case as

described above.
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There is an interesting discussion of the (e,2e) cross
section for the hybrid s-d orbitals of Cu given by Levin et
al [107]. They present the s-band electrons as nearly free
electrons modeled by an orthogonalized plane-wave method
and the d-band electrons modeled by the tight-binding
scheme. A more simple example of hybridization for the.
N, molecule is discussed by Neudachin et al who also
include some discussion for solid Al and the ionic crystal
KCl [124].

Since the cross section depends on the momentum q
of the electron in the target and not the crystal momentum
k there is no reason why the spectral momentum density
cannot be mapped out for amorphous solids as well. The
only difficulty is interpretation of the results. There can
be no measure of the dispersion curve €&(k) for
amorphous solids because k is not a good quantum number
for them. The theory of band structure for crystalline
solids rest firmly on the assumption of crystal
translational symmetry, therefore there is no simple
justification for the presence of band structure for
amorphous solids. However, physical intuition would
suggest that amorphous solids must retain at least some
vestige of this fundamental property of crystalline solids,
which they resemble in so many ways.

Ziman has proposed a model for the valence bands in an
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amorphous material based on trial wave functions which are
constructed out of linear combinations of bond orbitals
(LCBO) [193]. The model is quite similar to the tight-
binding crystal calculations based on linear combinations
of atomic orbitals (LCAO) and has a similarly
straightforward interpretation for the (e,2e) cross
section. The expected nature of the band structure of
amorphous materials will be taken up in Section VIII on the

interpretation of our a-C spectirum.

4. Relation of measured cross section to (e,2e) cross

section

The measured scattering cross section of the
spectrometer is closely related to the (e,2e) cross
sections, but it is broadened and distorted by several
factors including inelastic background, instrumental
broadening, and multiple scattering. Through data
analysis, most of these effects can be deconvoluted and a
reasonable estimate of the spectral momentum density can be
extracted from the data. First we discuss the relation of
the measured cross section to the (e,2e) cross section and
the physical processes involved in the broadening. Then, a

formalism is outlined and derivations of the general
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formulas for deconvolution are given. Appendix B contains a
derivation of the scattering function and relates the
multiple scattering to the quasi-elastic functions
discussed in Section II.A. The details of the numerical
analysis technique used and an outline of the error
analysis are outlined in Appendix F. Specific examples of
applications of these techniques are found in Section VIII.

Much of the theory developed here is based on work by
Fields on inelastic electron scattering [59]. The paper by
Jones and Ritter develops this approach for (e,2e)
scattering [90].

The corrections made to the measured cross section can
be separated into three categories: inelastic background,
instrumental broadening, and multiple scattering. The
background analysis is fairly straightforward and can be
accomplished by algebraic manipulations of the data. This
is described in Section IV, Corrections for instrumental
broadening and multiple scattering are much more
complicated. The analysis of these two effects can be
performed simultaneously using deconvolution techniques and
Fourier analysis. Multiple scattering in (e,2e)
scattering is caused by the processes referred to as quasi-
elastic scattering in Section II.A.

The kinematics of an ideal (e,2e) event were discussed

in Section III.B and are shown schematically in Figure
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a. Kinematic diagram of an ideal (e,2e) event. An
incident electron of energy E and momentum k, scatters
with large energy-momentum transfer off an electron in the
target whose energy and momentum prior to the interaction

was &, and q,- The two electrons emerge with
energies E°, E*, and momenta k°, k".

& T - E

¢ T » | ;.

(3)

b. Diagram of (e,2e) scattering in a film of
thickness T, which includes multiple scattering effects.

The energy and momentum of each electron immediately before
or after the (e,2e) event is shown in parentheses.

Figure I1I.5 Kinematics of (e,2e) Multiple Scattering.
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I1.5a. A more realistic picture of the scattering is
illustrated in Figure II.5b. The incident electron enters
a target of thickness T and travels a distance 7 before

the (e,2e) event. The electron loses an energy §& and

transfers a momentum q, to the target in traversing

this distance due to small energy-momentum transfer
collisions with the target. At some infinitesimal distance
before the (e,2e) event the incoming electron has an energy

E-§ and momentum k-gq. This electron

undergoes an ideal (e,2e) event and at an infinitesimal

distance afterwards, the two outgoing electrons have

energies (E" + &), (E " + &) and momenta
(k'+q2), (k"+q3). The two electrons lose
energies 6,,&§, and transfer momenta gq,,

q, respectively as they traverse the target and exit

the target with energies E’, E" and momenta k',k".
Furthermore, there is an uncertainty in the measured values
E, k, E', kX, E", k” due to the non-ideal
resolution of the beam source and the analyzers.

T he measured cross s ection
R'(E,k,E", k" ,E”", k") is related to the ideal

(e,2e) cross section 3‘(E-8,,k-ql£'+82,k'+q2.E:"+é‘3,k“+q3)

with a measure dE' d°k’ dE" d’k" dr by
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T
R(ELE Kk'E" k") = J. dr J.daq‘ dng d3q3 J-del de, de,
0

4—’
X {%(el.ql;fi,-r] . 3'(E-€1,k—ql£'+€2,k'¢q2£"+ea,k"+q3)

3
d q, de
e 413 *
X —5———f(€,,qE'+€,,T') /——f(€,,q:E +€,,T" 11.45
d3q2 dez( 29; 2 ] d:"q3 des( 3q5" €2 ] ( )

The effects on the incident beam of smearing due to

multiple scattering and spectrometer resolution are
contained in the function ®: the functions &°

and %' are similar functions for the two scattered
beams. T and T" are the path lengths of the electrons

after the (e,2e) collision, where

’ T - T
T = R A
k' -k
(11.46)
" T el
™ = A ‘5\
k" . k

These are approximate relations, since the path lengths are
actually longer due to multiple scattering; this
approximation will be discussed further below.

The kinematics of the (e,2e) collision and the
geometry of the spectrometer actually limit these cross
sections to functions of four variables. The input energy
and momentum are independent variables. In terms of these
variables the kinematic relations from Section II.B require
that

E +e¢e, =FE + E" (11.47a)

k + q; = k + k" (I1.47b)
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and the spectirometer geometiry requires that

E' = E" (= Ik = k"|)

kg' = - ko

ke = k" (I1.48)
since the arms are placed symmetrically about the
spectrometer axis. Therefore, the cross sections may be
written in terms of the variables E; = -§,

and kg =-q, as

RE k) = B (Ekati ek (11.49)
There is an approximation in applying these conditions
since the finite resolution of the spectrometer allows
uncertainties in the measured quantities. These
approximations are valid since the energies E, E', E'" are
on the order of keV and the scattering angles are near
45°, while the uncertainties are much smaller, on the
order of 5 eV and 0.2 milliradians.

The same approximations can also be used to simplify

the ® functions. The ® functions vary slowly
with electron energy, so the approximations

€, << E

€5 << E” (11.50)
allow the substitution of E’ for E'+&, as an argument
of #' in Equation I11.45 (likewise for #®"). Further,
the approximations

€ << E

€y << E, E, E”
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A A A A
k® -k = k" - k (I1.51)

allow E/2 to be substituted for E’ and E" as arguments of

' and ¥®'', respectively.

The increase in the electron path length due to
multiple scattering is negligible if the momentum transfer
for each scattering is small and only a small number of
multiple scatterings are considered in the analysis. The
approximation in Equation II.51 implies that T' = T".

We can now rewrite Equation II1.45 with the new

functions R and R including the approximations to the

arguments of the ®-functions:

T
R(e k,) = I dr J-dsql d’q, d’q, Ide, de, de,
0

4'—)
X { S (evapET) » R(E,-€1-€x-€3ke-q,~q,~q)

3
d’q de,

43, 43

a’g E o a*® E

x | e,,q:=T —_| e_qu=®T (11.52)
d3q2 dez( 2q22 ] d3q3 deB[ 3q32 )}

By a change of variables,

€E = El‘ = €1 + 62 + 63 q = ql‘= ql + qz + q3
82‘ = 52 + 53 qz‘ = q2 +q3
€y = €3 q; = 4, (11.53)

Equation II.52 takes the form of a convolution between &

and the ® functions and can be written in terms of a
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single smearing function ¥(8§.q;E,T) as

R(E k) = J.d3q Ide {:R(Eo-e,ko-q) .‘P[e,q;E,T)}

T
where #(e,qET) = J. d7 J-d:"q‘ d’q J-dez‘deg' —Sii[e-ez'.q-q )
0 2 3 d?q de 2

P 415

d3q2' dez'(ezl'ea"qz"q;] m[ea‘,qa‘]} (I1.54a)

or in the more compact convolution notation

REk,) = R ® P(eqET)

T 49 1g. S
where ¥(e,q:E,T) = J- dr g ® 3d L4 ® 3d »
0 d°q de d’q, dey d’q’ dey

(11.54b)

Two problems remain in the deconvolution. Equation
I1.54 must be inverted so that R can be calculated from
the measured cross section and the smearing function.
First, however, the smearing function must be evaluated.
This long, but very important calculation is performed in
Appendix B based on the work by Jones and Ritter [90].
There, an analytic expression for the Fourier transform
T of ¥ is evaluated in terms of the quasi-elastic
cross sections discussed in Section II.A and Gaussian
instrumental broadening functions. The Fourier transform
of the smearing function 7 can be evaluated in terms of

eleven experimentally determined parameters: ag, 3,
ay (] bg (] bx [] by ] qo 1} qE ’ qC ’ v2 a 1'1 d Va b y

combining Equations B.6, B.7, and B.13. This can be
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inverted using standard Fast Fourier Transform (FFT)
numerical techniques to give an expression for the smearing
function &.

The whole purpose of this analysis is to extract the
(e,2e) cross section from Equation II.54. There are many
well established numerical techniques for performing this
deconvolution (see for example Reference 31). Two
approaches which we have used in the deconvolution of our
data are discussed in Appendix F. Further details can be

found in Jones and Ritter [90].



III. SPECTROMETER DESIGN

A. General Description

The spectrometer constructed at VPI is a prototype
machine for the investigation of (e,2e) spectroscopy in
solids. It has much in common with other electron
spectrometers and incorporates many components used on such
machines, in particular atomic and molecular (e,2e)
spectrometers [3,30,114] and inelastic electron energy loss
spectrometers [67,142]. In fact, almost all of the
apparatus used are based on existing designs and were
chosen to fit the specific needs of this experiment.

All electron spectrometers share four basic parts; an
electron source, a detector, an analyzer, and an electron
optics system to link these together.

Figure III.1 shows a block diagram of our
spectrometer. The ultra-high vacuum chamber includes a
target chamber and four beam arms which house these basic
parts. The beam arms all lie in the scattering plane with
the (e,e') arm colinear with the input arm and the two
(e,2e) arms fixed at 45° with respect to this axis.
Table III.1 lists some of the operation parameters for our
spectrometer and compares them to previous work by others

in the field.
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Figure III.1 Block diagram of (e,2e) Spectrometer
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Table III.1 Design Parameters for (e,2e) Spectrometer

Previous

VPI Spectrometer
Measured Design |Spectrometers®)]
Incident Current I, ~50pA 100pA R0.1pA
Incident Energy Eq 10-30keV 25keV ~10keV
Energy Resolution AE 3-5eV leV 15-150eV
Energy Range IEy| ~100eV <500eV --
-1 -1 -1
Momentum Resolution Aq |0.2-1.12 0.2-1.1A 1-28
-1 -1
Momentum Range q 4A 7R --
Count Rate N 0.1;0.2}-{2 0.1-1.0Hz 0.01-1.0Hz
Stastical Count Error AN A 57 5% --
Target Vacuum P 107 3Torr 10" 3Torr R5X10~7Torr

@gpased on
(Reference

data
3):

collected by Amaldl

Camilloni (Reference

et

et al
30):;

Krasilnikova and Persiatseva (References 100 and 101).
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Important guidelines for design of this spectrometer
are highlighted in the equation for (e,2e) count rate

N(E,q) derived from Equation II.33.
1
NEQ ~ I, (%] t 12@? @g* o (1I1.1)
0

The inherent low count rates of coincidence experiments
place paramount importance on maximizing N(E,q) which
can be varied by adjusting the incident current I,
target thickness t, momentum resolution Aq, energy
resolution AE, and incident electron energy E;. The
count rate is particularly sensitive to the incident energy
and momentum resolution.

The single most important constraint in choosing an
electron source was the need to maximize count rate. Our
spectrometer was designed to operate at an intensity of at
least one thousand times that of previous machines. In
addition to high intensity, our Pierce-type electron gun
with a space-charge-liimited diode electron source offers a
well defined beam with reasonably low thermal energy
spread.

A high gain electron multiplier tube (EMT) is used as
a detector to meet the requirement of a low intensity,
coincidence detection scheme, i.e., the ability to detect
single electrons and the fast response time necessary for

compatibility with coincidence electronics.
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Both an energy analyzer and a momentum analyzer are
required. For both of these systems, our choices were
limited by the physics of the solids studied and further
constrained by mechanical considerations in building the
spectrometer. The dispersion curve for a typical valence
band spans an energy of tens of electron volts with a
Brillouin zone width of up to a few inverse angstroms.
Based on these dimensions our spectrometer was designed to
have an energy range of several hundred electron volts with
a total energy resolution of | eV, The simplicity of the
Wien filter and i{ts straight-through geometry facilitated
design of the other electron optics and such an analyzer
-is able to fulfill the modest energy resolution and angular
acceptance we need. The desire for leV resolution is
facilitated by utilizing a retarding field analyzer which
requires only a modest resolving power from the energy
analyzer. A momentum range of a few Brillouin zone widths
and momentum resolution of ~ 1/10 of the width of a
typical Brillouin zone is necessary for useful study of
momentum distributions. However the strong dependence of
the (e,2e) count rate on the momentum resolution means that
count rates are very low at this resolution. We opted to

design a variable range momentum resolution from

0.2 < Aq s 1.0 A-l, by using a wvariable

magnification constant-focus zoom lens. Determination of
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the momentum with a precision of A4q = 0.2 A-l
requires that the scattering angle be measured to better
than 3 mrad. It would be prohibitively difficult to move
the detectors mechanically and maintain this precision,
therefore we chose to employ electrostatic deflection in
our momentum selector with fixed beam arms.

The incident energy E; of the electrons striking the
target is another major design parameter. Again,
conflicting requirements act to narrow the range of useful
energies. At lower energies multiple scattering becomes a
serious problem even for very thin targets, so it is
advantageous to use as high an incident energy as possible.
However, the count rate decreases rapidly with increasing
energy. A reasonable compromise is achieved at incident
energies near 25 keV where the minimum thickness of self-
supporting films is on the order of one mean free path.

Together, the requirements for high voltage incident
electrons, a zoom lens, and compatibility with the electron
gun, energy analyzer, and momentum analyzer provide more
than ample guidelines for the electron optics system
design.

Several auxiliary systems are necessary to complete
the spectrometer. An ultra-high vacuum system is needed to

minimize target degradation and magnetic shield is required
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to reduce the effects of magnetic fields on the electron
beam trajectory. These place further restrictions on the
materials that can be used in construction of the machine.
The long collection times necessitate that the spectrometer

be interfaced with a computer to aid data acquisition.

B. Machine components

1. Overview of electron optics

The electron optics of the spectrometer form the
nucleus of the machine. The following section describes
the electron optics from a functional point of view,
describing the trajectory of the electron beam and the
operation of each of the components in order. The details
of theory and dimensions are relegated to Appendix C, so
that one can gain an appreciation for the overall system.
The basic concepts and definitions of electron optics are
also found in this appendix. Reference 143 offers a more
concise description of our electron optics, reviewing the
critical factors which have entered into the design of the
spectrometer.

Figures III.2 and II1.3 trace the beam profile through
the lens columns. The images of the cathode (pupil) are
labeled with arrows, while the window images are denoted by

bars.
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The electron source employed in our spectrometer is a
commercial electron gun (Cliftronics modified 3k/5U). It
is a Pierce-type electron gun which employs a section of a
space-charge-limited diode with a soft-cathode filament as
its source. This type of gun was chosen over other more
conventional types, e.g. triode guns, because it produces a
beam of known current density and geometry and higher total
currents.

Under normal operating conditions, the electron gun
produces a virtual image of the cathode with an emittance
(see Appendix C for definition) of 0.2 cm-mrad and a beam
current of ~10-100pyA at an anode voltage of 1.0 keV.
This image acts as the initial pupil image for the system
and is located 1.1 cm before the anode aperture in the
space-charge limit. The anode aperture, in general, acts
as the initial window image. A summary of the properties
of electron gun are shown in Table III.2 and a schematic
diagram and an outline of the theory are found in Appendix
C.3.

The Einzel lens in the electron gun assembly focuses
the virtual pupil into the center of another Einzel lens,
the Field lens. This lens is able to then adjust the
location of the window (or equivalently, the pencil angle
of the pupil) without affecting the location of the pupil.

The location of the image of any object positioned on the
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Table III.2 Properties of the Electron Gun under typical

operating conditions

Anode Voltage’ Vay = 1000V
Thermal Voltage Vg = 0.1V (T=1200K)
Cathode-Anode Separation D = 3.68mm
Anode Aperture Radius Iay = 0.775 mm
Cathode Aperture Raduis ro = 0.394 mm
Property Symbol Units Theory Experiment
Space
Charge
Normal | Limit
Virtual Pupil
Radius Tp mm 0.111 0.083 --
Pencil Angle Op mrad 7.5 7.5 --
Beam Angle 0, mrad S53. 70. -
Emzittance cm-mrad 0.17 0.13 0.4 = 0.2
Helmholtz-Lagrange HL cm-mrad-vY? 5.3 3.9 13 = 6
Constant
Perveance pA-v~¥2 -- 0.32
Emission Current Inn mA -- 10 1-5
Beam Current pA - --
Current Density J mA-cm ™2 -- 540
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first principle plane of a lens is unaffected by the focal
properties of the lens and any lens employing this
principle is called a field lens. The Field lens focuses
the window so that its final image from the High Voltage
lens is at infinity.

The next two Einzel lenses form a variable-
magnification constant-focus "zoom" lens similar to that
described by Gibbons et al [67] and Ritsko {[142]. The
pupil image in the Field lens is focused by the zoom lens
to an intermediate image which, in turn, is projected by
the High Voltage lens onto the target. By using different
combinations of settings of the Zocom | and Z2oom 2 lenses
the size of the intermediate image can be varied without
changing its position. Changing the size of the
intermediate image results in a proportional change in the
size of the image on the target. Since the emittance (the
product of the radius times the pencil angle) is a constant
for a given image, this amounts to being able to wvary the
angle of incidence of the electron beam on the target.
Using only the Zoom 2 lens results in the largest angle of
incidence (as shown by the solid line trajectory in Figure
I11.3), while using only the Zoom | lens results in
smallest angle (broken line trajectory), with intermediate

angles attainable by a suitable combination of both lenses.
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Under normal operating conditions (1 kV anode wvoltage, 25
kV high voltage) the angle of incidence on the target is
variable from 1.3 to 7.7 mrad with corresponding beam radii
of 304 to 62 um.

The angular divergence of the beam on the target is
directly related to the momentum resolution Aq in the
small angle approximation (see Equation II.32). The stated

angular limits of the zoom lens correspond to a range

-1
0.2 < Aq s 1.1 A", The count rate for

(e,2e) scattering is proportional to Aq? thus the zoom
lens provides important flexibility in balancing the
conflicting requirements of higher count rate and maximum
momentum resolution. The factor of 6 in momentum
resolution translates to an increase of over 1000 in the
count rate.

The intermediate pupil image from the zoom lens is
focused onto the target by a high voltage modified gap
lens. The Field lens is adjusted so that a window image is
placed on the low voltage focal point of the High Voltage
lens; this projects the focal image of window to infinity,
Therefore, the beam angle is zero and that the angle of
incidence on the target is equal to the pencil angle. The
high voltage lens operates in a range of 20 to 30 keV in
the (e,2e) mode and half that in the elastic mode.

Within the target chamber there are several four-
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quadrant cylindrical alignment deflectors that adjust the
position of the beam on the target. There are two 1.3 cm
long sets of deflectors at the entrance to the chamber and
a set of 2.5 cm long deflectors at the exits for each
output arm. Just to the target side of each of these sets

of deflectors are 2.5 mm diameter alignment apertures. The

size (& 1.5 times beam diameter) of these apertures
is large enough to avoid vignetting, but is sufficiently
small to aid in alignment of the beam. The momentum
analyzer is also in the target chamber; it will be
described at the end of this section.

The (e,e’) beam arm High Voltage lens and Zoom lens
are mirror images of the input arm. The beam spot on the
target is imaged into the first aperture of the output arm
by the High Voltage and Zoom lenses. The second aperture
defines the accepted solid angle (window position ) for
electrons leaving the target. The initial output window
which is focused into this aperture is at infinity (zero
beam angle at target). The first aperture is also the
Field lens which allows the necessary degree of freedom to
focus the window into the second aperture. This field lens
is a three-aperture lens. The filling factor in the Field
lens is unity, since this lens itself acts as a limiting

aperture. This is, in general, a bad design for electron
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optics because of the resulting aberrations. This
unorthodox approach is used because: (1) there is an image
in the first aperture which reduces the aberrations
associated with large filling factors; (2) it is possible
to obtain short focal lengths with quite low voltages
between the elements of an aperture lens due to the small
diameter of the lens; (3) the total number of lenses
necessary is reduced considerable by this approach. No
significant effects of excessive aberration have been
observed as a result of this technique.

There is a set of four-quadrant cylindrical alignment
deflectors between the Zoom lens and the Field lens to
position the beam in the center of the first aperture.

The function of the energy analyzer is to select a
small range of the energy spectrum from the image of the
target defined by the first and second apertures. The
most fundamental component of our analyzer is the energy
dispersing element, the ExB velocity analyzer of the
Wien filter [183]. The characteristics of the Wien filter
are what ultimately determine the properties of the energy
analyzer. The analyzer also has a decelerating lens,
accelerating lens, and other optics elements designed to
adjust the images. A retarding field analyzer design is
utilized, which greatly reduces the requirements for energy

resolving power.
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The Wien filter was chosen as the energy dispersing
element of our system primarily because of its simple
design and straight-through geometry which facilitated
construction. The dispersion factor for the Wien filter is
not as good as that of other analyzers that might have been
chosen [73,98,150], i.e., hemispherical, cylindrical, or
Méllenstedt analyzers. However, we require only
modest energy resolution and limited angular acceptance.
The low count rates involved require that the analyzer has
a high transmission efficiency ; our analyzer is as good
as or better than other types in this respect.

The Wien filter disperses the electiron beam in the y-
direction, that is in the direction of E out of the
scattering plane. An image of the first aperture is formed
at the entrance of the Wien filter in this dispersive
direction. The analyzer is designed to focus this image on
the exit plane of the filter. Chromatic aberration of the
image results in an energy dispersed image. A wvirtual
aperture at the exit plane determines the energy resolution
of the spectrometer.

The Wien filter is configured to pass electrons with
an energy eVy with respect to the common point of the

output arms. This common point is held at a voltage V,

above room ground, so varying V, selects the energy (with
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respect to room ground) of the electrons that pass through
the filter.

The energy analyzer has several subunits in addition
to the Wien filter as shown in Figure III.3. These
additional elements are designed to focus the electron beam
for optimum operation of the Wien filter. Electrons from
the target are decelerated to a voltage Vg,
typically 500 V, by the output High Voltage lens. They
are further decelerated by a gap lens located between the

first and second apertures to a voltage VE:'

typically 100 V. This arrangement has the advantage that
the actual analysis is carried out at low energy with a

moderate resolving power (eVEl/AE %= 200) After

leaving the Wien filter the electrons are accelerated back
to the voltage V,; and are focused on the energy
slit.

Quadruple lens are incorporated into the energy
analyzer to compensate for the asymmetric focusing of the
Wien filter. Quad lenses (see Appendix C.2 for a
discussion of the geometries and focal properties of Quad
lenses) act as converging lenses in the non-dispersive
plane and as diverging lenses in the dispersive plane
before the Wien filter and vice versa after the filter.

An einzel lens is added immediately before and after

the Wien filter to allow the image of the first aperture to
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be focused at the correct location. For optimum operation,
as illustrated in Figure III.3, the decelerator, quad lens
and input Einzel lens should combine to place an image of
the first aperture at the entrance to the Wien filter in
the dispersive plane. The Wien filter focuses this image
at the exit of the filter and the output Einzel, quad lens
and accelerator combine to focus a final image of the first
aperture on the energy slit. In the non-dispersive plane,
the decelerator and quad lens form an intermediate image
which the input Einzel focuses at the center of the Wien
filter. In this plane the Wien filter is transparent to
the electron beam. This image is focused to an
intermediate image by the output Einzel which is then
projected on the energy slit by the quad lens and
accelerator.

The width of the energy slit in the dispersive
direction defines the energy resolution of the analyzer.
The size of the virtual image of the energy slit produced
by the accelerator, quad lens, and output Einzel at the
exit of the Wien filter relates directly to the dispersion

width Yp of the Wien filter (see Appendix C) in

determining the energy resolution. The analyzer was
designed to have a resolution of | eV (FWHM) and has a

typical measured resolution of 3-5 eV (FWHM).
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The resolution of the energy analyzer has been
empirically determined from a scan of the count rate versus
energy loss for quasi-elastic events in both the (e,e’) and
(e,2e) arms. The width of the zero energy loss peak is a
good measure of the energy resolution of the spectrometer,
including the energy analyzer and the thermal spread of the
electron gun. The measured width of the elastic peak has
been as small as 3 eV (FWHM) at beam current of 40 pA,
however typical operation has a measured width of 5 to 7 eV
(FWHM) (see Figure V.1).

Electrons which pass through the energy slit continue
down a 10.7 cm long magnetically-shielded drift tube to the
EMT. Another set of four-quadrant cylindrical alignment
deflectors is located just after the energy slit to deflect
the beam onto the first dynode of the EMT. A description
of the detector and the coincidence pulse electronics is
given in Section IV.

There are some minor differences between each output
arm’'s electron optics. In the (e,2e) mode the outgoing
electrons in the 45° arms have half the energies of those
in the (e,e’) arm. This is primarily compensated for by
lowering V,; and all the other voltages in the (e,2e)
arms by a factor of two so as to maintain the voltage
ratios. Minor differences in the high voltage insulators

in juxtaposition to the High Voltage lenses necessitated
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slight modifications in the design of the (e,2e) High
Voltage lenses; these lenses were computer modeled to
achieve similar focal properties to the (e,e’) lenses (see
Appendix C).

Another difference relates to the size of the target
beam spot imaged by the output optics. The spectrometer
was designed so that the Helmholtz-Lagrange constant (see
Appendix C for definition) of input and output beams are
equal. The size and pencil angle of the (e,e’) beam spot

is equal to the input beam spot. However, geometry

dictates that the optimum spot size of the 45° arms is a

factor of 1/ A2 smaller than the incident beam

diameter; conservation of the emittance requires that the

pencil angle be a factor of A2 larger in the (e,2e)
beam. The beam spot size of the target is determined by
the Field lens aperture, therefore these apertures are
different for the (e,e’) and (e,2e) lens columns.

The momentum analyzer selects the momentum q which
will be accepted by the detectors by controlling the angles
6 and ¢ of the electron beam. This is accomplished with
electrostatic deflection by using sets of two pairs of
parallel plates which act in tandem to vary the beam angle
of the electron beam at the target without appreciably

changing the position of the beam spot on the target.
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There is one set of deflectors before the target with the
plates oriented parallel the scattering plane which varies
the angle ¢ thereby selecting momentum q in the y-
direction perpendicular to the incident beam. There are
two sets of deflectors after the target along the (e,2e)
beam arm axes. These plates are oriented perpendicular to
the scattering plane and select momentum q in the z-
direction parallel to the incident beam. Figure III.4
shows the relative position on these deflectors in the
target chamber and Figure III.5 illustrates the geometry
involved.

A detailed analysis of the electron optics of these
deflectors (see Appendix C) shows that if the deflector
voltage V, = 3V, and the distance between the pairs of
plated S is twice the distance between the plates and the
target D then to first order the beam spot location of the
target is independent of the incident angle (see Figure
C.12). Further, in the small angle approximation, the

deflection angle & (i.e. either ¢ or 0), is given by

s » o1 (L) (I11.2)

where e% is incident energy, L is the plate length, and
A is the plate separation. Higher order effects and
specific dimensions are discussed in Appendix C. The

deflection angle can be directly related to the momentum



7 4

(e,e') Arm
(e, 20) ; (e,2¢)
A-arm B-arm
/HRA vr,ava, HLB\
VTA 8 VBA \HLe | | Hre /, vra & vBB
< > +V/ : +V/, Q
HLA N 7\Re
_V 4' /4
/uz v\\ : ,7 V’la
N\
Vg NN " VY,
| Target
VT=vertical top : top —V/o
VB=vertical bottom bott
HR= horizontal right : ottom +Vz
HL=horizontal left j t0p +V/g
' bottpm Vs
HL2 _L” HR2

" VT2 & VB2

HLI Dl HRI

' vVTiavel

Input Arm

Figure III.4 Target chamber deflector positions



75

A&. ‘A1jawoaB8 Bujidjjeds
sy3 BujkieA 10j S10328[jap dI}e3}s0132213 S°II1 #In3id

X 2h_
A_>,|/ ™~ A M3IIA MIIA

N\, N _|
%/// — doy apIs _ A+ A
N>/ ///
...... ) . o
~>X.M.v~m 7 5
Y7L [ :
.>- 4 1394vL - A+




76

q by Equations II.21 and II.23.

The deflector plate voltages are controlled by the
computer. The automation is described in Section IV and
the electronics are described in Appendices C and D. The
momentum transfer was calibrated versus the computer
controlled voltage by measuring the Bragg diffraction

spectra of thin microcrystalline Al films (see Appendix C).

2. Voltage Distridbution

A fundamental feature of high-energy (e,2e) scattering
is the necessity of having two of the three major elements
of the spectrometer -- electron gun, target chamber, and
detectors -- at a high potential. We chose to place the
output arms near room ground to facilitate coupling the
signal pulses from the detectors to the pulse electronics.
The target chamber is held at a positive high voltage HV,
(typically +12.5 kV). The cathode of the electron gun is
at a negative high voltage HV_ (typically -12.5 kV) and
all the input electron optics voltage supplies float on
this potential. The output arms, including the electron
lenses, energy analyzer, and EMT, float on a variable
voltage V, which has a range of 0 to 80 V.

In the elastic scattering mode, the input arm ground
(HV_.) is set to room ground and the target chamber ground

is set to HV,. Electrons from the gun are accelerated
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towards the target through a potential difference of HV,.
These electrons can undergo an elastic collision and/or
lose a small fraction of their energy through small angle
scattering within the target. They are then decelerated by
an amount (HV, - V,) as they move down the output arms.
The energy analyzer is floating on the potential V,, thus
electrons with a potential energy eV, (relative to room
ground) are allowed to pass through the Wien filter into
the detector. Therefore, the energy loss is E oss

V o« In the elastic mode the only voltage that must be

accurately known then is V,.

The situation is somewhat more complicated in the
inelastic mode. The electron gun cathode is held at HV_
and the target chamber at HV,, so that an electron
striking the target has an energy e(HV, - HV_). In
inelastic scattering the incident electron loses a small
energy in an inelastic collision with an electron. In an
(e,2e) collision at ~45° scattering angle the incident
energy is shared approximately equally between the
scattered and recoiled electrons. The electrons entering
the output arms are decelerated by an amount (HV, -
V). The kinematic energy conservation expression for
(e,2e) events, Equation II.9a can be expressed as

E, = (2V, - AHV)e (111.3a)
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where

AHV = HV, + HV_ = |HV,l - |IHV_| (IT1.3b)
An accurate determination of the binding energy E; in an
(e,2e) event requires knowledge of both V, and AHV.

Determination of V, poses no serious problem since
it is a relatively small voltage. A standard voltmeter can
measure V, by recording the potential difference between
the output arms common point CP, and the computer control

rack common point CP.. This voltage difference can be

monitored to within & 10 mV by the meter used
(Weston, Model 1240).

There is some discrepancy between the digital voltage
signal from the computer, V_.,, and the actual
binding voltage, when the binding energy is under computer
control. This can be expressed as

Vo = ¥ Veom * AV (111.4)

com
The offset AV_,, and the scaling factor y depend on
the range of the Voltage Booster (VPI Electronics Shop)
used to amplify the computer DAC voltage. A typical value
for y is 1.01 + .01 and for 4 Veom is
0.47 £ .01 V at 4X amplification.

There is also an offset due to the energy analyzer. In
practice, the Wien filter does not pass electrons with

energy Eg, = O straight through, but rather electrons with

a small energy offset eV,. The value of Vg can be
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determined by measuring the count rate in the elastic mode
as a function of V,: the peak in transmission
corresponds to a value of E, = e(V, - Vg) = 0.
Typically, Vg is 1.0 + .25 V.

The precise measurement of AHV is a more complex
problem due to the high voltages involved. It is measured
by a voltmeter using two high voltage probes in a bridge
configuration. The potential AHV can be expressed in
terms of the meter voltage V, as

AHV = 2000 V, - 121 (I11.5)
to within less than 17Z. Details are given in Appendix D

The drift in AHV over long periods of time during
data collection is an important source of uncertainty in
the determination of E,. The high voltage probes are
stable to within 0.0017 per month and have a temperature
coefficient of 0.001% per °C which can result in an
uncertainty of ¢ .5 V over a typical run. The high
voltage power supplies drift up to 1 V per 48 hours. The
drift is monitored and the supplies readjusted to their
initial values from time to time over the course of a run.
Altogether, drift introduces an uncertainty of 1 eV in the
binding energy.

Finally, the quasi-elastic energy loss and

Eloas

the (e,2e) binding energy E, may be expressed in terms of
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measured quantities as

Eloss = e[yvcom * &Veom - VU]
a b (111.6)
E, = el2(yVeom *+ Avcm) - (VU + VU) - (avm - Bl

The electron gun, target, and detectors are each
associated with a control rack which houses the electronics
that float on the voltage of that element. This
electronics includes the power supplies for the electron
optics, the momentum deflectors, the energy analyzer, and
the EMT's. A fourth control rack contains the computer,
pulse electronics and 25-4/s magnetic ion pump power
supply. Each control rack is isolated from room ground;
the local grounds on each rack are connected to a common
point. This feature is designed to eliminate ground loops
and to facilitate floating the racks on their respective
voltages. The main features of the voltage distribution
system are illustrated in Figure III.6 and details and
schematics are found in Appendix D.

As a crucial safety feature the entire input arm and
target chamber and their control racks are surrounded by a
removable Faraday cage approximately 1.6 m by 2.0 m.
Controls must be adjusted remotely through windows in the

cage.
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J. Vacuum System

The spectrometer is equipped with an ultra-high vacuum

system which provides a base pressure of 3 «x 1073
Torr. The wvacuum is quite stable at this pressure over the
weeks required to take typical data sets. Magnetic ion
pumps were chosen for the ultra-high vacuum pumping to
avoid vibrations in the system and possible target
contamination from gettering pumps. Sorption pumps are
used as roughing pumps to avoid the chance of diffusion
pump backstreaming. A schematic diagram of the vacuum
system is shown in Figure D.l and details are found in

Appendix D.

4. Other components

As with all systems involving charged particle beams,
care must be taken in the (e,2e) spectrometer to minimize
the effects of magnetic fields. This affects the choice of
materials used in construction of the spectrometer and
necessitates the addition of magnetic shielding. The
primary sources of the magnetic fields are static fields
from the earth, the magnetic ion pumps, and magnetized
materials in the lens columns. The shielding consists of
extensive external mu-metal shields surrounding the beam

arms and target chamber, mu-metal rings near the high
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voltage insulators [67], and internal mu-metal shields
around the energy analyzer and the entrance to the EMT.
The target chamber shield is split in half for target
access and provides insufficient shielding of the vertical
component of the magnetic field. A 58 cm diameter
Helmholtz coil concentric with the vertical axis of the
target chamber is used to further reduce this component.
The mu-metal shields were degaussed in stfu.

The overall effect of these measures was to reduce
the magnetic field transverse to the beam axis by a factor
of 50 - 100 below that of the earth's magnetic field to
<50 mG in the beam arms and target chamber and by another
order of magnitude near the energy analyzer and EMT.
Details of the magnetic shielding and magnetic profiles
along the beam axes are given in Appendix D.

Thin film targets are mounted on individual metal
sample holders which in turn are mounted on the target
holder. The sample holders serve to support the thin film
samples and provide electrical contact to the target
chamber ground. The thin films are placed over holes in
the sample holder (1.5 ¢m by 2 cm by 1-2 mm thick) which
vary in size from 1.6 to 4.8 mm diameter. Most of the
films studied were self-supporting, however some samples

have been supported by high transmission fine copper
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microscope grids. There were no discernible effects due to
these grids in the (e,2e) data collected. The a-C films
are mounted on Cu sample holders. However, the graphite
samples are mounted on Al and Mo sample holders, because
trace amounts of Cu were found to strongly inhibit
sputtering of carbon [170]. Care must be taken to orient
the thin films towards the analyzer side of target holder
or else the edges of the sample holders can block the
scattered beam.

Up to four sample holders can be mounted on the target
holder. The target holder is a removable jig which aligns
the samples in specific locations and fits into a cradle
attached to the linear-motion feedthroughs (LMFT). The
target holder can be moved in the x- and y-directions while
the spectrometer is in operation to move different samples
into the beam and to accurately center the samples in the
beam. The maximum travel of the LMFT's is 6 cm in the x-
direction (horizontal) and 4 cm in the y-direction
(vertical). There is some play in the LMFT's which limits
reproducabijlity to ~1 mm.

There are two sets of 45%-deflectors which are also
mounted on the target holder. These deflectors can deflect
the main unscattered beam into either of the (e,2e) arms.

The deflectors consist of two parallel plates (2.15 cm by

2.15 cm:; 0.44 cm separation) oriented at 8 = 2£22.5°
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connected to a high voltage supply (Bertan model 602B-15P).

These 45°-deflector have proven invaluable in obtaining
the initial electron optics settings for the (e,2e) beam
arms. The current in the deflected beam is sufficient so
that the current incident on various elements along the lens
column can be directly measured with a picoammeter. Without
the use of the 45°-deflectors the scattered beam in the
{e,2e) arms can only be detected at the end of the lens
column using the EMT.

A 4 cm diameter quartz viewport is provided to see
inside the target chamber, particularly the target holder.
There is a telescope that fits over the viewport which
provides a means to view the beam spot on the target from
outside the Faraday cage. This has proven useful in
alignment and focusing of the beam spot. The 5 cm diameter
lenses are configured as a condenser lens and mounted in a
100 cm long plastic tube. The image is brought to within
about 20 cm of the viewer for a "brightness magnification”
of 9X.

Very long time periods for data collection necessitate
the interface of the spectrometer to a micro-computer.
These time periods, measured on a scale of days or weeks,
result from the low count rates inherent in coincidence

experiments. The computer is designed primarily for
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controlling real-time data acquisition and data storage.
Although some data reduction and analysis is done on the
micro-computer, most of this is reserved for more powerful
mainframe computers. During real-time operation the
computer controls the range and duration of data collected,
selects the binding energy and momentum, and stores the
data on floppy disk.

Operation of the spectrometer is controlled by a LSI
l1-based MINC (DEC, Mobile INstrument Computer). The MINC
is interfaced to a terminal (BEC model VT 105), two 8-inch
floppy disk drives (DEC model RX02), and through a modem
to the mainframe computer network. Contirol and coincidence
electronics are interfaced to the computer by two methods ;
several MINC Lab Modules are connected directly to the MINC
bus and other components are interfaced by standard CAMAC
hardware.

Data acquisition and the interface electronics are
discussed in Section IV; details of the software are found
in Appendices E and F and details of the coincidence
electronics in Appendix D. Figure IV.l shows the
configuration of the computer hardware and related
electronics.

Precision alignment of the spectrometer is very crucial
to successful operation. The most precise angular

alignment is required for the momentum analyzer deflectors
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relative to the target and each other. To achieve the
desired momentum resolution these angles must be accurate to
within 3 mrad. This is accomplished by mounting the target,
momentum analyzer, and beam alignment apertures together on
a carefully machined stainless steel plate (27.9 cm
diameter) which is mounted in the target chamber. The
position of all of the elements on this table is determined
kinematically by precision-ground sapphire balls.

The alignment of the components of each individual lens
column is also very important. These elements are aligned
relative to each other by bracing them against insulating
atumina rods which are in turn braced against stainless
steel tubes which are welded to the base flanges of the lens
columns and extend the full length of the lens columns. The
only exception to this, is the alignment of the electron gun
assembly with the rest of the input lens column. This
problem is of yet not fully resolved.

The alignment of each of the lens columns with the
corresponding beam alignment aperture on the target chamber
table does not require as precise alignment, because some
misalignment can be compensated for by the beam deflectors
at the entrance to the target chamber. However, this was
still responsible for many of the problems in the initial

operation of the machine and is still not sufficiently
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aligned to avoid some systematic errors in the momentum
determination. The arms have been aligned using a laser
beam which was directed down the beam arm vacuum jackets
through a series of apertures. The vacuum jackets were
adjusted by alignment jacks located beneath the small
magnetic ion pumps. There is still a degree of freedom in
the alignment, however, since the base flanges which mount
on the vacuum jacket are not at exactly right angles with
respect to the stainless-steel support columns.
Incorporating adjustable-angle flanges into the beam arm
vacuum lines may provide a means to remove this error. The
alignment can be accurately tested in the two colinear arms
by measuring Bragg diffraction spectra.

The design of components for the (e,2e) spectrometer is
complicated by many things. Each component may have to be
compatible with the wultra-high vacuum, high voltages,
precision alignment and machining, magnetic shielding, and
space limitations. For example, a component of the electron
optics must be made of a non-magnetic material to avoid
producing stray fields: it must be conducting to avoid
charging effects:; it must be compatible with ultra-high
vacuum requirements; it must be readily machinable to
maintain the precision tolerances needed; and the part must
be designed to minimize the potential for breakdown under

application of high voltage. All of the components that
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went inside the vacuum were first cleaned with organic
solvents in an ultrasonic cleaner and then assembled with
"white gloves and tweezers"” to avoid wvacuum

contamination.



IV. DATA ACQUISITION

Data acquisition for the (e,2e) spectrometer consists
of two main components, real-time data acquisition and the
software used to combine the collected data. The real-time
data acquisition is subdivided into two parts. The first
part consists of the apparatus and computer software used
to control the collection timing, momentum selection, and
energy selection in the spectrometer. The second part
consists of the detectors, coincidence pulse electronics,
and software designed to collect the scalar count rates
which comprise the raw (e,2e) data. This collected data is
processed by a series of programs that combine the raw
count rates into a single data file which is suitable for
data analysis. The following section outlines the
apparatus, software, and algorithms used in data
acquisition; more details are given in the appendices as
noted. A block diagram of the electronics for data
acquisition is shown in Figure IV.l.

The operation of our spectrometer during data collection
is controlled by a MINC (Digital Equipment Corporation,
Mobile INstrument Computer) computer. Once the spectrometer
has been calibrated and the electron optics manually tuned,
the MINC allows complete automation of the data collection.

This automation is necessitated by the low count rates of

90
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the coincidence experiment which result in data collection
times on the order of days or weeks. Typically, the
spectrometer can run for a few days between slight manual
realignment of the beam.

The program PHYS controlling the spectrometer
operation is a FORTRAN algorithm with several machine code
subroutines [(43]. Control parameters are set using PHYS
which determine the range of energy and momentum over which
data is collected and the timing of data collection. PHYS
performs a wide range of functions. The program was
written by Ben Cline and is described in detail in Appendix
E and reference 45.

The scanning range of the binding energy is controlled
by the MINC. The user selects the range by entering the
minimum energy, maximum energy, and energy increment as
parameters for PHYS. The MINC converts an energy value to
a 0-80 VDC analog signal using a Digital-to-Analog
Converter (DAC) and a variable gain amplifier. The voltage
from the amplifier is connected to the common point of the
(e,2e) control panel and floats the (e,2e) electron optics
ground at a voltage V, above room ground. The energy
analyzer is described in more detail in Appendix C. |

The scanning range of crystal momentum is also
controlled by the MINC. The user selects the range by

entering the minimum momentum, maximum momentum, and
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momentum increment in units of inverse Angstroms as
parameters for PHYS. The MINC converts a momentum value to
an 8-bit digital control valve using a calibrated
conversion factor Cg. The control value is transmitted
over a fiber optic link to the target chamber. The fiber
optic link uses optoisolators to provide the necessary
isolation of the computer from the target chamber high
voltage. This digital signal operates a relay and a DAC.
The DAC drives two power supplies for the momentum
deflector plate voltages; the relay determines the
polarity of the plates. The momentum analyzer is described
in more detail in Appendix C.

Collection timing is also under computer control.
Input parameters for timing are the settling time before
data collection, the length of data collection at each
(E,q) point, and the number of data collection sequences
completed before the data are stored on a disk file.

The program PHYS controls the order and timing of
data sampling in the following manner. First, the energy
and momentum of a given (E,q) point are set by sending
the correct signals to the analyzers. The electron optics
are allowed to stabilize by waiting the settling time
before data collection begins. The count rates which

comprise the raw (e,2e) data are collected at the (E,q)
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point for a given length of time, the sample collection
time. Data are collected in this manner over the entire
(E.q) range in a random order. When all of the (E.,q)
points in the sampling range have been sampled, the program
performs another iteration of data collection. After a
specified number of iterations,. PHYS writes the raw data
to a disk SUMMARY file.

This elaborate sampling pattern is designed to minimize
systematic errors in the count rates due to drift in the
tuning of the spectrometer. This drift includes wvariations
in the beam current, in the transmission efficiency through
the electron optics, and in the voltages supplied to the
electron optics. The syst’ematic error can largely be
eliminated by sweeping over the entire (E,q) range with a
sweep period that is chosen to be much less than the drift
time of the spectrometer. The random order of sampling
within each sweep reduces systematic errors due to drift if
the drift continues for several iterations. Oscillations
on time scales less than the sample collection time are
reduced by measuring each count rate for many sampling
periods.

In general, the settling time is on the order of a few
seconds, the sample collection time on the order of a
minute, and the number of (E,q) points on the order of

one hundred points. This means that the iteration period
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for sampling the entire (E,q) range is on the order of a
couple of hours. Electron optics voltage drifts over this

time span are small. The high voltage drift was measured

as less than 1 V (* 5 x 1073%) over a 48 hour
period. Significant drifts in the beam current and
transmission efficiency occur in times on the order of
days, once the system has stabilized.

The function of the pulse electronics in our
spectrometer is to identify and record the coincidence
electron events. Standard coincidence techniques are used
employing commercial electronics components. Two types of
information are recorded for each (E,q) point during
real time data acquisition, the coincidence time spectrum
and the individual electron counts in each arm. The path
of the pulse signal is traced chronologically in the
following paragraphs.

Single electrons within the selected energy and
momentum range are detected by fast, linearly focus,
discrete-dynode electron multipliers located at the end of
the output lens columns. The signal pulses from each
electron multiplier go to a preamplifier through a high
voltage decoupling capacitor and then to a discriminator.
Coincidence detection is performed by a time-to-digital

converter (TDC), which measures the time delay between a
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pulse in one arm and a pulse in the other arm. The TDC is
set to a full range of 128 nsec and has a time resolution
of 250 psec/channel, The output pulse from one
discriminator is used to start the TDC. The coincidence
pulse from the other discriminator acts as the stop pulse
for the TDC. The second pulse passes through a variable
delay box before going to the TDC to reduce spurious noise.
The pulses from each of the discriminators are also counted
by a scalar and measured by a rate meter. The scalars
record the singles count for each arm. The rate meters are
used primarily for tuning the spectirometer’s electiron
optics. Details of the coincidence electronics are found
in Appendix D.

The raw data is transferred from the TDC and scalars to
the MINC which stores the data on a floppy disk. The TDC and
scalars interface to the MINC by standard CAMAC hardware.
Data is transferred via a CAMAC crate controller to the LSI
11-based MINC using standard CAMAC commands.

During the run time, the MINC stores a complete
coincidence time spectra and a total scalar count value for
both arms for each (E,q) point. The coincidence time
spectra consists of the count of total coincidence events
occurring at each of the time interval channels over the TDC
range (see Figure IV.2). During the settling time, after

the MINC has set the momentum and energy, the computer
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retrieves the appropriate coincidence time spectra and
scalar counts from a data file stored on a disk. After a
coincidence is registered by the TDC, the MINC increments
the appropriate time coincidence spectra channel count. At
the end of the sampling interval the MINC transfers the
updated data back to the disk file.

The raw (e,2e) data is processed by several programs
which ultimately produce a normalized array of count rates
for the (E,q) range studied, together with an estimate of
the error associated with each (E,q) point. This array
is the final form of the coincidence data that is used in
the data analysis. The software, data files, data
reduction and merging algorithms, and error analysis are

described in detail in Appendix E.



Vi ERROR ANALYSIS

A. Count rate

The measured (e,2e) count rate is closely related to
the actual (e,2e) count rate, but includes effects due tc;
background counts and multiple scattering, as was discussed

in the theory section earlier.

The elastic cross section at 45°% is quite high
(typically 60 Mhz; see Section II.A). It does not
introduce any significant background into the measured
(e,2e) rate, however, because the energy analyzer will not
transmit these electrons which have energy e(HV,)
greater than the energy of (e,2e) scattered electrons.

Inelastically scattered electrons also have a high
count rate at 45° (typically 10 Khz). These electrons
can have the correct energy and momentum to pass through
the analyzers. It is possible to mimic an (e,2e) event if
two such electrons are independently scattered into each
(e,2e) arm almost simultaneously. These accidental
coincidences produce a coincidence background which is
constant over the range of delay times of the TDC because
of the random nature of the events (see Figure IV.2).

In the region of the coincidence time spectrum where

the true coincidence peak is found there is also a

99
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contribution from the uniform background given by

N = Ny Ng t, (v.1)
where N, and N are the measured singles (non-
coincidence) count rates in the (e,2e) arms and t, is the
time width of the coincidence window. The true coincidence
count rate N, is equal to the measured rate in the
coincidence window N, minus this uniform background.

An accurate measure of the count rate N, can be
obtained by measuring the background count rate over a wide

time window t, away from the coincidence peak. The count

rate for this background window is given by

t
Nb={9Nr=rN (v.2)

[

T

where 1 = tb/tc is the ratio of the window widths.
The true coincidence count rate is then
Ny = No - Np = No - Np/r (v.3)

C

and the standard deviation of N, is

o, = (N, + Ny/n)¥? (v.4)
if Poisson distributions are assumed. The improvement of
signal-to-noise that can be obtained by using large values
of r is obvious. Typically, we use a coincidence window of
5 nsec (20 channels) and a background window of 50 nsec

(200 channels).

Appendix F details the computer algorithms that
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perform this background subtraction and discusses the error
analysis in more concrete terms.

There are several limits that the signal-to-background
ratio imposes on (e,2e) experiments. The background count
rate is proportional to the product of the inelastic count
rates in each arm given by Equation II.18. For the
symmetric geometry these are theoretically identical rates.
On the other hand, the true (e,2e) count rate is given by

Equation II1.30. The ratio of signal-to-noise reduces to

N, Og 1 1

R L V.5

N, do] 2 4 I, 22 t AE )
dQ M

where og is the (e,2e) cross section given by Equation

I1.28, n is the number of target atoms in the interaction
region, and Z is the atomic number.

The signal-to-noise ratio will decrease rapidly for
higher atomic numbers and will become a limiting factor
beyond perhaps the third row of the periodic table.

The coincidence count rate N, o« nl;, while the

N, /N « (nIotc)_l. Therefore, the optimum
product of beam area times beam current times target
thickness for an (e,2e) experiment must be a compromise
between these two rates. The incident beam current has an
upper limit set by the apparatus presently at ~100 uA:
this current is used near its maximum value. The beam area

is determined by the electron optics. This leaves the
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target thickness as the adjustable variable. In actuality,
the upper limit on target thickness is set by multiple
scattering, which is proportional to an expotential of the
thickness, rather than the signal-to-noise ratio. The
optimum target thickness is less than or approximately
equal to one mean free path, because the deconvolution
techniques we employ are rather crude. If this technique
could be improved significantly, then the optimum target
thickness could be larger resulting in a highly desirable
increase in coincidence count rate.

Beyond the random errors in the count rate, there are
several potential systematic errors which have been
identified. Drifts in the tune conditions, changes in the
transmission efficiencies of the beam arms, and drift in
the incident beam current can result drifts in N, and/or
N,. Most such systematic errors are eliminated by the
sampling algorithm described in Section IV. Long term
drifts are reduced by merging the data sets on the basis of
the total coincidence counts in a given region, rather than
on the basis of total collection time as described in
Appendix F.

The position of the beam spot on the target changes

slightly as a function of the momentum selection (see

Appendix C.3). This can cause a systematic error in the
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count rates N, and Ny and hence on N, and N,. If
sample thickness varies appreciably over this range of
distances, it can cause such errors. It is more likely
that most such errors are caused by the mismatch between
the focused areas on the target of the input and output
beams as the beam spot moves. This can result in a
systematic error of ~5-107Z in the count rates over a
typical range of momenta. The count rate should be
constant for the non-coplanar geometiry used to take this
data.

It is possible that the target itself changes
character over the time of exposure to the electron beam.
Analysis of coincidence patterns on samples before and
after several weeks of data collection have shown no signs
of such changes. A better determination of this is

possible by examining the sample in the elastic mode.

Again, the energy loss spectra in the 45° arms showed no
suggestions of sample degradation.

The errors introduced into the coincidence count rate
by the deconvolution routines are uncertain. The primary
justification for minimal deconvolution errors is that it
does not appreciably alter the features or peak locations
present in the original data. The deconvolution technique
used and their potential errors are discussed more fully in

Appendix F and in Jones and Ritter [90].
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B . Energy

The energy resolution for the spectrometer is equal to
the resolution of the input arm and the two output arms
added in quadrature. The overall energy resolution is
typically ~5-7 eV (FWHM).

The input arm energy resolution is a combination of

the thermal spread from the electron gun -- typically only
~ 0.1 eV -- and the energy spread that results from the
electron optics. The latter is primarily a space charge,

or Beorsch [17,154] effect which increases the overall
uncertainty in the input arm to ~ 2 eV [FWHM] (see
Appendix D). This is modeled by a Gaussian distribution of

width bg in the deconvolution routine.

The energy resolution in the output arms can be
estimated from measurements of the energy loss spectra in
the elastic mode (see Figure V.l). The main energy loss
feature in this spectrum is at ~25 eV loss and has a
width of ~20 eV. Therefore, the broadening of the zero
energy loss peak is due almost exclusively to instrumental
broadening. The broadening includes both the input arm and
one of the output arm resolutions.

The shape of this peak can be approximated by a
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Gaussian distribution. The peak is slightly asymmetric and
a Lorentzian line shape may provide a better model in
future analysis. Typically, this peak width is 3 to 5 eV,
although it has been measured as low as 2 eV. The energy

resolution ag of each output arm alone is typically

2.5 to 4.5 eV. The overall energy resolution then is 4 to
7 evVv.

The uncertainty in the binding energy relative to the
Fermi energy is ¢ 1 eV. The value of the binding energy

in terms of voltages measured by the spectrometer is given

by
E, = e[2V, - AHV]
= el2(0Vepm * AVeom) - (Voo *V,2) - (aVy -B)] (V.6)
by combining the equations in Section III.2. The overall
errors in E, is typically 27 of V., * 0.7 V or
~x 1 V. The errors for the individual values in

Equation V.6 are listed in Section III.2 and Appendix D.
There is a drift in E, due to the drift in the high
voltage difference aVq. This drift can be up to
+ 0.5 V over an average data collection period.

There is some difficulty in determining the position
of the Fermi Energy. For a semiconductor, the Fermi energy
is midway between the top of the valence band and the

bottom of the conduction bend. The band gap for a-C is
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~ 0.5 eV [79] and ~ 1.5-2 eV for a-C:H [89] (see
Section VII.C). The value of the band gap in our a-C film
can only be estimated as approximately 1 * 1 eV. There
is also a potential systematic error in the implicit
assumption that the Fermi energy is at the target chamber
ground. It is possible that the target can be at a slight
negative voltage relative to the target chamber ground due
to charging effects.

Taken together, these uncertainties allow the position
of the Fermi energy to be assigned with an estimated
accuracy of = 2 eV. There is experimental evidence to
support this estimate. The (e,2e) count rate should fall
to zero above the top of the wvalence band (i.e. ~ 0.5 eV
below E;) and does at E, = 0 to within + 2 eV. The
calculated density of states falls to zero at

E, = 3 eV above the assigned Fermi Energy.

C. Momentum

The momentum resolution of the spectrometer is a
variable quantity. The zoom lens described in Section
III.1 can vary the pupil angle of the image on the target.
The overall momentum resolution Aq is related dire.ctly to

the pencil angles and incident momentum by Equation II.32.

-1
T he theoretical range is 0.2 < 6 < 1.14



108

at 25 keV incident energy.

The momentum resolution has not yet been empirically
verified. At present the value is calculated from the
electron optics voltages using theoretical electron optics
models in the program MODEL (see Appendix C.2). The
computer simulations agree well qualitatively with
experiment. The estimated accuracy of these models is 10
to 20%.

Momentum selection is described in Appendix C.3e. The
momentum analyzer has been calibrated for the non-coplanar
geometry by measuring the Bragg diffraction spectra of thin
microcrystalline Al films (see Figure C.13). The

experimental and theoretical calibration factors for the

analyzer differ by about 107%. The estimated error in the
momentum increment is then ~157%. This could be reduced
to perhaps 57 by careful recalibration. The coplanar

deflectors have not be calibrated, although they should be
similar to the non-coplanar deflectors.

There is an uncertainty in the zero of momentum. This
is most likely a result of misalignment of the beam arms,
and in particular the electron gun as was discussed in
Section III1.4. The misalignment shifts the momentum
analyzer setting which produces an incident beam normal to

the target. The lowest band of a-C is approximately
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parabolic and should be symmetric about the true q = O.

T he minimum is in fact shifted to

-1
q = 0.75 £ 0.25 A . A recalibration using
Bragg diffraction should be able to determine this momentum

offset to within 5-10%.



VIi. SAMPLE PREPARATION AND CHARACTERIZATION

Preparation of samples for (e,2e) analysis is no small
feat and characterization of the films is an equally
difficult task. The techniques employed in making the thin
films and in measuring their characteristics are described
below. To date (e,2e) measurements on have been
successful only on a-C films. However, significant effort
has been directed toward preparation of single crystal
graphite films and therefore they will also be discussed.

Samples for (e,2e) analysis must have several
important properties. Foremost, the sample must be thin in
order to minimize multiple scattering effects. Typically,

the films must be about | electron mean free path thick,

that is approximately 100 A or 30 atomic layers thick
for carbon. There must be a minimum of structural damage
induced by the thinning techniques employed. The samples
must have a reasonably uniform thickness over an area of
~1 mm? so that the finite beam spot size and small
shifts in its location do not produce significant
variations in the count rates. It is particularly
important to avoid surface contamination, because even a
few monolayers of an oxide, etc. represent a significant

fraction of such a thin film. Further, the film must be

110
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self-supporting to allow electron iransmission.

A. Amorphous carbon

Amorphous carbon films were purchased commercially
from Arizona Carbon Foil Company. The manufacture and
characterization of these films is described in detail by
Stoner [160]. The films are made using an arc deposition
evaporation technique whereby an arc is struck between
spectroscopic grade carbon electrodes in a vacuum and the
carbon is evaporated onto a glass microscope slide (25 mm
by 70 mm) at room temperature [50]. The films contain
small impurities including a few atomic percent H, ~1¥%
0, and trace amounts (ppm) of heavy metals [161]. The
films are highly uniform with variations of typically
£ 107 or less over the slide area. The surface density

is supplied with each film with an accuracy of =l

Hg/cm® as measured by a quartz oscillator. Stoner
verified these surface density by using a combustion
technique together with optical transmission measurements
[160]. This is converted to a thickness by dividing by the

density of these a-C films 1.82 ¢ 0.0f g-cm™3

[93]. The conversion factor is 8§85 A per 1 ug-crn‘2

for a-C.

One of the most important characteristics of thin
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films is of course their thickness. This determines both
the count rates, the signal-to-background ratio, and the
extent of multiple scattering. Optical transmission
measurements of the average thickness were made which
agreed with surface density measurement to within <20%.
Thickness variations were shown to be less than 5% over the
sample area using a highly focused laser beam (~ 10um
spot size) scanned over the sample. Details of this
procedure are given in Section VI.C. Several types of
measurements of these a-C films were made to confirm their
thickness and uniformity using the facilities of the
National Research and Resource Facility for Submicron
Structures (NRRFSS) on the campus of Cornell University.

A surface profile of a typical a-C film mounted on a

glass microscope slide is shown in Figure VI.l. The

surface varies by ~z2200 A over lengths of a few

tenths of millimeters. The large variations are cracks in
the films. Much of the smaller variations are due to
surface irregularities in the glass slide. The profile was

measured by an Alpha-Step Surface Profiler (Tencor

Instruments) which uses a mechanical stylus.

Surface uniformity was measured by an A-scope

interferometer (Varian, model 980-4020). This instrument

employs a sodium vapor lamp (N = 5892 A) and optics to

direct light through a specially coated Fizeau plate, which
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contacts the specimen at a slight angle and forms an air
wedge. An interference fringe pattern is set up which
effectively creates a contour map of the specimen. The
fringes are parallel and evenly spaced for uniformly thick
samples. A distortion of one fringe spacing corresponds to
a thickness variation of one half wavelength.
Interferograms were taken which show that the purchased

a-C films are uniform on the scale of a couple of hundred

A

The average thickness of an a-C sample was measured

using Rutherford backscattering (RBS) by Craig Galvin at

NRRFSS. RBS uses ~2 MeV He?! ions as a probe and
measures the energy loss E  of the ions which are

directly backscattered:

2
E, - [S—S—:—g:f] E, - 2t&E (VL1)
where Ej is the incident He?* energy, M, is the mass
of the scatterer, and t is the depth of the scatter below
the surface. The first term results from a direct
collision with the scattering atom and the second term
models inelastic energy losses due to collisions with the
sample electrons. The beam spot is ~1 mm square.
Therefore, the measured thickness of the sample is an

average value. A best fit to the experimental curve in

Figure VI.2 yields an estimate of 930-990 A for a 21.5



pg-cm? (1180 = 130 A) a-C film. The 207
difference is almost within the stated experimental errors.

Analysis of the small-angle inelastic scattering data
also provides an estimate of the film thickness. The
thickness is derived from the extent of multiple
scattering, i.e. plasmon creation, described by Equation
A.4. There is a significant systematic difference between
the thickness obtained by this method and aill other
methods. Details are discussed in Section VIII.A.

Surface contamination is not a serious problem with
a-C or graphite. Graphite is very chemically inert; it is
insoluble in acids, bases, and organic solvents [26]. The
oxides of carbon, CO and CO,, are both volatile gases,
therefore no oxide layer can form wunder ordinary
circumstances. However, a chemisorbed oxygen layer can
form when the graphite surface is exposed to reactive

oxygen [83] and layers of loosely bound CO and CO,

molecules can form during reactive ion etching.

B. Graphite

1. Preparation

Preparation of single crystal samples pose a
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significantly greater challenge. These samples must

maintain a crystal integrity over a surface area of

~1 mm?. It is quite difficult to maintain this

crystal structure down to the thicknesses needed as
thinning techniques often result in target damage. In
addition, there is the added problem of the alignment of
the crystal axes with the spectrometer axes.

Natural crystals are used for the graphite samples,
since no source of synthetic large single crystal graphite
is available. The crystals are from the Ticonderoga Mine in
Ticonderoga, New York and were purchased from Ward’'s

Natural Science Establishment, Inc., Rochester, New York.

2 and

The crystals have surface areas of up to ~ 35 cm
are up to several millimeters thick. They are embedded in
calcite, which is removed with a solution of hydrofluoric
acid. Synthetic, highly-oriented pyrolytic graphite (HOPG)
was used during the development of the thinning techniques
since it is readily available in larger samples (Union
Carbide Corporatation Parma Technology Center, Parma, OH),
but was not used as a target since the crystalites within
the planes are randomly oriented on a scale smaller than
the electron beam diameter [95] {(see Section VIII). .
Initial thinning of graphite is done using the

"standard Scotch-tape method.” Crystalline graphite and

HOPG have a sheet-like structure similar to mica, therefore



they can readily be thinned by pulling layers apart with
pieces of cellophane tape. Successive applications of this
can result in a thin (~ .1-1 uym) film of graphite
adhered to cellophane tape. The adhesive is dissolved in
toluene and the crystal and cellophane are transferred to
methyl alcohol to remove any residue. The cellophane is
lifted off and the sample is floated onto a sample holder.

Some of these graphite samples with estimated

thicknesses of a few hundred A were examined with the
(e,2e) spectirometer, however no coincidence counts were
observed. It was evident that additional thinning was
needed.

Several different approaches to the thinning of

graphite from ~ 1 uym to 100 A have been attempted.
None of these efforts have yet produced acceptable samples
for (e,2e) analysis, however the techniques are outlined as
a guide to future efforts in sampie preparation.

The first final thinning method developed was that of
ion milling. An ultra-high vacuum ion milling chamber was
constructed at VPI based on initial design work by Melissa
Anderson. Amorphous carbon test films were milled using
both Ar (physical ion milling) and O, (reactive ion
milling) plasmas. Serious equipment problems delayed use

of the machine. It was ultimately decided that the
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structural damage to the crystal resulting from high energy
(~ 500-3000 eV) ions was unacceptable [126,34,35,188,
192,86].

Attempts at DC sputter etching (Edwards S150B Sputter
Coater) sv;iere conducted at Poly-Scientific in Blacksburg, VA
with the aid of Barry Witherspoon. Physical plasma etching
using an Ar plasma and reactive ion etching using an air
(N,70,) plasma were tested with a DC bias of 500 V and

a total power of ~ 10 W at pressures near 200 mT. Some

samples were etched to a few hundred A, however
uniformity was poor and surface charging proved an
insurmountable problem. The retardation of C sputtering in
the presence of trace amounts of Cu was confirmed [170].
There was also evidence of a surface layer being formed on
the carbon by the etching process.

Another attempt at final thinning used a Tunnel Plasma
Etching (TPE) chamber [61]. The technique employs dry
chemical etching where a chemical reaction takes place on
the surface to be etched with a reactive plasma gas and the
resulting volatile gas is pumped off. Plasma etching of
carbon and organic polymers is a well established field
[81] used primarily in the semiconductor industry. An
oxygen plasma is produced and excited oxygen atoms and ions
react with the carbon to produce CO and CO, [83].

Figure VI.3 shows the TPE chamber built at VPI. The
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system has an oxygen source (welding grade oxygen with a
purity of >99.97 with CO, and inert gasses as the major
impurities) with a metering valve to control the flow of
gas into the reaction chamber. A cryo-sorbent vacuum pump
is attached to the opposite end of the chamber. This type
of pump is sufficient since only a modest vacuum is needed
and is used to avoid potential oxygen explosions that can
result from the use of diffusion pumps. The plasma is
produced with rf power which is supplied by a Tesla coil
with a maximum output of ~10 kV at ~ 5 MHz. The rf
power is coupled to the plasma through an antenna formed
from a 3 cm diameter coil of copper wire. Grounded
aluminum screens are used to limit the plasma within a
pyrex reaction chamber ~20 cm long with a ~1.3 cm
I.D. Glass was used for the reaction chamber to reduce
interactions of the oxygen plasma with the walls. Aluminum
is used for the grounding shields and sample holder; a
thin layer of solid aluminum oxide is formed on these
surfaces which then masks them from further oxidation. The
sample is placed 0-5 cm downstream from the copper coil.

Typical operating parameters for the TPE chamber include:

Oxygen Flow Rate: 10* scc/sec (10 m/sec)
Operating Power: 100 mTorr (at inlet TC)
Base Pressure: 20 mTorr

Plasma Power: ~ 1 mWw
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Etch Rate: ~ 10 A/sec
Several natural Graphite films of thicknesses of ~

2 were made

75 to 300 A and surface areas of ~ 1 mm
with the TPE. Three of these samples were tested in the
(e,2e) spectrometer, but proved unsatisfactory. The
characterization of these films is discussed below.
Reactive ion etching (RIE) with an rf power source was
the latest thinning technique to be tried [81]. This 1is
similar to DC sputter etching in its mechanical
configuration and employs the chemical etching principles
used in the TPE. The RIE was done using an Applied
Materials reactive ion etcher at the NRRFSS. The use of rf
power eliminated the charging problems encountered with DC
sputtering and also reduced the crystal damage by lowering
the incident kinetic energy of the ions to below 100 eV.
Initially only O, was used in the plasma, however it
was found that a surface layer was produced on the carbon.
This surface layer is most likely either chemisorbed O,
or loosely bound CO and/or CO, molecules. Argon was
introduced into the plasma to provide a mechanism for
physical plasma etching in addition to the chemical plasma
etching. In principle the carbon is chemically etched by

the O, to form an oxide loosely bound to the surface and

the argon physically sputters the oxide from the surface.
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The argon should have enough energy to knock off the
chemisorbed oxide (~ 10 eV) but not enough to sputter
the carbon directly. This combination should significantly
reduce damage to the graphite crystal structure. Samples
etched with 0, and Ar mixtures did not have visable
surface layers which were present after etching with only
0,. The best samples were produced under the following
conditions:

Oxygen Flow Rate: 30.0 ¥ .2 sccm

Argon Flow Rate: 10.0 * .1 sccm

Operating Pressure: 60 * 2 mT

Base Pressure: 107% T

rf Power: 15 W (0.05 w-cm?)
DC Bias: 110 + 10 V
Etch Rate: ~ 35 A/min

Several graphite and HOPG samples of thicknesses ~

100 to 200 A were produced using this technique. These

samples are in the process of being tested in the (e,2¢)

spectrometer. Evaluation of their characteristics is given
below.
2. Characterization

A study of the optical transmission of a-C as a

function of thickness was performed to provide an indirect
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method of measuring thickness of graphite films. A He-Ne

laser (N = 6328 A) beam was apertured and focused on
the film with a spot size of ~ 0.5 mm. The transmission
was measured with a standard silicon photocell and a
voltmeter. Figure VI.4 illustrates measurements of the
transmission coefficients of a wide range of a-C films and
list a linear regression analysis to an exponential decay.
These measurements are in good agreement with published

data [160]. The estimated accuracy of the method is

+ 257 over a range of 60-1400 A thickness.

An estimate of average thickness of graphite films can
then be obtained by measuring the optical transmission
coefficient of a sample. The optical properties of the a-C
films are estimated by Stoner [160] to be similar to those
for graphite [162]. The thickness of the graphite is
obtained from Figure VI.4 by multiplying by a factor of
0.81 to correct for the difference in densities. Again,
the estimate of thickness is only accurate to about
+ 257%. There is good agreement between Figure VI.4 and
published data [160,79].

Initial measurements of the transmission provided only
a measurement of the average thickness of the samples,
because the laser was focused to a spot size of ~ 0.5 mm

which is about twice the electron beam spot size. A more
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refined system was able to focus the laser to a spot size
of ~ 10 um. The sample was mounted on an x-y-z
positioning stage which allowed movement of the sample to
within *# 10 pm in this system.

Transmission measurements determined that the samples

prepared using the TPE were from ~ 75 to 300 & in

average thickness and samples prepared using RIE were from

~ 100 to 200 & in average thickness.
Sample uniformity proved to be a difficult thing to
achieve in the graphite samples. Interferograms of freshly

cleaved graphite surfaces show that the surface has
irregularities on the order of E | um over areas of

~ | mm? before etching. The TPE samples were visibly
uneven under a 10X optical microscope. Analysis of elastic
scattering spectra and the signal-to-noise ratio in (e,2e)

measurements seemed to suggest variations in thickness of a

factor of 2 or more over surface areas of ~ 0.25 mm?

for these samples. The RIE samples appear to have smooth
surfaces using a 10X optical microscope. Refined optical
transmission measurements demonstrated that the RIE samples
varied significantly over small areas. Areas of up to 0.1

2 with thicknesses of 150 * 50 A were located on

mm
several samples.
It was not possible to use the Alpha-Step Surface

Profiler on graphite because the material was too soft.
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However, a-C films mounted on glass coverslips (see Figure
VI.la) were etched simultaneously with the graphite RIE

samples. A surface profile of the a-C film after etching

(see Figure VI.1b) exhibited variations of 50-100 A over
~ | mm surface distances. This is less that variations
in the film before etching. Evidently, RIE does not
introduce significant surface variations in a-C films and
may actually act to smooth the surface somewhat. It is
reasonable to expect the same to hold for graphite.

Attempts to use RBS on graphite films were not
successful. This may have been due to the wrinkled surface
of the sample or channeling effects of the ions.

Further thickness information may be gained by using
an electron beam to probe the graphite thin films, e.g.
EELS or a STEM with an energy analyzer.

The damage to the crystal structure of graphite caused
by thinning techniques can be estimated using Raman
spectroscopy. The Raman spectrum of single crystail
graphite and HOPG has two Raman active modes at 42 : |

-1

cm ("rigid layer s hear", E, mode)

€
[120,121] and 1581 * 1 cm™? (hnigh frequency
E;

€, mode) [122,166,120]. The frequencies of these

two in-plane modes are in exact agreement with theory

developed by Al-Jishi and Dresselhaus [2]. Tuinstra and
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Koenig [166] were the first to note the existence of a peak
near 1355 wavenumbers present in microcrystalline graphite.
The peak results from a breakdown in the k-section rule
which activates a normally-inactive (in-plane, breathing

A, mode) Raman mode. The exact origin of this peak

g
is still an open question [52,106,123]. However, it is

agreed that the relative intensity of the 1355 cm™

mode with respect to the 1581 cm™ mode varies as the

inverse of the crystal planar domain size L, [166] over a

range 25 A X L, &% 1 ugm [123]. Dillon

et al! have claimed that the 1355 cm™ peak

intensity increases in the Raman spectra of a-C films as

they are annealed up to the point where ~ 20 A
islands of graphite are formed, at wh_ich point the
intensity ratio begins to decrease upon further annealing
[S2]. The ratio of the intensities of the 1355 cm !
mode and the 158! cm™} mode then provides a direct
measure of the in-plane domain size of graphite
microcrystals.

Raman analysis was performed by R. Zallen and Mark

Holtz at VPI on samples of graphite and a-C. The spectra
were obtained at room temperature in a near-backscattering

or reflection geometry. Excitation was primarily by the
5145 A green line of an argon ion laser (Coherent model

90), however spectra were confirmed using the 4880 A
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blue argon ion laser line. The power of the incident beam
ranged from 10 mW to 100 mW at the sample. Scattered
light was collected by an elliptical mirror or using a
Micromate microscope attachment which allows the probe beam
to be positioned to within £ 10 uym in the sample plane.
The light was analyzed using a double monochromator (SPEX

model 1403) with the spectral band pass consistently set at

5.0 em L A photomultiplier tube operating in the
photon counting mode was used for detection. The
background of the photomultiplier was less than 25 cps.
The spectrometer is computer controlled and repetitive
scans were taken in most cases to improve the signal-to-

noise ratio. Scanning rates ranged between 0.4

1 1

cm”!-sec”! and 2.5 cm™l-sec”L

The measured spectra for crystalline graphite and a

graphite sample thinned with tape to ~ 1000 A both

-1

exhibit a single band at 1581 cm wavenumbers in

Figure VI.5. The figure also shows spectra of crystalline

graphite thinned using TPE and RIE which have additional
peaks at 1360 cm™? (50 cm?! FWHM) and 1364
cm™? (38 cm! FWHM) wavenumbers respectively.
The ratio of the 1360 cm ! integrated peak intensity

to that of the 1581 cm™ peak is 1.1 for the TPE

sample. This corresponds to an in-plane domain size of 45
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A according to Tunistra and Koenig {166]. This ratio is

2.9 for the RIE sample which corresponds to L, = 120
A. Both of these etched samples exhibit a small peak at

~ 1622 cm™! which Nemanich and Solin [123] also

identify as a disorder-induced feature.
The width of the 1581 cm™ band remained

constant (14 cm™ FWHM) in the natural graphite,

HOPG, tape-thinned graphite, and the RIE graphite spectra.

The TPE graphite sample exhibited a width of 20 cm™
FWHM. Defects and buckling within the microcrystallite
platelets can cause bands to broaden and/or shift.
Evidence suggests that this type of damage is not induced
by RIE, but does result from TPE.

These Raman spectra clearly show that damage was
introduced into the graphite films during etching, however
the films remain microcrystalline and graphitic in nature.
It is likely that the domains show preferential alignment
within the plane, because they originated from a single
crystal as opposed to HOPG where the microcrystals are
randomly oriented within the plane. The c-axes in the
etched films are probably also somewhat misaligned due to
etching.

Figure VI.6 shows Raman spectira of graphite, HOPG, and
a-C. The a-C spectra has a broad amorphous band from 1000

-1

cm to 1650 cm! centered at 1525 cmt.
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Figure VI.6 Raman Spectra of Carbon films.
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This spectrum is in good agreement with measurements of
other evaporated and sputtered a-C films [52,172].

The graphite crystal orientation in the spectrometer
is crude, but adequate, given the resolution of the
machine. The c-axis of the crystal is well known since it
is perpendicular to the sheets. However, the specimen is

wrinkled badly when mounted on the holder which introduces

an uncertainty of at least 5% in the alignment of the
c-axis with the incident z-axis. Smaller uncertainties
from the target holder alignment and crystal irregularities
are therefore insignificant.

It is possible to align the in-plane axes to some
extent in a simple manner. There are hexagonal crystal
faces in the cleaved natural graphite visible with either
the naked eye or a low power optical microscope. Noting
these faces before etching the graphite allows orientation
to within a few degrees. These crystal faces are still
visable after RIE.

Ideally, the orientation can be found quite precisely
by examining the Bragg diffraction patterns with the (e,e')
arm in the elastic mode. Here, our spectrometer acts as a
high energy electron diffraction (HEED) spectrometer. No
attempt has been made to do this with the graphite sample
yet. The present instrumental resolution of the spectrum

makes it insensitive to the in-plane orientation.



VII. PHYSICS OF CARBON

Carbon has three common stable solid forms, graphite,
diamond, and amorphous carbon (a-C). These form a very
interesting system which exhibits perhaps the most varied
range of physical properties of any element. Diamond i§
renowned for both its optical brilliance and extreme
hardness, while graphite is a very soft material and is
black in color. From a solid state viewpoint, diamond is a
semi-conductor with a 3-dimensional (3D), 4-fold
tetrahedrally bound crystal structure. Graphite is a semi-
metal with a 3-fold bonding which is almost 2D in nature.
Amorphous carbon has properties which vary over a wide
range depending primarily on the temperature and method of
formation. It exhibits similarities to both graphite and
diamond and also has some unique properties. A fourth
solid form, hexagonal diamond or white graphite, has been
synthesized under high pressure and also found naturally

occurring in small amounts in meteorites [42].

Crystal forms of carbon are very difficult to
synthesize and to date natural crystals are of superior

quality. This is due in large measure to the extremely

high melting points of diamond and graphite, R 3530

134
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°C [(28,167]). Large single crystals of both graphite and
diamond are rare. The properties of a synthetic form of
graphite, highly oriented pyrolytic graphite (HOPG), are
discussed since a8 significant amount of the research on
graphite has been carried out on this material.

This section presents a summary of the physics of the
three common forms of solid carbon, including a description
of their physical properties, crystal structure, bonding,
band structure, and density of states. Table VII.I
compares some important properties of these materials.
These materials have been studied extensively by numerous
techniques. Graphite and diamond can be characterized as
well understood systems, while a-C still lacks a good

theoretical framework to describe its structure.

A. Graphite

Graphite has a hexagonal crystal structure which can
be considered nearly 2D. There are planes of hexagonal

rings which are widely separated. The intraplanar nearest

neighbor distance, 1.42 A, is less than half of the
interplanar spacing. These layers, or basal planes, are
stacked with an ababab scheme that produces two
distinct types of lattice sites. These two sites are
illustrated in Figure VII.la. The solid vertical lines

connect lattice sites that are located directly above and
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Table VII.1 Physical properties of carbon

Property Graphite Diamond a-C
|- -
Crystal Structure Hexagonal Diamond
Space Group C6/mmc™® Fd3m® --
Lattice Constants (R)]  ag+2.4612(1)®  |3.5670(1)® --
€g=6.7079(10)@15°C®)
Coordination number 3 4 3 or 4
Nearest neighbor 1.415 (intraplanar)® | 1.5445® --
separation (A) 3.354(interplanar)®
Melting Point (°C) ~3530®) >3550 (4
Density (gm-cm™3) 2.2670(4)@ 3.5155(3)  17-2.2@®
Index of refraction:
real 2.2(9 2.4173@ | 1.4-2.704%)
imaginary 0.7(9 0.03-0.75U4+)
Hardness
(Mohs scale) 1-2W 10 ~6
Resistivity
(room temp.) 4x1075 (interplanar)® 1-10t9
(R-cm) 5x10~2 (intreplanar)® 0.6
Hall Coefficient -0.05 +0.25 to -0.05'¢
(room temp.)
(cm3-C™Y
Band Gap (eV) 0.0 5.5@") a-C 0.5
a-CH 1.5-2®

(@) pobie et al (Ref.

(d) crC Handbook (Ref.

(¢) Kiein (Ref. 95)

147)
®) ypbelohde and Lewis (Ref. 167)
) Taft and Phillips (Ref. 162)

® Himpsel et al (Ref. 82)

(h) painter et al (Ref. 130)
) smith (Ref. 157)

W Stoner (Ref. 160)

28)

M wiilis et al (Ref. 187)

&) Kahn et al (Ref. 91)
() McLintock and Orr (Ref. 118)
@) Measured for our sample
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A
8

(a) GRAPHITE

(b) DIAMOND

Crystal structures of carbon.
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below sites in adjacent planes, whereas broken lines
connect sites that are above and below empty carbon hexagon
centers. The crystal has a C6/mmc space group with a basis
of two atoms and four atoms per unit cell.

This planar structure is responsible for the 2D nature
of graphite and for the anisotropy in many of its physical,
electrical, and optical properties. Extensive reviews of
the properties of graphite are given by Ubbelohde and Lewis
[167] and Klein [95].

The crystal structure has been very accurately
determined by x ray diffraction and is reviewed in
reference 167. Reference is made to early work on graphite
by pioneers in the field including Ewald [55] and Debye and
Scherrer [51]. An excellent study of the valence-electron-
density distribution compares x ray diffraction data [38]
with pseudopotential calculations [84] and finds that the

overall agreement between the two density distributions is

+ 0.15 e/A3 throughout the entire unit cell.

The Brillouin zone (BZ2) of graphite is also hexagonal.
The BZ is shown in Figure VII.2 with points of symmetry
labeled. The lattice vectors and reciprocal lattice
vectors are also listed.

The six electrons of each carbon atom form 2 core
bands and four valence bands in graphite. The two Is

electrons form nearly atomic orbitals with a binding energy



139

»n
~

(a) 3-D Brillouin Zone

The first Brillouin zone for graphite. The point T
is at the center of the zone. The names A, L, Q, H, and
P(or K) are points of high symmetry on the zone boundary.

Lattice vectors Reciprocal lattice vectors

2mn 2n

a, = (ay, 0, 0) b,=[§—.-—,0]

! 0 0 A3a,

1 A3 ] 4n

a-(—a,——a,o bz-(o. ,0)

2 270 270 433,

aa-(0,0,c) ba-(O,O,-Za—::-]

ag = 2.46 A
cp = 6.70 A

Figure VII.2 Brillouin zone of graphite.
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of 284.5 eV [49,116,62]. The four wvalence electrons form
two types of bonds.

The upper valence band results from the @ bond formed
between layers. In the 2D approximation to graphite this

band is formed simply by the 2pz atomic orbitals with

their nodal plane being the basal plane and their axes of
symmetry perpendicular to the plane. The bond can be
visualized as a lobe extending at right angles to the basal
plane. More careful calculations show that this band is
split when one considers the two independent types of
lattice sites. Electrons in these loosely bound orbitals
are primarily responsible for conduction.

A second @w band is the conduction band with a zero
direct energy gap at the K point on the Brillouin zone
boundary. The bond configurations are illustrated in
Figure VII.3 where the sign of the wave function at the
lattice points is designated by + or - signs. Note that
the valence n band has S-symmetry whereas the conduction
band has P-symmetry. This is evident since adjacent unit
cells are identical for the valence band, but are of
opposite phases for the conduction band. n bonds are odd
with respect to the basal plane and o bonds are even. It
should also be noted that the bonding configurations in the
unit cell are degenerate for the conduction and valence

bands at K, as is expected.
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(o) valence band at I' (b) conduction band et I’

+ - + -
(c) valence band ot K (d) conduction band at K
The upper figures show the basal plane structure of
graphite. The sign of the p, wave function at each

lattice point is designated by + or - signs. The dashed
lines separate regions of like sign. The projection of the
unit cell on the basal plane is outlined in heavy lines.
The lower figures show the isolated structure within the
unit cell. After Wallace (Ref. 173).

Figure VII.3 @ bonding in graphite.
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The other three valence electrons form hybridized

sp? orbitals. These o electrons form tight covalent
bonds with nearest neighbor atoms within the basal plane.
In a simple tight binding (TB) picture, these orbitals have

the form

> ey o1 .
T e {4_3.[\1: (@s) + N2 ¥, (2p)]} 1= 1,2 3 (VILI)
where ¥(2s) is the carbon 2s atomic orbital and

‘I’oi(ZP) are 2p orbitals whose axes are in the

directions oy joining the graphite atom to its three
nearest neighbors [173]. There are three distinct bonding
configurations which produce the three o valence bands.
Figure VII.4 illustrates these configurations where the
phase of the bond wave functions are designated by + , -,
and 0 signs representing phases of + 2n/3, - 2n/3, and O,
respectively. At the T'-point, the upper two valence
bands are composed of wave functions with equal numbers of
these three bonding coefficients and the bands hawve P-
symmetry. At the I'-point, the lowest valence band is
composed of all similar bonding coefficients and the band
has S-symmetry. At the K-point, all three bands are
composed of wave functions with equal numbers of the three
phases. Again, note that the bonding configurations in the
unit cell are degenerate for the two upper valence bands at

' and for the lower valence band and one of the upper
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(c) Upper valence bands ot K
Figure VII.4 ¢ bonding in graphite.
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valence bands at K. Another configuration composed of
anti-bonding orbitals is responsible for a ¢ conduction
band with S-symmetry. The 3D splitting of the o bands is
much less than for the @ bands.

Band structure calculations of graphite have been the
focus of extensive efforts over many years. Early TB
calculations by Wallace [173] have been refined and
extended as listed in Table VII.2. [11,84,164,111,187].
Pseudopotential calculations by Holzwarth et al [84] and
discrete variation method calculations by Willis et al
[187] and Tatar and Rabii [164] are in good agreement with
each other and best agreement with experiment. The band
structure is illustrated in Figure VIII.12.

Table VII.3 list experimental determinations of the
binding energies at symmetry points using‘angle-resolved
ultra-violet photoemission spectroscopy (ARUPS) (112,163,
186,53,105], integrated-angle photoemission spectroscopy
(PES) [15], and x ray photoemission spectroscopy (XPS)
[116]. These experiments have been performed on both
single crystals [163,15,112,116,105] and HOPG samples
[186,53]. Synchrotron radiation [15,112,53] and Helium
lamps [163,186,105] were used as ultra-violet sources and
the Al Ka line was used as the x ray source [l16].

The conduction and valence bands density of states has

been calculated by Painter et al [129] using a
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Table VII.2 Graphite Band Structure -- Theory*
Method Pseudopotential Cellular Discrete
(a) (b) (e) (d) Variational
(e) (f)
_Band ‘

Upper r 3.3 4.1 2.5 1.2 4.2 4.7

o M 7.0 7.6 5.3 4.7 7.3 8.1
K 11.2 11.6 6.0 8.8 11.0 11.9
A 3.2 4.0 4.1 ’
L 7.2

-Middle r 3.3 4.1 2.5 1.2 4.2 4.7

o M 14.0 14.7 11.2 11.4 14.1 14.5
K 13.3 14.3 12.3 - 10.8 13.7 13.9
A 3.2 4.0 4.1
L 12;2

Lower r 20.8 21.5 13.8 19.5 20.8

c M 1541 16.1 13.0 12.5 14.9 15.7
K 13.3 14.3 12.3 10.8 13.7 13.9
A 20.7 21.4 191
L 14.6

Upper r 7.1 7.1 5.8 6.4 6.6

n M 2.2 2.7 1.8 2.0 2.0
K -0.2 0.0 0.0 0.0 0.0

Lower r 91 8.7 8.0 8.1 8.2

n M 3.1 3.9 2.6 2.5 2.7
K 0.5 0.6 0.7 0.5 0.5

Both A 8.1 7.9 6.9 7.3

g L 2.7 3.1 2.2 2.3
H -0.2 0.0 0.0

* Energies in eV below top of valence band

(a) Hedlin-Lundquist exchange correlation potential;
Holzwarth et al (Ref. 84)

(b) Slater exchange correlation potential; Holzwarth et al
(Ref. 84)

(c) Bianconi et al (Ref. 15)

(d) Spherically symmetric potential; Mallett (Ref. 111)

(e) Tatar and Rabii et al (Ref. 164)

(f) Willis et al (Ref. 187); Painter and Ellis (Ref. 129)
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Table VII.3 Graphite band structure--experiment.

Method [|XPS | PES ARUPS
Source Al Synchro-{ Synchro-| Hell Hel He Synchro- | He
=u Ka tron tron tron
Eand (a) (b (c) (@ @ (e) f) @)
Upper r S 5.7 5.3 43 4.6 4.6
[ M 8 8 8.8 8.3 8.3 8.0
K 138 | - 10.5 11.5
A
L
Middle r S 5.7 53 4.3 4.6 4.6
o M 13.6 14.5
K|} 17-19 14.6
A
L
Lower r 24 225 20.6
[} M| 17-19 16.0 (15.0)
K| 17-19 14.6
A
L
Upper r 7.6 (8.1) }(8.0) 72
n M|l 3-4 3 24 (2.8) | (2.9)
K 0.35 1.2) 0.2 (1.5) 0.2
Lower r 9.0 9.3 8.9 8.1 8.6
n M 3-49 3 3.0 (2.8) | (2.9)
K 1.2 0.6 (1.5) 0.7
Both A 8.3 8.1 8.0 8.2
n L 2.7 28 29 2.7
H 12) | 0.2 Q1.s) 0.2
1
(a) McFeely et al (Ref. 116) (e) Willlams (Ref. 186)
(b) Bianconi et al (Ref. 15) (f) Eberhardt et al (Ref. 53)
(c) Marchand et al (Ref. 112) (g) Law et al (Ref. 105)

(d) Takahashi et al (Ref. 163)
“ Energies in eV below top of valence band. Uncertain
measurements in parentheses.



147

;/ariational method. A more detailed calculation for the =
band density of states has been performed by Tatar and
Rabii [164] using the Johnson-Dresselhaus model [88]. The
structure of the density of states is well correlated with
symmetry points in the band structure.

Photoemission measurements of N(E) have been made by
Bianconi et al [15], McFeely et al, [116] and Thomas
et al [165] which are in agreement with theory (See
Figure VII.5). Willis et al performed secondary-electron
emission spectroscopy and found their results in good
agreement with calculations for the conduction band density
of states [187]. An x ray emission spectrum was taken by
Chalkin [36].

The relative contributions to the valence density of
states from s and p orbitals can be inferred from
comparisons of the intensities of x ray and photoemission
spectra. The 2s—1s {iransition is forbidden in the K
emission spectrum while 2p electron K x ray emission is
completely allowed. By contrast, the cross section for
photoemission for a 2p electron is lower by a factor of 13
than that of a 2s electron [66]. McFeely et al [116]
were able to demonstrate that states with binding energies
greater that ~ 15 eV -- corresponding to the lower o

bands -- were almost exclusively S5S-bands whereas states

with Eg = 4 eV -- corresponding to the P,
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Microcrys-
telline
grophit

Intensity (arbitrary units)

Glossy
carbon

2BS20IBLIVS O 2520131080
Binding energy (sV)

Figure VII.5 Valence band XPS spectra of carbon.

Valence-band XPS spectra, before (left) and after
(right) correction for inelastic losses, of diamond,
microcrystalline graphite, crystalline graphite, and glassy
carbon.



1498

orbitals in the n bands -- were almost exclusively from 2p
orbitals. The intermediate energies -- corresponding to
the upper o bands -- were mixed in origin with gradually
more 2p character nearer the @ bands.

The electron momentum density of pyrolytic graphite
summed over all bands for both q parallel and
perpendicular to the c-axis have been calculated from
several models [179,48,139]. Cooper and Leake calculated
the contributions from the m and o bands separately [48].
The band-resolved calculations show significant differences
in the two directions, while the total momentum density is
almost identical for both directions (See Figure VII.6).
In principal, (e,2e) measurements of the momentum density
can be separated by band and this difference should be
apparent.

Measurements of the total electron momentum density
have been made using Compton scattering [179,48,178] and
positron annihilation [14] for both momentum directions in
pyrolytic graphite. These are in agreement with theory.

Berko et al [14] have calculated the total momentum
density for polycrystalline graphite and found that it
agrees well with their positron annihilation results.
Measurements of polycrystalline graphite with Compton
scattering produced a broader peak [179,139].

Electron energy loss spectra have been taken by
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Figure VII.6 Directional Compton profiles of graphite.

The directional Compton profiles for (a) the o and
(b) the m bands of graphite. The sum of the three o plus
the m orbitals appropriate for the valence band of
gra)phite is shown in (c). After Cooper and Leake (Ref.
48).
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several groups [62,40,25,26,78]. These have been used to
calculate dielectric functions and optic properties. They
are discussed in more detail in Section II.A. Reflectivity
measurements were performed by Greenaway et al [70]. A
detailed studied of optical properties was done by Taft and
Phillip [162]. Raman spectra are discussed In Section VI.

Highly oriented pyrolytic graphite (HOPG) is a
synthetic form of graphite which is often used in studies
of graphite properties. It is made up of small

crystallites of graphite with basal plane dimensions on the

order of ~ 1000 A. The c-axis of the crystallites
are very highly oriented, however they are randomly
oriented within the basal plane. A review of the

properties of HOPG is given by Klein [95].

B. Diamond

Diamond has a diamond crystal structure with fcc

symmetry. The atoms exhibit 4-fold tetrahedral bonding

with a nearest neighbor distance of 1.5445 A (167]. The
crystal structure is illustrated in Figure VII.lb. Diamond
has a Fd3m space group with a basis of two atom and two
atoms per unit cell.

The crystal structure has been very accurately

determined by x ray diffraction and is reviewed by
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ﬁbbelohde and Lewis [167]. Early measurements were
performed by Bragg and Bragg [23].

The BZ of diamond is a truncated octahedron. It is
shown in Figure VII.7 with points of symmetry labeled. The
primitive lattice vectors and reciprocal lattice vectors
are also listed.

The ls core bands of diamond are similar to the

graphite core bands. There are four valence bands which

result from the sp3 hybridized orbitals. The bottom
band is a wide dispersing band with S-symmetry, very
similar to the lowest valence band in graphite. The upper
three bands are degenerate at ' and disperse downward,
characteristic of P-symmetry bands. In the I'-L and T-X
directions the upper two bands are degenerate.

The wave functions at the I'-points can be described
in terms of 3D networks of positive and negative bonding
coefficients similar to the description of graphite given
above [184]. At the lower [-point the wave functions are
formed with all positive bonding coefficients, analogous to
the lowest [-point in graphite. These orbitals result is
the S-symmetry of the lowest diamond band. The wave
functions at the upper TI'-point, which is triply
degenerate, are formed by three distinct configurations of

equal numbers of positive and negative bonding
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The first Brillouin zone for diamond. The point [ is
at the center of the zone. The names K, L, W, and X are
points of high symmetry on the zone boundary. -

Primative lattice vectors Reciprocal lattice vectors

'6.=(95°-.%9,0) Bn'f:'!('.'"')
a;g (0, OT.’ 92—°) sg'%n.("o 1 ')
33 (%,0,%) by= 20 (1,-1,1)

go = 3.567A

Figure VII.7 Brillouin zone of diamond.
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coefficients. These configurations account for the P-
symmetry nature of the upper three diamond bands.

Band structure calculations have been performed using
a variety of methods including the discrete variational
method [123], LCAO [39,194], augmented plane waves [94],
tight binding [37], pseudopotentials [9], and variational
cellular method [56]. Table VII.4 shows that all these
theories are in approximate agreement with each other and

the limited experimental measurements available [82]. It
is interesting to note that calculations based on 52p2

and sp3 orbitals yield very similar results. The band
structure is illustrated in Figure VIII.l4.

Himpsel et al have made measurements of the binding
energies at several symmetry points using ARPES with
synchrotron radiation [82].

It should be noted that energies listed in Table VII.4
are referenced to the top of the valence band. The band
gap in diamond is 6 eV, [56,82,130,194] therefore the Fermi
level should be ~3 eV above this reference.

The conduction and valence bands density of states has
been calculated by Painter et al [130] using a discrete
variational method. This calculation is in very good
agreement with XPS measurements by McFeely et al [116] and
X ray emission spectra measured by Wiech and Zopf

[182].
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The relative contribution of s and p orbitals to the
density of states of diamond was also examined by McFeely
et al [116] as discussed above. The fractional p mixing
varied from 167 for binding energies between 24 and 20 eV
monotonically to 927% for binding energies between 4 and O
ev. Thus, the bottom band is primarily 2s in character,
the middle band is of mixed character, and the upper bands

are primarily 2p in character. An average hybridization of
sl'zpz'8 was derived, which is in remarkable

agreement with chemical intuition which would favor sp3
over s?p?.

The electron momentum density of diamond summed over
all bands for several momentum directions have been
calculated [194,138,139]. As with graphite, the total
momentum densities do not differ a great deal in different
momentum directions, but should show significant
differences when the bands are separated. The total
momentum density of diamond is quite similar to graphite
although it is somewhat broader.

Experimental measurements with Compton scattering
[138,178], and positron annihilation [102] for crystalline
and powdered diamond are in good agreement with each other
and in reasonable agreement with theory.

The theory of diamond’s optical properties are

discussed by Painter et al [130] and other theoretical
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and experimental work is reviewed by Roberts and

Walker [145]. Raman work is discussed in Section VI.

cC. Amorphous Carbon

The nature of a-C is a very complex problem. Beyond
the difficulty arising from the random long-range ordering
in typical amorphous materials, carbon is complicated by
the coexistence of the tetrahedrally bonded diamond crystal
structure and the 3-fold planar structure of graphite. A
central issue in understanding a-C is the relative
importance of three- and four-fold bonds. Extensive
experimental effort has yet to achieve a unified
interpretation and theory is only in its infancy. Some
possible structure models are discussed below.

Deciding exactly what materials are a-C is not an easy
task. For our purposes, we can distinguish four types ot
carbon which will be discussed. The family of materiais
known as turbostatic carbons appears to be very fine
grained graphitic powders. Many evaporated and sputtered
a-C films appear to be primarily graphitic in character.
Another class of a-C films are referred tc as "diamond-
like.” Finally, there are hydrogenated amorphous carbons
(a-C:H) which are prepared from chemical vapor deposition
of organic materials.

Turbostatic carbons include carbon black (scot] and
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coke. X ray [16,140,153] and electron diffraction
measurements indicate that such carbons have a very finely
dispersed graphite structure, i. e. small graphite regions
with very little a-axis correlation. Short and Walker

[153] estimate the in-plane crystal dimension of carbon
black to be 15-20 A and the c-axis thickness to be about

15 A. They estimate a 5-107% increase in the inter-
planar spacing which is consistent with reductions in bulk
density. X ray PES [116], EELS [116], and Compton
scattering [178] measurements for turbostatic carbons are
in good agreement with data for graphite. Raman spectra
show a gradual transition from crystalline graphite through
microcrystalline graphite to a-C as discussed in Section
VI.

The properties of a-C films differ greatiy and appear
to depend on the method of formation and the deposition
temperature. In general, evaporated and sputtered
films prepared at higher temperatures (room temperature and
above) can be classified as graphite-like, whereas
evaporated and sputtered films deposited at low
temperatures and films prepared by chemical vapor
deposition (CVD) can be classified as diamond-like [73].
Many of the diamond-like properties become more graphitic
in nature upon annealing of the films.

It should be remembered that the films used in our

(e,2e) study were prepared by arc evaporation at room
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temperature (see Section VI). Therefore, these films
should be expected to fall in the graphite-like category.
The measured EELS and Raman spectra for these films are
supporting evidence for this claim.

The hardness and semiconducting nature of graphite-
like a-C films were early evidence for tetrahedral bonding.
More recent measurements indicate that some a-C films are
primarily graphitic in nature although some diamond-like
bonding can not be ruled out.

Electron diffraction by Boiko et al of electron-beam
evaporated films exhibits pronounced graphitic
character [19]. They propose that their film consists of
regions of oriented and unoriented graphitic islands {with
coherent sizes of ~ 10 A and planar spacings of
~ 4-4.5 A) cemented with disordered carbon. Mildner
and Carpenter conclude from neutron-diffraction data that
tetrahedrally bonded atoms in a-C account for at most 107
and probably less than 57 of the atoms [l18a]l. XPS
measurements by McFeely et al are very similar to graphite
and differ from diamond (see Figure VII.5) [l16]. The EELS
spectrum of a-C shown in Figure VII.8 is also much more
similar to graphite than diamond [146,172]. The EELS data
of our a-C films taken by Schnatterly [149] (see Figure
VIII.3) and measurements by Burge and Misell [26] are even
more similar to graphite and exhibits both characteristic

graphite peaks at 7 eV and 25 eV (see Section I1.A).
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Extended electron-energy-loss fine structure measurements
by Batson and Craven on carbon K-ionization edges also show
a graphite-like structure [12]. Raman spectra for
evaporated and sputtered a-C were also found to be much
closer to graphite than that of diamond (see Section VI)
[52,172]. Based on Raman data, Wada et al have proposed

a model for a-C which is based on random-network-type

planar clusters of graphite structures ~ 20 A in
size, which have dangling bonds around the clusters’ edges
(17 2].

Grigorovici et al have measured the temperature
dependence of electrical conductivity, piezoresistance, and
thermopower, as well as optical reflectivity and
transmission, for electron beam evaporated a-C films [71].
Based on electrical conductivity and optical measurements
they estimate an energy gap of .65 eV. Their reflectivity
measurements also show features which can be attributed
solely to diamond and graphite alone. They conclude that
a-C is made up of interconnected islands of both diamond
and graphite structure, with a predominance of graphite.

Beeman et al [13] reviewed the radial distribution
functions from electron diffraction [19,92], and the Raman
and vibrational density-of-states spectra [52,172] for a-C.
Their comparison of computer models of a-C structures with
varying percentages of tetrahedral bonding lead them to

conclude that this percentage was not likely to exceed lOZ.
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Figure VII.8 Comparison of EELS spectra of a-C, graphite,
and diamond.*

« After Robertson (Ref. 146).
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They propose a variation of the model by Wada et al --
similar to that mentioned by Robertson {146] -- which
consists of three-coordinated planar regions with
occasional four-coordinated atoms allowing changes 1n
orientation of the planes. These graphitic regions have
fairly randomly oriented planes so that the bulk material
would be isotropic. Their model regions had little
distortion in bond length and bond angle, yet they found
that there were significant numbers of five- and seven-
membered rings incorporated into the model structures.
These planar regions are quite similar to the 2D random-
network structure discussed by Zallen [191]. Further
reference to this model is made in Section VIII.C.

Many properties of "diamond-like"” a-C have been
studied including, conductivity [148], resistivity [79],
optical properties [79,91,148], electron diffraction [793],
and electron microscopy [128]. In general, these films
exhibit properties which can be attributed to the presence
of both 3-fold and 4-fold bonding in varying amounts. The
interested reader is referred to the literature for
details,

The optical [157,89] and dielectric [103] properties,
conductivity [89], EELS spectrum [60], and electron
diffraction patterns [60] of a-C:H films have been studied.
These films are produced from CVD from various organic

compounds. In general, they exhibit significant amounts of

tetrahedral bonding.



VIII. ANALYSIS OF DATA

A. Description of data

An extensive set of data has been taken for an a-C
sample (Sample I.D.# C24) which extends previous
measurements [144]. The normalized data, deconvoluted
data, and ancillary measurements for this sample are
presented below. These data are compared to published
theory and experimental results for the band structure,
density of state, and electron momentum density of both
diamond and graphite. Finally, some conclusions are drawn
regarding the structure of a-C based on this data.

Table VIII.L lists the experimental parameters
particular to the C24 data set. The incident electron
energy was 20 keV. Data was collected for a range of
energies & between -7.7 and 40.8 eV below Ep (binding
voltages V, between 2 and 25 V with a 1V increment, see

Equation III.6). The range of momentum q was -4.2 to 3.1

-1 ‘

A with a momentum increment of 0.28

-1

R
Data were collected over a period of approximately two

months in units of approximately one week duration. Each

of the 648 (E,q) points had data collected for between

0.3 and 1.7 hours, with the central region of interest

Table VIII.1
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Table VIII.1 Experimental parameters for

ENERGY

Range of binding energy
Range of binding voltage
Energy increment
Meter voltage
Meter scaling factor
Meter offset voltage
Computer scaling factor
Computer offset voltage

Wien filter offset voltages

Fermi energy relative to binding
energy zero

Incident beam energy

Energy resolution

MOMENTUM

Range of momentum
Momentum increment
Momentum offset

Momentum conversion factor
Momentum resolution

COUNT RATE

Maximum coi cidence count rate
Average peak coincidence count rate

Average background count rate
Maximum signal-to-noise ratio
Average signal-to-noise ratio

Collection time per (E,q) point

Statistical error
Systematic error

8q
QSHIFT

Aq

C24 data

-7.7 to 40.8 eV
2 to 25 V

2.0 eV
120 mV %= <17
20001 = <17
-12.08 £+ 0.1 V
1.01, = 0.01
0.47 £ 001 V

04 £+ 05V

04 £+ 0S5 V
-0.5 2V

20.0 kv
6 eV

-1
-4.2 to 3.1 A
-1
0.28 ¢+ 0.05 &
-084 + 028 A
-1
0.064 A /step : 107
0.6/

853 12

0.015 Hz
15

S5
0.32 to 1.68 hours
5 to 107
107
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having the longer sampling times. The maximum coincidence
rate was 0.23 Hz. The average coincidence count rate for
(E,q) point in a band was approximately 0.07 Hz and the
average background count rate was 0.015 Hz which is a
signal-to-noise ratio of about five. The statistical error
of the count rates for points in a band was from 5 to 10%.
There was also a systematic uncertainty in the count rates
of ~ 10%, due primarily to variations of the count rates
as a function of momentum.

A three-dimensional plot of the merged normalized
(e,2e) data is shown in Figure VIII.IL.

The parameters used in the deconvolution of multiple
scattering are listed in Table VIII.2. Deconvolution was
performed for the energy loss variable only, because
momentum broadening was not as significant for the data set
as was energy broadening. A discussion of the momentum
parameters is included, however, for the sake of
completeness. It should be noted that we determined all of
the parameters used in the deconvolution empirically, with
the exception of the mean free paths. All of these values
are in good agreement with other work where it is
applicable.

The four momentum broadening functions are shown in
Figure VIII.2. The momentum resolution parameters were

determined by theoretical electron optics modeling of the
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Table VIII.2 Deconvolution parameters for C24 data

Input arm energy resolution ap 0.85 eV (2 eV FWHM)
-1 -1
Input arm momentum resolution a, 0.58 (1.1 A FWHM)
-1 -1
0.58 (1.1 A FWHM)
ay
Output arm energy resolution bg 2.4 eV (5.7 eV FWHM)
-1 -1
Output arm momentum resolution by 03 A (08 A FWHM)
-1 -1
b, 03 A (0.83 FWHM)
Inelastic normalization constant v, 0.8217 (@
Inelastic peak position v, 243 ev @
Inelastic peak width m, 154 eV (FWHM) ©
Inelastic width parameter Vy 0.00422 @
Elastic momentum parameter q, 3087 @
-1
Plasmon momentum parameter 9 0.040 & (a)
-1
Cutoff momentum q 2004 @
Target thickness (surface density) t 55 A (lpg-cm™?)
(EELS fit) 140 A
Elastic mean free path Ne 530 A (25 kev) (©
275 A (12.5 keV?(C)
Inelastic mean free path Ny 300 A (25 kev) [eed)
160 A (12.5 kev) (&eD
Total mean free path N 192 A (25 keV)
101 A (12.5 keV)
Average mean free path ~ 125 A
@ Schnatterly, (Ref. 149)
® Hartley, (Ref. 78)
© Briinger and Menz, (Ref. 25)
@ Fietds, (Ref. 59)
® Penn, (Ref. 132)
0 Burge and Missell, (Ref. 26)
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Figure VIII.2 Momentum Broadening functions.

Illustrates the four momentum broadening functions
used in deconvolution normalized to one at gq=0. F, (see
Equation I1.6) is the small angle elastic scattering
distribution. F, (see Equation II.12) is the small-angle
inelastic scattering distribution. P, and P, (see
Equation B.10) are the output and input arm resolution
Gaussian distributions, respectively.
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lens systems. The input and output resolution functions

are Gaussian distributions with FWHM of 1.4 and 1.0

-1 -1
A respectively. A value of 3.0 A

[90] was used for the elastic momentum parameter q based

on measurements of a-C [25]. The plasmon momentum

-1
parameter 9 = 0.040 A based on Schnatterly’s

determination of #w, for a-C [149]. An empirical fit

of the inelastic data of Brunger and Menz [25] to Equation

I1.12 yields q.=0.144 +8 [90]. The discrepancy
E

in these wvalues can be understood by noting that Equation
II.11 is based on the assumption that the plasmon peak is

narrow, which is not the case for a-C. The cutoff momentum

-1
was estimated as q. - 20.0 A from Equation

I1.13. The input arm energy resolution ‘was estimated to
have a 2 eV FWHM. The output arm energy resolution was
determined from ESWEEP data shown in Figure V.2 toc be 5.7
eV FWHM.

Parameters for the energy dependence of small-angle
inelastic scattering were determined from high resclution
EELS data taken by Cafolla and Schnatterly at the
University of Virginia [149]. The data for our a-C films
shown in Figure VIII.3 was taken at 150 keV and has been
corrected for multiple scattering. The solid line in the
figure is a fit to the data using U(&) from Equation

II.10 with a main energy loss peak position of 24.3 eV and
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o ) 20 30 40 50 60
Energy loss (eV)

Figure VIII.3 Energy dependence of small-angle inelastic
energy loss function U(8).

The points represent high resolution EELS data taken
bg Steve Schnatterly (University of Virginia) on a-C films.
The solid line is the fit to the data using Equation II.10.
The vertical scale is arbitrary and normalization has been
adjusted to give agreement at the peak.
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§ FWHM of 15.4 eV. The peak position is in good agreement
with graphite data reported by Hartley [49] and a-C data in
Burge and Misell [26]. However, the width is less than the
value obtained by Burge and Misell (21.8 * 0.5 eV ).
The Fourier transform V(t) of U(€) is shown in Figure
VIII.4.

The Fourier transform J(t) of the smearing function
is shown in Figure VIII.5b. This is calculated from the
£-functions shown in Figure VIII.5a and the coefficients
in Table VIII.3 using Equation B.7. The smearing function
#(E), i.e. the inverse Fourier transform of J(t), is
shown in Figure VIII.6.

The elastic and inelastic mean free paths of a-C as a
function of energy are graphed in Figure VIII.7. The data
are adequate for high incident energies, but must be
extrapolated below about 20 keV. This introduces
significant error into the mean free path estimates.
However, the mean free path only enters into deconvolution
calculations as a ratio of the sample thickness to mean
free path. This ratio can be determined independently from
ESWEEP data similar to that in Figure V.2. Comparison was
made between ESWEEP data and the thicknesses for the
theoretical function #%(€6) which produced the same
plasmon ratio (the ratio of the height of the first plasmon

peak to the zero loss peak height). Analysis of several
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- T (17eV)
a) shows the first four £(t) functions (M=0,1,2,3)

for the sum in Equation B.7 where M is the number of

multiple scatters that occur. Note that the M=0 curve has
a reduced scale.

®

003

M=0 (x Vo)

L function

0.02

0.0!

T function

0.00

lllllejljlellllllJ

-°‘°| I(Tl'!l'l'IU'U'ITII'IUII|‘IIlll"l!'!li“

-2.0 -1.8 =10 =05 0.0 0.8 1.0 1.8 2.0
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b) Fourier transform T(t) of the smearing function

Figure VIII.S The Fourier transform T(t) of the smearing
function and its compoenet functions ¥£(t)
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1200 1
Elastic
1000+
800-
A X
600+
(R) x
X Inelastic
400 - /
/
//
200- / //
/7 7
////
o3 10 20 30 40 50 60 70
Energy (KeV)
Figure VIII.7 Mean free path vs. incident energy for
Carbon

Elastic mean free path curve based on data for a-C
from 20<E;<60 keV after Brunger and Menz (ref. 253).
Inelastic mean free path curve based on data for a-C from
20<E,<70 keV after Brunger and Menz (Ref. 25) [ ]; Burge
and Misell (Ref. 26) [x]; Bohm-Pines theory in Burge and
Misell [ ]; and data for graphite from 0.2<E;<2.4 keV
after Penn (Refs. 132 and 133) and Quinn (Ref. 135).
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thicknesses of a-C film suggest that estimates obtained
from this method are approximately 2.5 times larger than
measured film thicknesses (see Figure VIII.8). These
estimates are used only in the deconvolution.

Ten iterations of the deconvolution routine were
performed. Further iterations amplified noise in the data
and produced larger negative count rates.

The deconvoluted data are presented in Figure VIII.S.

B. Comparison with previous results

The general trends found in the present data are the
same as those we reported previously [144]. The resolution
in these previous measurements was less and data were not
taken at as fine an increments. The only significant
discrepancy was in the assignment of the position of the
Fermi level which appear to differ by about 4 eV.

The energy density of states can be calculated from

the (e,2e) cross section using

NE) = Il@(q)lz d3q (VIIL1)

For an isotropic distribution this can be expressed as a

sum over all momentum points

N(E) - % N(E,q) 2nq? 8q (VIIL.2)

where &8q is the spacing between momentum points. It
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should be noted that there is an ambiguity in this
expression for N(E) for amorphous states which are
degenerate in E and q, but can not be assigned a quantum
number n. This may produce a discrepancy at small q due
to the overlap of the wavefunctions of delocalized
degenerate states. Figure VIII.10 shows N(E) calculated
from the normalized and deconvoluted a-C (e,2e) spectra.
The (e,2e) cross section is not measured on an absolute
scale, therefore there is an arbitrary normalization factor
in the calculated density of states. There is a further
uncertainty in assigning the position of the Fermi Energy
as -0.5 £ 2 V above the zero of the binding energy as
was discussed in Section V.

Comparison of the deconvoluted a-C density of states
with those of graphite [15,129] and diamond [130] are shown
in Figure VIII.1l. There is not enough resolution in the
(e,2e) data to make detailed comparisons, however, several
general conclusions can be drawn.

The (e,2e) density of states appear shifted by about
2 eV to energies above Ep. This could be an artifact of
the energy resolution, be a result of a systematic error in
energy measurement, or be caused by charging due to the
presence of a larger energy gap. In any event, the
discrepancy is within experimental error. The (e,2¢)

density of states is significantly wider than either
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(a) a-C compared with graphite

Y .
o’ “\ EF
¥ U L] : T ¥ ¥ y § § 7 U ¥ ¥V,
32 28 24 20 6 2 8 4 O -4
Binding Energy (eV)

Stepped curve is after theory by Painter and Ellis
(Ref. 129). Dashed curve is after XPS measurements by
Bianconi et al (Ref. 15). Solid curve is based on (e,2e) data.

(b) a-C compared with diamond
5-1

Eg

T V¢V ¢ ¢ ¢ 7 ¢ v vV ¢ 7 7 ¢V ¥ 11 LR
32 28 24 20 6 12 8 4 O -4
Binding Energy (eV)
Stepped curve is after theory by Painter et al (Ref.

130). Solid curve is based on (e,2e) data.
Figure VIII.1l1

Figure VIII.1l Comparison of density of states of a-C,
graphite, and diamond
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graphite or diamond densities of state. This could also be
partially a result of instrumental broadening. The small
peak centered at ~ 32 eV is most likely a remnant of
incomplete deconvolution, because it is one plasmon energy
(24 eV) below the main feature in the density of states at
8 eV.

The 1D electron momentum density is given by

J@ = [ 18(q@I® dE (VIIL3)

which can be expressed as a sum over energy points as
J(@) = X N(E,q) éE (VIII.4)
E

where 8E is the spacing between energy points. Figure
VIII.12a shows J(q) calculated from the normalized and
deconvoluted a-C (e,2e) spectra. A crude effort was made
to calculate J(q) separately for the two bands
distinguished in the data. The sum over
11 £ Ej s 32eV includes the bottom portion of the
lower parabolic band. The other sum over

-2 £ Ey £ 9 eV illustrates the upper band for

lql X1 A—l. Howewver, for larger q .,
contributions of approximately equal magnitude are present
from both bands.

The electron momentum density is about twice as wide
as those measured for graphite and diamond. There is some
instrumental broadening in momentum, however this alone

probably can not account for the marked increase in the



184

0 ; 1 4 v v L] L] L | | ] 1 J 1 ¥ L] | ) ) v
-4 -3 -2 -l o] |

Momentum (&-")
(@) Total electron momentum density from merged (dashed

line) and deconvoluted (solid line) data.

J(q)

lAAAlAAAAIAAAI.AlAAllLA‘J

0

-4 -3 -2 -l 0 | 2 3

Momentum (A™)

(b) Partial electron momentum density for upper part of
dispersion curve (dashed line) and lower part of dis-
persion curve (solid line).

Figure VIII.12 Electron momentum density calculated from
a-C (e,2e) spectra
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width. The electron momentum density also exhibits a very

broad plateau at Iql<l 2" which differs from the
sharper shape of the crystal distributions. Here also the
(e,2e) resolution is insufficient to draw any direct
conclusions.

An estimate of the band structure of a-C is obtained
by projecting the location of the peaks in the deconvoluted
(e,2e) intensity onto the (E,q) plane. Figure VIII.13
shows the location of these points. The peaks for positive
(circles) and negative momenta (squares) are mapped onto
the same quadrant. These represent peaks (solid symbols)
and shoulders (open symbols) in constant-momentum plots of
the (e,2e) data. The triangles designate peaks in
constant-energy plots of the (e,2e) data in a region where
it was difficult to distinguish structure in the constant-
momentum plots. Experimental resolutions (FWHM) are shown
by the error bars at the bottom of the graph. Statistical
errors in the count rates are shown in Figure VIII.14 by
error bars, however systematic errors and errors introduced
by deconvolution are not included.

There are two bands clearly visible in the data. The
lower band has a minimum at q=0 with Eg» 18 eV below

the Fermi energy. The band is roughly parabolic and has a

-1
momentum width of ~ 2.5 A extending upward to

near Ep. A plot of the peak heights along the band as a
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function of momentum (Figure VIII.14) shows that the band
intensity decreases monotonically. This is characteristic
of S-symmetry bands as discussed in Section II.B.

The upper band is not as prominent, but it is clearly
visible. This band also has a minimum at g=0 with
EgxbeV. Again, the band is upwardly dispersing to

near Ep, but has an apparent momentum width of only

-1
~ 1.7 A . However, the juxtaposition of the
upper and lower bands near the Fermi level limits the
certitude of this statement. A plot of the peak height

versus momentum shows that there is a maximum in intensity

at qx1 A ' which is ~50% larger than the g=0
peak intensity. Therefore, the band appears to have a
mixture of S- and P-symmetry characteristics.

Most of the positive momentum peaks in the bottom band
have lower binding energies than the corresponding negative

momentum points. This suggests that the momentum offset is

incorrect. A further shift of -1/8 to -1/4 A_l
improves the agreement, however the position of the band
remains unchanged.

The theoretical valence band structure of graphite
[187] is superimposed on the (e,2e) data in Figure VIII.13.
The graphite bands in two directions, '-M and I'-K, are
illustrated. The 3D splitting of the bands is also

included; in particular both @& bands are shown. The
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areas between each of the bands in the two directions are

shaded. This formally represents the fact that isotropic

a-C must be some kind of average over all directions. The
-1 -1

M (1. 4 8 A ) and K (1.7 0 A )

boundaries are included for references.
The comparison shows striking similarities. The lower

o band is comparable to the lower a-C band out to g~1.7

A (near the graphite BZ boundary). The curvature
of the two bands are quite similar, however, the a-C band
is about 3 eV above the graphite band at q=0. The a-C band
extends beyond the graphite BZ boundary to larger momentum.
This a-C band appears to display S-symmetiry as does the
lowest ¢ band. The m bands of graphite are also in good
agreement with the upper a-C band. The binding energy at
g=0 for a-C is ~2 eV above the value for the center of
the @ bands. The upper a-C band does exhibit some P-
symmetry characteristics which are contrary to the S-
symmetry of the m band. The difference between the two
measured a-C band energies at gq=0 (~12 eV) agrees
remarkably with the value for the averages of the graphite
bands (~13 eV). It should be noted that earlier a-C data
[144]) positioned the lower band at 2 eV below the graphite
band at g = 0, but had the same value for the separation of

the two a-C bands at q = O. This again emphasizes the
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problem of establishing the Fermi level and suggests that
there may be an error of ~ 2 eV in the assignment of the
Fermi level of a-C.

The apparent absence of a-C bands corresponding to the
upper two o bands is also striking. The two upper o
bands account for one half of the states in the graphite
valence band, so some explanation of their absence is
required. It is possible that some vestige of these bands
is present, but not resolved. The width of the upper peak
at g=0 (FWHM shown by error bars in Figure VIII.13) is
sufficient to encompass both the @ and upper o bands.
The ¢ bands have P-symmetry, which might help explain the
P-symmetry characteristics of the upper a-C band. However,

their P-symmetry would also imply that they should have

-1
high intensities at 0.5 & |q! & 1.04
where they would be most easily resolved from the other

bands.

A similar comparison of the a-C data with diamond band
structure is shown in Figure VIII.1S. As before, the

dispersion curves are illustrated for two directions, i.e.
-1
the T-L and F-X directions and the L(1.53 A )

-1
and X(1.76 A ) boundaries are shown for
reference. The similarities are considerably less. The
lower a-C band is in comparable agreement with the lowest

diamond band as it was with the lowest graphite band.
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Their energies differ by about 4 eV at g=0. The upper
bands differ markedly and disperse in opposite directions.
Their energies differ by ~3 eV at g=0. The difference
between the two diamond energies at I' is ~20 eV for
diamond which is significantly larger than the
corresponding ~12 eV measured for a-C.

The total number of states in the valence bands
integrated over all momentum directions is 2n,N, where
n, is the number of valence electrons per unit cell and

N

v is the number of unit cells in the crystal volume.

An integration of the density of states N(E) over all
valence energies should also equal 2n,N,. This is of
course equivalent to integrating the 1D density of states
along all reciprocal space directions over the BZ.
Individually, each band accounts for 2N, states in the
density of states.

It is sometimes possible to further separate the
valence bands into individual bands or groups of bands if
the bands are not degenerate with respect to energy over
all momentum directions. This is illustrated in diamond

where it is possible to equate the states with

€ X~ 15 eV with the upper three bands and the

>

states with & ~ 15 eV with the lowest o band.
There are three times the number of occupied states

associated with the upper three bands as with the lower
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band.
The theoretical density of states for diamond [130]

in Figure VIII.llb shows that the number of states

associated with the upper three bands (§ & 15 eV)

is approximately three times that of the number associated

with the lowest ¢ band (€ & 15 eV). Similarly,

Figure VIII.!ila [129] shows that the number of states in

the m-band of graphite (€ & 6 eV), the two upper

6-bands (6~ € & 14 eV), and the lowest o-

band (€ A 14 eV) are in the approximate ratio

1:2:1. The separation of the graphite bands is less clear,
because the m-band and upper o-bands cross.

In an amorphous sample of equal size, there must be
the same total number of occupied states as in a crystal
because the number of valence electirons is the same.
However, the number of states in a given band is no longer
predicted by Bloch's theorem, because amorphous materials
lack long range order. The amorphous momentum density of
states is the same along all momentum directions due to the
isotropic nature of amorphous materials in real space.

The relative number of states in 3D associated with
each a-C band can be determined from the density of states
in Figure VIII.10. Three regions are distinguished in the

band diagram in Figure VIII.13; those states with binding
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energies below E = 8 eV can be assigned to the lower a-C

-1
band, those above E = 8 eV and with gq&1.74

can be assigned to the upper band, while states with

-1
E < 8 eV and q > 1.7 A cannot be unambiguously

assigned. Figures VIII.9 and VIII.14 show that the cross

section above E = 8 eV is approximately constant out to
o -1

q = 2.8 A at which point the probability drops

rapidly to zero. Under this approximation the number of

states in the unassigned region account for 407 of the
occupied area of (§,3) space above 8 eV in Figure
VIII.9. A momentum weighted sum, as in Equation VIII.2
determines that 637 of the states above E = 8 eV in the
density of states are in the unassigned region. The
premise that the upper band terminates near the BZ bc.)undary
would clearly assign these unassigned states to the lower
band. In this case the ratio of lower band states to upper
band states is 5:1. If the unassigned states are shared
equally by the two bands this ratio is 2.4:l. Shifting the
cutoff energy from 8 eV to 6 eV or 10 eV changes this ratio
by only approximately 207Z. Therefore, we can state that
the ratio of the number of states in the lower band to
those in the upper is between 2:1 and 5:l.

In a crystalline solid it also follows from the Bloch
theorem that there are 2N states in each band in the

dispersion curve along any reciprocal space direction,
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where N is the number of unit cells along the corresponding
crystallographic direction. Therefore, each band has an
equal number of states in any given momentum direction
(unless there are degenerate bands, as is the case for
diamond along the IF-L and I'-X directions). For semi-
metals (graphite) and semi- conductors (diamond), all
valence states are occupied states.

(e,2e) measurements also provide information on the
relative number of occupied states in each band along the
measured momentum direction. It is possible to estimate
the probability that an electron will be found with some
energy and momentum associated with a given band by simple
summation of the probabilities at each appropriate (E,q)
point, i.e. adding the measured N(E,q) for each point in
the band. Estimates can be based on the relative band peak
heights of the curves in Figure VIII.14 or based on the
relative volumes under the curve in Figure VIII.S
associated with the two bands. In both of these cases the

ratio of the lower band to the upper is 3 2 %

to one. Again the uncertainty results from the ambiguity
of assigning the large momenta states. However, this
uncertainty is reduced considerably by the fact that the
unassigned region is not heavily weighted by the q°

factor present in the density of states calculation.
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C. Interpretation

It can now be stated on the basis of our data that a
dispersion relation &€($25q) does exist for a-C. This in
itself is a significant conclusion. The existence of this
relation must now be integrated into any theory for such
amorphous materials. Such theories may well lead to other
significant results, just as the Bloch theorem which
predicts bands in crystals has lead to the explanation of
many other properties of crystalline solids. Most of the
present morphological theories, e.g. random close packing
and continuous random networks can only begin to address
the existence of bands.

Ziman [193] has discussed the existence of bands in
amorphous solids in the context of the expansion of wave
functions in terms of linear combinations of bonding
orbitals [75]. In particular, Ziman predicts the existence
of bands similar to their crystal counterparts for
continuous random networks (crn) of tetrahedral glasses,
e.g. a-Si and "diamond-like" a-C. These glasses still
possess 4-fold bonding and nearly constant bond lengths,
but have a distribution of bond angles which produces long
range disorder. From topological arguments, Ziman is able
to demonstrate the existence of four distinct bonding

configurations compatible with the amorphous structure.
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The bonding configuration formed from all positive bonding
coefficients is associated with the lowest I'-point in the
diamond dispersion curve. The other three amorphous
bonding configurations have equal numbers of positive and
negative bonding coefficients and are associated with the
upper -point in diamond. The existence of these bonding
configurations, Ziman claims, is evidence for the existence
of similar states in the amorphous and crystalline band
structures at q = 0.

Further, it is argued that at small q, that is for
wavelengths much longer than the nearest neighbor distance,
electrons in amorphous materials propagate in an effective
medium which is not significantly different from the
crystal lattice. Therefore, similar band structure should
exist near q = O for crystalline and amorphous states of a
particular material. The electron can be represented by a
wavepacket constructed from a narrow distribution of
momentum eigenstates, however this distribution broadens as
the wavelength of the electron approaches the correlation
length for fluctuations in the one-electron potential, that
is as the wavelength becomes comparable to the short range
order in the amorphous solid. This implies that in the
disordered phase the bands will broaden and coalesce as

q approaches the Brillouin zone boundary. This can be
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pictured as broadening the sharp delta functions from the
dispersion function &(k) in the crystalline spectral
momentum density into a distribution function
p (€, k)

If we accept these arguments, then the band structure
for "diamond-like”™ a-C should resemble that of diamond,
particularly for small q. Figure VIII.l4 indicates that
this is not the case for our a-C sample. A comparison of a
similar set of arguments based on "graphite-like" a-C seems
in order.

Let us consider a model similar to that proposed by
Beeman et al [13] described in Section VII.C. In this

model, graphitic islands with basal dimensions of 10 to 20

A are cemented together with four-coordinated atoms.
These cementing atoms allow for changes in the orientations
of the planes of the graphitic islands without the
necessity for dangling bonds and voids that would result
from unconnected, randomly oriented planes. This
distribution of planes produces a long range isotropic
structure. The graphitic istands are composed of layers of
three-coordinated atoms arranged in a 2D continuous random
network. This crn structure is discussed by Zallen [191]
and is based on the work of Zachariasen [190]. 1In a crn,

bond lengths are held nearly constant while bond angles

are allowed to vary. This means that long range order is
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absent, while the three-fold bonding is maintained. It is
possible to form five, six, seven, and eight member rings
as shown in Figure VIII.16. In a real system there would
be the possibility of warping or bending of the sheets.
This model, taken together with Ziman’s hypotheses,
would suggest a band structure for a-C that would be

similar to graphite. The P, orbitals out of the crn

planes should remain essentially unchanged, although
bending or warping of the planar regions would change the
distance between the out-of-plane p orbitals. Therefore,
vestiges of the graphite @ band should be present in the
a-C band structure, which spread out at larger q.

In graphite the bonding of the lowest ¢ band at [ is
composed of all similar bonding coefficients (see Figure
VII.4b). It is easy to picture a bond configuration of all
similar bond coefficients for the crn structure in Figure
VIII.16. This should be associated with the I'-point of
the lowest graphite ¢ band. The upper ¢ bands of graphite
at [ are composed of equal numbers of bonds with three
phase factors (see Figure VII.4a). However it is not
obvious that there are any possible bond configurations
with either two or three discrete phase factors that can be
fit to the 2D crn structure. It would appear that such

configurations can not be satisfied for distorted graphite
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(a) graphite crystal 2D structure

(b) 2D continuous random network

Figure VIII.16 Two dimensional continuous random network
model of a-C °

x After Zallen (Ref 191).
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planes with 5- and 7- member rings. This is illustrated by
considering the simple example of one five-member ring in a
"sea” of six-member rings. This could lead to frustration
in the bonding of the amorphous structure.

If it can not be shown that there are distinct bond
configurations for the amorphous structure which can be
associated with the crystal I'-point states, one of the
cornerstones of Ziman’s arguments for the existence of the
band structure is removed. Clearly there is a need for
theoretical calculations using the TB and LCBO methods to
study the 2D crn model of a-C.

One possible explanation for the apparent absence of
the a-C band analogous to the upper ¢ bands of graphite
rests with the apparent continuation of the lowest a-C band
to large q, well beyond the graphite BZ boundary. In the
extended zone scheme the upper o bands are extensions of
the lower o band for k in the second BZ. These bands
can be folded back into the first BZ in the reduced zone
scheme as a result of the periodicity of the crystal. It
is not true @ priori that the bands can be folded
back for amorphous materials. If the upper o bands are
not folded back into the first zone, then one would expect
the lowest o band to extend upward beyond q equivalent to
the first BZ boundary. Again, the amorphous band should

broaden for large q. It must be noted that our resolution
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is insufficient to determine the presence of any small band
gap between the parts of the lower a-C band near the
remnant BZ boundary.

The folding of the upper o6 bands in graphite into the
first BZ can be explained by the repeated zone scheme. A
further consequence of a crystalline repeated zone scheme
is that there will be mirror images of the bands in second
and higher order BZ. For instance, the lowest graphite o
band repeated in the second BZ will produce a band
dispersing downward from the zone boundary to the first
reciprocal lattice vector. As discussed in Section II.3
there will be a corresponding finite probability in the
spectral momentum density. The probability will fall off
rapidly at larger momentum as the form factor decreases.
However, the form factor should decrease continuously so
that the height of the spectral momentum density should be
approximately the same on both sides of the zone boundary
near the boundary.

In contrast, the data in Figure VIII.9 shows the

apparent absence of the remnants of the repeated zone

-1
scheme lowest o band. At 1.7 A  (approximately
the graphite and diamond BZ boundaries) the peak intensity

of the lower band is still 607 of the maximum peak

-1
intensity at O A . This lowest a-C band and its
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extension have a continuously decreasing probability across
the zone boundary remnant as shown in Figure VIII.9 and
VIII.14. There is no apparent evidence for the downward
dispersing band that should occur if there are remnants of
the repeated zone scheme in a-C. The resolution of the
data is insufficient to state conclusively that this band
is absent, particularly in light of the probable band
broadening at larger momenta in amorphous materials.

However, the absence of a downward dispersing band at

q > 1.7A-1 and the presence of an upward
dispersing band with a continuously decreasing probability
taken together do provide convincing evidence to discount
the repeated zone scheme for a-C.

Further, this extended lower band should account for
three fourths of the valence states, that is the total
number of states in the three graphite o bands. Likewise
the upper a-C band should account for one fourth of the
valence states, that is the states associated with the
graphite w band. This is in agreement with our data.

While the model considered above may provide an
explanation for the main features of the a-C (e,2e) spectra
it must be viewed with some skepticism. It is by no means
the only consistent explanation. It is still not entirely
possible to rule out significant amounts of tetrahedral

bonding. Neither is it certain that no weak bands
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analogous to the upper o bands of graphite exist.

A detailed analysis of the measured band structure is
limited by two major factors. The first is instrumental
resolution. The present energy and momentum resolution is
simply not sufficient to measure details of the bands. The
other limiting factor is the fact that (e,2e) spectroscopy
on solids is an unproven technique. The analysis of a-C
would be greatly aided by measurements on crystalline
graphite. The measurements would serve a dual purpose.
They could provide a check on the (e,2e) technique by
allowing the (e,2e) data to be compared with other
measurements and theory for a well understoocd system. Such
measurements would also be invaluable in addressing the

question of the extent to which a-C resembles graphite.



IX. CONCLUSTONS

There are two primary sets of concliusions to be drawn
in this dissertation. The first concerns the successful
operation of an (e,2e) spectrometer for the investigation
of the valence band structure of solids. The major
improvements over previous efforts are summarized and a
brief discussion 15 given concerning the future
improvements for our spectrometer. The second set of
conclusions is in regard to what has been learned about the
physics of carbon and amorphous materials in general. In
addition, some suggestions for future systems of study are
outlined along with a discussion of what physics the
technique may potentially be able to study.

Qur instrument is the first (e,2e) spectrometer with
sufficient resolution to study the valence band structure
of solids. The 3-S5 eV energy resolution is approximately
an order of magnitude better than in previous instruments.
This allows the separation of the individual valence bands.
Momentum resolution has also been improved by a factor of
between two and ten. Our design incorporates a constant-

focus variable-magnification zoom lens which provides

important flexibility in balancing the conflicting

205
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resolution. The electrostatic deflection method used for
momentum selection is a major improvement over systems
which employ movable detectors. The electrons are incident
with energies of approximately 25 keV, which is about 3
times that of earlier spectrometers. This higher energy
facilitates sample preparation and reduces multiple
scattering effects by increasing the electron mean free
path.

The coincidence count rate in our spectirometer is on
the order of 0.1 Hz, which is comparable to count rates for
other (e,2e) spectrometers, including gas spectrometers.
The count rate was maintained at this level, despite
reductions due to the increased energy and momentum
resolution, by increasing the incident current by almost
three orders of magnitude. Early problems with sample
degradation, even at the lower beam currents, have been
mitigated by the use of an ultra-high vacuum system. There
is no evidence of sample damage from 50 pA beam currents
incident on the target for weeks at a time.

At present work is underway to design and install an
upgraded energy analyzer which has an estimated energy
resolution of 0.5 eV. Recalibration and realignment is
also being done which should significantly reduce the

systematic errors in momentum selection. This increased



207

resolution should prove sufficient to investigate many of
the details of the band structure that are presently
inaccessible.

The low count rate is presently the major impediment
to further application of the technique. This will become
an even more serious problem if the energy and momentum
resolution are improved or if the incident energy is
increased. There appears to be no technical reason that
data at different energies and momenta could not be taken
simultaneously. Moore et al [117] have successfully used
a multi-detector system with their gas (e,2e) spectrometer.
A multi-detector system utilizing multi-channel plate
arrays and position-sensitive detectors is being considered
for our system. We estimate that to double the incident
energy, the energy resolution and the momentum resolution
simultaneously will require approximately 64 data
collection channels to maintain the present data rate. It
is not inconceivable to have several hundred data channels.

In principle, the count rate can be increased by use
of even higher beam currents. The present eleciron gun can
deliver more current at higher anode voltages, however this
would necessitate major revisions in the input lens optics
to avoid electrical breakdown. Magnetic focusing lenses
may allow significantly higher beam currents. Sample

degradation is a potential problem at higher incident
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currents.

Operation of the spectrometer at higher incident
energies is also desirable. The major difficulty is the
proeblem of electrical breakdown mentioned above. Again, it
will be necessary to make major revisions to the input lens
optics. This must be coupled with some way to maintain the
present count rate.

Much has been accomplished in the field of data
manipulation and analysis that will be useful in studying
other systems. A more accurate method of multiple
scattering deconvolution must be developed and the analysis
needs to be generalized to include inhomogeneous structure
in single crystals.

The analysis of extensive data on a-C has lead to
several interesting conclusions. The existence of a
dispersion relation &(q) in a-C has been clearly
demonstrated. Two distinct bands are discernible in the
data. One band has a minimum at approximately 6 eV below

the Fermi level at q=0 and disperses upward to near the

-1
Fermi level at q =~ 1.5 A . the lower band is
much more prominent, extending from a minimum of ~ 18 eV

below the Fermi energy at q=0 to near the Fermi level at

q = 2.5 A-l.

These two bands are similar to the lower ¢ band and
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the n band in graphite. However, the instrumental
resolution is not sufficient to exclude the possibility of
4-fold bonds as are found in diamond. There are several
notable differences between the a-C band structure and
either graphite or diamond. The lower band extends well
beyond the momenta corresponding to the BZ of graphite and
diamond and appears to account for about three times the
number of occupied valence states as does the upper band.
There is also an absence of any downward dispersing bands
that might correspond to the middle bands in graphite and
diamond.

Some conjectures have been made as to possible
explanations for these differences. In particular, a model
for a-C based on small randomly-oriented islands of quasi-
2D graphite-like continuous-random-network stiructures may
offer an explanation compatible with the data. It must be
noted, however, that the inadequate resclution and lack of
concrete theoretical frameworks make such explanations
speculative. No definitive interpretations can be given
until higher resolution experiments are performed on both
a-C and single crystal graphite.

Work is presently continuing on single crystal
graphite, both as an extension of the work on a-C, as a
characterization study of a well studied system, and as an

interesting measurement on a semi-metal. Work has begun on
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the study of microcrystalline Al, which will probe the
physics of a simple metal. Al has also been extensively
studied with other techniques and some limited theoretical
studies of the (e,2e) cross section have been performed
[124]. Another interesting system is the semiconductor Si,
in both crystalline and amorphous forms.

In addition to studying the properties of specific
materials, there is a wealth of physical phenomena which
may be able to be studied. The comparison of amorphous and
crystalline samples of the same material should provide
valuable information about the structure of amorphous
materials. It may be possible to study the nature of the
transition from localized to delocalized states in
amorphous solids. The momentum broadening of the spectral
momentum density as the states become localized is a
characteristic signature which may be observable with
higher resolution measurements. It may also be possible to
study the nature of hybridized s-d orbitals in transition
metals [107] and the evolution of the valence electron wave
function in the metal-insulator transition.

It is obvious that the tremendous potential of (e,2e)

spectroscopy in solids has just begun to be explored.
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Appendix A. Derivation of (e,2e) Scattering

Amplitude

The object of the following analysis is to derive an
expression for the (e,2e) scattering amplitude My
and in so doing keep track of all of the necessary
approximations. This analysis is specific to solids and
the approximations necessary for this are emphasized.

The work by McCarthy, Weigold, et al has been used as
a guideline throughout this derivation. Their review
article [114] contains an excellent explanation of their
analysis and further details are found in other works by
them [29,109,177]). They have concentrated on the theory of
atomic and molecular targets, however much of the analysis
can be generalized to the case of solid targets. In
relating the scattering amplitude to the cross section and
calculating the form factor for specific situations with
solid targets, use has been made of several early skeiches
of theories for the (e,2e) reaction in solids, in
particular work by Smirnov, Neudachin, and collaborators
[107,124,155].

The (e,2e) scattering amplitude M, can be

formally expressed in terms of a scattering matrix S as

My - <¥ | s | ¥'> (A.1)
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The initial wave function |¥'(x,x,,E)> is an
(N+1)-body wave function which describes the initial state
of the incident electron and the target. The target is an
N-body system which includes the electron to be ejected and
all of the other electrons in the target. The coordinates
x;, include the position ry and spin o, coordinates
of the incident electron (i=1) and the ejected electron
(i=2). All of the internal degrees of freedom of the ion
are included in the coordinates E.

The term ion is used here as a general expression for
the (N-1)-body system of the target after an electron has

been ejected.
The final wave function I\I/f(xl,xz,E)> is

also an (N+l)-body wave function which describes the final

states of the scattered electron, ejected electron, and

fon.

It is advantageous to make a few initial
approximations at the outset. These are not too
restrictive. First, the problem is considered as nron-
relativistic. The major implication is that spin-

orbit coupling is unimportant which implies that electron
spin enters into the problem only through the Pauli
exclusion principle. In most of the equations below,
explicit spin dependence is not shown. The center of mass

motion of the target and ion are neglected; this amounts



229

to an assumption of i(nfinite target mass. Finally,
the target is assumed to be initially in a ground
state. This implies that finite temperature effects
are ignored.

The Schrodinger equation for the (e,2e) reaction can

formally be expressed as
[E - {& + K, « HE) +VE x0)

+ VB, ¥pE) + 8] FlxxpE) = 0 (A.2)
where H;(E) is the Hamiltonian of the ion, K, are the
electron kinetic energy terms, and V, are the electron-
ion potentials. The electron-electron Coulomb potential
v(r), whicﬁ includes a non-local exchange term, depends
on the relative coordinate of the electrons r. At the
outset the potentials V, are generalized as non-local and
energy dependent to allow for the possibilities of
inelastic channels in the reaction.

The (N+l)-body wave functions can be written in a

multi~channel expansion as
PlxxE) = 3 v, k) > (A.3)
M

where the sum is over all possible channels. The expansion
is in terms of the bases of target wave functions |u>
which satisfy the Schrodinger equation

[e, - ®; - B + vy ] > -0 (A.4)

We want to separate the wave function for the incident
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electron from these general target wave functions. In
fact, we are only interested in two channels, that
involving the target ground state |g> and the channel in
which the target eigenstate |w> represents an ejected
electron-ion system with a well defined energy and
momentum. To achieve this separation, we make the
approximation of weak coupliing between channels.
This approximation depends on the experimentally-observed
fact (for gases) that elastic scattering is much more
probable that any particular non-elastic channel [114].
This allows the separation of the incident electron wave
function from the target wave function.

A further two-body weak coupling approximation
allows the separation of |w> into a product of an ejected
electron wave function and an (N-1)-body wave function of
the final ion state |f(E)) which satisfies the Schrodinger

equation

[ & - m@ ] |i@®) =0 (A.5)
At this point an optical potential model is introduced

with the goal of reducing the (e,2e) amplitude from an

(N+1)-body system to one involving wave functions computed
in the optical model potential (distorted waves) and the
structure wave functions of quantum chemistry. This is

done in a series of approximation referred to by McCarthy
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and Weigold [114,85] as the distorted-wave off-shell

tmpulse approximation. An optical model potential

<

g 15 derived [114])] for tweo target states |p>

and |v>. The optical model potential allows the separated
wave functions for the incident, scattered and ejected
electrons to be expressed in terms of distorted wave
functions which are products of a spatial wave function and

a spin wave function. For the incident electron
v ) = Xl XP(T) (A.6)
where the spatial wave function satisfies the approximate

Schrodinger equation of the optical model potential

It

[E-e -K-7,] x'ep =0 (A7)
The spin component is not explicitly expressed in the rest
of this section. There are analogous expressions for the
scattered and ejected electron distorted wave functions
Xf(xl) and Xé(xz).

Combining the weak coupling approximations and the

optical potential model allow the initial and final (N+1)-

body wave functions to be written as

Vx0E) = X '(xy) 1k E)>

Plxx8) = X)) Xy |f0x8)) (A.8)
Using these wave functions and expressing the optical model

potential explicitly, the scattering amplitude can be



232

expressed as
= f f

x (f@)] & + v+ 8 6,E v et B) X x>

(A.9)
Antisymmetry is implied in this equation. The electron-
electron potential is . The potential O

produces inelastic scattering of the incident electron from
the ion which is responsible for exciting non-elastic
channels by changing the state of the ion and gives rise to
a term representing ionization by core excitation. The

total 3-body Green function is

: ~ ~ 1
Go®) = bm L[E -t - & ¢ Ky« B+ T+ Ty v]  (a10)

0

It is still necessary to reduce the problem further,
to a 2-body problem. A simple albeit crude, approximation
reduces the entire operator to only the electron-electron
potential . This is known as the distorted-wave
Born approximation [110]. The addition of the plane-
wave approximation for the distorted waves yields the
plane-wave Born approximation; Reference 69
discusses the (e,2e) cross-section with regard to this
approximation. A derivation of the scattering amplitude in
this approximation is given in Section II

McCarthy and Weigold [114] describe a less drastic

approximation for reducing the problem to a form which
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contains only 2-body wave functions and operators; the set
of approximations is referred to as the gquasi-three body
approximation. The inelastic potential term in the

Green function is assumed negligible. The electron-ion

potentials \71 are expanded in a Taylor series about

the electron-electron center-of-mass coordinate R. For
equal energies E/=E,, i.e., for symmetric geometries,
the first term in V;(R) vanishes. Higher order terms,
i.e., gradient \',T;z terms, are expected to be

ineffective if the electron-electron potential is short
range. However, # is a Coulomb potential; higher order
terms will be small only if the experiment is designed to
have high energy incident, scattered, and, ejected
electrons. For atoms the gradients are quite small except
at the canter of the atom where the integrand is cut off by
bound-state orbitals except for the ls case. The reduced

two-body Green function is

G,E) = [p? - K, - #]™! (A.11)
w here p = %(pl—pz) and K, i s t he
electron kinetic energy in relative coordinates. The

scattering amplitude is given by
My 2 & Xfi< Xf(f]3 « Ty |e>x'> (A.12)
where Tpy(p?) is the two-body Coulomb t-matrix including

exchange (Mott scattering) which describes the removal of
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the ejected electron by the incident electron. This
Coulomb t-matrix is given by

Tu(P? = (1 - Pp) (v + v G,E) v (A.13)
where P, is the exchange operator.

All of the approximations made thus far constitute
what McCarthy and Weigold refer to as the distorted-wave
off-shell itmpulse approximation for the (e,2e)
reaction [114]. .

An additional effect of the gquasi-three-body
approximation is that the term involving ¥ in
Equation A.12 may be neglected. Weigold and McCarthy
[114,177] review neglect of this term extensively from both
a theoretical view and by examining extensive data on
atomic and molecular systems. They conclude that it is
negligible above an incident energy E; 2 100 eV.

Note that the scattering amplitude now depends on the
target and ion structure only through the overlap function
(flg> since Ty is independent of the internal coordinates
E. The operator Ty-commutes with (fl and

M, = € X< X! Tued| (t|e> x> (A.14)

Evaluation of the scattering amplitude using the fully
distorted optical model wave functions is limited to only
very simple cases. The primary difficulty in evaluation of

this integral arises from the complexity in transforming
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the t-matrix to the same coordinate system in which the
distorted waves are expressed. A series of approximations
to these wave functions provides less and less exact
alternative wave functions; the less exact approximations
are valid for higher and higher electron energies.
McCarthy and Weigold provide a detailed description of
these alternative wave functions and discuss the wvalidity
of the approximations and the accuracy of theocretical fits
to gas scattering data using them [114].

The phase-distortion approximation is a five
parameter approximate wave function. It has been used
particularly for low-incident energy high-atomic number
atoms and molecules and provides excellent fit to all
symmetric non-coplanar data. It is, however, too complex
for present theories in (e,2e) solid scattering.

The etkonal approximation describes a distorted

optical model wave as a plane wave with an effective

propagation constant K - (1+p+iy)k,

X(kx) = exp(-ykR) expli(l + B + iy)k - r)] (A.15)
The phase modification parameter P represents an average
change of wave length in the relevant region. The
attenuation parameter y represents loss of flux due .to
excitation on nonelastic channels. The model wave function
is normalized so that its magnitude is one at a point R,

just before the beam enters the interaction region.
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The plane-wave approximation is simply a special
case of the eikonal approximation where vy = [ = O, All
present calculations of (e,2e) reactions in solids use this
approximation.

The expression for the scattering amplitude can be
greatly simplified by factoring the t-matrix and overlap
function components: this is called the Jfacterization
approximation. In the eikonal approximation this

factorization is exact:

2
My = & 3K, - Kz)hm(%mx 'K2|2]|"1?(Ko + Q>
x <xf1<xf(fle>ix'> (A.16)

Including the effects of the exclusion principle, the t-

matrix term is given by

K - K1* K + K|*
1 K + K‘I2]
- cos in —_—
K + K1 IK - KI? (n K - KI° ]}

2 17N
[exp(2nn) - 17

<T> =Cfm3{ 1 —

where C %(n) =

n =
K =3 K, + q
K = 1 - K
(A.17)
McCarthy and Weigold [114] have determined empirically that

this term is described adequately by the plane wave

approximation for realistic values of B and v by reducing
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the effective propagation constants l?i to the

momenta E This term is then related to the Mott
electron-electron cross section (see Equation II.17). In
the non-coplanar symmetric geometry the Coulomb t-matrix
term is essentially constant over a relevant range of q but
varies somewhat more rapidly in the coplanar symmetric
geometry.

We can now turn our attention to the overlap function
(flg> which remains as the last quantity to calculate.
Evaluation requires that the dependence on the coordinate
X, be separated from the target wave function. To do
this we must evoke one final approximation, the single
particle or independent electron approximation. It
is at this point that the analysis for solid targets begins
to differ significantly from that of gasses.

The target wave function can be expanded either in
term of a Hartree-Fock configuration [114] or in the form
of a Slater determinate made up of the single electron wave
functions [124]. Employing the Hartree-Fock configuration,
the overlap integral can be expressed as a sSum OVer these

states

(tle>> - T fe wlxy) (A.18)
where f, are the coefficients for the expansion in terms

of the Hartree-Fock wave functions for the target ground
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state. This expansion makes the implicit assumption that
there are no significant configuration interactions in the
ion. The single particle approximation consists of
assuming that only one of the expansion coefficients is
non-negligible. Then the overlap integral reduces to the
characteristic wave function of the electron in the target

before it was ejected wn[xz): n denotes the specific

characteristic wave function.

1t is often useful toc use the Slater determinate form
to express the characteristic wave function of an electron
in a solid in terms of the atomic orbital basis functions.
In this case the expansion coefficients for the overlap
integral are just the coefficients derived in the tight-
binding model expansion of the target electron orbital.

In the eikonal approximation the overlap function can

be expressed as a form factor
1 -tqer;
F.(qQ) = —=5 dr, ¢ (r,) e (A.19)
T 2m) 2 J- 2 Y2

Extending this to the plane wave approximation, the form

factor is equal to the Fourier transform zbn(q) of

target electron wave function where the momentum
q =k + ky - kg (A.20)
as we found from kinematic arguments earlier.
The final expression for the (e,2e) scattering

amplitude is

My = <Ty> Fylq) (A.21)



Appendix B. Derivation of Multiple Scattering

Function

In order to evaluate the smearing function &, we

must have some knowledge of the ®-functions.

¢ 7 ¢ F d* $ (e, @ E, T)
qde d>qde d® qde

is the probability density

that an electron traveling in the direction k, k',
k" with initial energy E will lose energy € and
momentum q in traveling through a target of thickness T.

Considering the approximations in Equations II.50 and
11.51, it can be seen that %, ¥, and

$" are all the same function, except that their
coordinate systems are rotated with respect to each other

to align them with their corresponding beam axis. We need

to find an expression for $ in terms of more

elementary functions.

Consider first the function ¥, related to

$, which does not include the effects of

instrumental energy-momentum broadening. When the

scattering thickness goes to zero,

239
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die
d3q de

(e,q:E0) = Pyleq) = 8(E) 8°(q) (B.1)

This insures the normalization of ® and express the fact
that no energy or momentum was exchanged. Extending this
to include instrumental broadening,

4
a—ac;—%;(e,q;E.O)

P, (e.q) (B.2)

where P, is the resolution function of the
spectrometer normalized to unity. In the limit of thin
films

aiy
d’q de

(e,qEST) = - (E)ST] P ,eq) + H(E) 87 Pileq) (B.3)

where P,(e,q) is also normalized to unity and
fz,l(E) is the probability of single scattering per unit
thickness of the scatter (the reciprocal of the mean free

path). Equation B.3 shows that the unscattered beam is

depleted by the amount scattered and that the function

P, describes the distribution of the scattered
particles. This equation is valid for thicknesses such
that ﬂl(E)6t<<1, i.e. for films of thickness much

less than the mean free path. The equation is extended to

finite thicknesses using the Poisson distribution [26] in

the form
[ea)
. ¢ (E)T)"
d;q?;e(e.q:E.‘r) = exp(-f,(E)7) E_l_n"— Palea) ®.4)

where P (e,q) = P, ® Pooy ¢+ n =123
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In practice it will be advantageous to separate the

function

fbl(E] Pile.q) = o (E) Fileq) + 1fbl(E) P,(€.q)

fu(E) = A (E) + f(E) (B.5)
where the prescript 0 refers to elastic processes and |
refers to inelastic processes. oy and P, are

separable into product functions of € and q separately,

whereas P, is not. The literature also reports gPF
and P, separately. This separation was discussed in a
physical context in Section II.A. The approximations of

Equations II.50 and II.51 are somewhat relaxed when applied
to elastic and inelastic scattering separately and are in

good agreement with experiment. Equation B.4a is modified

so that
= oft, (E) i (E) _
Pp(E:eq) = —,bl(%)— oy ¥ 751(1?)' 1 ¢ @ Pno
n = 1,23.. (B.4b)

Making use of the expansion

n n n
wor - 2, (2)
n m n-m
_ n of, E) ALY
Pn(E:eyQ) = mz.o [ m ] ﬂ’l(E) ) ( "’](E)

X [ Pn ® Pnem @ P-o:l ;n = 1,23..  (B.4c)
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where the notation gP, means gP, convoluted with

itself (n-1) times. All of the P, can now be

calculated solely from the functions 4P, P;, and

P, and the inverse of the mean free paths at the

appropriate beam energy.

The smearing function can now be expanded in terms of

the P. functions by substituting Equation B.4c into

n
Equation II.54 as

_ o.0) o)
ff’(E,q:E,T) = Z Z CJOJ‘Q-lo(E’T) J{JD*O'ID(e’q)
j ’kD'l '—'O jl'kl’ll=0 J]'kl’ll j]'kl'll

o 0
T

where Cio-kovlo(E’T) = J- dr {exp[—fbl(E)‘r - 2, ([E/2)T’]
Jpkpey 0

T"oﬂl T-ko"'kl"'lo"ll}

nﬂ,(E)jD xf"l(E)Jl oﬂl(E/2)k°ﬂ° xﬂ,(E/mk’H'
i} 3! k! 1! k! 1

and J{'Jo*o"o(e’q) = {[F, ® °Pjo ® Ilel ® [F, ® Pk, @ Py,]
Ikl

® [P," ® c,Plo" ® lPll"]} (B.6a)
The subscripts j; and jl refer to the number of elastic

and inelastic multiple scatterings in the input beam; k

and | refer to the output beams. Evaluation of the

distance integral yields
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aJ Bkﬂ

Cigkolo®T) = @2/ G5! Ko K 1P 1))
I YN

j . i+k+!
J Skt _1yd 1
x [i-zo(l](: k+l)! (-1) [mgo(wm-m)! [(ZB_Q)T]m] ]

J i 1 -
_ .-aT JYU+k+D)! (17 T
e [ igc:)[l (2p-a) K+ ] }

9 {e-zm ik

where | = jo * 4 etc
a = f,(E)
_ le(l-:/z) B.6b
PEE 60)

The convolutions in the expression for the smearing
function are most easily evaluated by using the convolution
theorem of Fourier analysis [22]. Let x and t be the
Fourier transform pairs of q and €, respectively.
Since the Fourier transform is linear, operation on
Equation B.6 yields the Fourier transform of the smearing
function,

T (txET) - § % cjo*o.,D(E,T) sejoko,,o_(t,xl

Jokalg=0  Jukpl=0 Jpkpely Ik ly

o [s]

— — J J
where z-’o-ko'lo(t’x) = (and?Hit ‘{Qo - Qe Q[ oQy °o . 101]1
Jpkredy

c QT e QT L Qe e lo,"l‘l}

(B.7)

£ is the Fourier transform of X(e,q) and the Q-
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functions are the Fourier transforms of the corresponding
P-functions.

Nine functions are required to describe the three
¥-~functions. This can be reduced to four independent
functions by noting that the P, and P, functions
are the same for each beam with an appropriate rotation of
axes and that the two output arms have identical resolution
functions. These four basic functions are:

P,(e.q): the normalized probability density
that the output anaealyzers will detect a
particle at momentum q and energy € below
its selected wvalue.

P,(€,q): the normalized probability density
that an electron in the {ncident beam is
at an energy € and momentum q below the
selected value.

P.(e,q): the normalized probability density
that an elastically scattered electron
will lose energy € and momentum q to the
target.

P,(e,q): the normalized probability density
that an {nelastically scattered electron

will lose energy € and momentum q to the

target.
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By introducing three rotation matrices, the nine F-

functions can be expressed as

P le,q) = P,(e,0q) P (e,q) = P (e,0q) P, "(e,q) = P (e0"q)
Pe.q) = Ple8q) JPleq) = P e,8'q) PUieq) = Pyle,0"q)
P,(e,.q) = P,(e,0q) P le.q) = P e,0'q) Pleq) = P e8"q)
(B.8)
The rotation matrices a, &, g rotate

the fixed target axes into the beam axes. The fixed target

axes as illustrated in Figure B.l are:

Eiz : In the direction of the input arm axis

parallel to the beam arm plane.

q Perpendicular to (‘}z and in the beam
arm plane.
Qy Perpendicular to az and the beam arm

plane.

Each of the three beam coordinate systems have axes:

Eiu: Parallel to the beam direction.

al : Perpendicutar to ﬁu and parallel
to the beam arm plane.

q, Perpendicular to au and §

The rotation matrices for the fixed coordinates into the

beam coordinates are:
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§,
Input axj >
§ &,

g o
]
Beam arm plane ¢

0
-
F-1J
L]

q. 4, &}

(b) Out of the plane of the beam arms

Figure B.l Spectrometer coordinate systems.
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1 0 0
¢ - 0 cos¢ sing
0 -sing cosgo

cosb 0 -sin®
0 = 0" = 0 1 0 (B.9)
sin6 0 cos6

In the symmetiric geometry 6° = 6 = 6,
The instrumental broadening functions P,(§,q)

and P,(&,q) can be model as Gaussian distributions

2 -q @
1 1 €2, % 9
P N = + +* 6
80 G 5 gy A e"pl 28,2 2a,° 2a,° (@;)

2 g2
| | _¢2 q 9

y
ex + +
(2n)¥?% by by be P 26, 2b,°  2b)’?

P, (e.q) = G(qz)

(B.10)

where a and b are the widths of the Gaussian distributions.

The delta function in q, is a result of the negligible

effect of broadening on the large momentum along the beam
axis.

The elastic and inelastic distributions can be
expressed as

Pele.q) = Felq)) 8(e) 8(q))

P,(e.q) = F,lq) Ule) a(q") (B.11)
These are the normalized versions of the quasi-elastic
scattering cross sections described in Section II.A. Using
the parameterized forms (see Equations II.6, 1I.10, and
I1.12) together with the added constraints imposed by

normalization
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: ) qOZ /T
P €, = —_— & (E) 8(q.)
&4 (qLZ* q°2)2 q"

(s’ a’)

1
2% In{q./q;)

P,le,q) =
2 , 42 2 , 42
(q.l. qc ) (q-l- qE )
Vi€
x 2 é(q")
(e2 -v,2) vy + €2
where q < q_and € > 0 (B.12)

Here 9+ 9.+ 9> V,, and V,; are free parameters

left to fit data for quasi-elastic scattering:; V, can be
determined from normalization.

To find the Q-functions for the evaluation of Equation
B.7 one needs to merely find the Fourier transform of the
four functions above. The Fourier transform of a function
whose coordinates have been rotated is equal to the Fourier
transform of the function prior to rotation with the
transform coordinates rotated in the same manner;
therefore the Q-functions can be constructed in an
identical manner as the P-functions in Equation B.8 from

I | -1 2 42 -l 22, =1 o2 2
Qa(tx)-4ﬂ2exp[2a€t+zaxx 2ayy]

1 -1 .2 .2 -1 .2 -1 2 2
Qb(t,x)=-a§exp I:—Z-be t +-2—bx x2+—2—by y]
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q, L

= L = 2, 2

Q.(tx) = . Ky(q L) i L = Nx y

Q, (tx) = F,x,) Ut
& l

where F (x,) = K (g L) - K (gL
Y @m)? inlg/q) (Folag) (91}
with L = Jx? + y?2

and O(t) =

.‘im[ cos(p} Ci(p)

-V,
\J[%][sz - (avy™']

+ sin(p) Si(p)] - % exp (it sin[tJsz - (4\/3)_1)

|24

with p = -ltl | V2 - @v97 «
“ 2.\VY3

(B.13)
where Ko and Kl are modified Bessel functions of order

zero and one and Si and Ci are the sine and cosine integral
functions, respectively [1]. Plots of these functions for

parameters characteristic of a-C are found in Section XIII.



APPENDIX C: ELECTRON OPTICS

This appendix relates to electron optics. The first
section provides a review of the basic principles of
electron optics and the definitions of terms used in this
work. It is not intended to be a thorough treatise on the
subject; for that, the reader is referred to the more
complete treatments by Klemperer [96], Grivet [66], and
Kuyatt [97]. The second section discusses the matrix
method of calculations for electron optics trajectories and
some of the software developed to model electron optics
systems. Section three contains specific information on
the theory of electron optics components used in our
spectrometer together with diagrams and dimensions of the

system.

1. Theory

The fundamental concepts of electron optics are based
on the identity of the optical description of the path of
a light ray through a refractive medium and the mechanical
description of the motion of a point mass through a
potential field. This follows from a comparison of Fermat's
principle of least time as applied to the path of a light
ray, with Maupertuis’ principle of least action as applied

to any mechanical motion. In direct analogy with light

250
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optics, a refractive index of an (non-relativistic)
electron in an electrostatic field of potential V can be

written as

n = ‘\E‘ﬁ (c.1)

which leads to an analog of Snell’'s Law for an electron
traversing the boundary of two regions of constant

potential V, and V,:

sina, vV,
Sina2 v’; (C.2)

A similar, though somewhat more complicated, treatment of
the motion of electron can be performed for motion of an
electron in a magnetostatic field [96]. These "indices of
refraction” provide the necessary ties to light optics.
This analogy becomes particularly useful for
cylindrically symmetric fields. The paraxial approximation
limits the theory to rays which are close to the axis and
make a very small angle with it. For electron lenses, this
in effect, is equivalent to assuming that all the rays pass
through potentials gradients equal to the axial potential,
that is that there are no radial fields. For such fields,
it can be shown that the equations of Newtonian or thick
lens light optics can be applied directly (see for instance

Born and Wolf [21]). Thick lens optics must be used since
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the finite extent of potential distributions imply that all
electron lenses are fundamentally "thick lenses.” The
cardinal elements of a thick lens are shown in Figure C.1.
Newton's lens equation states that

f, f, = p g (C.3)
Another useful relation that follows is

f, /7 f5 = vV, 7 V3 (C.4)
The electron optics form of Abbe’s sine law is

JV; y, sing; = V2 v, sind; (A.5)
where 6, and 6, are the semi-aperture angles of the
bundles of rays at the object and image respectively (that

is the pencil angles ep). We can define the Helmholtz-
Lagrange constant as

HL = AV 2 y 6 (C.6)
which is a conserved quantity for images, assuming the

small angle approximation. The quantity 2y6p is defined

as the emittance.
An image in electron optics can be described by three
parameters. One method of characterization is to specify

the image radius r its pencil angle ep. and its beam

pl
angle 6,. Another equivalent method uses two apertures

to define the image, specifying the pupil radius 71,



253

‘sjuawafa [eUIpPIED SU3| AIIYL T'D ain3diy

~K1aajydadsas ‘suaj ayy jo
apis saBeuwry pue 32alqo ayy 10y Z pue 1 £Aq pajdpiosqns aie
sua|] ay3 jo 4 saueld ardjoujsd ay3 pue J saueld [ed203 ay]

‘1 aueid je 4 3y8iay jo aBew: ue o3} ) aue(d je pasajuad

suaj e Aq pasndoj sy o aue(d je ' us8iay jo 312afqo uy

¢ %y y— '4—

syibue] ”I b Iv_Ar ! ¢_..an..w_..“.._v_....._“_|.v_A d—

_ | 1_g_ ! “

! Loy " !
SIX 1 T
1V " " “ o " J
| | LR . )

| [ R T [ |

soup|d I %y 4 24 'S 0



254

window radius T and the distance between the pupil and

.
window d [97]. Figure C.2 illustrates the relationship
between these methods.

R-6 diagrams [97] provide a convenient method for
displaying the trajectories of the rays from an image (see
Figure C.6). Radius is plotted versus angle of slope for
the nine principle rays at a given point along the beam
axis. These nine rays delimit the maximum range of radii
and angles for all rays emanating from the image, that is
there are rays from the image for all (r,0) inside the
region bounded by the parallelogram formed by the principle
rays. 1t should be noted that the sides of this
parallelogram are parallel to the 6-axis when an image is
formed at the given axial position z.

An alternate approach to trajectory calculation is the
ballistic method. The differential equations of motion for
a given set of fields are solved for the trajectories of an
electron with some initial position and velocity. This
approach is useful for system where the paraxial
approximation is invalid. The theory of deflector plates
and the Wien filter described below use this approach.
Grivet [66] derives the theories of electron optics using
the differential equations of motion.

As with light optics, the quality of electron lenses

suffer from aberrations. Hawkes [80] identifies five
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common types of aberrations. Mechanical aberrations result
from imperfections in the machinery and alignment of lens
elements; this is the most important type of aberrations
in most electron optics systems. Chromatic aberrations
result from different focal properties of an element for
different energy electrons. Geometrical aberrations are
caused by discrepancies that arise from using the Gaussian
and paraxial approximations. Assuming non-relativistic
electron properties results in relativistic aberrations.
Interaction between the electrons in the beam themselves
can produce space-charge aberrations, particularly in very
high current density beams. The requirements for the
precision of the electron optics in our spectrometer are
not that demanding, and for the most part aberrations can
be neglected.

A standard convention for the coordinate system for
electron optics calculations has been adopted: The
positive z-axis is chosen as the forward beam axis:; the
positive y-axis is chosen as up out of the plane of the
spectrometer; the x-axis then lies in the spectrometer

plane.

2. Matrix method

The matrix method is a standard technique borrowed

from thick lens optics that allows the radial distance y
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and slope y°" of a ray at some later position to be

calculated by multiplying the initial radial distance Yo
and the initial slope y6 by an appropriate matrix. In

general the matrix is derived by reducing the differential
equations of motion for the fields to equations for y and

’

y’ which are linear in Yo and ya. Several important

matrices are discussed below and additional use of the
matrix method is made in Section C.3. References 97 and 64
provide a good outline of the matrix method for electron
optics.

As a trivial example, the radial distance y and the
slope y’ after traversing an axial distance z in a field

free region are given by the equation

[}},"]-[6 f][zg] €.7)

In analogy with Newtonian Optics, the matrix for an

electrostatic lens can be written as [97]

1 0 y
y- = '1 fl L [ 9 ] (C.S)
L7] [?; 'f;] s

where f;, and f, are defined in Figure C.l. This matrix
propagates a ray from the first principle plane P, to the
second principle plane P,. There are a wide range of
electrostatic elements which constitute lenses and are

described by this matrix in one form or another; these
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include gap lenses, einzel lenses, aperture lenses, and
deflector plates which will be discussed later
individually.

For a traverse through a region of length L with a
constant electric field E perpendicular to the axis, the

equation of motion is

2
eE .
y = H - [-};—z] + (.\I;—z] . yU + yo (Cg)
where the zero of the potential energy is chosen such that

the potential energy eV is equal to the kinetic energy

i.e., eV = mv§/2. This yields a matrix form

yd-ma1-[] - &[] co

If the electric field is instead parallel to the beam

1

axis the matrix equation can be written
[ 2 L y
L+ V2 7V, . [y‘-’] (C.11)
0

Ly]-
’ 0 W7
where V, and V, are the voltages at the entrance and
exit to the region [64,67].

When an electron beam traverses a discontinuity in the
axial electric field, the beam is focused. This is the
situation illustrated in Figure C.3, where three
equipotential planes V,, V,, and V; define two

regions of uniform electric field with a field
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V V, Vs

_Beam Axis

Figure C.3 Voltage distribution for VFIELD.
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discontinuity at the V, plane. Kuyatt [97] shows that
traversing the discontinuity from one side of the V,

plane to the other can be represented in the matrix form as

1 0
v . | EE [ 7
[ y ] ) [ jvzl ! ] I: Yo ] (€12

Comparison with Equation C.8 shows that this is

equivalent to a lens with f = f, and f, =
4V,/(E -E;). Lenses based on this concept, known as
Calbick or aperture lenses, are in common use; such lenses
are formed by placing a thin plate with a small axial
aperture held at a potential V, between two beam tubes
both held at the same potential, Vj.

The matrices for uniform axial fields and field
discontinuities can be used together to provide a way of
estimating the focal properties of optics elements with
arbitrary shape and voltage distribution [65]. For a given
geometry and potential, the axial voltages at given

intervals can be calculated by solving Laplace’s or

Poisson's equation using numerical techniques. Once the
axial potential is known, the paraxial approximation allows
the entire optics element to be treated as a series of

stepwise applications of the matrix



261

1*2V2'(V1*V3) 2 L
[ :l‘ 2 V, - (V, + V)

20V, + WV, V)

y
. 9
(2]

This matrix is derived by multiplying the matrix for

w<|w< LI

uniform axial field by the one for a field discontinuity;
assuming that L, = L, = L and describes a ray which
propagates from the left of the V, plane to the left of
the V,; plane as illustrated in Figure C.3. Multiplying
the matrices for each potential step, yields a single
matrix which describes the entire lens element. It is a
simple matter to calculate the thick-lens cardinal elements
for the lens element from the final matrix [64].

Two programs were written to calculate the matrix for
an arbitrary lens element. The first, VFIELD, uses a
successive overrelaxation (SOR) method to iteratively solve
Laplace’'s Equation for the lens element geometry. The SOR
method uses a finite difference equation to successively
estimate the potential at a given grid point based on the
potential at neighboring points. Convergence is greatly
enhanced by using an accelerating factor, B. An
overview of numerical methods for partial differential

equations is given by Ames [4] and the specifics for
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solving Laplace's Equation using the SOR method are given

by Weber [174]. Details of calculating the optimum

acceleration factor are given by Carre [32]. In VFIELD,
a subroutine specific to the lens element defines the
geometry and potential distribution of the lens element
with regard to a 2-D rectangular grid (radius and z) of
points. The voltage on the lens elements are held fixed
and the potential at the rest of the points are then
calculated for these boundary conditions. Once the

solution has converged, the grid density can be increased

by a factor of H? (typically a factor of 16) and the
values from the previous grid used as initial values for
the denser grid. When an adequate solution is found, the
voltages for the grid points on the lens axis are
transferred to a second program, AXMATRIX. AXMATRIX
calculates the matrix and thick-lens cardinal elements of
the lens element as outlined above. These programs were
used to calculate the focal properties of several lenses
for the spectrometer including the High Voltage lenses and

the electron gun Einzel lens (details of these lenses are

given in section C.3). As an example of results from
AXMATRIX, the cross-section potential distribution for the
input High Voltage lens are shown in Figure C.4 along with

plots of the axial potential.
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Computer modeling of electron optics calculations can
greatly facilitate the often complex and laborious
calculations necessary for the design and use of such
systems. The program MODEL is designed to calculate ray
diagrams and image positions for electron optics elements
using the matrix formulation described above. The two main
purpcses of the program are to model the experimental
settings for the spectrometer and to aid in design of other
electron optics assemblies. There are two corresponding
modes of operation of MODEL.

The spectrometer mode of MODEL calculates ray
diagrams, r-® diagrams, lens focal properties, and pupil
and window positions, angles, radii, and Helmholtz-Lagrange
factors for user-input lens voltages. The program stores
the position and dimensions of all of the elements of the
lens columns and has subroutines toc calculate the cardinal
lens elements and/or matrix elements for each of these lens
elements. Beginning with either a pupil and window or a
radius, beam angle, and pencil angle the nine principle
rays are traced through the lens column. The
characteristics of the pupil and window images of each lens
are also calculated from these initial conditions. R-6
diagrams can be plotted for a number of locations along
each lens column. A representative set of output for the
input lens column from MODEL is shown in Figures C.5 and

C.6 and Tables C.2 and C.3.
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Table C.3 Input lens column locations using MODEL.
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This mode has proven useful in two different ways.
Experimentally obtained lens voltages can be input into the
computer and the calculated trajectories used to aid in
analysis of the optical properties of the beam. In
particular, MODEL can determine the location of the pupil
image near the target and yields a theoretical value for
the pencil angle at the target. This theoretical wvalue
determines the momentum resolution. MODEL can alternately
be used to calculate the lens voltages that give a desired
output, and these voltages used as initial values to begin
experimentally tuning the system.

The theoretical properties of the electron lens
elements calculated by MODEL are only accurate to within
about 107. We have had quite good success with using the
program to model the optics, particularly for the input

arm.

The second mode of MODEL allows the user to custom
design his own lens column from a list of possible electron
lens elements. This list includes most of the matrices
described above, allowing for arbitrary dimensions and
voltages. The lens elements specific to the spectrometer,
e.g., the High Voltage lenses and the Electron Gun Einzel
lens, can also be incorporated in the custom lens columns.
The voltages on the lens elements can be modified and the
entire custom lens column design can be stored in a data

file for later reference and modification. Qutput similar
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to that shown for the spectrometer mode can be generated.
In addition, the focal properties of any of the lens
elements can be listed and plotted: this option was used
to produce the graphs for the individual lens elements

described ahove,

3. Description of components

a. Defiector pliates

In many different regions along its path, the electron
beam is directed by electrostatic deflectors. These
deflectors are basically parallel plate capacitors with an
electric field E, perpendicular to the beam axis due to a
voltage 2V applied across the plates. Ritsko [142] gives a
nice discussion of the design of such deflector plates
where he shows that to first order the transverse momentum

transfer to an electron of velocity v, and energy

eV, is

q = 25V . %\. (C.14)

and that the angle of deflection is

(C.15)

g = =— .

where L is the length of the plates and A is the separation

(see Figure C.7). The matrix for a deflector plate from

Equation C.10 is given by
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[y3-083-[] - o [8] o

There are two important higher order effects to be
considered for these deflectors. The first is that fringe
fields result in an increase in the effective length of the
plates. Recknagel [137] has shown that this increase in

length is

aL = % . [1 - 1;][5-‘%-]-_‘—)] (C.17)

The second effect is that parallel plate deflectors
act as an astigmatic lens focusing the beam only in a plane
perpendicular to their surfaces. The focal length is given

by Ritsko [142] as

2
1 . 2. (X - 2 .92
L 2 ( 7 ] 2.0 (C.18)

For the deflector plates in our system the focal lengths
are quite long and the angular aberration is negligible at
present momentum resolution. The electric field plates of
the Wien filter, however, do focus the beam significantly;
the Wien filter is treated separately below.

There are two types of deflectors employed in the
system. The momentum deflectors and 45° deflectors use

actual parallel plates. The alignment deflectors in the

target chamber and the lens columns are actually two sets
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«f deflectors formed by longitudinally splitting a
cylindrical piece into four equal isolated parts. The two
sets can be controlled separately and provide deflection in

the two orthogonal transverse directions.
b. Electrostatic lenses

The simplest type of electrostatic lens is a gsap lens.
This lens is formed by two cylinders of equal diameter held
at different potentials V, and V,, whose separation is
small compared with their diameter. The focal properties
depend on the voltage ratio; note that lenses with voltage
ratiecs of V,/¥, and V,/V, have the same focal
properties where f, — fs5 and F, — Fy.
Tabulations of empirical values of the thick-lens cardinal
elements can be found in many references [97] and are
plotted in Figure C.8. The decelerating (accelerating)
lens at the entrance (exit) of the energy analyzer is of
this type. The High Voltage lenses are modified gap
lenses.

An einzel lens is a symmetric combination of two
identical gap lenses with the first and third voltages the
same. Einzel lenses have the advantage of being able to
focus the beam without changing the final velocity of the

electrons. The dimensions and a plot of the cardinal

elements of an einzel lens are shown in Figure C.9. The
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two identical lenses must be sufficiently far apart so that
the electric fields of the two gap lenses have a small
overlap; a two diameter spacing is sufficient. Kuyatt
[97] shows that an einzel lens can be treated as a single
lens with effective thick-lens cardinal elements related to
the component gap lens cardinal elements by

TP
oF, - L

ez _ ez _
fl - f2 N

Felz - Fezz = F, - felz + I_-2. (C.19)

Therefore, the matrix for an einzel lens is simply

y 1 0 Yg
[y]=[f_el§1]-[yo (C.20)

Most of the lenses in the spectrometer are einzel lenses.
The Electron Gun Einzel lens has & length of less than
twice its diameter, so its focal properties were calculated
using AXMATRIX.

A three-aperture lens is a modification of the einzel
lens which has three small diameter apertures in place of
the cylindrical tubes of the standard einzel lens (see
Figure C.10). In this type of lens the thickness of the
electrodes is very small compared with the spacing between
the electrodes or the diameters of the apertures. Read
[136] gives the theory and details of focal property

calculations of these lenses. The output Field lenses are
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Figure C.10 Diagram of three-aperture lens.
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three-aperture einzel lenses.

The quadrupole (quad) lens has two distinctive
properties different from other electrostatic lenses
digcussed. The most important of these is that the quad
lens allows different focusing in the two orthogonal
transverse planes; in fact, it acts as a diverging lens in
one direction and as a converging lens in the other. One
can, however, combine two or more quad lenses, each rotated
30° about the beam axis with respect to the previous
lens, and with potentials and geometric dimensions chosen
in such a way that the same converging effect resultis in
both planes. Quad lenses, also known as strong-focusing
lenses, produce a much stronger convergence than circular
symmetrical lenses since the transverse nature of the gquad
lens’ active fields is more effective than those of the
latter which are primarily longitudinal with respect to the
beam axis. Detailed discussions of the properties of quad
lenses are found in Grivett [66] and Kiemperer and Barnett
[96].

Cross-sections of several geometries for quad lenses
are shown in Figure C.1l. The two pole pieces perpendicular

to the x-axis are held at a positive potential +Vq, and

the other two at a potential -Vq. which results in
convergent focusing in the x-plane and diverging focusing

in the y-plane. The potential distribution for the
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K, K,
a) Hyperbolic segments 1 0
b) Plane electrodes 1.037 0.009

sin2y

¢) Concave circular electrodes 1.2732—7- 0.0425"167

6y

d) Convex circular electrodes - -

Figure C.11 Quadrupole lens geometries.
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hyperbolic geometry can be solved exactly and the other

geometries can be considered as perturbations expressed as

2 . y2
v == v [ 52 ] -

5_1522(2_,2)_‘6
Kz[x xya)é Y y ] + e e o) (C.2D)

Figure C.1l1 lists the values of the expansion coefficients
for the different geometries. In general all these types
of quad lenses are similar to the hyperbolic case and the

exact solutions for the hyperbolic case provide an adequate

approximation. For the hyperbolic case it can be shown
that [96]
f. = ___1__. f = _"_1_
x B sin(pL) Yy B sinh(BL)
(C.22)
N S . T
Fx = Ffan(l) ~ 2L Fy = F fann(l) " 2L

where the excitation constant B is related to the

accelerating voltage of the electron beam V¥, by

82 - glz‘- [;’/_Z] (C.23)
and the effective length L is equal to

L =1Ly + 1L1la : (C.24)
where Ly is the actual length of the lens and a is its
characteristic radius. The matrices for a quad lens can be

written as
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X7 . cospL -— sinpL

[x ] [-B sinPfL cosbL ] l:

[y, :' = I: coshpL & sthL] [ ]
y B sinhpL cosnm. Yo

For the special case of convex circular electrodes [6]

(C.25)

vV 2
f ® %

0
xy v, (C.26)

2l

For a doublet, comprised of two identical quadruple lenses

arranged coaxially, separated by a small distance D and
rotated by 90° with respect to each other the focal
length of the doublet is [96]

£ 1

=f, r 5—F——— C.27
b4 v L2 Bq(L - D) ( )

In the (e,2e) spectrometer, single quad lenses are
used before and after the Wien filter to compensate for the
astigmatic converging focusing of the electric field

plates.

C. Eiectron Gun

Space-charge-limited theory must be used to describe

our electron gun. The gun has a perveance
0.3 u}"s—\l'a/2 under normal operation which is above

the limit of 0.1 pA-V ¥% cited by Brewer [24] above

which space-charge effects are of predominant importance.
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The perveance is the ratio of the total current to the
anode voltage to the three-halves power.

The details of the space-charge-limited diode type
electron gun are given by Kuyatt [97] and Brewer [24]. The
theory is based on the assumption that the electrons have
space-charge-limited laminar flow with such effects as
thermal velocities and lens aberrations treated as
perturbations c¢f this laminar flow condition.

The space-charge~limited current density can be

calculated from the geometry of the gun and the anode

voltage VAn as
372
__uA—_ - vAn
J [unit area ) - 4% 2 (C.28)
where D is the cathode-anode apertures separation. If we

consider the anode aperture as a Calbick lens (see Section
C.2), it can be shown that the virtual cathode image is at
a distance 3D before the anode aperture in the space-charge
limit (4D below the space-charge limit) [97]. It follows

that the initial pupil conditions are:

Vi
I‘p = 3D v—r\;
(C.29)
tan®, = r, / 3D
tanb, = rg, / 3D
where r, is the anode aperture radius and eVg = kT is
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the thermal energy of the electrons. For this type of
electron gun, eV, = 1.0 eV. It should be noted that
in our spectrometer under normal operating conditions the
last aperture in the electron gun assembly, not the anode
aperture, is the limiting window aperture; this does not
change the theory.

The total current from the diode is just the product

of the current density times the beam area, that is,

2
372 [ Tw
Iore; = J A = 7.32 V32 (T] (C.30)

The emittance of the electron gun was crudely measured
using a thin aperture and Faraday cup pri-or to use in the
spectrometer. The emittance value was 0.4 ¢ 0.2 cm-mrad
which agrees with theoretical calculations to within the

limits of error.
d. EFnergy analyzer

The basic principle of a Wien filter is quite simple.
The filter has a homogeneous electric field E =E¥
perpendicular to the beam axis and the plane of the
spectrometer and a homogeneous magnetic field B =BX
in the spectrometer plane perpendicular to both E and
the beam axis. A normally-incident charged particle of
velocity vg=E/B will be subject to equal and opposite
forces due to these two fields and will pass undeflected

through the filter, while particles with other velocities
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will be dispersed. A slot at the exit of the filter can
then provide energy selection and the size of the aperture
can determine the energy resolution.

Determination of the optical properties of the Wien
filter requires a sophisticated analysis which will only be
outlined here. Bonham and Fink [20] go through a detailed
derivation of the electron optics of a Wien filter,
beginning from the differential equations of motion. Their
analysis is greatly simplified by five approximations: 1)
the influence of space charge is neglected; 2) no
relativistic effects are considered:; 3) electric and
magnetic fields are assumed to have sharp cutoffs at the
edges of the analyzer; 4) the acceptance angle is assumed
to be small; 5) the initial velocity distribution can be
written in the form v=vy(1+pf) where [ is a small
correction representing the spread of the electrons emitted
from the source.

The equations of motion in the field region can be

written as:

¥ =0 (C.31a)
y = = (El + IBIx) (C.31b)
7 = 3= (IBly) (C.31c)

It is obvious from Equation C.31a that the Wien filter does
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not affect trajectories in the x-plane; this plane is
referred to as the non-dispersive plane. Cn the other
hand, the Wien filter acis as a converging lens in the y-
plane, that is the dispersive plane. The focal properties
of the Wien filter are symmetric and can be expressed as
f= St (c.32)
F = a cot(L/a)
where L is the length of the electric field plates and a is
a parameter which describes the radius of an electron in

the magnetic field alone:

_ Vg miE|
a = m = _e’B|2 (C.33)

Since F is a periodic function, the focal point can
have the same value for many different values of a and the
magnetic field, each corresponding to a different mode of
operation of the filter. The first mode is when 1l/a is
between 0 and =n, that is when a trajectory crosses the
beam axis only once. The maximum dispersion occurs for
L/a = n which is the mode used in our spectrometer. An
object at the entrance of the analyzer is focused to the
exit of the analyzer with unity magnification. An object
at infinity is focused to infinity in this mode.

The key principle of the energy dispersion can be
understood as an exploitation of the chromatic aberration

of this focusing effect. A point image on the axis at the
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entrance to the Wien filter is focused at a distance

_ 2:'11Bv0
Yp ¥ TelBl

= 2pa (C.34)

from the axis. In our spectrometer the image from the Wien
filter is at the exit plane of the filter, therefore the
width of the image of the energy slit on this plane
directly determines the range of energies that pass through
the slit. The finite size of the image at the entrance
plane results in a finite image size at the exit plane
related by a magnification (assuming Pp=0) of

Yy = -cos(L/a) (C.35)
The energy distribution at the exit plane can be thought of
as a convolution of the point-wise spectrum with this
finite image size. This suggests that the transmission
curve as a function energy will be Gaussian-like with a
maximum transmission of electrons with energy eVg, and
tapering off symmetrically for both higher and lower
energies.

Further aberrations due to the finite size of the
image at the entrance plane and the angle of incidence to

this plane provide a limit to the ultimate resolution of
the Wien filter. Sevier [151l] states that the ultimate

theoretical resoclution for a Wien filter such as the one

used in our spectrometer is given by
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3 n2 22 )"
i
AE\peor = VEI (21’1’181/1.2] (C.36)

where VE! is the potential of the analyzer tube.

For our spectrometer operating at eV = 25 keV this
gives AEyey = 70neV. In practice this ultimate
resolution can not be achieved with any reasonable
transmission efficiency.

The Wien filter electric field is produced by two 2.54
cm x 2.54 cm square stainless steel electric field plates
with a separation of 0.508 cm held at a voltage difference

Vanz which floats on VEl. The magnetic field

is produced by a current I,., through two pairs of
coils wrapped on the surface of a 1.27 cm diameter
cylindrical form. The coils are wrapped in a manner
described by Anderson {3] which maximizes the homogeneity
of the magnetic field. The analyzer voltage and current
are supplied by a hybrid voltage-current supply (VPI
electronics shop). Details of the wvoltage distribution are
given in Section III.B and schematics are found in Appendix
D. A mu-metal shield fits closely around the analyzer
extending from before the entrance plane to just before the
accelerating lens. The energy slit is a 0.635 x 2.54 mm
slit in a 0.254 mm thick molybdenum disk; the slit is

longer in the non-dispersive direction.

e. Momentum analyzer
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The momentum deflectors consist of two sets of square
paralle! plate deflectors which act in tandem to vary the
beam angle of the electron beam at the target without
changing the position of the beam spot. The design goal
was to do this in such a way that the electron trajectories
were independent of the absolute voltages and the absolute
distances of the momentum selector. Figure (.12 shows a
schematic of the momentum deflectors and their dimensions.

Using the matrix for a field free region, Equation C.7
and for a displacement through a region of electric field
perpendicular to the beam axis, Equation C.10, the matrix
for the region from the entrance of the momentum deflectors

to the target can be written as,

Eg:l i ’%/Tk‘ [FE - g oy P -] can

where eV is the electron kinetic energy,
n = Vo /7 V and it is a s s umed t hat
Yo ~ y!; = 0. The constraints that y = 0 and that

y' is independent of S and D and dependent on only the
ratios L/A and n are satisfied when n = 3 and S§ = 2D.

The matrix thus reduces to

[3] ’#‘%‘[?] (C.38)

The major error in Equation C.38 is due to fringing

fields about the plates; according to Recknogel {(137] the
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fringing increase the effective length of the plates by
~ 33% . In practice, this correction probably somewhat
overestimates the increase due to fringe effects because
both sets of plates are in close proximity to grounded
surfaces in one direction and separated from each other by
less than ! 1/2 times their length in the other direction.
The increase in effective length results in a corresponding
increase in the theoretical momentum conversion factor
discussed below. This effect is uniform for all deflection
angles and is therefore incorporated into any empirical
determination of the momentum conversion factor.

Higher order errors are included in the expression

[;] [y @ [zg] .

LegsV) [l (L + 20) - 3 - n)]
NG 2 G- (C.39)

The first term in this equation allows the beam to enter
the momentum analyzer with a non-zero initial radius and
slope. Since this is independent of deflector voltage, it
is unimportant in determination of the momentum conversion
factor. The second term in Equation C.39 allows for n to
differ from the ideal value of 3. A 1% deviation in the
deflector voltage ratio would result in a displacement of
0.2 mm over the full deflector range at e¥ = 25 keV.

The voltage distribution for the momentum analyzer is
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controlled by the MINC computer via an opto-isolated fiber
optic link (see Section IV). The signal from the MINC |is
converted to an 8-bit digital signal by a UART ( universal
asynchronous receiver-transmitter) located on the target
chamber control rack. The lowest 7 bits of the signal are
then converted to a 0 to -5 VDC signal by a DAC; this
voltage is used to drive the output of two high voltage
power supplies (BERTAN, models 602B-15P and 602B-15N).
These power supplies produce 0O to 600 VDC which are
connected to the momentum deflector plates wvia a voltage
divider network. (Schematics and power supply
specifications are given in Appendix D). The supplies are
designed to provide a positive voltage on one deflector
plate and a negative voltage of equal magnitude on the
other plate; both voltages float on the target chamber
high voltage. The eighth bit of the digital signal
controls a relay which determines the polarity of the
deflector plates.

The momentum voltage correction panel on the target
chamber rack is an additional feature that allows for
adjustment of the momentum voltages to minimize movement of

the beam spot on the target as a range of momentum voltages
are swept. The ratio of the deflector voltages to the
computer momentum control step and the ratio n are varied

with two dual-tandem potentiometers as shown in the
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schematic in Figure D.6. These ratios were adjusted to
minimize the beam spot movement as viewed through the
viewport telescope and the variation in count rate as a
function of momentum as controlled by QSWEEP (see Appendix
E).

A theoretical expression for the momentum calibration
factor can be derived from Equation C.38 and the relation

q = yPg

6q &V, Sme Leg
Cr = 2N " N \%‘2- - - (C.40.a)

where momentum is expressed as a wave number,

0O < N < 255, andC is in units of A oper
incremental step of the computer momentum control number N.
At the time when momentum calibration was performed,
measurements of the characteristics of the perpendicular

momentum analyzer plate voltages showed that AV,/AN =

1.555 V and n = 2.967, both to within &~ 0.17.

At an incident energy of 25 keV, Cp is equal to 0.03398
-1
R per step using the actual length of the plates

and 0.0532 A_l per step using the theoretical
Leg - The momentum <calibration factor 1is
proportional to the inverse of the square root of the
incident electron voltage; therefore, corresponding

theoretical values for‘ Ce at 20 keV are
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0.0445 A" per step and 0.0595 A oper
step, respectively.

The coincidence data for both the a-C and graphite
were taken after the momentum voltage correction panel was
adjusted to minimize motion of the beam spot on the target.
For these measurements AV, /AN = 1.750 V and n = 2.745
which yield values of Cg which differ by < 0.57 from
those listed above.

Alternately, the momentum calibration factor can be

expressed in terms of mrad/V as
. L
Cr = 85 _ 1 eff 1 - n (C.40b)

For a 25 keV incident energy electron this is

)
-
1

0.421 mrad/ V, with n = 2.9067 and

1.336 L for perpendicular deflection.

-
@
-
-~

|

The momentum calibration factor Cl'__ for the

parallel momentum will be a factor of two larger than that
for perpendicular momentum deflection because the energy of
the outgoing electrons in the (e,2e) mode is half that of
the incident electrons. However, the resistance divider
network is designed so that AV,/AN is approximately
twice as large for perpendicular deflection as for parallel

defliection. This means that the perpendicular momentum

calibration factor Cg will be A2 times that of the

-1
parallel momentum deflectors when expressed in A
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per step.

The momentum deflectors were calibrated by measuring
the Bragg diffraction spectra of thin microcrystalline Al
films. The spectrometer was operated at 25 kV in the
elastic mode using the (e,e’) beam arm as the detector and
acted as a HEED apparatus. A typical diffraction pattern
is shown in Figure C.13. Comparison of the peak positions
of the first four Bragg peaks from these measurements to

published values for Al [134] predict that the calibration

-1
factor is 0.057 =+ .001 A per step at 25 keV
incident energy. Adjusting for the difference in incident

momentum, this corresponds to an experimental value of

0.064 = .01 A per step at 20 keV. The
experimental conversion factor is about 87 larger than the
theoretical estimate using the theoretical effective plate
length; it corresponds to an effective plate length of
Lge = 1.4 L. Similar comparisons of theory and
experiment for ThCl and a-C [134] were in approximate
agreement.

The coincidence data shown in this dissertation all

-1
use a value of 0.06 4 A per step with an

estimated uncertainty of ~157.
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f. Electron lens assemblies

The electron gun assembly includes the electron gun
filament, cathode, anode, and an einzel lens. The filament
is a soft-cathode oxide filament which is heated by a
voltage supply (VPI electronics shop) driven typically with
S to 7 VDC at ~ 3 A. The anode is held at a voltage
Vay (Bertan model 602B 50P) typically from 1.0 to 2.5
kV above the input common point. There are four apertures
in the assembly designated, from left to right as shown in
Figure C.14, as the cathode, anode, first gun, and second
gun apertures.

The Electron Gun Einzel lens has a length to diameter
ratio of less than two and therefore must be modeled using
an axial step-wise potential. The results of an analysis
using VFIELD and AXMATRIX are shown in Figure C.15. The
input Field lens, Zoom !, and Zoom 2 lenses are
conventional Einzel lenses.

The high voltage lenses are modified gap lenses which
have a complex geometry (see Figure C.4). Their axial
potential distributions were modeled with VFIELD and
AXMATRIX and calculated cardinal elements are shown in
Figure C.16. The input and (e,e’') high voltage lenses are
identical and differ slightly from the (e,2e) high voltage
lenses.

The output Field Lenses are 3-aperture lenses. These
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lenses differ slightly for each beam arm. The differences
are noted and each set of cardinal elements plotted in
Figure C.17.

The first and second apertures and the energy slit are
made of 0.25 mm thick Mo stock. Molybdenum is used because
its oxide is also a metal. This limits the aberrations
that could result from even a small surface charge of such
tiny apertures.

The cardinal elements for the quad lenses, which
differ slightly in the (e,e’) and (e,2e) arms, are shown in
Figure C.18.

Figure C.19 is an approximate scale drawing of the
input lens column from the electron gun to the target. The
drawing includes the dimensions of the various pieces. A
similar drawing of the output arm from the target to the

EMT is shown in Figure C.20.
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APPENDIX D: SPECTROMETER SUBSYSTEMS

1. Vacuum system

The (e,2e) spectrometer is equipped with an ultra-high

vacuum system to provide a base pressure of 3 X 1073
Torr. A schematic diagram of the vacuum system is shown in
Figure D.1. The vacuum jackets are constructed of
stainless steel and all materials inside the vacuum were
designed to meet the ultra-high vacuum requirements.
Standard Conflat flanges with Cu gaskets are used
throughout the system. The vacuum system has a volume of
approximately 65 +¢. The chamber and beam arms can be
isolated by gate valves (Thermonics Laboratory, Inc., 2
inch Viton Sealed Gate Valve) so that samples can be
changed without cycling the electron gun and EMT to
atmosphere each time.

Rough pumping is done by two 40 ¢ sorption pumps
(Thermonics Laboratory, Inc. model SP-11). These pumps
are isolated from the main chamber by an ultra-high vacuum
shut off wvalve (Varian, model 951-5091). On occasion a
dry-vane vacuum pump (Gast Manufacturing Co., model 0522-
V103) has been employed.

The high vacuum is accomplished with 5 magnetic ion
pumps, a 200-¢/s pump (Thermonics Laboratory, Inc.; pump

model IP-200, power supply model PS-1000) on the target

308
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chamber and a 25-£/s pump (Thermonics Laboratory, Inc.:
pump model IP-025, power supply model PS-150) on each of
the four beam arms. The large pump is configured so that
it can operate floating at the target chamber high voltage
once a good vacuum has been established. The input arm
pump is electrically isolated by a ceramic beam arm
insulator made by National Electrostatics Corporation.

To achieve the base pressure the system must be baked
out at ~ 200°C for 2-3 days after each time it is
opened to atmosphere. In general the vacuum turn around
time for opening the system is 4-5 days.

Pressure is monitored by measuring the current drawn
by the magnetic ion pumps: the ion pump is essentially a
large Penning type cold cathode gauge in which the current
drawn is a function of the pressure in the system. Since
the four small pumps are all connected to the same power
supply, only a pressure reading in the target chamber and
the average pressure in the arms are available. At times a
quadrupole residual gas analyzer (Spectrum Scientific,
Ltd., mode! SM 100) has been connected to the vacuum; this
has verified the pressures measured with the magnetic ion
pumps.

In general, the pressure is quite stable in the low
1072 Torr range. There is a slight rise in the

pressure as a function of the electron beam current.
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2. Magnetic shielding

This section of Appendix D describes the magnetic
environment for the spectrometer, including the sources of
the magnetic fields, the types and designs of magnetic
shielding employed, and measurements of the effectiveness
of the shielding.

The magnetic fields to be shielded are almost
exclusively static fields. Three primary sources are the
earth’'s magnetic field, fields from the permanent magnets
in the magnetic ion pumps, and stray fields due to
magnetized materials in the spectrometer. The earth’'s

field has an approximate strength of ~500 mG and a
declination of ~60° below the horizontal at a latitude

of 35° N [77]. The strong fields of the large permanent
magnets in the five magnetic ion pumps are localized and
are on the same order as the earth's field along the beam
axes.

Stray magnetic fields due to magnetized parts of the
electron optics column provided some difficulty, since they
were hard to identify and in general were produced within
the mu-metal shielding. Care was taken to use non-magnetic
materials, e.g., Everdur, 304 stainless-steel, Cu, and Mo,
in construction of the optics parts. However, some

stainless-steel parts became magnetized and had to be
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replaced or de-magnetized. Other magnetized parts, i.e.
the gate valves and Ni leads of some vacuum feedthroughs,
were unable to be corrected.

Magnetic shielding is accomplished with high
permeability mu-metal shields. Most of the electron optics
are surrounded by such shielding and critical areas have a
second layer within the vacuum chamber.

The target chamber is shielded by a mu-metal can that
fits tightly over the target vacuum chamber. This shield
is constructed of 1.6 mm thick mu-metal with an ideal
attenuation of ~700 (shielding efficiency ~55 dB)
[142] with overall dimensions of 36 cm diameter and 35 cm
height. The shield has a number of openings for vacuum
ports and is split in half horizontally to allow access to
the target chamber. This reduces the efficiency of the
shield, particularly for the vertical component of the
magnetic field. A Helmholtz coil (58 cm diameter)
concentric with the vertical axis of the target chamber is
used to buck the wvertical field component.

The beam arms are surrounded by continuous cylindrical
mu-metal shields (15 cm diameter) that extend from the end
flange to just past the 25-4/s magnetic ion pumps. This
shielding is 1.6 mm thick and has an ideal attenuation of
~800 (shielding efficiency ~60 dB). There are

sections of 0.25 mm thick mu-metal foil wrapped around the
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vacuum tube walls at the entrance to the small magnetic ion
pumps, on either side of the high voltage insulators
underneath the mu-metal rings, around the gate valves, and
at the beam arm entrances to the target chamber. These
foils have an ideal attenuation of ~250 (shielding
efficiency ~45 dB).

Continuous mu-metal shielding cannot extend across the
high voltage insulators. These sections were shielded with
a series of mu-metal rings (30.5 cm 0.D.,, 17.8 cm I.D., and
1.6 mm thick) which are spaced 1.9 cm apart and are mounted
on Plexiglass rods. These rings shield the components of
the field perpendicular to the beam axis by factors of 10
to 100. The paraliel component is not shielded, but the
effect of this component on the electron beam trajectory
can be compensated for by the electron optics. The theory
of this shielding technique is described in Gibbons ef
al [67].

Local magnetic shielding is added inside the wvacuum
chamber at two critical locations on the output beam arms,
around the energy analyzer and at the entrance to the EMT.
The energy analyzer is particularly sensitive to magnetic
fields because the electrons are decelerated to much slower
velocities there than at any other point in the system.

The energy analyzer shield is a solid mu-metal cylinder
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(3.4 cm I1.D. and 1.6 mm thick) that fits closely over the
lens column. It is 12 cm long -- the energy analyzer is
8.5 cm long -- with an ideal attenuation of ~3500
(shielding efficiency of ~70 dB). The entrance to the
EMT is a critical region because the electrons are stiil
moving with low velocity and fringing fields due to the end
of the main beam arm shield are present. The EMT shield is
also a solid mu-metal cylinder (95 mm I.D. and 1.6 mm
thick); it extends 11 cm from the entrance of the EMT with
an ideal attenuation of ~12500 (shielding efficiency
~80 dB).

All the external magnetic shielding was degaussed
in situ using a 60 Hz AC signal.

The magnetic shielding reduced the magnetic field in
the beam arms and target chamber by an overall factor of
approximately 100. Magnetic beam arm profiles (Figure D.2)
show that the maximum fields were on the order of 70 mG and
that the rms field was about 10 mG. Using an impulse
approximation, the effect of small magnetic fields on the

electron path can be expressed as

2
y = -3.02 x 1078 (—3_\7) x2 .1

where x is the distance of flight along the beam axis (in
cm), y is the perpendicular deflection distance, B is the

magnetic field (in Gauss), and V is the accelerating
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The solid lines are measured profiles for the
horizontal (H) and vertical (V) components of the magnetic
field. Dashed lines are the approximate electron
trajectories calculated using the impulse approximation.

The horizontal axis is the distance along the beam axis in
cm.



316

voltage of the electron (in kV). The approximate
trajectory of an electron along the beam axes is also

plotted.
3. Voltage distribution

Two high precision high voltage probes (Fluke model 80
F-15) are connected to a voltage bridge which measures the
voltage difference between the two probes as shown in the
schematic in Figure D.3a. The voltage measured across Ry
is equal to one thousandth of the voltage difference
IHV,l - [HV_| with an accuracy of =+ 0.017%.

To achieve this high precision, the voltage bridge is
'calibrated periodically. Calibration is performed by
measuring the voltage difference over a wide range with the
connected probes in different arrangements. With Probe &
connected to HV, and Probe #2 connected to HV_ analysis
of the equivalent circuit in Figure D.3b shows that the

meter voltage is

R, HV, + R, HV_ - I R, R
V=IR=2 + 1 )

- Ry (0.2)

By reversing the position of the HV probes, the measured

voltage is

. R HV, + RHV_ - I R, R,

Vi ®, * Ry

(D.3)

and
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Table D.1 High Voltage Probe Specifications

Fluke Model

*

Input voltage range
Input resistance
Division ratio

Ratio Accuracy
Stability of ratio

Temperature coefficient
Voltage coefficient

John Fluke Manufacturing Company, Inc.

80F-15 High Voltage Probe*

1-15 kV

100MQ

1000:1

+0.017 of input
+0.001%/month
+0.05%/year
0.0017%/°C
<x0.0027
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V, + Vi = (HV, + HV)) - [R - &% + 0®%)] (0.4)
where
R, R
-1 ) -
R'= R - 1000 * <Lz (0.5)

To avoid the necessity of reversing the probes during

operation, (V, + V,) was calibrated as a function of

Vi
(Vg *Vp) = oV, + B (D.6)
where o = 2000.1
B = -12.078 V
Finally,

HV, + HV_ = 2000 Vv, - 121 (D.7)

to within less than 1% (or .1 V if greater) uncertainty.

9. Pulse electronics

The purpose of the pulse electronics in our
spectrometer is to identify and record the coincidence
electron events. This section of the appendix describes
the pulse electronics in detail, tracing a pulse from the
electron multiplier to the MINC computer where it is
recorded as data. Details of the components are also
given. Refer to the text section on data acquisition for a
general description of the pulse electronics and to Figure
IV.l for a block diagram of the system.

Electron detection is performed by a fast, linearly
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Table D.2 Power Supply Specifications

Power Supply Voltage Current Notes
Acopian!® Range: 0-600V Temp. Coeff. 0.017%/°C
Bertan®™ Range: 0-1.5kV Max: 10mA Regulation:0.001%1ine;0.001%1oad
602B-1SPN Max. Ripples 1SmV Stability: 0.017%/hr;0.02%/8hrs.
Temp. Coeff.: S0ppm/°C

Bertan® Range: 0-3kV Max. 2mA same as 602B-15
602B-SPN Mazx. Ripple: 30mV

Bertan® Range: 0-15kV Max: 0.6mA same as 602B-1S
602B-1SOPN Max. Ripple: 150mV

cpst9 Range:0-30kV Max: ImA  Regulation:0.0017%1ine:0.001%108d
100PA,100NA Max. Ripple: 150mV Stability:0.005%/hr;0.017%./8hrs.

Repeatabliity: 0.057%
Temp. Coeff. 25ppm/°C

Hewlett-Packard!® Range:0-100V Range:0-100mA Regulation:4mV,S00pAline
6212A Max.Ripple:200pV o, | Max.Ripple:1SOpA, 8mV,S00pAload
Stablility:Voltage 0.1%/8hrs.
Current-1.3mA/8hrs.
Temp. Coeff.: Voltage-0.02%/°C

Current-0.5mA/°C

Hewlett-Packard(¥ Range:0-1.6kV Max:5mA Regulation:0.00171ine;0.001%load
6516A Max.Ripple: 5mV Stability:0.05%/8hrs.
Temp.Coeft. 0.027%/°C
Heater Supply'® Range:0-10V Range:0-10A
Hybrid Voltage- Range:0-200V Range: 0-3A
Current Supply'®
Sorensen® Range:0-40V Range: 0-800mA
QRB-40
(a)Acopian Corporation (9-ewlett-Packard Company
(b)Bertan Associstes, Inc. (O)VPI Electronics Shop

(c)CPS, Inc.
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focused, discrete-dynode electron multiplier (EMI Gencom,
model D233). The electron multiplier is housed in a glass
envelope which is attached by a glass-to-metal adapter to a
standard (3.4cm 0.D.) Conflat flange at the end of the
beam arm vacuum jacket. The electron multiplier tube (EMT)

has 14 BeCuO dynodes that operate at a maximum of 4 kV

anode-to-cathode voltage with a typical gain of 2 «x 105,
The detection efficiency is rated at 90-1007 for electrons
of energy of 300 to 500 eV [156]. This is the typical
energy of the electrons reaching the EMT. The anode pulse
typically has a width of 4 nsec (FWHM) with a rise time of
2.5 nsec.

The signal from the EMT goes to a preamp (EMI Gencom,
model VA.02) through a high voltage decoupling capacitor
[189]. The preamp uses an integrated circuit amplifier
(LeCroy Research Systems, model VV100B) with a gain of 10.
Pulses from the preamp have a typical width of 2 nsec and a
rise time of 0.7 nsec. A schematic of the EMT circuitry 1is
shown in Figure D.8.

The signal pulse from each preamp goes to a
discriminator (Canaberra, model 1428A) operating in the
constant fraction timing mode. The discriminator level 15
adjusted to slightly above the background level, so that
the singles scalar rate is negligible when the beam 15

deflected out of the beam path. The discriminator produces
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a negative-going pulse with a rise time of <3 nsec and a
pulse width of 20 nsec nominal that is used to trigger the
TDC. The discriminator also produces two independent
positive-going pulses with rise times of <10 nsec that
drive the scalars and rate meters. This positive pulse has
a width of ~ ??? nsec, which determines the dead time of
the discriminator following a given pulse.

Each discriminator is connected to a 32-bit scalar
(Kinetic Systems, model 3640) which records the singles
count for each arm. Each discriminator is also connected
to an analog ratemeter (TENNELEC, model TC 525). The rate
meters are used primarily for tuning the spectrometer’s
electron optics to a maximum transmission level.

Coincidence detection is performed by a time-to-
digital converter (LeCroy Research Systems, CAMAC model
2228A). The signal from one discriminator acts as a start
pulse for the TDC. The TDC waits up to 128 nsec to receive
a stop pulse from the second discriminator. The signal
from the second discriminator passes through a wvariable
delay box (VPI Physics Electronics Shop) before it reaches
the TDC. The signal is delayed approximately 25 nsec to
minimize false stop pulses and to compensate for internal
delays in the TDC. If a stop pulse is received, the TDC
records a potential coincidence event by transferring to

the MINC computer a digital number which is proportional to
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D

the time between signals. The TDC is set to a full scale
range of 128 nsec with a time resolution of 250

psec/channel. There are 512 TDC channels. The conversion

time of the TDC is R 30 usec, which determines the
dead time of the TDC. Using the signal from the arm with
the lower single scalar rate as the start pulse will
increase the coincidence rate by reducing the dead time in
the pulse electronics.

The TDC and scalars interface to the MINC by standard
CAMAC hardware. Data is transferred via a CAMAC crate
controller (Interface Standard, model IS-11/CC) to the LSI
l1-based MINC using standard CAMAC commands. The transfer
takes ~30 msec to execute. The data transfer accounts
for the limiting dead time of the pulse electronics system.
Some data is lost as the rate of the TDC start pulse
exceeds ~3 kHz and at ~32 kHz the transfer becomes

inoperable.



APPENDIX E: DATA ACQUISITION SOFTWARE

The program PHYS provides the real-time control of the
spectrometer during (e,2e) data acquisition, performs the
initial data reduction, and displays a listing and graphics
of the data [43]. PHYS is an RS-11 FORTRAN program with a
number of machine code subroutines. Standard CAMAC
commands and MINC lab module subroutines facilitate the
control of peripheral devices. The process of real-time
data acquisition is described in the main text section on
data acquisition. This appendix details the software,
data files, data reduction, and merging algorithms, and the
error analysis associated with count rates. A flow chart
of the (e,2e) data acquisition software is shown in Figure
E.Ll.

Data are collected by the MINC at each (E,q) point;
the range of (E,q) points defines an (E,q) space over
which data is collected. PHYS directs the MINC to sample
each (E,q) point in a random order that eventually
samples all of the (E,q) space. After a specified
number of sweeps through (E,q) space, the time
coincidence spectrum for each (E,q) point undergoes a
data reduction process and a SUMMARY data file is created.
Only four numbers per (E,q) point are stored in the
summary file; the total counts in the coincidence-plus-

Figure E.1 Flowchart of data acquisition software.
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background time window, the total counts from the
background time window, and the total scalar counts from
each beam arm. The significance of the time windows is
discussed in the main text section on data analysis. The
software allows the user to set the ranges of these time
windows before data collection has begun. Typically, the
coincidence-plus-background window is 5 nsec (20 TDC
channels) and the background window is 50 nsec (200 TDC
channels).

PHYS allows the user to graphically display the time
coincidence spectrum of each (E,q) point during the data
collection process. Once a SUMMARY data file is created
the coincidence-minus-background count at each (E,q)
point can be listed.

The program TOTALZ2 combines data from one or more
SUMMARY files, together with a listing of PHYS control
parameters and annotations, into a TOTALS data file [42].
This data file is in a form that can easily be printed,
read by other FORTRAN programs, and transferred to the main
frame computer. The TOTALS data file contains a listing of
the data from each SUMMARY data file which includes the
energy, momentum, coincidence-plus-background window count,
background window count, and scalars counts for each

(E.,q) point. A summation over all SUMMARY files

combined of the four counts at each (E,q) point is also
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included in the data file.

The TOTALS data files are transferred to the VPI
mainframe computers, a DEC VAX 11/780 and an IBM 370, for
further analysis. Elaborate data transfer packages are
used which check the transferred data byte by byte, using
appropriate handshaking and transmission error detection
(46].

There are several related real-time command programs
that control operation of the spectrometer while it
performs auxiliary functions. This section briefly
outlines the most important of these programs [45].

PHYS is designed to operate in two modes, the
coincidence mode described above and the pulse mode. In
the pulse mode, PHYS scans an (E,q) space just as
detailed in the text section on (e,2e) data acquisition.
However, only the scalar count output for one channel is
monitored; there is no coincidence detection. The mode 1s
designed primarily for use in (e,e') data acquisition when
our spectrometer acts as an EELS instrument.

QSWEEP is used to collect scalar count data over a
range of momenta at a fixed energy value. Momentum
selection is performed in sequential order over the range;
only one sweep of the momenta is made. The collected data

can be displayed graphically by the MINC or it can be



333

stored in a data file, transferred to the mainframe
computer, and plotted and listed by EQPLOT. QSWEEP is used
primarily as an aid in measuring the momentum calibration
factor (see Appendix C.3) and in aligning the spectrometer.
ESWEEP is used to collect scalar count data over a
range of binding energy at a fixed momentum value. ESWEEP
is similar to QSWEEP in operation and data display. The
program is used to collect (e,e’}] data. It also looks at
wide angle inelastic scattering in the (e,2e) arms which is
used to measure the resolution of the energy analyzer.
ZEROMD is used to set the momentum and energy

analyzers to zero.



APPENDIX F. DATA ANALYSIS SOFTWARE

1. Data merging

The program EQPLOT analyzes the data stored ip the
TOTALS data files by the MINC computer. EQPLOT uses the
four measured counts, coincidence-plus-background,
background, and the two scalars rates, to combine one or
more TOTALS data files into a single array of the
coincidence count rate over (E,q) spéce. The program
also calculates the random error associated with the
coincidence count rate at each (E,q) point.

EQPLOT establishes an (E,q) array that covers a
range of energy and momentum large enough to incorporate
all of the TOTALS data to be combined. The data is merged
into this array one SUMMARY data file at a time. After the
data from each SUMMARY file is read into EQPLOT, a check 1s
made for suspect data points that may represent glitches in
the data collection process. A comparison is made between
the scalar (background) count at each (E,q) point and
the average scalar (background) count for the entire
summary file. Data not within tolerance (typically

+ 10%) can be rejected as invalid data.
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The background count at each valid data point is
subtracted from the coincidence-plus-background count using
the technique described in Section V. This coincidence
count data is incorporated into two arrays. One array,
CTOT(I,]), contains the total number of actual coincidence
counts from all of the combined SUMMARY files at each
(E,q) point. Note that I and J are the energy and
momentum indices of the (E,q) point, respectively.

The second array, CNORM(I,J), that utilizes the
coincidence count data is a merged, normalized coincidence
count rate. This array is designed to merge data file
collected over different subspaces of (E,q) space for
varying time periods in such a way as to minimize errors
and accurately weight the contribution of each SUMMARY data
file to the complete data set. Data is often taken 1n
several subsets that cover different regions of (E.q)
space. Each subset, or TOTALS data file, overlaps adjacent
data subspaces; this overlap region plays a key role 1n
merging the data.

One column of the overlap region, with momentum index
J=JMERG, is designated as the merging column. All (E,q)
points with J=JMERG and that have both old and new data
comprise the merging region. NRMNEW is the sum of the
coincidence counts in the merging region for the new data,

i.e. the SUMMARY data file which is being merged. NRMOLD
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i.e. the SUMMARY data file which is being merged. NRMOLD
is the sum of the CNORMI(I,J) values in the merging region
based on only the old data which has been previously
merged. Figure F.l illustrates the data regions in
(E,q) space used in the merging procedure.

The merged coincidence count is equal to the total
coincidence count times a scaling factor, R21. The
merged coincidence counts are scaled so that counts at
different (E,q) points sampled for varying lengths of
time can be compared directly. The total coincidence count
and scaling factor are used to calculate new, merged
coincidence counts and the error associated with those
counts. The program EQPLOT uses the following algorithm to
calculate a wvalue for the merged data at each (E,q)
point, MERG (I,J): |

r r

_m] - COIN,(IJ) : only old data
:m] « COINg(LJ) ; only new data
MERG(I,J) = < 1 |
| o eNEW | © [ COINA(LT) + COINg(1.I) ]
; both old and new data
\. 0 ; no data

(F.1)
1) At (E,q) points where there is only old data
(unshaded part of Region A in Figure F.l) the merged value
is equal to the total coincidence count of the old data,

COINA(I,J),times a weighting factor. The weighting
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Figure F.l: Diagram of data regions in {E,q) space
used in the merging procedure.

This is a diagram of the (E,q) data regions used 1In
merging a new SUMMARY data file (Region B) with other data
that has already been merged into the (E,q) array
{(Region A). The overlap region where there is both old and
new data is shown shaded. The merging column is indicated
and the (E.q) points in the merging region are denoted
by x.
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factor equals the inverse of NRMOLD divided by R.

2) At (E,q) points where there is only new data
(unshaded part of Region B in Figure F.1) the merged value
is” equal to the coincidence count of the new data,
COINB(I,J), times a weighting factor. The weighting
factor equals the inverse of NRMNEW.

3) At (E,q) points where there are both old and
new data (shaded overlap region in Figure F.!} the merged
value is equal to the sum of the old and new coincidence
counts times a weighting factor. The weighting factor
equals the inverse of the sum of NRMOLD divided by R plus
NRNEW,

4) At (E,q) points where there is no data (outside
Region A union Region B in Figure F.1) the merged value is
equal to zero.

The scaling factor R is equal to the ratio of the
normalized data CNORMI(I,J) to the total number of counts
COIN,I(I,J). If, by chance, COIN,(I,J) equals zero, R
is calculated using the sums of CNORM and COIN, over all
energies for their momentum. In the unlikely event that
this sum of COIN, is zero, R is arbitrarily set to one.

Finally, the merged counts are normalized such that
the total coincidence rate over all(E,q) space sums to

unity. It is this merged, normalized coincidence rate

array, CNORM(I,J), that is used for all further data
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analysis.

The standard deviations for the raw (e,2e) data, i.e.
the coincidence-plus-background, the background, and the
two scalar counts for each (E,q) point from each SUMMARY
file, are the square root of the counts. This follows from
the assumption that these counts follow a Poisson
distribution. The relative error in the raw data is the
reciprocal of the square root of the counts.

The error for the individual coincidence count for
each (E,q) point from each SUMMARY file is equal to the
error of the raw coincidence-plus-background count plus the
error in the raw background count divided by r added in

quadrature,

2 2y 2
A(Coin) = {[A(Coin—p]us-Back)] + [A(Back)/r] ) (F.2)

where r is the ratio of the coincidence-plus-background
time window to the background time window (see Section V).
The error in the total coincidence counts at each (E,q)
point is the sum of the errors of the coincidence count for
each SUMMARY file added in quadrature. Thus, the standard

deviation in the total coincidence count is given by

2

N
Scror ™ { S |(Coin-plus-back) | + ;15 . I(Back)nl] }

n=1

where the sums are over N SUMMARY files.
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If we assume that R is exact and that the error in
NRMOLD and NRMNEW are small compared with the errors in the
total coincidence counts at each (E,q) point (i.e.,
there are a large number of points in the merging column
summed to obtain NRMOLD and NRMNEW), the relative error in
the merged, normalized array is equal to the relative error

in the total coincidence count. The relative error of the

merged, normalized coincidence rate, CNORM, is

N . 1 /2
A(CNORM) n% I: (Coin-plus-back),| + 5 - |(Back),| ]
CNORM  ~

N 1
Zl[(Coin—plus—Back)n -5 (Back)n]
n=

(F.4)

If there is a relative systematic error in the measured

count rates A_, then the error in CNORM is

N
= 1 2 . - 2
ACNORM = {rgl[ (I(Coin—plus—back)nl + As) (Coin-plus Back]n]

/2
1 1 2 2

The errors in the total background count and scalar

counts are equal to the square root of the total counts.
2. Deconvolution techniques

The problem of deconvoluting the instrumental

broadening and multiple scattering from the measured (e,2e)

data was formally solved in Section II.B4. However, the
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problem of how best to carry out the numerical inversion of
Equation I1I1.54 was left to this appendix. Many possible
approaches exist.

One approach is the Fourier transform method. Taking
the Fourier transform of equation II.52 it follows from the

convolution theorem that

Altx) = &ty » T(tx) (2m)? (F.6)
where A and & are the Fourier transforms of R and
R, respectively. In theory, this can be immediately
inverted to find &; the inverse Fourier transform of
& is R, which is the function sought. In reality the
problem is not this simple for several reasons [31]:

1) Including random noise errors in the measurements,
described by N(Ej,kg), requires that Equation II.54
must be rewritten as

R(Egky) = R @ ¥ + N(Egky) (F.7)
Since N is not known, one must solve the now approximate
Equation 11.54, neglecting the random noise. This problem
can be alleviated somewhat by using smoothing procedures to
improve the quality of the measured cross section, R.
In practice, this smoothing can be accomplished by clipping
the high-frequency components of the function A before
taking the inverse Fourier transform to find R; this

results in R being evaluated at wider intervals in
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energy-momentum space.

2) Deconvolution does not yield a unique solution,
since any function M(Ep,kg), whose convolution with
the smearing function is either exactly or approximately
zero, can be added to R without greatly affecting its
convolution with &. Random high-frequency noise [87],
for example, satisfies the condition on M. Again, clipping
the high-frequency components of A can help alleviate
this problem.

3) In general, we do not take data over all
dimensions of energy-momentum space. This does not present
a serious problem as long as & does not vary
appreciably in these unmeasured dimensions over the width
of the smearing function, or simply that the experimental
resolution is sufficient to see the important features in
R. In essence, this results formally in approximating
the dependence of R on these unmeasured dimensions by a

delta function when performing the Fourier transform to

calculate &; this results in a factor of
1 . . . .
—— in A for each such dimension. This
27

is of course an approximation, and does introduce unknown
errors into the calculation.
4) The measured data does not extend over an infinite

range of energy or momentum. Formally, R is equivalent

to convoluting a hypothetical function extending the
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measured data to infinity &, with two rectangular
functions limiting the range of &,

R ~ R, ® rect (€pn,€p,,) @ rect (q , .9 ) (F.8)

ax

Then the Fourier transform of & is

A ~ A, - sinc(?) - sinc (x) (F.9)
that is the Fourier transform of the extended data
broadened by two sine functions.

As the range of data is extended, the "width"” of the
sinc functions decrease, however so does the spacing of the
points in Fourier space. Beyond the nth point away from a
given point in Fourier space, the sinc function associated
with the given point is nearly zero. By considering only
every nth point of &, the broadening is minimized. If
A is then calculated using only every nth point of &,
then R will extend over one nth of the range of &.
However, if R is artificially extended in energy and
momentum space to a function R, which is n times
as wide as R, & is calculated from Ry, and
A is then calculated at every nth point, then the
Fourier transform of A, R, will extend over the full
range of measured data.

It is relatively straightforward to extend the

measured data. Beyond a certain point in momentum space
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the (e,2e¢) form facior goes monotonically and quickly to
zero. Beyond the measured data, R can be extended
smoothly to zero by splicing an error function to the last
measured momentum data point. Likewise, above the Fermi
energy the count rate fall to zero and an error function
can be spliced' to the last measured energy data point
(180]1]. At high binding energy the ideal & should fall
to zero, however the count rate is held at an approximately
constant level rate by multiple scattering for at least the
width of the first plasmon peak beyond the last true (e,2e)
band. An error function of the width of the plasmon peak
width is é reasonable approximation to the extension of
R in this direction.

This technique is crude and has the potential for
disastrous results. It introduces unknown errors into the
value of R and can diverge unpredictably by amplifying
noise in the data. However, it is numerically simple to
perform. It has been used with good results on a-C data as
described in reference 144.

Another, more conservative, deconvolution technique is

the wvan Cittert iterative method [169]. We have made use

of the variation of this method described by Wertheim which
incorporates a smoothing of the data into the iterative

process [181]. Application of this method to (e,2e)

spectroscopy is described in Reference 90 where examples of



345

its application are shown. This technique has the same
pitfalls as noted for the Fourier transform method and also
has a problem with divergence of solution and introduces
unknown errors into the value of R This is the
deconvolution method used for the data described in Section
XIII.

Another method of deconvolution, a hybrid Fourier
Transform technique has been developed by Rick Jones and
is in the process of being implemented. This technique
offers the potential to keep track of the errors introduced

by the deconvolution.



APPENDIX G: DATA COLLECTION PROCEDURES

Careful planning and the proper order of data
collection greatly facilitates the execution of an
experiment. The following section provides a suggested
order of collecting the necessary data. This includes a
logical sequence for determining the parameters listed in
Tables VIII.1 and VIII.2. First, however, it is important
to know what range of parameters is acceptable by
researching the literature. Useful studies include the
tand structure, density of states, electron momentum
density, angle resolved PES spectra, plasmon energies, and
mean free paths.

Once the spectrometer is tuned in the elastic mode on
the sample, a series of measurement should be taken to
characterize the sample and tune conditions. The tune
conditions should be recorded. The Fluke probe calibration
should be checked and the probe carefully monitored
throughout the experiment. The sample thickness can be
measured with ESWEEP using the (e,e’} arm. The sample
orientation and the momentum calibration factor and offset
are determined from QSWEEP data from the (e,e’) arm.

ESWEEP data extending beyond at least the first two plasmon

346
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peaks and on both sides of the zero loss peak should be
taken for both (e,2e) arms. This data provides information
on the target thickness, the energy resolution and the
Wien filter offset voltages. QSWEEF data should be taken
over the full range of momenta for a number of fixed
binding energies for both (e,2e) arms. This data
determines the extent of the systematic error in the count
rates as a function of momentum.

The spectrometer should next be tuned to the ineiastic
mode. The existence of coincidence counts should be
established first. This is done by taking data at only a
few points over a range of binding energies at zero
momentum. Once this is confirmed a finer energy grid of
data at ¢ = 0 can be used to determine an approximate Fermi
level. Next a set of data at several widely spaced momenta
should be taken to determine the momentum offset and the
extent of the data in momentum-space. A final scan at the
true momentum zero over a wide range of energy is used to
better define Er and to establish the lower limit of
data. These measurements define a region of interest in
(E.q) space. It extends in energy from approximately one
plasmon energy above the Fermi level to about one and a
half times the plasmon energy below the bottom of the
valence band. In the momentum direction, it extends

approximately one FWHM of the momentum resolution beyond
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where the cross section falls to zero.

It is best to first take a set of coarse data over
this entire region of interest. This confirms the extent
of the region of interest and provides a framework for
merging the finer data. The finer grid data should be
taken in sets that take approximately 3-6 hours to sample
once, It is crucial that all (E,q) points in the region of
interest be sampled and that each scan overlap the initial
course grid at at least one momentum value which can be
used to merge the data. The final (e,2e) data set should
repeat the first coarse data set to provide a check for
sample degradation and systematic errors. Finally, ESWEEP

and QSWEEP data should be repeated.
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Preparation of Thin Graphite Samples

I.

I1.

Extracting Graphite from surrounding rock

A. Choose large, flat crystals with little
twinning.
B. Remove excess rock with pliers or a hammer

and chisel.

C. Dissolve the remaining rock in concentrated
hydrofloric acid in a wax-lined glass
beaker.

D. Rinse the crystals in distilled water.

"Standard Scotch-tape method” of cleaving

A. Choose a large crystal (R 3 cm?
surface area) with a smooth surface. If
necessary, the crystal can be cleaved with a
razor blade. Do not try to polish the
crystal.

B. Mount the crystal on a piece of cellophane

tape with the smooth surface towards the
adhesive. Note that cheap cellophane tape
(as opposed to Scotch-brand tape) must be
used, since it only has toluene soluble
adhesive.

C. Cleave with another piece of tape. The
freshly cleaved surfaces facing up are the
best surfaces to continue working with.

D. The goal is to continue cleaving the sample
with successive applications of tape until

you get a large (~ | mm?) uniform area
that you can see through. Holding the tape
up to a light or over a light table is a
good way to see the thin spots.

E. Patience is the most important ingredient.
Alternating directions in which the graphite
is peeled improves the chances for thin
samples. The tape can be applied lightly to
remove small graphite flakes and to smooth
the crystal surface.
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III. Removing the tape.

A. Once you have a thinned sample, place it
adhesive face down on a microscope slide.
Remove the excess tape and graphite with a
razor blade. A rectangular piece of tape
twice the size of the thin area should be
left. This facilitates removal of the
sample from the microscope slide and
subsequent handling. In this state, the
sample can be more closely examined or
stored with less likelihood of damage.

B. Fill a glass petri dish with approximately 1
cm of toluene. Remove the sample from the
microscope slide and place it tape face down
in the petri dish. Cover the dish and wait
until the adhesive dissolves, typically 4-6
hours. It is best to have only one sample
in a dish because the mounting process will
tend to break other samples in the dish.

IV. Mounting the sample

A. This is the most delicate operation; do it
carefully. Using tweezers, gently lower a
sample holder into the toluene. Raise the

sample by holding the tape and turn it over
onto the sample holder, taking care not to
break the surface. If you are lucky, the
sample will be properly mounted and the tape
can be lifted off.

B. If the sample stays on the tape slowly raise
the tape out of the liquid allowing surface
tension to separate the film. Move the
holder under the target and align the hole
with the thin spot. Raise the holder
straight out of the dish. It is best
to use two pairs of tweezers.

C. Once the sample has been removed from the
liquid it must be dried. It is best to
place the holder on clean absorbent paper at
an angle with one edge resting on a
microscope slide. The hole should be
positioned so that it is not in contact with
the paper or slide.
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D. After the sample has dried, it should be
placed on a slide or in a container. Air
currents caused by movement can break the
sample.
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