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Kurzfassung

Seit den Anfingen der Forschung im Bereich der Kiinstlichen Intelligenz ist Automatisches
Planen ein wichtiger Forschungsgegenstand. Als das “klassische Planungsproblem” bezeich-
net man hier das Auffinden einer Folge vordefinierter Aktionen um von einem gegebenen
Anfangszustand in einen gewiinschten Zielzustand zu gelangen, wobei lediglich das Reper-
toire an Aktionen, sowie deren Vorbedingungen und Effekte bekannt sind. Konkrete Prob-
lemstellungen reichen hier von der klassischen Routenplanung bis hin zur automatischen
Zusammenstellung von Web-Services zur Erledigung einer bestimmten Aufgabe, etc.

Neben der Suche nach konkreten Algorithmen zur Losung solcher Planungsprobleme spie-
len auch formale Sprachen zur Beschreibung von Aktionen und Planungsdoménen eine ganz
wesentliche Rolle. Wahrend klassische Planungssprachen wie beispielsweise STRIPS [FN71]
oder PDDL [GHK98] von einem vollstindig definierten Anfangszustand sowie determinis-
tischen Effekten aller Aktionen ausgehen, gelten diese Annahmen in realistischen Szenarien
oft nicht. Hier erweisen sich flexiblere Aktionsbeschreibungssprachen aus dem Bereich der
Wissensreprésentation als niitzlich, sobald es darum geht, nicht-klassisches Planen unter
unvollstindigem Wissen zu modellieren. Allerdings bringt die héhere Ausdrucksstirke
dieser Aktionsbeschreibungssprachen auch eine hohere Komplexitit bei der Berechnung von
Planen mit sich: Klassische Suchalgorithmen kénnen zum Losen von Planungsproblemen,
die in solchen Sprachen formuliert sind, nicht mehr ohne weiteres angewandt werden. Hier
bieten sich stattdessen deklarative Methoden an, beispielsweise Methoden der deklarativen
logischen Programmierung.

Die vorliegende Dissertation geht auf diese Problemstellungen in mehrerlei Hinsicht
ein. Zu Beginn wird die deklarative Planungssprache K¢ eingefiihrt, die auf bestehen-
den Aktionsbeschreibungssprachen basiert und diese um Konzepte aus dem Bereich der
deklarativen Logikprogrammierung erweitert. Die Sinnhaftigkeit dieser Erweiterungen wird
anhand zahlreicher Planungsprobleme demonstriert, welche sich in K¢ zum Teil einfacher
beschreiben lassen als in vergleichbaren Sprachen. Nach der Definition der Syntax von K¢
werden verschiedene Semantiken fiir das Planen unter unvollstindigem Wissen eingefiihrt:
optimistische Plane sind Aktionsfolgen, die den Zielzustand nur moglicherweise erreichen,
wahrend sichere Plane das Erreichen des Zielzustandes unter allen Umsténden garantieren.
Weiters wird auf die Erweiterung dieser beiden Semantiken um Aktionskosten eingegangen.
Hier spielt einerseits die Berechnung von kostenoptimalen Planen eine Rolle, andererseits
sind oft auch Plane ausreichend, die lediglich das Einhalten eines bestimmten Kostenlimits
garantieren.

Bei der Untersuchung dieser Aspekte wird besonders auf die genaue Analyse der Berech-
nungskomplexitét der beschriebenen Semantiken der Sprache K¢ Wert gelegt.



Anschlieflend wird die Ubersetzung von Planungsproblemen in disjunktive logische Pro-
gramme beschrieben, welche unter der sogenannten Answer Set Semantik ausgewertet wer-
den kénnen. Zunichst wird auf allgemeine Methoden zur Problemlésung mithilfe des “guess
and check” Paradigmas der Answer Set Programmierung eingegangen. Dabei wird eine neu
entwickelte Methode zur Generierung von integrierten Answer Set Programmen aus sepa-
raten “guess” und “check” Teilen vorgestellt, die zur Lésung komplexer Planungsprobleme,
wie beispielsweise der Berechnung sicherer Pline verwendet werden kann.

Answer Set Programmierung ist inzwischen ein weithin akzeptiertes Werkzeug des deklar-
ativen Probleml6sens geworden, was nicht zuletzt am Vorhandensein effizienter Systeme
zur Evaluierung von Answer Set Programmen liegt, wie beispielsweise das am Institut seit
etlichen Jahren entwickelte DLV System.

Anhand der beschriebenen, theoretischen Methoden wurde basierend auf DLV ein Pla-
nungssystem entwickelt und implementiert. Nach einer genauen Beschreibung des Systems
DLVX wird néher auf die experimentelle Evaluierung der vorgestellten Methoden eingegangen,
wobei sich DLV als durchaus konkurrenzfihig gegeniiber vergleichbaren Planungssystemen
erweist.

Ein weiterer Abschnitt der Arbeit widmet sich der Wissensreprasentation in der Sprache
K¢. Dabei wird die Modellierung von Planungsproblemen in ¢ anhand zahlreicher Beispiele
aus der Literatur aber auch anhand neuer Planungsdoménen erldutert.

Ein eigenes, in sich abgeschlossenes Kapitel behandelt abschlielend ein praktisches An-
wendungsszenario zur Verwendung von Planungsmethoden im Bereich der Uberwachung
und des Designs von Multi-Agenten-Systemen.
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Abstract

Planning is a challenging research area since the early days of Artificial Intelligence. The
planning problem is the task of finding a sequence of actions leading an agent from a given
initial state to a desired goal state. Whereas classical planning adopts restricting assump-
tions such as complete knowledge about the initial state and deterministic action effects,
in real world scenarios we often have to face incomplete knowledge and non-determinism.
Classical planning languages and algorithms do not take these facts into account. So, there
is a strong need for formal languages describing such non-classical planning problems on the
one hand and for (declarative) methods for solving these problems on the other hand.

In this thesis, we present the action language K¢, which is based on flexible action lan-
guages from the knowledge representation community and extends these by useful concepts
from logic programming. We define two basic semantics for this language which reflect
optimistic and secure (i.e. sceptical) plans in presence of incomplete information or nonde-
terminism. These basic semantics are furthermore extended to planning with action costs,
where each action can have an assigned cost value. Here, we address optimal plans as well
as plans which stay within a certain overall cost limit.

Next, we develop efficient (i.e. polynomial) transformations from planning problems de-
scribed in our language K¢ to disjunctive logic programs which are then evaluated under
the so-called Answer Set Semantics. In this context, we introduce a general new method
for problem solving in Answer Set Programming (ASP) which takes the genuine “guess
and check” paradigm in ASP into account and allows us to integrate separate “guess” and
“check” programs into a single logic program.

Based on these methods, we have implemented the ASP-based planning system DLVX
which we describe in detail. We furthermore discuss problem solving and knowledge repre-
sentation in K¢ using DLVX by means of several examples from the literature but also novel
elaborations. The proposed methods and the DLVX system are also evaluated experimentally
and compared against related approaches.

Finally, we present a practical application scenario from the area of design and monitor-
ing of multi-agent systems. As we will see, this monitoring approach is not restricted to our
particular formalism.
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Chapter 1

Introduction

Planning has been a challenging problem since the early days of Artificial Intelligence
research. The very beginning of research in this area dates back already to the late
50s, when McCarthy et al. coined the term “Artificial Intelligence” in the famous Dart-
mouth Conference in 1956. Driven by the ambition to model common-sense reasoning
in an automated fashion, McCarthy’s “Advice Taker”[McC58] or the “General Problem
Solver” [NSS59, NS63] by Newell et al. may be viewed as starting points for a steadily
evolving research branch in AT since then.

Precisely speaking, the classical “planning problem” is nowadays conceived as the task
of finding a sequence of actions bringing an agent from a given initial state towards a given
goal state. The “input” of a planning problem consists of a description of the initial state,
the goal state, and the actions which can be performed by the agent in terms of their precon-
ditions and effects on the environment. Solutions to such problems (i.e., plans) correspond
to sequences of actions which guarantee to reach a state where the desired goal holds. How-
ever, as opposed to this “classical” definition of planning, the initial state might be specified
incompletely, actions might have nondeterministic effects, and furthermore actions can have
different costs which we want to minimize, etc.

From a knowledge representation perspective, there is a strong need for appropriate
formalizations of such problems in high-level languages which enable the user to model
planning domains in a declarative way. Last but not least, the definition of such languages
based on a clear formal semantics is essential with respect to the development of algorithms
for solving such problems.

Planning Languages

Existing Planning languages such as STRIPS [FN71] and its descendants ADL [Ped89] or
PDDL [GHK 198, FL03] have become a quasi-standard for state-of-the-art planning systems.
These languages are mainly tailored for solving classical planning problems with limiting
assumptions such as complete knowledge about the world state and fully deterministic ac-
tion effects. Furthermore, STRIPS like formalisms build up a very strict syntactic corset
on formalizing actions and change. Nevertheless, thanks to the efforts made in language
standardization, mainly with the PDDL language, this has lead to many successful plan-
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ning systems based on various underlying approaches such as reductions to propositional
satisfiability (SAT) or heuristic search methods.

On the other hand, more flexible, declarative action languages, for instance A [GL93],
C [GL98a] or recently K [EFL*03b] — which is a main subject of the present work — have
been developed by the knowledge representation community. The main focus of these action
languages is a flexible, “natural language” like description of actions and change. Further-
more, languages like C and K are well-suited for expressing nondeterminism and incomplete
knowledge. The main concern of these languages is more on general reasoning about actions
and change than on plan generation. So, whereas these languages are clearly defined in
terms of formal semantics, implemented planning systems are rare. One reason is that the
high flexibility of these languages in formalizing actions comes at a cost: Classical search al-
gorithms and methods for planning in STRIPS-like domains are no longer directly applicable.
Methods for declarative problem solving seem more appropriate for these languages.

Declarative Problem Solving

By “declarative” problem solving, as opposed to procedural methods, we refer to methods
which allow us to specify the problem in a formal language and then deploy an inference
mechanism rather than having to describe the operational structure of how to solve the
problem beforehand. For instance, formalizations of problems as propositional logical for-
mulae, such that valid truth assignments witness desired solutions, fall into this class, where
we can use existing SAT checkers, like [BS97, Zha97], to solve the problem. A particular
important formalism which allows for such declarative problem solving is logic program-
ming under the Answer Set Semantics [GL91]. The problem at hand is formalized as a set
of rules which are evaluated under a model based semantics, where these models are also
called “Answer Sets”. While the rules are syntactically similar to PROLOG, we emphasize
that Answer Set Programming (ASP) is really a declarative formalism, i.e. the ordering of
rules and literals within rule heads and bodies does not affect the semantics. The Answer
Set Programming paradigm has been widely accepted as a knowledge representation formal-
ism well capable of formalizing search problems involving default assumptions, incomplete
knowledge, nondeterminism, etc. (cf. [PC01, Bar03]). The development of efficient solvers
for ASP such as pLvV [LPF102], SMODELS [SNS02], ASSAT [LZ02], or CMODELS [Bab02] has
further promoted this method recently.

Declarative Planning

Strictly speaking, any system capable of solving arbitrary planning problems formally de-
fined in a high-level action language can, by our definition, be considered as a tool for
declarative problem solving. However, increasing expressiveness of these languages makes
the development of such a system hard.

The basic idea behind declaratively solving planning problems specified in high-level
action languages is as follows: For any formal language L; which allows for efficient (poly-
nomial) reductions to another formal language Lo, any system or formalism capable of
solving Ly also can be used for solving L;. We basically want to use such reductions in
order to translate planning problems to another declarative formalism for which efficient



solvers already exist. This methodology has been successfully applied in planning by trans-
lations of classical planning problems into propositional satisfiability (SAT), resulting in
competitive classical planning systems (e.g. [KS92, KS99]).

A key question at the start of this work was how far we can get, building up a planning
system fully relying on ASP techniques, especially with respect to non-classical planning,
where uncertainty comes into play. Concerning ASP, many ad hoc formalizations of plan-
ning have been proposed and several attempts have been made to translate existing action
languages into logic programming (e.g. [SZ95, DNK97, LT99]). Here, the action language
K which is one main subject of the present thesis plays an outstanding role:

K itself adopts many useful concepts of ASP. In the course of this work we will show
the usefulness of these additional language features in the field of planning . Besides, K
allows for a more direct compilation to ASP than previous languages which we have used
and implemented in the DLV Planning System.

Contributions

The present thesis comprises the results of the author’s work conducted on action languages
and efficient translations to Answer Set Programming within a research project under the
title “A Declarative Planning System Based on Logic Programming”!. The project was
fundamentally based on the following preliminary work: First thoughts on using the DLV
System for planning purposes appeared in the proceedings of the “Workshop on Logic Pro-
gramming (WLP’99)” [EFL100b]. Preliminary results on the action Language K and a first
prototype of a planning system based on DLV have been published in the proceedings of the
“First International Conference on Computational Logic (CL’2000)” and in the author’s
master’s thesis [Pol01]. During the last two years this work has been extended by novel
theoretical results and newly developed methods.

Main Results

In particular, we will make the following contributions:

(1) We will introduce the action language K and thoroughly analyze syntactic and se-
mantic features. As for planning under incomplete knowledge and nondeterminism, we will
define two semantics for planning problems in our language, namely optimistic and secure
(conformant) plans. In analogy to brave and cautious reasoning in Answer Set Program-
ming, the former denotes plans which reach the goal in some possible evolutions of the world
when executing the plan, whereas the latter denotes plans which reach the goal under any
contingencies. Furthermore, we will analyze both of these semantics complexitywise, where
we set value on a more in-depth discussion of the results than in previous works.

(2) We extend the language with action costs which leads to the novel language K¢. We
analyze the impact of this extension on complexity and define two more semantics, namely
admissible and optimal planning. These new semantics are orthogonal to the previously
mentioned optimistic and secure plans. I.e., both semantics can be combined with optimistic

1Sponsored by the Austrian Science Funds (FWF) under the project number P14781-INF.



4 CHAPTER 1. INTRODUCTION

and secure planning. The terms “admissible” and “optimal” denote plans where action costs
stay within some given cost limit or are optimal with respect to costs, respectively.

(3) We relate these results to logic programming by providing appropriate (polynomial)
transformations from optimistic and secure planning problems in K¢ to Answer Set Pro-
gramming. We further extend these transformations with respect to admissible and optimal
planning. Here, we will discuss interleaved computations via separate “guess” and “check”
programs, where one logic program serves to guess an optimistic plan and another logic
program is used to check whether a particular plan is secure. Next, we will discuss cases
where these two separate programs can be combined into a single, integrated logic program
directly encoding secure plans.

(4) To this end, we will use a novel, general method for automatic integration of separate
“suess” and “check” programs by meta-interpretation of logic programs. Our approach rec-
onciles pragmatic problem solving with the genuine “guess and check” approach in Answer
Set Programming beyond NP problems. We will discuss the properties of this method and
applicability in the field of planning. In particular, we are able to define a general transfor-
mation of checking plan security which itself is in general a problem infeasible by efficient
reductions to SAT but solvable in ASP.2

For the integrated encodings of secure planning, as mentioned in (3), we will define proper
syntactic subclasses of our language K where a single logic program for computing secure
plans can be generated.

As we will show, our general method can moreover be fruitfully applied to other hard
problems. Particularly, we will show how to use this method on Quantified Boolean Formulae
and a problem from the business domain: “Strategic Companies”.

(5) We will provide an overview on how to model planning domains in our language K¢
by means of several well-known and also novel planning examples. We will focus on the
usefulness of our added features compared with other action languages, and exemplify design
principles of our language.

(6) We will describe an implementation of our methods in form of the DLVX planning
system which, to our knowledge, is the only planning system based on Answer Set Pro-
gramming so far. We will perform experimental evaluation of the proposed methods and
compare the DLVX system against other planning systems, namely as well as against the
integrated encodings mentioned in (4).

(7) Finally, we will show the applicability of our planning approach in a realistic sce-
nario from the area of design and monitoring of Multi-Agent Systems. As we will see, this
monitoring approach is not restricted to our particular formalism, but establishes a general
method for using planning in monitoring of Multi-Agent Systems.

Original results contained in this thesis have been published as refereed articles in the
proceedings of several international workshops and conferences: Progress of the DLVX system

2ASP is capable of expressing problems on the second level of the Polynomial Hierarchy of complexity
classes whereas in SAT only problems in the class NP can be expressed, which are widely believed to be
easier (cf. Section 2.2).



has been reported in the proceedings of the “IJCAI-01 Workshop on Planning under Un-
certainty and Incomplete Information” [EFL101b] and the “6th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’01)”[EFL*01a). Prelim-
inary results on our extended language K¢ and a description of the extended system fea-
tures appeared in the proceedings of the “8th European Conference on Artificial Intelligence
(JELIA)”[EFL*02a, EFL*02b]. Furthermore, our planning approach for monitoring and
design of Multi-Agent Systems will be presented at the “26th German Conference on Ar-
tificial Intelligence”’[DEFT03]. A proposal for future system extensions has been presented
in the “Printed Notes of the ICAPS-03 Doctoral Consortium” [Pol03]. Preliminary results
on our general method for “guess” and “check” integration in Answer Set Programming
will be presented at the “APPIA-GULP-PRODE 20038 Joint Conference On Declarative
Programming” [EP03].

Furthermore, a description of the DLVX system recently appeared in the “Artificial In-
telligence” Journal [EFL103a]. An article on syntax and semantics of our action language
K will appear in “ACM Transactions on Computational Logic (TOCL)” [EFL103b]. An-
other contribution concerning planning under action costs will appear in the upcoming issue
of the “Journal of Artificial Intelligence Research (JAIR)” [EFL*03c] where the extended
language K¢ is described along with respective extensions of the DLVX System.

The thesis also contains novel, previously unpublished results. Particularly, this applies
to the proposal of further language extensions in Chapter 7 which partly have been described
in [Pol03] and the general method for checking plan security in Chapter 4.

The remainder of this thesis is organized as follows. We will begin with a recapitulation
of fundamental concepts in Chapter 2. Here, we will recall the necessary concepts of Answer
Set Programming, Complexity, and Planning, and shortly review the most relevant planning
languages and existing approaches.

Next, we will introduce syntax and semantics of the action language K and its extension
K¢. Semantics will be defined in terms of optimistic and secure plans for the basic language,
which we will extend to admissible and optimal plans for planning with action costs. This
will be followed by a thorough complexity analysis of the different semantics.

In Chapter 4, we will first review and extend general methods of problem solving in
ASP as pinpointed in (4). Then, we will deploy these methods in the field of planning by
describing transformations of ¢ planning problems to logic programs, such that answer sets
of the resulting programs coincide with plans under the desired semantics (i.e. optimistic,
secure, admissible, and optimal plans). We will further sketch algorithms for the interleaved
computation of such plans, where direct transformations are not feasible.

Chapter 5 then gives an overview over the implemented DLVX System, its usage, features
and architecture. We demonstrate how we integrated the methods from the previous chapter
in a fully operational planning system based on DLV.

The following chapter on knowledge representation discusses encodings of several well-
known, but also some novel planning domains in K¢. We particularly emphasize on the
novel features of our language and system, showing how to solve classical planning prob-
lems, secure (conformant) planning under incomplete knowledge, and planning under various
optimization criteria using action costs. We further discuss general design principles of the
formalization of planning problems in K°¢.
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Language and system extensions, which have not yet been implemented will be sketched
in Chapter 7.

Experimental evaluation of the DLVX system is reported in Chapter 8. Here, we first
compare DLVX against other conformant planning systems on benchmark problems from
the well-known “Bomb in the Toilet” domain. For comparison, we used CPLAN [CGT02],
CMBP [CR00], GPT [BG00] and SGP [WAS98], some recent conformant planners. Next,
we report on experiments concerning optimal planning. Since the number of comparable
systems wrt. optimal planning in the form we propose it is rare, we restrict ourselves to do-
mains which are hard to express for others. We show the limits of our system on some special
elaborations of the “Blocks World” and “Traveling Salesperson” domains. We compare DLVX
against CCALC [McC99a], a generic system for reasoning about actions and change which
offers features similar to DLVX, where possible. Furthermore we test the integrated encodings
mentioned in (4). On the one hand, we experimentally compare this method against exist-
ing ad hoc encodings for Quantified Boolean Formulae and “Strategic Companies”. On the
other hand, we are interested in the performance of integrated encodings for secure planning
compared with the interleaved computation of DLVX.

Our general monitoring approach for Multi-agent-systems mentioned in (7) will be in-
troduced in Chapter 9.

A detailed discussion of related works and systems follows in Chapter 10. Here we
discuss the correspondence to other planning languages, related complexity results, and
related approaches wrt. logic-based planning, planning under incomplete knowledge, and
optimal planning.g

Chapter 11 concludes the thesis with a short summary and final remarks.



Chapter 2

Preliminaries

2.1 Answer Set Programming

In this section, we will review a commonly used semantics for a wide class of logic programs
known as the Answer Set Semantics [GL91] and present two efficient engines for computing
answer sets (i.e. solutions of such programs), namely DLV and SMODELS (and its exten-
sion GNT). Syntactically, we will consider so called Extended Disjunctive Logic Programs
(EDLPs). These are logic programs which allow for disjunction in rule heads and two forms
of negation, classical and default negation (also known as “negation as failure” from Prolog).

2.1.1 Historical Overview

Answer Set Programming (ASP) [PC01, Bar03], i.e. logic programming under the Answer
Set Semantics [GL90, GL91] is widely proposed as a useful tool for various problem solving
tasks in Artificial Intelligence. Historically speaking, the Answer Set Semantics for logic
programs has its roots in the stable model semantics [GL88] of normal logic programs (also
known as general logic programs [Llo87]). This class is obtained from ordinary logic pro-
grams (that consist of rules that are effectively Horn clauses) by allowing the use of a form
of negation — negation as failure to prove [Llo87] — in the bodies of rules. Due to close inter-
connections to Reiter’s Default Logic [Rei80], this form of negation is also known as default
negation. Default negation differs from classical negation in propositional logic and it is
therefore quite natural that Gelfond and Lifschitz proposed a logic programming approach
which allows for both negations [GL90] 3 where the term “answer sets” was introduced.
Furthermore, in [GL91] Gelfond and Lifschitz extended their semantics to disjunction in
rule heads. Przymusinski [Prz91] presented similar ideas, but in a more general setting.
The latest generalization of Answer Set Programming allows for negation as failure also
in the heads of rules [LW92, Lif02]. While this extension is syntactically and semantically
straightforward it is (so far) not supported by the existing solvers such as DLV and SMODELS.
In fact, it has been shown that negation as failure in rule heads does not increase the

3quoted from [Jan01]
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expressive power of logic programs [Jan01]. Here, we consider negation as failure only in
rule bodies.

2.1.2 Syntax

Let oPm¢?, g™ and 0% be disjoint sets of predicate, constant, and variable symbols,
respectively. In accordance with DLV notations which we will often use in the following we
assume that o™ is a set of integer constants, string constants beginning with a lower case
letter, and '’ quoted strings, oP7¢¢ is a set of string constants, and o¥%" is the set of string

constants beginning with an upper case letter. More precisely, o?"¢?, ¢°°® and %" are
defined by the following regular expressions:

acon = ([0-9]4)|([a—z][A—Za—2z0—9]%)|("[A—Za—2z0—9]x")

oPred = ([A—Za—2z][A—Za— 20— 9])

aver = ([A-2Z][A—Za—2z.0—9]%)

Given p € oP™? an atom is defined as p(t1,...,t,), where n is called the arity of p and
t1,...,ty € 0" U oY% Whenever arity n = 0, we say that p is a propositional atom. A
literal is an atom a or its negation —a, where “=” is the true (classical) negation symbol,
for which we also use the customary “-”. We write |a| = |-a| = a to denote the atom of

a literal. Further, we write —.l to denote the complement of a literal, i.e. —.a = —a and
—.ma = a, respectively.

Definition 2.1. Finally, o rule is of the form
hiv ... v b :=b1, ..., by, not bypt1, ... not by,. (2.1)
where each h; (bj) is a literal and not is the symbol for negation as failure.

Definition 2.2. An extended disjunctive logic program (EDLP, or simply logic program)
I1 is defined as a set of rules v of the form (2.1).

We denote Head(r) = {h1, ...}, Bodyt(r) = {b1,...,bm}, Body (r) = {bmt1,-..,bn},
and Body(r) = Body™ (r) U Body ™ (r). Furthermore, we denote Lit(II) as the set of all lit-
erals occurring in II. A rule with |Head(r)| = 1 and Body(r) = 0 is called a fact. Rules
with Head(r) = 0 are called constraints. Programs without disjunction, i.e. for all r € TI
|Head(r)| < 1 are called normal logic programs. For normal rules with a non-empty head,
we occasionally write Head(r) = [ instead of Head(r) = {l} when clear from the context.
Programs without negation as failure,i.e. for all r € II Body~(r) = 0 are called positive.
Programs without classical negation are called (non-extended) DLPs.

2.1.3 Ground Instantiation

The semantics of EDLPs is defined in terms of programs without variables. In order to
eliminate variables from a program, we will now define the ground instantiation of a program.

4Note that as opposed to Prolog we restrict ourselves to the function-free case
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Definition 2.3. An atom (or literal, resp.) is called ground if it does not contain variables.
A rule is called ground if it only consists of ground literals. A program II is called ground
if mone of its rules contains variables.

The Herbrand universe HUn of a logic program II is the set of all constants ¢ € o“°™ ap-
pearing in II. The Herbrand base H By is the set of all literals constructible from predicates
p € oP"°? occurring in IT and the constants in HUry.

Definition 2.4. The ground instantiation IL} of a logic program II finally is the set of all
rules ' constructible from rules r € II by replacing all variables with elements from HUp.

Note that implemented systems like DLV and SMODELS provide efficient and intelligent
methods for grounding a program, which do not necessarily instantiate over the whole
Herbrand universe, but only generate those ground rules which are relevant wrt. to the
semantics defined in the following.

2.1.4 Semantics

The semantics of EDLPs will now be defined in terms of ground programs. For a program
with variables the semantics is defined by the semantics of its ground instantiation as defined
above.

We say that a set of literals S satisfies a rule 7 if Head(r)NS # 0 whenever Body™ (r) C S
and Body~(r) N S = 0.

The semantics of EDLPs is defined first for positive ground programs (i.e., for all rules
Body=(r) = 0): Let S C Lit(II) be a set of consistent literals where we call a set of literals
consistent whenever it does not contain a literal [ and its complement —.l. An answer set
for a positive program then is a minimal (relative to set inclusion) consistent set S satisfying
all rules. 5

To extend this definition to programs with negation as failure, we define the reduct II°
(also often referred to as the Gelfond-Lifschitz reduct) of a program II wrt. a set of literals
S as the set of rules r’

hy v.... v hy ==by, ..., b

obtained from all rules r of the form (2.1) in IT such that S N Body~ (r) = 0. We say that
S is an answer set of IT if S is an answer set for ITI°. By AS(IT) we shall denote the set of
all answer sets of program II.

Example 2.1. For instance, the program II;:
p v gq —T:ip.

has two answer sets: S1 = {p,—q},S2 = {¢q}. Constraints can be used to “eliminate”
unwanted answer sets in EDLPs, for instance, if we add the constraint

= p.

5 We only consider consistent answer sets, while in [GL91, Lif96] also the (inconsistent) set H B may
be an answer set. Technically, we assume that negative classical literals —a are viewed as new atoms —a,
and constraints :-a,—a are implicitly added. This is the standard way how true negation is implemented in
answer set systems like DLV or SMODELS.
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to Iy, then only Ss remains a valid answer set. <&

We will now define some syntactical restrictions which share some “good semantic prop-
erties” on EDLPs.

2.1.4.1 Head-Cycle-Free Logic Programs

In [BED94] an alternative definition for answer sets is given for so called head-cycle free
EDLPs (HEDLPs). For that, we first have to define the dependency graph of an EDLP:
The dependency graph of an EDLP II is a directed graph where each literal occurring in II
is a node and there is an edge from !’ to [ if there is a rule in IT such that in I € Head(r)
and I’ € Body™(r). We now say that II is head-cycle free iff its dependency graph does not
contain directed cycles that go through two literals occurring in the same rule head. For
such HEDLPs Ben-Eliyahu and Dechter [BED94] showed the following:

Theorem 2.1 (cf. [BED94]). Given o HEDLP 11, a consistent set S C Lit(Il) is an
answer set iff

1. S satisfies each rule in 11, and

2. there is a function ¢ : Lit(IT) = INT such that for each literal | in S there is a rule r
in IT with
(a) Body™(r
(b) Body™(r
(c) 1 € Head(r)
(d) SN (Head(r)\ {I}) =
(e) o(I") < () for each l' € Body*(r)

The key essence of this theorem is that HEDLPs (in contrast to EDLPs in general)
allow for a leveled evaluation of the logic program if we know the function ¢. Later results
by Babovich et.el. [BELQO] which generalize Fages’ theorem [Fag94] resemble this theorem
resulting in similar alternative definitions of answer sets for normal logic programs. Head-
cycle-free disjunction in fact does not increase the expressive power compared with normal
logic programs, as head-cycle-free negation can be shifted to the rule bodies by a semantically
equivalent rewriting where any disjunctive rule:

)C S
)ns

hi v ... v h; :-Body.
is substituted by ! normal rules:

h1:- not hg, not hs ... not h;, Body.
ho:- not hy, not hs ... not h;, Body.

h;:- not h;, not hy ... not hj_1, Body.

For programs with head-cycles, this rewriting is not possible as easily verified by the
following example:
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Example 2.2. Let II; be the following simple DLP:
b=q- q:p- pvg.
Obviously, II; has the single answer set S = {p,q}. On the other hand, when substituting

the last rule with the pair of rules p:-not ¢. g:-not p. the resulting program has no
answer sets at all. o

2.1.4.2 Stratified Logic Programs

An even stronger restriction is stratification. The concept of stratification was introduced for
logic programs independently by Apt, Blair, and Walker [ABW88] and by van Gelder [van88].
Przymusinski generalized it to constraint-free DLPs [Prz88, Prz91].

We say that a constraint-free DLP II is stratified iff there is a function
Strat : Lit(TI) = INT such that for every rule 7 of the form (2.1) there exists a ¢ € IN
with

1. Strat(h) = c¢ for all h € Head(r)
2. Strat(b) < c for all b € Body™(r)
3. Strat(b) < c for all b € Body (r)

It is well-known that such a stratification Strat can efficiently be found, if existent. In
particular, positive programs are always stratified. Note that stratification does not im-
ply head-cycle freeness or vice versa. However, stratified programs also allow for an even
more efficient evaluation. In case II is free of integrity constraints, stratified programs al-
ways have at least one answer set. Note that EDLPs are not considered, since extended
programs with classical negation always contain “implicit” integrity constraints :-a, —a. for
any complementary pair of literals (cf. Footnote 5).

2.1.5 Available Systems: Restrictions and Extensions

Among the available systems for computing answer sets of logic programs the two most
successful over the past years have been DLV [ELM*98b, EFLP00, LPF+02] and sMOD-
ELS [Nie99, SNS02] which allow for efficient declarative problem solving.

2.1.5.1 DLV

The DLV system 6 is being developed for several years as joint work of the University of
Calabria and Vienna University of Technology.

It is an efficient engine for computing answer sets accepting as core input language logic
programs as defined above which fulfill the following safety restriction (cf. [Ul189]):

Definition 2.5. A rule r of the form (2.1) is called safe if every variable X occurring in
literals in Head(r)U Body~(r) also occurs in at least one literal Body™ (r). A logic Program
IT is safe if all of its rules are safe.

Note that this restriction is only syntactical but does not really affect the expressive
power of the language in any way. We refer for instance to [Pfe00] for a detailed discussion.

6<URL:http://www.dlvsystem.com>
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Weak Constraints Furthermore, DLV extends the logic programs by so-called weak con-
straints, cf. [BLR97, BLROO]:

Definition 2.6. A weak constraint is a construct
i~ by, -+ b, not b1, , not by [w:l] (2.2)

where w (weight) and | (level) are integer constants or variables occurring in by, ..., by and
all b; are classical literals. If  is not specified, it defaults to 1, and we can just write [w :].
Body(r) is defined as for (2.1).

The level | intuitively allows to specify a priority layer after the colon, where 1 is the
lowest priority.

The syntactical safety restriction from above is extended to weak constraints as follows:
A weak constraint ¢ is safe if in addition to the conditions above whenever w (or [, resp.)
is a variable it has to occur in at least one literal Body™ (r).

An extended disjunctive logic program with weak constraints (EDLPY) is then a finite set
of rules, constraints and weak constraints.

The ground instantiation for an EDLP" is defined like in Definition 2.4 with the obvious
extension to weak constraints. Furthermore, we impose another syntactical restriction on
weak constraints related to safety mentioned above: A weak constraint c is only admissible,
if all possible weights and levels are integers. Thus, if either w or [ is a variable, then II
must guarantee that w,l can only be bound to integers. This restriction can also easily be
checked (for instance during grounding) which is done by DLV.

The answer sets of an EDLPY II without weak constraints are defined as above. The
answer sets of a program I with weak constraints are defined by selection of so called optimal
answer sets from the answer sets S of the weak-constraint free part II' of II (referred to as
candidate answer sets).

Again, we will define the semantics of optimal answer sets in terms of the ground in-
stantiation of a program. We will first define the semantics without levels (i.e. for all weak
constraints ¢ of form (2.2) in II we uniquely assume [ = 1).

A weak constraint ¢ of the form (2.2) is violated, if it is satisfied with respect to the
candidate answer set S, i.e., {b1, -+, bg} C S and {bgt1, -, b} N M = §); we then define
the violation cost vs(c) of ¢ wrt. S as:

(0) = w if ¢ of form (2.2) is violated wrt. S.
US89 =0  otherwise.

The I-cost of S, denoted costy 11(S), is then
cost;,n(S) = »_ vs(c)
cell

i.e., the sum of violation costs of weak constraints in IT wrt. S. An answer set M of II is
now selected (called an optimal answer set), if cost;,II(M) is minimal over all candidate
answer sets of II.

In case that cost levels I > 1 occur in the ground instantiation of II, violation costs can
intuitively have different priorities: Violation costs of a candidate answer set S are then
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summed up and ordered per level, where violations at higher level have greater priority.
The cost costrr(S) of S can then be defined as the tuple

costri(S) = (cost; i1 (S), cost;_1,m(S), . - -, cost,m(S))

where the i-cost of S, cost; 1(S)(i € {1,...,1}), is defined in analogy to the definition of the
1-cost of S above and [ is the maximal cost level occurring in II.

We then select the answer sets with the lezicographic smallest such tuple as the optimal
ones. Obviously, for programs without levels cost; i and costrr(S) coincide.

Example 2.3. Let us reconsider the original program II; from Example 2.1. If we add the
weak constraints

i~pl:1] i~ g [3:1]
then costyy, (S1) = (1) and costyy, (S2) = (3). Thus, the single optimal answer set is S;. <

In the following, if there are costs of level 1 only in a program IT we write short costr (S) =
¢ instead of costri(S) = {¢) when clear from the context.

Built-In Predicates The built-in predicates “A < B”, “A <=B", “A >B", “A >=B",
“A1=B” with the obvious meaning of less-than, less-or-equal, greater-than, greater-or-equal
and inequality for strings and numbers can be used in the positive bodies of DLV rules and
constraints.

DLV currently does not support full arithmetics but supports some built-in predicates,
which can be used to “emulate” range restricted integer arithmetics: The arithmetic built-
ins “A =B+ C” and “A =B C” which stand for integer addition and multiplication, and
the predicate “#int(X)” which enumerates all integers (up to a user-defined limit).

Furthermore, borrowing from database query languages, DLV has recently been extended
by aggregate functions [DFIT03], such as #count, #sum, #min, and #max.

2.1.5.2 SMODELS and GNT

SMODELS [Nie99, SNS02]” allows for the computation of answer sets for normal logic pro-
grams. However, there is an extended prototype version for the evaluation of disjunctive
logic programs as well, called aNT [JNSY00]3.

Syntactically, SMODELS imposes an even stronger restriction than rule safety in DLV by
demanding that any variable in a rule of the form (2.1) is bounded to a so-called domain
predicate d € Bodyt(r) which is, intuitively, a predicate which is defined only positively
(cf. [Nie99] for details). Again, this restriction does not affect the expressive power of the
language itself, but in some cases the weaker safety restriction of DLV allows for more concise
problem encodings.

SMODELS is also capable of optimal model computation. However, the syntactic/semantic
concept here is a little bit different from weak constraints in DLV: SMODELS supports another

7<URL:http://www.tcs.hut.fi/Software/smodels/>
8<URL:http://m.n.r.tcs .hut.fi/Software/gnt/>
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extension to pure answer set programming allowing to minimize over sets of predicates
(cf. [SNSO02] for details) by adding statements min of the form:

minimize{b; = w1, ..., by = Wy, Dot byyy1 = Wpy1, ... DOt by = wy}.

where by,...b, are ground literals and w;,...w, are constants. Here, similarly to weak
constraints, an answer set S is considered to be optimal if

costrr(S) = > _{wl|((bi = w) € min Ab; € S) V (not b; =w) € min Ab; ¢ S)}

is minimal. If there are more than one minimize statements in SMODELS they are considered
in fixed order, the last one being the strongest, similar to levels of DLV weak constraints, but
missing full declarativity in some sense (since rule order has a semantic impact here).

For minimize statements with variables, SMODELS offers the following shorter notation:

minimize[a; (X1) : b(Y1) = C1, - - .am(Xm) : b(¥n) = C,

10t ami1(Xma1) : 0(Vimg1) = Cmgi, - - - 00t an(Xyp) : b(Yy,) = Chl.

where X}, }7, are lists of vari%bles or constants, and all the variables in Xi have to occur in 17',
C; is either a variable from Y; or a constant, and b; is a domain predicate, for ¢ € {1,...,n}.
This statement informally complies with

minimize{a; (X1) = C1 | by(Y1)} U... U {not an(X,) = Cp | bp(¥n)}.

which however is not a valid notation of SMODELS.

Observe that during model computation, the behavior of SMODELS is not the one that
would come to mind first: Instead of computing only optimal answer sets it first computes
an arbitrary model and then incrementally only returns “better” answer sets, such that the
last answer set found by SMODELS is optimal.

As an additional feature SMODELS provides a dual maximize statement as well with the
obvious semantics.

Similar to DLV, SMODELS allows for a restricted form of integer arithmetics and lexico-
graphic comparison predicates.

2.2 Complexity

We will now review the most important problem classes for the computational complexity
of the problems addressed in the course of this work. Furthermore, we will review some
results on the computational complexity of Answer Set Programming.

2.2.1 Complexity Classes

We assume that the reader is familiar with the concept of Turing Machines and basic notions
of complexity theory, such as problem reductions and completeness; see e.g. [Pap94] and
references therein. We recall P, resp. NP, is the class of decision problems (i.e., problems
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where the answer is “yes” or “no”) computable on a deterministic, resp. nondeterministic,
Turing Machine in polynomial time. Further, PSPACE is the class of problems computable
on deterministic Turing Machines with polynomial storage space.

The classes X} (resp. IIF', AP ), k > 0 of the so called Polynomial Hierarchy PH =
Uyso SF are defined by F = TP = AP = P and £F = NP1 (resp. TI¥ = co-%F, |

AkP = szp—l), for k > 1. The latter model nondeterministic polynomial-time computation
with an oracle for problems in Ef_l. Here, co— stands for the class of complementary
problems. In particular, ¥ = NP, TI¥' = co-NP and AY = PNP.

Furthermore, DY = {LN L' | L € NP,L' € co-NP} is the logical “conjunction” of NP
and co-NP.? Finally, NEXPTIME and NEXPSPACE denote the class of problems decidable
by nondeterministic Turing machines in exponential time, resp. space.

We recall that NP C D C PH C PSPACE=NPSPACE C NEXPTIME holds, where
NPSPACE is the nondeterministic analog of PSPACE. It is generally believed that these
inclusions are strict, and that PH is a true hierarchy of problems with increasing difficulty.
Note that NEXPTIME-complete problems are provably intractable, i.e., exponential lower
bounds can be proved, while no such proofs for problems in PH or PSPACE are known
today.

While many interesting problems are decision problems, computing answer sets or plans
are search problems, where for each problem instance I a (possibly empty) finite set S(I)
of solutions exists. To solve such a problem, a (possibly nondeterministic) algorithm must
compute the alternative solutions from this set in its computation branches, if S(I) is not
empty. More precisely, search problems are solved by transducers, i.e., Turing machines
equipped with an output tape. If the machine halts in an accepting state, then the content
of the output tape is the result of the computation. Observe that a nondeterministic machine
computes a (partial) multi-valued function.

As an analog to NP, the class NPMYV contains those search problems where S(I) can be
computed by a nondeterministic Turing machine in polynomial time; for a precise definition,
see [Sel94]. In analogy to £f, |, by &5, MV = NPMVZ', i > 0, we denote the generalization
of NPMV where the machine has access to a £ oracle.

Analogs to the classes P and Aﬁrl, i > 0, are given by the classes FP and FAf-jrl,
i > 0, which contain the partial single-valued functions (that is, |S(I)| < 1 for each problem
instance I) computable in polynomial time possibly using a % oracle. We say, abusing
terminology, that a search problem A is in FP (or FAL ), if there is a partial (single-
valued) function f € FP (or f € FAL,) such that f(I) € S(I) and f(I) is undefined iff
S(I) = (. For example, computing a satisfying assignment for a propositional CNF (FSAT)
and computing an optimal tour in the Traveling Salesperson Problem (TSP) are in FAF
under this view, cf. [Pap94].

A partial function f is polynomial-time reducible to another partial function g, if there
are polynomial-time computable functions h; and hg such that f(I) = ha(I, g(h1(I))) for all
I and g(hi(I)) is defined whenever f(I) is defined. Hardness and completeness are defined
as usual.

9Note that D is not NP N co-NP (cf. [Pap94]).
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2.2.2 Complexity of Logic Programming

We will now consider the following problems: Given a logic program II, decide whether II
has a model under the Answer Set Semantics.

We restrict ourselves to finite propositional, i.e. ground, (function-free) EDLPs as defined
above. Non-ground programs are not considered as grounding might already be exponential
and deciding answer set existence thus becomes provably intractable even for simple positive
normal programs (cf. [Immg87, Var82, DEGVO01]). Furthermore, note that when allowing
function symbols most of the problems outlined in this section become undecidable in general
which is basically explained by the undecidability of first-order logic.

Theorem 2.2 (cf. [EGM97, DEGVO01]). Deciding whether a propositional EDLP has
an answer set is L' -complete. Computing such an answer set is by our notation LE¥MV-
complete.

For clearness and as we will occasionally refer to it later on, we review the proof idea:

Proof. Membership: Given a program II, an answer set S can be guessed and checked in
polynomial time by an NP oracle: In particular, the reduct II¥ can clearly be computed in
polynomial time. Since II® is a positive program, its answer sets coincide with its minimal
models. Testing whether S is a minimal model is in co-NP (cf. [Cad92]) and therefore
decidable in polynomial time by a single call to an NP oracle.

Hardness: For the hardness proof we will review an encoding of deciding the satisfiability
of a Quantified Boolean Formula (QBF)

F =3z ... 32,y ... Yy, ®

with one quantifier alternation in an answer set program, which is a well known reference

problem hard for the class ¥¥. Here, ® = ¢; V --- V ¢ is a propositional formula over
T1,...Zm,Y1,--.,Yn in disjunctive normal form, i.e. each ¢; = a;1 A --- Aa;y; and |a; ;| €
{z1,--+,Zm,Y1,---,Yn}- Satisfiability is here defined as the existence of an assignment to

the variables x1, ...z, which witness that F’ evaluates to true.
We will now present an encoding of this formula as an answer set program Ilgpr such
that IIgpr has an answer set if and only if F' is satisfiable:

1 vV NT1. -..Tm V NTm.

Yr VvV NY1. -..Yn V.  NYn.

sat - a1,1,...,01,14 .

sat = ag,1,---,0k,, -

y1 - sat. ny; :- sat. ...ynp - sat. ny, - sat.
= not sat.

This encoding is maybe not intuitive at first sight, but in principle can be explained
as follows: For any assignment guessed for zi,...z,,, sat will not be derived if there
is a bad assignment for y1,...,y, such that all clauses are unsatisfied. However, since all
answer sets not containing sat are invalidated by the last constraint, only those assignments
for x1,...2, “survive” which do not allow for such a bad assignment for y1,...y,. This
can be argued by minimality of answer sets together with rules in the one but last line,
which “saturate” any good assignment for yq,...y, to an answer set uniquely determined
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by x1,...2,- Note that, this encoding does not only represent the satisfiability problem,
but moreover the answer sets of Ilgpr uniquely encode the valid assignments for variables
T1,...Tm, which proofs hardness for £¥ and SPMV, respectively. For the details of this
encoding we refer to [EG95]. O

The main impact of this result in the context of the present work is that the computa-
tional power of answer set solvers such as DLV and GNT which support full disjunctive logic
programming is indeed higher than solvers for propositional Satisfiability (SAT) (unless the
PH collapses): In the course of this work we will show that using Answer Set Programming
we can encode and solve hard problems from the area of planning not expressible as a simple
propositional logic formula. As a “side-product” we will also present a method for encoding
hard problems on the second level of the PH which, compared to the ad hoc QBF encoding
above is more generally applicable.

Note that the complexity boils down to lower complexity classes as soon as we impose
some of the syntactical restrictions mentioned above:

Proposition 2.3. (c¢f. [BEDY4, Fag94]) For head-cycle free (resp. normal) logic programs
deciding answer set existence is NP-complete.

The essence of this result is that head-cycle free and normal logic programs can intuitively
be evaluated by guessing an order of rule evaluation as reflected in Theorem 2.1. Moreover,
it states that SMODELS without its disjunctive extension GNT, i.e. answer set solvers which
only accept normal or head-cycle-free logic programs cover the same class of problems as
SAT solvers.

Furthermore, for stratified (especially positive) DLPs the answer sets correspond to the
minimal models of a program, i.e. answer set existence is trivial (cf. [Prz88, Prz91]). For
non-disjunctive programs this model even is unique and by well-known results computable
in polynomial time.

Finally, as for optimal answer sets wrt. to weak constraints in DLV, we know from [BLROO]
that deciding whether a query g is true in some optimal answer set of an EDLP¥ II is AL~
complete and AL’-complete for head-cycle-free programs. The respective class for computing
such an optimal answer set is FAY and FAL for head-cycle-free programs. These results
equally apply to minimization in SMODELS with minor adaptions.

2.3 Planning — An Overview

In this section, we will give a brief informal overview of the field of planning and existing
approaches for automated plan generation.

2.3.1 Terminology

When talking about planning, we first have to review the problems and the common ter-
minology used in this field. Formal definitions wrt. our formalism will be introduced in
Chapter 3.
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The classical planning problem consists of the following task: Given a state of the world,
several actions, their preconditions and (deterministic) effects, find a sequence of actions
(viz. a plan) to achieve a state in which some certain goal holds.

2.3.1.1 States and Fluents

States are described by the truth values of state variables, so called fluents. We distinguish
between so called world states and knowledge states: Assume that the set of fluents F' =
{f1, f2,- .., fn} describes the relevant (from a subjective point of view) clipping of the world.
Then, the current state of the world wrt. this clipping can be defined as a function s : F —
{true, false} or in other words as a complete set of literals which contains either f or —f
for any f € F. From an agent’s point of view, states can also be seen less restricted as
only a partial function s’, resp. any consistent set of fluent literals, where for a particular
fluent neither f nor —f must hold, i.e. s’ consists only of the subset of s which is known.
We denote s’ as state of knowledge as opposed to the actual state of the world.

Note that this view of the epistemic state of an agent differs from other approaches where
incomplete knowledge states are defined as the set of all possible worlds an agent might be
in (for instance, cf. [SB01, BG00, BCPT01]). Such sets of (compatible) world states are also
often referred to as belief states in the planning literature(e.g. [BG00, BCPTO01]. However, as
we will see, both views (knowledge states and belief states) can be modeled in the formalism
proposed in the present work.

Remark 2.1. We remark here that the above-mentioned terminology for knowledge states
and belief states is disputable. For example, Son and Baral [SB01] use the term “states of
knowledge” in their formalism describing the set of reachable worlds in a Kripke structure.
As mentioned above, this rather amounts to what we call “belief states” in our terminology.
We adopted the planning community terminology in this work. An in-depth discussion of
the terms “knowledge” and “belief” can be found e.g. in [Hin62].

A useful generalization of fluents is to allow not only Boolean fluents which are either
true or false in each state but also multi-valued fluents [GLLTO01] which take a certain value
of a specific (finite) domain in each state. A state can then be seen as a set of functions which
assigns to each fluent f a value of its domain Dy where Boolean fluents have the domain
{true, false}. Although a multi-valued fluent f with finite domain Dy = {di,...,d,}
can be “emulated” by a set of Boolean fluents fq,,... fq4, plus constraints which prohibit
concurrent truth of two distinct fy;, f4;, multi-valued fluents often allow for a more concise
representation (cf. Section 7.1.3).

2.3.1.2 State Transitions and Plans

By executing actions, the state of the world (or state of knowledge, resp.) changes. In
the present work we tacitly assume that transitions between actions are “step-by-step”,
i.e. defined by the current state, a set of (concurrently) executed actions and the possible
subsequent states where as a simplifying but commonly used assumption we take that all
actions have unique duration and that all effects materialize in the successor state (i.e., we
use a discrete notation of time). Given these assumptions, a plan is a sequence of sets of
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actions, and executing the plan in some state corresponds to possibly various “trajectories”,
i.e. sequences of states.

For describing general reasoning about actions and such transitions, we have to describe
the actions and their effects in an appropriate formalism. Here, among others, the following
basic considerations play a role:

e How to describe executability of actions (Qualifications)
e How to describe effects of actions
e How to describe indirect effects, i.e. interdependencies of fluents (Ramifications)

e How to describe which fluents remain unchanged over a transition (known as the Frame
Problem [MH69, RN95])

Action languages as introduced in Section 2.4 provide an expressive tool to describe these
cohesions between fluents and actions. In the course of this work we will discuss the solution
and formalization of all these problems in our particular formalism.

2.3.1.3 Planning Problems

We now generalize the classical definition of a planning problem a bit: For a planning
problem, a possibly incompletely defined (set of) initial state(s) is given from which the goal
shall be reached. Here, we define the goal as a set of fluent literals. As opposed to the
classical definition, we no longer necessarily assume a single, completely defined initial state
and do no longer restrict ourselves to sequences of deterministic actions. Rather, actions
might occur in parallel, might have nondeterministic effects, etc.

In general, solutions for such a planning problem, i.e. plans, consist of a strategy for
executing actions reaching a state where the goals (are known to) hold. In the following, we
discuss different notions of such plans.

2.3.1.4 Classical vs. Non-classical Planning

In classical planning restrictive and often unrealistic assumptions are made, such as full
knowledge about the initial state of the world; plans are simply sequences of fully deter-
ministic atomic actions. Several proposals for extensions for planning under incomplete
knowledge or possible nondeterministic action effects have been made:

Conformant planning has been introduced in [GB96], describing the problem to find a
plan which works in any initial situation even under incomplete knowledge or when nonde-
terministic effects of actions are allowed. There are several systems available dealing with
conformant planning, such as CMBP [CR00], CPLAN [FG00, Giu00, CGT02] (a conformant
planner based on CCALC [MT97, MT98]), GPT [BGO00], and SGP [WAS98]. Finally, the
only Answer Set Programming based planning system available DLV [EFL*03a, EFL* 03]
which will be presented in this thesis, falls in this class. Conformant plans, however, do not
always exist.

On the other hand, in conditional planning every contingency in a plan is considered and
a branching plan(-tree) is constructed. There are several implemented planners capable of
computing such plans, such as CNLP [PS92], CBURIDAN [DHW94], Cassandra [PC96], or
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recently MBP [BCPTO01]. Despite the success of logic-based planning approaches for classical
planning (without uncertainty), or conformant planning (under uncertainty or incomplete
information) to our knowledge, there is no conditional planner based on logic programming.

Furthermore, there have been proposals to generate a more general reactive behavior
than a plan in the classical sense based on Markov Decision Processes [BDH99] or by so
called Universal Plans [Sch87, Gin89] where plans are not viewed as sequences or conditional
trees of actions but rather describe reactive patterns for any possible situation. Also, for
such notions of plans no logic programming implementations are available.

In the present work, for the nondeterministic case we will focus on conformant planning.

2.3.2 Approaches

The most successful techniques for classical planning, i.e. planning without uncertainty
under complete knowledge in closed environments are based on Graphplan [BF97] and de-
scendants [SW98] and Planning via Heuristic Search [BG01]. Whereas all these approaches
try to find plans as (partially ordered or totally ordered) courses of actions, the Hierarchical
Task Network (HTN) [EHN94] planning paradigm views a plan as a hierarchical network
of compound tasks. HTN has recently becomes more important and some of the successful
planners are based on hierarchical plan decomposition, e.g. SHOP [NCLMA99].

In recent years, several logic-based approaches to classical planning have been proposed
such as planning based on propositional SAT [KS92, FG00, Giu00] and QBF-SAT [Rin99a]
solvers, based on Symbolic Model Checking techniques [CGGT97, CRT98, CR99, EH00] or
based on declarative logic programming [SZ95, DNK97, Lif99b, EFL+03a, LRS01, DKN02a].
In this work we will especially focus on the latter.

2.4 Planning Languages

From the knowledge representation perspective, expressive planning languages such as
sTRIPS [FN71] and extensions [Wel94], ppDL [GHK 98] or action languages such as A [GL93],
Ag [GKL97], Ak [SB01], C [GL98a] and its successor C+ [GLL*03], or finally K [EFLT03b]
(which is subject of the present work) have been developed, in order to be able to de-
scribe involved planning problems in a declarative way. Most implementations of the above-
mentioned approaches accept problem descriptions in such a high-level language as input.

In the following we will give a (probably incomplete) overview of some of the most
common languages and their features. We assume basic familiarity with the concepts of
first order logic.

2.4.1 Situation Calculus

One of the first knowledge representation approaches for formalizing actions and state tran-
sitions is McCarthy’s Situation Calculus [MHG69]. It is basically a method of describing
change in first-order logic conceiving the world as consisting of a sequence of situations.
Situation Calculus uses logic connectives and the distinct function res(Action, Sitiation)
to describe the situation resulting from executing an action. Every predicate describing a
fluent is given an extra situation argument.
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Example 2.4. As a simple example for such a situation calculus formula we take the
formalization of the effect of moving a block in the Blocks World (cf. Section 6.2):

Vb, 1, s clear(b, s) A clear(l,s) = on(b,l,res(move(b,l), s))

This Situation Calculus formula intuitively states that whenever a clear block b is moved
to a clear location [ in situation s then b is on [ in the resulting situation res(move(b,l). <

One major drawback of this formalization is the necessity of a number of so-called frame
azxions, i.e. all facts which remain unaffected have to be explicitly stated, for instance,

Va,b,l, s clear(l,s) A a # move(b,l) = clear(l,res(a, s))

Depending on the number of fluents, many of those frame axioms might be necessary
even in a closed, fully known environment with few actions.

2.4.2 STRIPS and Descendants

A later approach for formalizing actions is the operator concept of STRIPS [FN71]. Here, an
action (often called operator) a is defined by lists of preconditions pc(a), negative (delete-list)
effects del(a), and positive (add-list) effects add(a), where these lists are simple conjunctions
of fluents.

Example 2.5. The example from above could be modeled in STRIPS as follows (where we
use a LISP-like simplified PDDL notation):

(:action move

(:parameters 7block 7from 7to)

(:preconditions (and (clear ?block) (clear 7to)
(on ?block ?from)))

(:effect (and (clear 7from) (on 7block 7to)
(not (clear ?7to)))) )

<

The semantics is clearly defined with implicit frame axioms for all fluents by the following
definition of transitions between world states S; and S;1 on execution of operator a:

(Si \ del(a)) U add(a), if pc(a) C S; and
Si+1 = transstrips (5, a) = add(a) Udel(a) =
undefined, otherwise

However, the expressive power of pure STRIPS is quite restricted by that only conjunctions
of preconditions and effects are allowed. Alternative qualifications for an action have to
be modeled by different operators. Furthermore, only sequential execution of actions is
assumed, i.e., no parallel execution of operators is allowed. Effects can only be modeled
as consequences of actions, but there are no means of describing ramifications, i.e., state
axioms or indirect effects.
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Nevertheless, STRIPS and its descendants ADL [Ped89] and later PDDL [GHK 198, FLO03],
etc. have gained great popularity in the planning community. These descendants also in-
clude extensions to express conditional effects, state axioms, durative actions, etc. Last
but not least, PDDL has become a quasi standard, being the official language used in the
International Planning Competition (IPC) held every second year in the course of the “Inter-
national Conference on Automated Planning and Scheduling (ICAPS)” (formally, “Artificial
Intelligence Planning and Scheduling Conference (AIPS)”).

A major drawback of all these languages is their strict operator-based syntax which is
far from natural language descriptions of transitions between states. Furthermore, all these
languages are restricted to complete knowledge on the initial state and deterministic effects
of actions. Extensions of these classical planning languages by means of expressing nonde-
terminism or incomplete knowledge are manyfold (e.g. by the language NPDDL [BCLP03]),
but no proposal has made its way to the PDDL standard yet. Since providing a standard,
widely accepted language for the IPC is the main focus of PDDL, extensions are accepted
only very cautiously.

2.4.3 Action Language A and Descendants

In the planning community, the development of formal languages to describe planning prob-
lems is driven by a clear focus on special-purpose algorithms and systems, where ease of
structural analysis of the problem description at hand is a main issue. On the other hand,
expressive languages for formalizing actions and change in a more general context have
emerged from the field of knowledge representation.

In the course of this thesis we will concentrate on such high-level action languages which
allow for a quasi natural-language like formalization of actions and change, the first of which
introduced was the language A [GL93]. To give a flavor of such action languages, we will
exemplify the most important ones and briefly discuss their semantic features in this section.

Action Language A

Action language A represents from the viewpoint of expressiveness essentially the proposi-
tional fragment of Pednault’s ADL, i.e. STRIPS enriched with conditional effects.

Effects and preconditions are expressed by causation rules and executability conditions
of the following form:

a causes [ if F.
executable a if F'.

where @ is an action name, [ is a fluent literal, and F is a conjunction of fluent literals. An
action description D consists of a set of such propositions.

We then define the positive and negative effects of of an action a as follows: ef f(a,S)
is the set of all [ such that D contains a statement a causes [ if F'. and F' C S. Given
a world state S; and an action a, the transition function can then be described as follows:
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(Si\ ~.eff(a,S;)Ueff(a,S;),if D contains a statement
executable a if F'.
transA(Si,a) = such that F' C S;
and ef f(a, S;) is consistent
undefined, otherwise

Furthermore, A offers the possibility to include “observations” of the form
f after aj;...;an

where ai;...;a, is a sequence of actions. These observations are used to express goal
conditions when verifying a plan or initial observations (n = 0).

Example 2.6. A clipping of the Blocks World example from above could alternatively be
described in A as follows:

executable move,, if clear,, clears.
movep , causes clear. if ong..

Since A only allows for propositional fluents and actions, we have chosen the sample moving
of a block a to a block b with a conditional effect: Whenever block b is on block ¢, block ¢
is clear after b has been moved away to a. <

Extensions of A

Language Agr A further step in the development of action languages was the language
Ag [GKL97]. This language extends A by allowing to model indirect effects by introducing
laws of the form

always F'.

where F' is a propositional formula, which has to be valid in any state. Moreover, Ag allows
for arbitrary propositional formulae for C' and F' in statements of the form

a causes C if F.

A further enhancement of Ag is the capability of modeling nondeterministic actions by
statements of the form

a possibly changes [ if F'.

Language B Alternatively to modeling state axioms by means of always in Ag, another
extension, the language B [GL98a] suggests “static laws” of the form:

l if F.
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As opposed to always in Ag the semantics of these static laws informally reflect the prin-
ciple of “minimal change” where a successor state is defined as a minimal consistent set of
literals such that all these static rules hold. In particular, static laws do not correspond to
classical implication. The difference becomes obvious by the following example known as
Lin’s Suitcase [Lin95]:

Example 2.7. Assume we have a spring suitcase with two latches. Flipping a latch turns
its position to “up”, and as an indirect effect the suitcase opens as soon as both latches are
up. This can be modeled by the following B action description:

executable flip;.
executable flip;.
flipy causes up;.
flips causes ups.
open if up;,ups.

where transp({up1, "ups, "open}, flips) = {up1,up2,open} as intuitively expected in lan-
guage B. Note that applying the original transition function trans 4 for language A (ignoring
the final static law) we would gain state {up;,ups, "open}. When replacing the final static
law by the Ag statement

always upi A ups = open.

(which is logically equivalent to always up; A —open = —upy.) we would then end up with
inconsistency instead of the intuitive transition. <

Language Ax Another remarkable extension of action languages Ag and A was proposed
by Son and Baral with language Ak [SBO1]. This language is intended to formalize sensing
actions. For this purpose Ag provides additional knowledge determining propositions of
form a determines f, which intuitively means that after executing action a, the value of
fluent f is known. The concept of knowledge differs from what we referred to as knowledge
states in Section 2.3 which will be further discussed below.

Action Language C

The most recent and evolved languages in the line of action languages from the Texas
Action Group (TAG) which is also responsible for language A,B and Ag are the languages
C [GL98b] and its extension C+ [GLL*03]. C is similar to B in that it also distinguishes
between static and dynamic laws. It is in some ways more expressive than B and Ag though
strictly speaking C is not a superset of either B or Ag.

C action descriptions consist of a set of causation laws ¢ of the form

caused F' if G after H. (2.3)

where the after-part is optional: ¢ is called static if it has no after-part and dynamic
otherwise. These rules are more flexible than the abovementioned approaches in that F' and
G are arbitrary propositional formulae over fluent literals and H is a propositional formula
over fluent and action literals. Furthermore, constraints and qualifications can be expressed
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via F = f A—f in C which is written as “caused L if G after H. These rules encode
inconsistency similar to constraints in logic programming as mentioned in Section 2.1.

A C action description D consists of a set of static and dynamic causation laws. The
semantics of D is given by the following definition of causally explained transitions:

A transition (s,a,s’) is causally explained according to D if its resulting state s’ is the
only interpretation that satisfies all rules caused in this transition, where a formula F' is
caused if it is

o the head of a static law (2.3) from D such that s’ = G or
e the head of a dynamic law (2.3) from D such that s' =G and sUa = H

Note that this definition allows for nondeterministic actions, i.e., valid transitions (s, a, s},
(s,a,s") with s’ # s'" are possible. The definition of causally explained transitions is closely
related to causal theories as defined by McCain and Turner [MT97] and the underlying
concept of causal explanation [Lif97].

Moreover, C offers a bunch of useful macros, some of which shall be explained: Remark-
ably, inertia of a fluent (i.e., that a fluent remains unchanged) has to be explicitly encoded
in C which means that frame axioms are not implicit like in the previously discussed ap-
proaches. However, inertia can be easily expressed in C by the following macro

inertial F. & caused F if F after F.

which offers a convenient method for encoding frame axioms in C, as opposed to encoding
frame axioms explicitly in the situation calculus.
A further macro in C for modeling qualifications of actions is

nonexecutable A if @G. = caused 1 after AAG.

In the following, when referring to C we sometimes refer to a restricted fragment of the
language: We call an action description in C definite if in laws of the form (2.3) only L or
fluent literals are allowed for F'.

A recent extension of C called C+ allows for multi-valued, additive fluents which can be
used for example in order to encode resources [GLLT01, GLL*03] and allows for a more
compact representation of several practical problems.

Action Language K¢

In the course of this work, we will introduce the action language K and its extension K¢
which will be presented in Chapter 3 in detail. K¢ is similar to the action languages discussed
in this section by adopting some of their features, but, as we will see, semantically closer
to Answer Set Programming. The aim of the development of a new language was to adopt
useful concepts of existing high-level action languages together with some of the features of
Answer Set Programming in terms of syntactic features and semantics.






Chapter 3

Combining Action Languages
and ASP

Most of the previous approaches to use answer set programming in the field of planning hinge
on previously existing action languages mapping the particular semantics of these languages
to answer set semantics by appropriate transformations. In this chapter, we introduce the
action language K¢ which substantially distinguishes from the abovementioned languages
in that its semantics is closely related to Answer Set Programming by definition. It adapts
useful concepts and knowledge representation features from Answer Set Programming, such
as state minimality and default negation.

The transition-based semantics of K¢ is defined by “states of knowledge” representing
only a “known” clipping of the complete state of the world. We will show the usefulness of
this view by several problem encodings in the subsequent chapters.

In the first section of this chapter we will introduce syntax and semantics of the core
language K [Pol01, EFL*T03b]. We have further enriched this core language by useful macros.
We will define a transition based semantics and two possible semantics for plans will be
discussed in detail: optimistic and secure (i.e., conformant) plans.

In a further Step we will add a modular extension of our language incorporating the
possibility to model action costs and introduce the notions of optimal and admissible plans
wrt. costs. We call this extended language K°.

The following section will give a detailed picture of the computational complexity of the
various planning tasks in our language, i.e. optimistic and secure planning with and without
action costs. Together with the results in Section 2.2.2 this shall give us an idea of which
problems in K can be solved by Answer Set Programming techniques, giving hints towards
the translations provided in the Chapter 4.

Running Example: Crossing the Bridge

For illustration, we shall use variants of the following planning problem as a running example:

Problem 3.1. [Simple Bridge Crossing Problem] Four persons, Joe, Jack, William
and Awverell, want to cross a river at night over a plank bridge, which can only hold up to two

27



28 CHAPTER 3. ACTION LANGUAGE K¢

persons at a time. They have a lamp, which must be used when crossing. As it is pitch-dark
and some planks are missing, someone must bring the lamp back to the others; no tricks
(like throwing the lamp or halfway crosses, etc.) are possible.

3.1 K — An Action Language Based on ASP

3.1.1 Basic Syntax

In this section we will define the syntax of the basic fragment K of our language. This basic
language is already capable of expressing various complex planning problems as will be
exemplified. It is originally based on similar action languages A,B, and C but semantically
closer to answer set programming.

3.1.1.1 Actions, Fluents, and Types

Let 0%, ¢!, and ¢*¥P be disjoint sets of action, fluent and type names, respectively. These
names are effectively predicate symbols with associated arity (> 0). Here, o/! and o®¢
are used to describe dynamic knowledge, whereas o¥P is used to describe static background
knowledge. For convenience, we tacitly assume that o'¥? contains built-in predicates, in
particular “<” “<=" “>"  “>="_“l=" with arity 2 and the obvious meanings as in DLV
(cf. Section 2.1.5.1), which are not explicitly shown. Furthermore, let ¢°°™ and %" be the
disjoint sets of constant and variable symbols, respectively. 1°

Definition 3.1. Given p € 0% (resp. o¥!, o'¥?), an action (resp. fluent, type) atom is
defined as p(t1,...,tn), where n is the arity of p and t1,...,t, € o™ Uc¥*. An action
(resp. fluent, type) literal is an action (resp. fluent, type) atom a or its negation —a, where
“=” 4s the true negation symbol, for which we also use the customary “-”.

As usual, a literal (and any other syntactic object) is ground, if it does not contain
variables.

Given a literal [, let —.l denote its complement, i.e., —=.l = a if [ = —a and —.[] = —a if
! = a, where a is an atom. A set L of literals is consistent, if LN —.L = (. Furthermore, L*
(resp. L™) denotes the set of positive (resp. negative) literals in L.

The set of all action (resp. fluent, type) literals is denoted as Lqct (resp. Ly, Liyp)-
Furthermore, £1,4yp = L51U Liyp; Layn= L7 ULL,, (dyn stands for dynamic literals); and
L= Ly U T

3.1.1.2 Static Background Knowledge: Type Definitions

Static knowledge which is invariant over time in a K planning domain is specified in a normal
(disjunction-free) logic program IT which is assumed to be safe in the standard LP sense (cf.
[U1189]) and that has a single answer set. This is the case if, for instance, the well-founded

10Following logic programming conventions, constant and variable symbols are denoted as strings starting
with a lower or upper case letter, respectively, i.e. the same restrictions for ¢V%", ¢°™ and gPred — gact y
afl U ot¥P apply as in Section 2.1).

I Note that this definition only allows positive action literals.
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model of II, cf. [vRS91], is total, which is guaranteed for stratified logic programs and other
(syntactic) classes of programs. Therefore, IT can informally be viewed as a set of facts.

Example 3.1. For the bridge crossing problem (see Problem 3.1), the background knowl-
edge IIpcp consists of the following rules and facts which specify the four persons and the
two opposite sides of the bridge:

person(joe). person(jack). person(william). person(averell).
side(here). side(across).
otherSide(X,Y) - side(X), side(Y), X!=V.

This program obviously has a unique Answer Set S, corresponding to the set of static

background facts:

S = {person(joe), person(jack), person(william), person(averell),

side(here), side(across), otherSide(here, across), otherSide(across, here)}

<&

3.1.1.3 Dynamic Knowledge: Fluents and Action Declarations

All actions and fluents in the domain of discourse must be declared using statements as
follows:

Definition 3.2. An action (resp. fluent) declaration, is of the form:
p(Xi,...,X,) requires t1,...,tn. (3.1)
where
(1) p € acts (resp. p € o¥t),
(2) X1,...,X, € 0¥ where n > 0 is the arity of p,
(8) ti,...,tm € Liyp, m >0, such that every X; occurs int1,...,tn.

If m = 0, the keyword requires may be omitted. In the following, we generically refer to
action and fluent declarations as type declarations when no further distinction is necessary.

Example 3.2. In our running example, we have three actions for persons crossing alone,
crossing in two and taking the lamp, which could be declared in K as follows:

crossTogether(X,Y) requires person(X), person(Y), X!=Y.
cross(X) requires person(X).
takeLamp(X) requires person(X).

Furthermore, we declare fluents indicating at which side of the bridge a person currently is
and who has got a lamp:

at(X,S) requires person(X), side(S).

hasLamp(X) requires person(X).
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3.1.1.4 Causation Rules and Executability Conditions

We next define causation rules, by which static and dynamic dependencies of fluents on
other fluents and actions are specified. These are syntactically borrowed from causation
laws of C, extending them by default negation in the if- and after-parts:

Definition 3.3. A causation rule (rule, for short) is an expression of the form

caused f if by,...,bg,n0t bgt1,...,n0t I
after a1,...,am,not am41,...,00t an.

(3.2)

where f € L U{false}, by,...,b € Ls11yp, A1,...,a, € L, 1>k >0, andn >m > 0.

Rules where n = 0 are referred to as static rules, all other rules as dynamic rules. When
[ =0, the keyword if is omitted; likewise, if n = 0, the keyword after is dropped. If both
I =n =0 then caused is optional.

Example 3.3. For instance the effect of two persons crossing the bridge together, can be
described in K as follows:

caused at(X,S1) after crossTogether(X,Y), at(X,S), otherSide(S,S1).
caused at(Y,S1) after crossTogether(X,Y), at(Y,S), otherSide(S,S1).
caused —at(X,S) after crossTogether(X,Y), at(X,S)
caused —at(Y,S) after crossTogether(X,Y), at(Y,S)

) )

7 7 ?

where the latter two rules express that a person is no longer where it was before after
crossing. Inertia of fluent at on the other hand could be expressed by the following rule:

caused at(X,S) if not —at(X,S) after at(X,S).

Note that this differs from the notion of inertia in C, and we refer to Section 3.1.2 for the
details. o

To access the parts of a causation rule r, we use the following notations: h(r) = {f},
postt(r) = {b1,...,bg}, post™(r) = {bgt1,...,bi}, pret(r) = {a1,...,am}, pre (r) =
{@m+1;---5an}, and lit(r) = {f,b1,...,b;,a1,...,a,}. Intuitively, pret(r),pre™(r) access
the state before some action(s) happen, and post(r),post™(r) the part after the actions
have been executed.

While the scope of general static rules is over all knowledge states, it is often useful to
specify rules only for the initial states.

Definition 3.4. An initial state constraint is a static rule of the form (3.2) preceded by the
keyword initially.

For an initial state constraint ic, h(ic), post™ (ic), and post™(ic), are defined as for its
rule part, and pret(ic) = pre™ (ic) = 0.

Example 3.4. In order to express for instance that joe initially has the lamp, in £ we
would simply write:
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initially caused hasLamp(joe).
where caused here is optional. <

The language K allows STRIPS-style [FN71] conditional execution of actions, where K
allows several alternative executability conditions for an action; this is beyond the repertoire
of standard STRIPS and more or less borrowed from .A.

Definition 3.5. An executability condition is an expression of the form
executable a if by,...,bg,not bgt1,...,n0t Y (3.3)

where a € LS, and by,...,by € L, and 1 > k > 0.

If | = 0 (which means that the executability is unconditional), then the keyword if is
skipped.

Example 3.5. In our example, crossing the bridge in two is only possible if either of the
persons crossing has got a lamp and both are at the same side of the bridge. This is
expressible in K by two executability conditions:

executable crossTogether(X,Y) if hasLamp(X), at(X,S), at(Y,S).
executable crossTogether(X,Y) if hasLamp(Y), at(X,S), at(Y,S).

~— —

<&

Given an executability condition e, we access its parts with h(e) = {a}, pret(e) =
{b1,...,bx}, pre”(€) = {bgt1,---,bi},and lit(e) = {a,b1,...,b}. Intuitively, pre™(e), pre™ (e)
refer to the state at which some action’s suitability is evaluated. Here, as opposed to causa-
tion rules we do not consider a state after the execution of actions, and so no part post™ (r)
is needed. Nonetheless, for convenience we define post™(e) = post=(e) = 0.

Furthermore, for any executability condition, a rule, or an initial state constraint r, we
define post(r) = post™* (r) U post™(r), pre(r) = pre™ (r) Upre™ (r), and b(r) = b™(r) U b~ (r),
where b* (r) = post*(r) U pre™(r), and b~ (r) = post™(r) U pre™ ().

In order to keep things simple, we will now leave our concrete Bridge crossing instance.
We will occasionally explain some of the concepts of K in short by the following abstract
example between the formal definitions. By the end of this section we will apply these
concepts discussing a full X encoding of the Bridge Crossing Problem.

Example 3.6. Summarizing the definitions for the parts of K statements, consider the

following type declarations, causation rule, and executability condition, respectively, where
otvP = = {r,s}, ofl = {f}, and oot = {ac}:

dy : £(X) requires —r(X,Y), s(Y,Y).

dy : ac(X,Y) requires s(X,Y).

ry: caused f(X) if s(X,X), not —f(X) after ac(X,Y), not —r(X,X).
e1: executable ac(X,Y) if s(Z,Y), not £(X), Z!=Y.

Then, we have h(r1) = {£(X)}, pre(r1) = {ac(X, Y), -£(&,X)}, post(r1) = {s(X,X), ~£(X)}, and
lit(ry) = {£(X),ac(X,Y),r(X,X),s(X,X),—£(X)}; Furthermore, h(e;) = c( Y), pre(er) =
{s(2,Y),£(X),Z!=Y}, post(e1) = 0, and lit(e1) = {ac(X,Y),s(Z,Y),£(X),2 } &
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3.1.1.5 Safety Restriction

All rules (including initial state constraints and executability conditions) have to satisfy
the following syntactic restriction, which is similar to the notion of safety in logic pro-
grams [Ul189], see also Section 2.1.5.1.

Definition 3.6. An executability condition, rule, or initial state constraint r is safe, if
every variable occurring in literals in U = (post™ (r) Upre (r)) N Lyyp also occurs in at least
one literal in lit(r) \ U.

In other words, all variables in a default-negated type literal must also occur in some
literal which is not a default-negated type literal.

Thus, safety is required only for variables appearing in default-negated type literals,
while it is not required at all for variables appearing in fluent and action literals. The
reason is that the range of the latter variables is implicitly restricted by the respective type
declarations. Observe that the rules in the examples above are all safe.

3.1.1.6 Planning Domains and Planning Problems

We now define planning domains and problems. Let us call any pair (D, R) where D is a
finite set of action and fluent declarations and R is a finite set of safe causation rules, safe
initial state constraints, and safe executability conditions an action description.

Definition 3.7. A planning domain is a pair PD = (II, AD), where Il is a normal logic
program over the literals of Ly (referred to as background knowledge) as defined above,

and AD is an action description. We say that PD is positive, if no default negation occurs
in AD.

We recall that we require the program IT to have a unique answer set. This is for instance
the case if IT has a total well-founded model M [vRS91], which can be computed efficiently.
In particular, each stratified program IT has a total well-founded model. The semantic
condition of a total well-founded model admits a limited use of unstratified negation, which
is convenient for knowledge representation purposes, and in particular for expressing default
properties.

Planning domains represent the universe of discourse for solving concrete planning prob-
lems, which are defined next.

Definition 3.8. A planning problem P = (PD,q) is a pair of a planning domain PD and
a goal query q, where a query is an expression of the form

J1s--->9m, 00t Gmi1,--.,n0t gn ? (i) (3.4)

where g1,...,9n € Ly are variable-free, n > m > 0, and ¢ > 0 denotes the plan length.

3.1.2 Basic Semantics

For defining the semantics of K planning domains and planning problems, we start with the
preliminary definition of the typed instantiation of a planning domain. This is similar to
the grounding of a logic program, with the difference being that only correctly typed fluent
and action literals are generated.
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3.1.2.1 Typed Instantiation

Let substitutions and their application to syntactic objects be defined as usual (i.e. assign-
ments of constants to variables which replace the variables throughout the objects).

Definition 3.9. Let PD = (II,{D, R)) be a K planning domain, and let M be the (unique)
answer set of background knowledge IL. Then, p(zy,...,zy) is a legal action (resp. fluent)
instance of an action (resp. fluent) declaration d € D of the form (3.1) if there exists some
ground substitution 0 for cv*" (d) such that X;0 = z;, for 1 <i <mn and {t:6,...,tn,0} C M.
Any such 6 is called o witness substitution for p(z1,...,z,).

By Lpp we denote the set of all legal action instances, legal fluent instances (also referred
to as positive legal fluent instances) and classically negated legal fluent instances (negative
legal fluent instances).

Based on this, we now define the instantiation of a planning domain respecting type
information as follows.

Definition 3.10. For any planning domain PD = (II,{D, R)), its typed instantiation is
given by PD| = (IL|, (D, R|})), where IL} is the ground instantiation of II (over o®m, as
defined in Section 2.1) and Rl = {6(r) | r € R, 0 € O,}, where O, is the set of all
substitutions 0 of the variables in r using o°°", such that lit(8(r)) N Layn C Lpp

In other words, in PD] we replace II and R by their ground versions, but keep of the
latter only rules where the atoms of all fluent and action literals agree with their declarations.
We say that a PD = (II, (D, R)) is ground, if Il and R are ground, and moreover that it is
well-typed, if PD and PD| coincide.

Analogously, for a planning problem P = (PD, q) we define P = (PDJ,q). We recall
that ¢ is ground by Definition 3.8.

3.1.2.2 States and Transitions

We are now prepared to define the semantics of a planning domain, which is given in terms
of states and transitions between states.

Definition 3.11. A state with respect to a planning domain PD is any consistent set
s C Ly N Lpp of positive and negative legal fluent instances. A tuple t = (s, A,s") where
s,s' are states and A C Lo N Lpp is a set of legal action instances in PD is called a state
transition.

Observe that a state does not necessarily contain either f or —f for each legal instance f
of a fluent. In fact, a state may even be empty (s = ). The empty state represents a “tabula
rasa” state of knowledge about the fluent values in the planning domain. Furthermore, in
this definition, state transitions are not constrained — this will be done in the definition of
legal state transitions, which we develop now. To ease the intelligibility of the semantics, we
proceed in analogy to the definition of answer sets in [GL91] in two steps. We first define the
semantics for positive planning problems, i.e. planning problems without default negation,
and then we define the semantics of general planning domains by a reduction to positive
planning domains.
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In what follows, we assume that PD = (II, (D, R)) is a ground planning domain which
is well-typed, and that M is the unique answer set of II. For any other PD, the respective
concepts are defined through its typed instantiation PD.

Definition 3.12. A state so is a legal initial state for a positive PD, if sqo is the smallest
(under inclusion) set such that post(c) C so U M implies h(c) C so, for all initial state
constraints and static rules ¢ € R.

Definition 3.13. For a positive PD and a state s, a set A C L}, is called executable
action set wrt. s, if for each a € A there exists an executability condition e € R such that
h(e) = {a}, pret(e) N Lyj1,typ CsUM, pret(e) N LS, C A.

Note that this definition allows for modeling dependent actions, i.e., actions which de-
pend on the execution of other actions.

Definition 3.14. Given a positive PD, a causation rule r € R is satisfied by a state s’ wrt.
o state transition t = (s, A, s') if and only if either h(r) C s'\ {false} or not all of (i)-(iii)
hold: (i) post(r) C s'"UM, (ii) pre(r) N Lsiyp C sUM, and (%) pre(r) N Locr C A. A state
transition t = (s, A, s') is called legal, if A is an executable action set wrt. s and s' is the
minimal consistent set that satisfies all causation rules in R except initial state constraints
wrt. t.

The above definitions are now generalized to a well-typed ground PD containing default
negation by means of a reduction to a positive planning domain, which is similar in spirit
to the Gelfond-Lifschitz reduct [GL91] (cf. Section 2.1).

Definition 3.15. Let PD be a ground and well-typed planning domain, and let t = (s, A, s")
be a state transition. Then, the reduction PD! = (I, (D, R!)) of PD by t is the planning
domain where Rt is obtained from R by deleting

1. every causal rule, executability condition, and initial state constraint r € R for which
either post=(r)N (s UM) # 0 orpre=(r)N(sUAUM) # 0 holds, and

2. all default literals not L (L € L) from the remaining v € R.

Note that PD? is positive and ground. Legal initial states, executable action sets, and
legal state transitions are now defined as follows.

Definition 3.16. Let PD be any planning domain. Then, a state sq is a legal initial state,
if so is a legal initial state for PD*, where t = (0,0, s0); a set A is an executable action
set in PD wrt. a state s, if A is executable wrt. s in PD' with t = (s, A,0); and, a state
transition t = (s, A, s') is legal in PD, if it is legal in PD!.

Example 3.7. Reconsider the type declarations d; and ds, causation rule r; and executabil-
ity condition e; in Example 3.6. Suppose ¢¢°™ contains two constants a and b, and that
the background knowledge IT has the following answer set: M = {—r(a,b), r(b,a), s(a,a),
s(a,b), s(b,b)}. Then, e.g. £(a) is a legal fluent instance of d,

£(X) requires —r(X,Y), s(Y,Y).
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where § = {X = a, Y = b}. Similarly, ac(a,b) is a legal action instance of declaration da,
ac(X,Y) requires s(X,Y).

where § = {X = a, Y =b}. Thus, f(a) and ac(a,b) belong to Lpp. The empty set so = 0
is a legal initial state, and in fact the only one since there are no initial state constraints or
static causation rules in PD, and thus also not in PD? for every t = (D,0, s¢). The action
set A = {ac(a,b)} is executable wrt. sq, since for ¢t = (s, A, ), the reduct PD? contains
the executability condition

e} : executable ac(a,b) if s(a,b), al=b.

and both s(a,b) and a!=> are contained in so U M. Thus, we can easily verify that ¢t =
(s0, A, s1), where A = {ac(a,b)} and s; = {£f(a)} is a legal state transition: PD? contains a
single causation rule

ry: caused f(a) if s(a,a) after ac(a,b).

which results from r; for § = {X = a, Y = b}. Clearly, s; satisfies this rule, as h(r}) C s1, and
s1 is smallest, since s(a,a) € M and ac(a,b) € A holds. On the other hand, ¢t = (s, A’, 51),
where A’ = {ac(a,b), ac(b,b)} is not a legal transition: while ac(b,b) is a legal action
instance, there is no executability condition for it in PD], and thus ac(b, b) is not executable
in PD wrt. sq. <&

3.1.2.3 Plans

After having defined state transitions, we now formalize plans as suitable sequences of state
transitions which lead from an initial state to some successor state which satisfies a given
goal.

Definition 3.17. Let PD be a planning domain. A sequence of state transitions T =
((s0, A1, 51), (51, A2,82), -, (8n—1,An,8n)), n >0, is a trajectory for PD, if sq is a legal
initial state of PD and all (s;_1,A;,s;), 1 < i < n, are legal state transitions of PD.

Note that in particular, T' = () is empty if n = 0.

Definition 3.18. Given a planning problem P = (PD,q), where q has form (3.4), a
sequence of action sets (A1,...,A;), © > 0, is an optimistic plan for P, if a trajectory
T = ((s0, A1,51), (s1,42,82), ..., (si=1,As,8;)) in PD exists such that T establishes the
goal, i.e., {g1,...gm} C si and {gm+1,-..,9n} N5 = 0.

The notion of optimistic plan amounts to what in the literature is defined as “plan”,
“valid plan”, or “weak plan” etc. The term “optimistic” should stress the credulous view
underlying this definition, with respect to planning domains that provide only incomplete
information about the initial state of affairs and/or bear nondeterminism in the action
effects, i.e. alternative state transitions.

In such domains, the execution of an optimistic plan P is not a guarantee that the goal
will be reached. We therefore resort to secure plans (alias conformant plans), which are
defined as follows.
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Definition 3.19. An optimistic plan (Ay,...,A,) is a secure plan, if for every legal initial
state so and trajectory T = ((so,A1,81), ..., {Sj—1,4;,8;)) such that 0 < j < n, it holds
that (i) if j = n then T establishes the goal, and (ii) if j < n, then Aj,; is executable in s;
wrt. PD and some legal transition (sj, Aji1,Sj41) exists.

Observe that plans admit in general the concurrent execution of actions at the same
time. However, in many cases the concurrent execution of actions may not be desired (and
explicitly prohibited, as discussed below), and attention focused to plans with one action
at a time. More formally, we call a plan (Ay,...,A,) sequential (or non-concurrent), if
|4;] <1,foralll1<j<mn.

3.1.3 Enhanced Syntax

While the language presented in Section 3.1.1 is complete and allows for a succinct seman-
tics definition, it can be enhanced wrt. user-friendliness. E.g. it is inconvenient to write
initially in front of each initial state constraint, having an initially-section in which
each rule is interpreted as an initial state constraint would be more desirable. In addition,
some frequently occurring patterns can be identified for which macros will be defined for
convenience and readability.

3.1.3.1 Partitions

The specification of a planning domain PD = (II, (D, R)) respectively planning problem
P ={{I1,{(D, R)),q) can be seen as being partitioned into

e the background knowledge II,

Fp, the fluent declarations in D,
e Ap, the action declarations in D,
e Ip, the initial state constraints in R,
e (g, the causation rules and executability conditions in R, and
e the query (or goal) q.
In the sequel, we will denote a planning problem as follows:

fluents: Fp

actions: Ap
always : Cr
initially: Ig
goal : q
where each construct in Fp, Ap, Cg, and Ig is terminated by “.”. The background knowl-

edge is assumed to be represented separately. This representation will also be called K
program in the following. A sample program is provided in Figure 3.1 which will be ex-
plained below.
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3.1.3.2 Macros

In the following, we will define several macros which allow for a concise representation of
frequently used concepts. Let a € L., denote an action atom, £ € Ly; a fluent literal, B
a (possibly empty) sequence by,..., by, not bgti,..., not b; where each b; € Ly 4yp,i =
1,...,l, and A a (possibly empty) sequence ai,...,an, 0ot dmymi1,-..,00t a, where each
a; eL,j=1,...,n.

Inertia In order to express frame axioms as discussed in Section 2.3 it is convenient to
be able to declare fluents as inertial, which means that these fluents keep their truth values
in a state transition, unless explicitly affected by an action or causation rule. Similar (but
different) to C, in order to allow for an easy representation of this kind of situation, we have
enhanced the language by the shortcut

inertial f if B after A. & caused f if not —.f,B after f, A.

Defaults A default value of a fluent in the planning domain can be expressed by the
shortcut

default f. =4 caused f if not —.f.

This default is in effect unless there is evidence to the opposite value of fluent f, given
through some other causation rule.

Totality For reasoning under incomplete, but total knowledge we introduce

caused f if not —f, B after A.

total £ if B aft A.
ora * atter caused —f if not f, B after A.

where £ must be positive.

State Integrity It is very common to formulate integrity constraints for states (possibly
referring to the respective preceding state). To this end, we define the macro

forbidden B after A. = caused false if B after A.

Nonexecutability Sometimes it is more intuitive to specify when some action is not
executable, rather than when it is. To this end, we introduce

nonexecutable a if B. = caused false after a, B.

Note that because of this definition, nonexecutable is stronger than executable, so in case
of conflicts, executable is overridden by nonexecutable.

Non-concurrent Plans Finally, noConcurrency. disallows the simultaneous execution
of actions. We define

noConcurrency. == caused false after a;, a,.

where a; and a, range over all possible actions such that a;,as € Lpp N L4 and a3 # a,.
In all macros, “if B” (resp. “after A”) can be omitted, if B (resp. A) is empty. We
reserve the possibility of including further macros in future versions of K.
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(1) actioms: crossTogether(X,Y) requires person(X), person(Y), X!=Y.

)

cross(X) requires person(X).
takeLamp(X) requires person(X).

)

fluents: at(X,S) requires person(X), side(S).
hasLamp(X) requires person(X).

(S

always : executable crossTogether(X,Y) if hasLamp(X), at(X,S), at(Y,S).
executable crossTogether(X,Y) if hasLamp(Y), at(X,S), at(Y,S).
executable cross(X) if hasLamp(X).
executable takeLamp(X) if hasLamp(Y), at(X, S), at(Y,S).
nonexecutable takeLamp(X) if hasLamp(X

~— —

at(X,S), otherSide(S, S1).
at(Y,S), otherSide(S, S1).
; at(X,8).

; at(¥, 8).

caused at(X,S1) after cross(X), at(X,S), otherSide(S,S1).

caused —at(X,S) after cross(X), at(X,S)

caused at(X,S1) after crossTogether(X,Y
caused at(Y,S1) after crossTogether(X,Y
caused —at(X,S) after crossTogether(X,Y
caused —at(Y,S) after crossTogether(X,Y
)

7
?

)
)7
)
)

?

caused hasLamp(X) after takeLamp(X).
caused —hasLamp(X) after takeLamp(Y), hasLamp(X), X!=Y.

[ N o i e N o T o e S

inertial at(X,S).
inertial hasLamp(X).
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[\V]
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noConcurrency.
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initially: caused at(X,here).
caused hasLamp(joe).

NN
= W

at(joe,across), at(jack,across),
at(william, across), at(averell,across)? (5)
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[
[}
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Figure 3.1: Basic K encoding of the Bridge crossing problem

3.1.4 Solving the Simple Bridge Crossing Example

Now we are ready to discuss our first full K program and discuss the concepts of K in detail
returning to the Bridge Crossing Problem. A sample K encoding of the Bridge Crossing
Problem is shown in Figure 3.1.

Optimistic Planning We assume that the four involved persons are specified in a logic
program IIgcp as defined in Example 3.1. Let Ppcp be the planning problem defined by
IIpcp and the K program in lines 1-25 of Figure 3.1.

In lines 1 to 5 of Figure 3.1 the respective actions and fluents are declared as described in
Example 3.2. Subsequently, line 6 to 21 contain the executability conditions and causation
rules in RBCP:

In particular, lines 6 to 8 fix that crossing is only allowed with a lamp and crossing in
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two is only allowed if both persons involved are at the same side of the bridge and one holds
the lamp.

Lines 9 and 10 which encode executability of taking the lamp exemplify the alternative
negative formulation of executability stating that a person can not take the lamp if he/she
holds it. Alternatively, we could substitute these two lines semantically equivalent by:

executable takeLamp(X) if hasLamp(Y), at(X,S), at(¥,S), XI=Y.

In K one can often choose between several encodings of a problem which we believe to be
one of the strengths of our language.

Lines 11 to 16 encode the intuitive effects of crossing the bridge in two or alone, by
toggling the resp. values of fluent at. Similarly, lines 17 to 18 encode the effect of taking
the lamp.

Note that, by lines 19 and 20 only positive values of fluents at and hasLamp are declared
inertial. This is one of the key features of K action descriptions, best described by: “Only
model what you (need to) know, forget about the rest”. As we deal with states of knowledge
and transitions in K represent transitions between such states, we only have to keep track of
relevant information: Strong negation in lines 13,14 and 16 is only used to switch off inertia
where this negative information materializes only in the successor state but is not carried
over to subsequent states. As easily seen, classical negation is not needed anywhere else in the
action description apart from inertia. Take for instance a state s such that at(joe,across) €
s. For any legal state transition (s, {cross(joe)},s’), by line 16 —at(joe,across) € s
holds, whereas any subsequent transition {s', 4, s") in this example will lead to a state s”
such that —at(joe,across) ¢ s, i.e. this fact will be “forgotten”. On the other hand, K is
well capable of encoding all contingencies, i.e. world states, explicitly, if needed, which will
be further discussed in Sections 10.1.0.4 and 6.3.

The line 21 enforces sequential planning as discussed above in Section 3.1.3.2. Finally,
the initial situation is described in lines 22 and 23. Line 22 states that all persons are initially
here which can be explained by Definition 3.9: In fact, the rule in line 22 is semantically
equivalent to

initially caused at(X,here) if person(X), side(here).

wrt. the declaration of fluent at in line 4.

For finding an optimistic plan of our problem, we assume that joe initially carries the
lamp (line 23).

So, the only legal initial state for the program in Figure 3.1 is:

so = {at(joe,here), at(jack,here), at(william here), at(averell,here),
hasLamp(joe)}

Note that, we do not need to explicitly represent negative information. For instance,
we do not state that averell is not across initially, but just leave the value of fluent
at(averell,across) open because of our knowledge state view (which will be discussed in
detail in Chapter 6).

Our goal is to bring all four persons across in 5 steps, expressed in K by line 24.

For the planning problem Ppcp defined by IlIpop and the K program in Figure 3.1 there
are simple optimistic plans: joe always carries the lamp and brings all others across. One
such plan is:
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P, = ({crossTogether(joe, jack)}, {cross(joe)}, {crossTogether(joe,william)},
{cross(joe)}, {crossTogether(joe, averell)} )

Secure Planning and Encoding Contingencies Strictly speaking, in the description
of Problem 3.1 there was no clue justifying our assumption that joe initially has the lamp.
Furthermore, let us assume that all but Joe are quite clumsy, and potentially lose the lamp
when crossing alone. So, we are confronted with the following problems beyond classical
planning:

1. We initially know that one of the four has a lamp but we actually do not know who
holds it.

2. Anyone but Joe might nondeterministically lose the lamp upon crossing alone.

So, our scenario involves incomplete information on the initial state as well as nondetermin-
istic actions. We will now show how to model this situation in K. Our encoding now can
be modified to reflect the incomplete knowledge on who initially has the lamp by dropping
line 23 and substituting it with the following rules in the initially-section:

total hasLamp(X).

forbidden hasLamp(X), hasLamp(Y), X!=Y.

forbidden —-hasLamp(joe), —hasLamp(jack),
—~haslLamp(william), —hasLamp(averell).

These rules say that either person might have the lamp, at most one person has the lamp
and that it is forbidden that none of them holds the lamp, respectively. The latter could
also be expressed more concisely by adding a new fluent, e.g. anybodyHasLamp, plus the
static causation rules:

caused anybodyHasLamp if hasLamp(X).
forbidden if not anybodyHasLamp.

We emphasize that the modifications discussed here show useful techniques how to enforce
state integrity in K which are not bound to this particular example.

The resulting legal initial states are exactly those where one of the four has the lamp,
ie.

so,1 = {at(joe, here), at(jack,here), at(william here), at(averell, here), hasLamp(joe)}
so,2 = {at(joe, here), at(jack,here), at(william here), at(averell, here), hasLamp(jack)}
( ( ( ), at(
( ( ( ), at(

so,3 = {at(joe, here), at(jack,here), at(william here), at(averell, here), hasLamp(william)}

so,sa = {at(joe, here), at(jack,here), at(william, here), at(averell, here), hasLamp(averell)}

As for the nondeterministic effect of crossing alone, we add the following in the always-
section of our program:

total hasLamp(X) after cross(X), X!=joe.
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Additionally, we have to modify executability of action takeLamp in order to deal with all
contingencies in the initial state: We therefore drop line 10 such that now takeLamp(X) is
also executable in case X already holds the lamp.

Let us denote the modified planning problem, i.e. the problem obtained from dropping
lines 10 and 23 from the program in Figure 3.1 and adding the following lines 26-31 instead,
as Pecpsec:

(26) fluents: anybodyHasLamp.

(27) initially: total hasLamp(X).

(28) forbidden hasLamp(X), hasLamp(Y), X!=Y.
(29) caused anybodyHasLamp if hasLamp(X).
(30) forbidden if not anybodyHasLamp.

(31) always: total hasLamp(X) after cross(X), X!=joe.

However, this reformulation still does not allow for secure plans of length 5. For finding
the shortest secure plan we can incrementally adapt plan length ¢ in goal:

goal : at(joe,across), at(jack,across),at(william, across), at(averell,across) ? (4)

until a secure plan is found. Actually, here we find secure plans of length 6 where again
Joe brings all others across again but he has to take the lamp in the first step in order to
guarantee a secure plan. One such secure plan is:

P, = ({takeLamp(joe)}, {crossTogether(joe, jack)}, {cross(joe)},
{crossTogether(joe, william)}, {cross(joe)}, {crossTogether(joe,averell)} )

(Strategies for finding shortest plan will be further discussed in Section 6.4.) Note that plan
P; from above still remains one possible optimistic plan but it is not secure since it is not
guaranteed that joe initially has the lamp.

3.2 Action Costs — Language K¢

Using the core language K, we can already express and solve some involved planning tasks,
cf. [Pol01, EFL*T00a, EFL*T03b]. However, K alone offers no means for finding optimal
plans under an objective cost function. In general, different criteria of plan optimality can
be relevant, such as optimality wrt. action costs as shown in the next example, which is a
slight elaboration of the Bridge Crossing Problem, and a well-known brain teasing riddle:

Problem 3.2. [Quick Bridge Crossing Problem] The persons in the bridge crossing
scenario need different times to cross the bridge, namely 1, 2, 5, and 10 minutes, respectively.
Walking in two implies moving at the slower rate of both. Is it possible that all four persons
get across within 17 minutes?

On first thought this is infeasible, since the seemingly optimal (optimistic) plan P; from
above where joe, who is the fastest, keeps the lamp and leads all the others across takes 19
minutes altogether. Surprisingly, as we will see, the optimal solution indeed only takes 17
minutes.

In order to allow for an elegant and convenient encoding of such optimization problems,
we extend K to the language K¢ in which one can assign costs to actions.
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3.2.1 Syntax of K¢

K¢ extends action declarations as in K with costs as follows.

Definition 3.20. An action declaration d in K€ is of the form:
p(Xy,...,X,) requires t,...,t, costs C wherecy,...,cCp. (3.5)
where
(1) p€ o,
(2) Xi1,...,X, € oV where n > 0 is the arity of p,
(8) t1,...,tm, C1,. .., are from Ly, such that every X; occurs in t1,...,tm,

(4) C is either an integer constant, a variable from the set of all variables occurring in
t1,- -y tm, C1,---,C (denoted by o¥®"(d)), or the distinguished variable time,

(5) a?°"(d) C o¥*" U {time}, and
(6) time does not occur in ti,...tn.

If m = 0, the keyword ‘requires’ is omitted; if £k = 0, the keyword ‘where’ is omitted
and ‘costs C’ is optional. Here, (1) and (2) state that parameters to an action must be
variables, and not fixed values. Informally, (3) means that all parameters of an action must
be “typed” in the requires part. Condition (4) asserts that the cost is locally defined
or given by the stage of the plan, which is referenced through the global variable time.
Conditions (5) and (6) ensure that all variables are known and that type information of
action parameters is static, i.e., does not depend on time.

Fluent declarations, as well as planning domains and planning problems in K¢ are defined
as in K.

Example 3.8. For example, in the elaborated Bridge Crossing Problem, the declaration
of cross(X) can be extended as follows: Suppose a predicate walk(Person,Minutes) in the
background knowledge indicates that Person needs Minutes to walk across. Then, we may
simply declare

cross(X) requires person(X) costs WX where walk(X, WX).

3.2.2 Semantics of K¢

Semantically, K¢ extends K by the cost values of actions at points in time. Recall that in
any plan P = (4;,...,A;), at step 1 < i <, the actions in A; are executed to reach time
point .

First, we slightly modify Definition 3.9 wrt. legal action instances:
Definition 3.21. Let PD = (I1, (D, R)) be a K¢ planning domain, and let M be the (unique)
answer set of II. A ground action p(x1,...,%,) is a legal action instance of an action

declaration d € D of the form (8.5) if there exists some ground substitution 6 for o*"(d) U
{time} such that X;0 = z;, for 1 <i <n and {t;0,...,t,0} C M.
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Witness substitutions and Lpp are defined as above. Action costs are now formalized as
follows.

Definition 3.22. Let a = p(x1,-..,%,) be a legal action instance of a declaration d of the
form (8.5), let i > 1 be a time point, and let 6 be a witness substitution for a. such that
timef =1i. Then

0, if the costs-part of d is empty;
costo(p(z1,...,2,)) =< val(CO), if {cib,...,c0} C M;
undefined  otherwise.

where M is the unique answer set of Il and val : 0°™ — IN is defined as the integer value
for integer constants and undefined for all non-integer constants.

By reference to the variable time, it is possible to define time-dependent action costs; we
shall consider an example in Section 6.5. Using costy, we now introduce well-defined legal
action instances and define action cost values as follows.

Definition 3.23. A legal action instance a = p(x1, .. .,Ty) is well-defined, if it holds that

(i) for any time pointi > 1, there is some witness substitution 6 for a such that time, 6 =i
and costy(a) is defined 12, and

(i) costg(a) = costgr(a) holds for any two witness substitutions 6,6 which coincide on
time and have defined costs.

For any well-defined a, its unique cost at time point i > 1 is given by cost;(a) = costy(a)
where 0 is as in ().

In this definition, condition (i) ensures that some cost value exists, which must be an
integer, and condition (ii) ensures that this value is unique, i.e., any two different witness
substitutions § and ' for a evaluate the costs-part to the same integer cost value.

In particular, here our claim that the answer set M of II has to be unique comes into
play in order to guarantee a unique cost value. However, this claim alone is not sufficient
but we remark that checking well-definedness can be expressed easily as a planning task in
K, and also by a logic program; this will be considered later on in Section 4.3.7.

An action declaration d is well-defined, if all its legal instances are well-defined. This
will be fulfilled if, in database terms, the variables X7, ..., X,, together with time in (3.5)
functionally determine (cf. for instance [AHV95]) the value of C. In our framework, the
semantics of a K¢ planning domain PD = (II,(D, R)) (resp. a planning problem P =
(PD,q)) is only well-defined for well-defined action declarations in PD. In the rest of this
work, we assume well-definedness of K¢ unless stated otherwise.

Using cost;, we now define costs of and plans.

Definition 3.24. Let P = (PD,Q? (1)) be a planning problem. Then, for any plan P =
(A1,...,A;) for P, its cost is defined as

costp(P) = 2221 (ZaeAj cost; (a)) .

12This implies that, in order to write well-defined declarations, one may use only variables bound to an
integer value for the costs of an action.
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A plan P is optimal for P, if costp(P) < costp(P') for each plan P' for P, i.e., P has least
cost among all plans for P. The cost of a planning problem P, denoted cost}, is given by
costy, = costp(P*), where P* is an optimal plan for P.

In particular, costp(P) = 0 if P = (), i.e., the plan is void. Note that cost} is only
defined if a plan for P exists.!®

Usually one only can estimate some upper bound of the plan length, but does not know
the exact length of an optimal plan. Although we have only defined optimality for a fixed
plan length [, we will see in Section 6.4 that by appropriate encodings this can be extended
to optimality for plans with length at most I.

Besides optimal plans, also plans with bounded costs are of interest, which motivates
the following definition.

Definition 3.25. A plan P for a planning problem P is admissible wrt. cost c, if
costp(P)<c.

Admissible plans impose a weaker condition on the plan quality than optimal plans.
They are particularly relevant if optimal costs are not a crucial issue, as long as the cost
stays within a given limit, and if optimal plans are difficult to compute. We might face
questions like “Can I make it to the airport within one hour?”, “Do I have enough change
to buy a coffee?” etc. which amount to admissible planning problems. As we shall see in
Section 3.3, computing admissible plans is complexity-wise easier than computing optimal
plans.

3.2.3 An Optimal Solution for the Quick Bridge Crossing Problem

To model the Quick Bridge Crossing Problem in K¢, we first extend the background knowl-
edge IIpcp with the predicate walk as already mentioned in Example 3.8 by adding facts

walk(joe, 1). walk(jack, 2). walk(william,5). walk(averell, 10).

We denote the extended background knowledge as Ilgpcp.

Finally, all we have to do, to get a K¢ formulation for the optimal planning instance of
the Quick Bridge Crossing problem is to slightly modify the action declarations for crossing
alone or in two in lines 1 and 2 of Figure 3.1. We denote the resulting K¢ planning problem
where obtained from Ilgpcp and substituting lines 1 and 2 of Figure 3.1 by the following
lines 32-34 as ,PQBCPZ

(32) actions: cross(X) requires walk(X,WX) costs WX.
(33) crossTogether(X,Y) requires walk(X,wX), walk(Y,WY), X =Y,
(34) WX <= WY costs WY.
These two declarations model exactly the intended costs, i.e., crossing alone costs the
time defined in in the walk predicate Ilgpcp and crossing in two costs the time which the
slower of both crossing persons needs.

Remark 3.1. Note that this formulation differs slightly from Exzample 3.8 and from the
original K¢ encoding of this example which appeared in [EFLT 03c]. These declarations are
more concise than the ones suggested in [EFLT 03c] where we formalized crossing as follows:

131n the following, subscripts will be dropped when clear from the context.
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cross(X) requires person(X) costs WX where walk(X,WX).
crossTogether(X,Y) requires person(X), person(Y), X <Y
costs Wmax where walk(X,WX),walk(Y,WY), max(WX, WY, Wmax).

where max(-,-,-) was a type predicate defined in the background knowledge. The present
encoding (a) does not require additional where clauses, (b) does not require the additional
max predicate, and (c) prunes the number of legal action instances for action crossTogether:
By WX <= WY in line 34 we fix the order for predicate crossTogether(X,Y) such that X always
is the faster of both.

Using the modified planning problem Pgpcp, the 5-step plan P; reported on page 39
has cost 19. Actually, it is optimal for plan length [ = 5. However, when we abandon the
first intuition that the fastest person, joe, always has the lamp and consider the problem
under varying plan length, then we can find the following 7-step plan:

P3 = ({crossTogether(joe, jack)}, {cross(joe)}, {takeLamp(william)},
{crossTogether(william, averell)}, {takeLamp(jack)}, {cross(jack)},
{crossTogether(joe, jack)} )

Here, costp(P3) = 17, and thus P3 is admissible with respect to cost 17. This means
that the Quick Bridge Crossing Problem has a positive answer. In fact, P; has least cost
over all plans of length [ = 7, and is thus an optimal 7-step plan. Moreover, P; has also
least cost over all plans that emerge if we consider all plan lengths. Thus, P; is an optimal
solution for the Quick Bridge Crossing Problem under arbitrary plan length.

Let P,(l) denote the planning problem P, for plan length I. Then we can write,
costi’,;QBCP(5) =19, resp. cost;‘,QBCPm =17

Secure Optimal Planning Now, let us consider the nondeterministic variant Pgcpsec
(see p. 41) again: By substituting the action declarations for crossing again with the version
in lines 32-34 above, we obtain a further elaboration of the problem, denoted as Pgpcpsec-
However, for Pgpcpsec we still can not find a better secure plan than P> shown on page 41
since any cross not involving Joe might fail. Obviously, costp, ;e p,..(6)(F2) = 19, and this

plan is optimal, i.e. COSt;?QBcpsec(G) =19.

3.3 Complexity Analysis

We now turn to the computational complexity of planning in our language K and its exten-
sion K°¢. In this section, we present the results of a detailed study of major planning issues
in the propositional case. Results for the case of general planning problems (with variables)
may be obtained by applying suitable complexity upgrading techniques (cf. [GLV99]). In
the general case, by well-known complexity results on logic programming, cf. [DEGV01], al-
ready evaluating the background knowledge is EXPTIME-hard, and the problems are thus
provably intractable.

We call a planning domain PD (resp. planning problem P) propositional, if all predicates
in it have arity 0, and thus it contains no variables.
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As for the results we will start off with main results for the core language K and derivation

of these results. We will thereafter extend the results for admissible and optimal planning
with action costs in K.

3.3.1 Main Problems Studied

In our analysis, we consider the following three problems:

Optimistic Planning Decide, given a propositional planning problem P = (PD, q), whether

some optimistic plan exists, resp. find such a plan.

Security Checking Decide, given an optimistic plan P = (Ay,..., A,) for a propositional

planning problem (PD, q), whether P is secure.

Secure Planning Decide, given a propositional planning problem P, whether some secure

plan exists, resp. find such a plan.

We remark here that the formulation of security checking is, strictly speaking, a promise

problem, since it is asserted that P is an optimistic plan, which can not be checked in
polynomial time in general (and thus legal inputs can not be recognized easily). However,
the complexity results that we derive below would remain the same, even if P were not
known to be an optimistic plan.

We will consider the problems from above under the following two restrictions:

1. General vs. proper planning domains Because of their underlying stable seman-

tics, which is well-known intractable [MT91], causation rules in domain descriptions
can express computationally intractable relationships between fluents. In fact, deter-
mining whether for a state s and a set of executable actions A in s some legal transition
(s, A, s") to any successor state s’ exists in a planning domain PD is intractable in gen-
eral, since it comprises checking whether a logic program has an answer set. For this
reason, we pay special attention to the following subclass of planning domains.

Definition 3.26. We call a planning domain PD proper if, given any state s and
any set of actions A, deciding whether some legal state transition (s, A,s') exists is
polynomial. A planning problem (PD,q) is proper, if PD is proper.

Proper planning domains are not plagued with intractability of deciding whether doing
some actions will violate the dynamic domain axioms, even if they possibly have
nondeterministic effects. In fact, we expect that in many scenarios, the domain is
represented in a way such that if a set of actions qualifies for execution in a state, then
performing these actions is guaranteed to reach a successor state. In such cases, the
planning domain is trivially proper. This applies, for example, to the standard STRIPS
formalism and many of its variants.

Unfortunately, deciding whether a given planning domain is proper is intractable in
general; we thus need syntactic restrictions for taking advantage of this (semantic)
property in practice. For obtaining significant lower complexity bounds, we consider
in our analysis a very simple class of proper planning domains.
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Definition 3.27. We call a planning domain PD = (II, AD) plain, if the background
knowledge T1 is empty, and AD satisfies the following conditions:
1. Executability conditions executable. .. refer only to fluents.

2. No default negation —neither explicit nor implicit through language extensions
(such as inertia Tules)- is used in the post-part of causation rules in the always-

section.
3. Given that ay,. . .,y are all ground actions, AD contains the rules
nonexecutable o; if oy. 1<i<j<m
caused false after not oy, not as, ..., not a,,.

We call a planning problem P = (PD, q) plain, if PD is plain.

The conditions ensure that every legal state transition ¢t = (s, A4, s') must satisfy
|A| = 1. Thus all optimistic and secure plans must be sequential.

As easily seen, in plain planning domains (which can be efficiently recognized), deciding
whether for a state s and an action set A some legal state transition ¢t = (s, A, s') exists
is polynomial, since this essentially reduces to evaluating a not -free logic program
with constraints. Thus, plain planning domains are proper. Moreover, even deciding
whether for a state s any legal state transition ¢ = (s, A, s') exists is polynomial,
since the candidate space for suitable action sets A is small and efficiently computed.
Furthermore, each legal state transition ¢ in a plain planning domain PD is clearly
determined, and thus PD is also deterministic. As discussed below, for many problems
plain planning domains harbor already the full complexity of proper planning domains.

We remark that further, more expressive syntactic fragments of proper planning do-
mains can be obtained by exploiting known results on logic programs which are guar-
anteed to have answer sets, such as stratified logic programs, or order-consistent and
odd-cycle free logic programs [Fag94, Dun92]; the latter allow for expressing nondeter-
ministic action effects. In particular, these results may be applied on the rules obtained
from the dynamic causation rules by stripping off their pre-parts. We will consider
more classes of proper planning domains, namely false-committed, (muz-)stratified and
serial domains in more detail in Sections 4.3.4.1 and 4.3.4.2.

2. Fixed vs. arbitrary given plan length We analyze the impact of fixzing the length i
in the query ¢ = Goal ? (i) of (PD, q) to a constant. For arbitrary i, the length of an
optimistic plan for (PD, ¢) can be exponential in the size of the string representing the
number 4 (which, as usual, is represented in binary notation), and even exponential in
the size of the string representing the whole input (PD, ¢). Indeed, it may be necessary
to pass through an exponential number of different states until a state satisfying the
goal is reached. For example, the initial state so may describe the value (0,...,0)
of an n-bit counter, and the goal description might state that the counter has value
(1,...,1). Assuming an action repertoire which allows, in each state, to increment the
value of the counter by 1, the shortest optimistic plan for this problems has 2™ — 1
steps. (We leave the formalization of this problem in K as an illustrative exercise to
the reader; a similar encoding can be found in Section 6.3.4.) This shows that storing
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a complete optimistic plan in working memory requires exponential space in general.
However, if 7 is fixed to a constant, then the representation size of an optimistic plan
is linear in the size of (PD, g).

Analogously, as shown by Turner [Tur02], if ¢ is bound by a polynomial in the size of
(PD, q), then the representation size of an optimistic plan is polynomial.

We remark that general plan existence, leaving plan length unspecified becomes more
tricky: For secure planning, the shortest secure plan might have double exponential
length in the number of fluents: In worst case, we have to step through all belief states,
i.e. all sets of states before reaching a goal. However, since we consider plan length
i as a part of the input by definition of planning problems, the representation size of
such a secure plan is still (single) exponential in the size of (PD, q).

3.3.2 Main Complexity Results

Our main results on the complexity of K are compactly summarized in Table 3.1, and can
be explained as follows.

e As for Optimistic Planning, we can avoid exponential space for storing an optimistic

plan P = (44,...,A,) by generating it step by step: we guess a legal initial state
S0, and subsequently, one by one, the legal transitions {s;_1, A4;, s;). Since storing
one legal transition requires only polynomial workspace and NPSPACE = PSPACE,
Optimistic Planning is in PSPACE. On the other hand, propositional STRIPS, which is
PSPACE-complete [Byl94], can be easily reduced to planning in X, where the resulting
planning problem is plain and thus proper. For fixed plan length, the whole optimistic
plan has linear size, and thus can be guessed and verified in polynomial time.

In Security Checking, the optimistic plan P = (4y,...,A,) to be checked is part of
the input, so the binary representation of the plan length is not an issue here. If P is
not secure, there must be a legal initial state so and a trajectory executing the actions
in Ag,...,A; such that either the execution is stuck, i.e., no successor state s; exists
or the actions in A; are not executable in s;, or the goal is not fulfilled in the final
state s,. Such a trajectory can be guessed and verified in polynomial time with the
help of an NP oracle; this places the problem in TIf’. The NP oracle is needed to
cover the case where no successor state s; exists, which reduces to checking whether a
logic program has no answer set. In proper planning domains, existence of s; can be

plan length ¢ in query ¢ = Goal ? (1)
planning domain PD fixed (=constant) arbitrary
general NP/ ¥ /P -complete PSPACE/ 1I¥ /NEXPTIME -complete
proper NP /co-NP /=P -complete PSPACE / co-NP / NEXPTIME -complete

Table 3.1: Complexity Results for Optimistic Planning / Security Checking / Secure Plan-
ning in K (Propositional Case)
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decided in polynomial time, which makes the use of an NP oracle obsolete and lowers
the overall complexity from IT¥ = co-NPNF to co-NP.

e In Secure Planning, the existence of a secure plan can be decided by composing algo-
rithms for constructing optimistic plans and for security checking. Our membership
proofs for deciding the existence of an optimistic plan actually (nondeterministically)
construct such a plan, and thus we easily obtain upper bounds on the complexity of
Secure Planning from the complexity of the combined algorithm, by using the secu-
rity check as an oracle. In the case of arbitrary plan length, the use of a II¥ oracle
can be eliminated by a more clever procedure, in which plan security is checked by
inspecting all sets of states reachable after 0,1,2,... steps of the plan. In order to
represent sets of states exponential space is required. Even if the number of steps
may be exponential, this does not lead to a further complexity blow up. Thus, Secure
Planning is in NEXPTIME. On the other hand, even in plain planning domains, an
exponential number of (exponentially long) candidate secure plans may exist, and the
best we can do seems to be guessing a suitable one and verifying it. In fact, we will
show NEXPTIME-hardness.

Remarkably, if we modify the definition of K planning problems such that plan length
is unspecified (i.e. we do not assume plan length to be part of the input, the maximum
number of steps before loop though might even be double exponential, but as we only
need to represent the current set of states reachable when stepwise guessing the plan,
this places this general problem of secure plan existence with unspecified plan length
in NEXPSPACE (=EXPSPACE). Haslum and Jonsson [HJ99] showed EXPSPACE-
completeness for conformant planning with unspecified plan length in a closely related
formalism. Interestingly, we can obtain a similar hardness proof from our NEXPTIME
result above with minor modifications.

Effect of parallel actions The results in Table 3.1 address the case where parallel actions
in plans are allowed. However, excluding parallel actions and considering only sequential
plans does not change the picture drastically. In all cases, the complexity stays the same
except for secure planning under fixed plan length, where Secure Planning is IT¥-complete
in general and D¥-complete in proper planning domains (Theorem 3.9). Intuitively, this is
explained by the fact that for a plan length fixed to a constant, the number of potential
candidate plans is polynomially bounded in the input size of P, and thus the guess of a
proper secure candidate can be replaced by an exhaustive search, where it remains to check
as a side issue the consistency of the domain (i.e. existence of some legal initial state), which
is NP-complete in general (also for plain domains); see Theorem 3.9 below.

Effect of nondeterministic actions Our results also imply some conclusions on nonde-
terministic vs. deterministic planning domains. Interestingly, in proper planning domains,
nondeterminism has no impact on the complexity for all problems considered, and we can
conclude the same for Optimistic Planning as well as Secure Planning under arbitrary plan
length. Furthermore, for proper planning problems even the combined restrictions of se-
quential plans and deterministic action outcomes do not decrease the complexity except for
Secure Planning with fixed plan length, since the hardness results are obtained for plain
planning problems, which guarantee these restrictions.
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Implications for implementation The complexity results have important consequences
for the implementation of K on top of existing computational logic systems, such as DLV,
SMODELS [Nie99], propositional satisfiability (SAT) checkers, e.g. [MMZ*01, LA97, BS97,
Zha97], or satisfiability solvers for Quantified Boolean Formulae (QBF-SAT checkers) [CGS98,
Rin99b, FMS00]. Optimistic Planning under arbitrary plan length is not polynomially re-
ducible to systems with capability of solving problems within the Polynomial Hierarchy,
e.g. SAT checkers, CCALC, Smodels, or DLV, while it is feasible using QBF solvers. On
the other hand, for fixed (and similarly, for polynomially bounded) plan length, Optimistic
Planning can be polynomially expressed in all these systems. However, even in the case of
fixed plan length and proper planning domains, Secure Planning is beyond the capability of
systems having “only” NP expressiveness such as CCALC, Smodels, or SAT checkers, while
it can be encoded in DLV (which has ¥ expressiveness) and QBF solvers.

Even in the more restrictive plain planning domains, where Secure Planning is D¥-
complete, the systems mentioned can not polynomially express Secure Planning in a single
encoding. On the other hand, if we abandon properness, then also DLV is incapable of
encoding Secure Planning (whose complexity increases to %£'-completeness). Nonetheless,
Secure Planning is feasible in DLV using a two step approach as in the CPLAN [Giu00]
system, where optimistic plans are generated as secure candidate plans and then checked
for security; this check is polynomially expressible in DLV.

Secure planning under arbitrary plan length is provably intractable, even in plain do-
mains. Since NEXPTIME strictly contains PSPACE, there is no polynomial time transfor-
mation to QBF solvers or other popular computational logic systems with expressiveness
limited to PSPACE, such as traditional STRIPS planning.

Here, further restrictions are needed to lower complexity to PSPACE, such as a polyno-
mial bound on the plan length in the input query (cf. [Tur02].

3.3.3 Derivation of Results

In this section, we show how the results discussed above are derived.

In the proofs of the lower bounds, the constructed planning problems P = ((II, (D, R)),
q) will always have empty background knowledge II. Furthermore, the action and fluent
declarations Fp and Ap, respectively, will be as needed for the R-part, and are not explicitly
mentioned. That is, we shall only explicitly address R and ¢, while II = @) and D are
implicitly understood.

The following lemma on checking initial states and legal state transitions is straight-
forward from well-known complexity results for logic programming (cf. [DEGV9T7]). As
mentioned above, we view the background knowledge independently from the remaining
planning domain informally as a set of facts by requiring that II has a unique answer set.
We disregard the actual complexity of computing this model here by assuming polynomial
computability of this answer set; as mentioned above, this is for instance true if the well-
founded model of II is total, which is guaranteed for stratified logic programs and other
(syntactic) classes of programs.

Lemma 3.1. Given a state so (resp. a state transition t = (s, A, s')) and a propositional
planning domain PD = (I1,{D, R)), such that the unique answer set M of the logic program
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IT can be computed in polynomial time, checking whether so is a legal initial state (resp., t
is a legal state transition) is possible in polynomial time.

of Lemma 3.1. Given M, the set of legal action and (positive and negative) fluent instances
Lpp is easily computable in polynomial time, as well as the reduction PD!. Checking
whether sq is a legal initial state for PD{?:%:%0) amounts to checking whether sq is the least
fix-point of a set of positive propositional rules, which is well-known polynomial. Overall,
this means that checking whether sg is a legal initial state of PD is polynomial. From M,
t, and PD?, it can be easily checked in polynomial time whether A is executable wrt. s
and, furthermore, whether s’ is the minimal consistent set that satisfies all causation rules
wrt. s U AU M by computing the least fix-point of a set of positive rules and verifying
constraints on it. Thus, checking whether ¢ is a legal state transition is also polynomial in
the propositional case. O

Corollary 3.2. Given a sequence of state transitions T = (t1,...,tn), wheret; = {s;_1, A;, 8;)
fori=1,...,n, and a propositional planning domain PD = (I, (D, R)) such that the unique
answer set M of the logic program I can be computed in polynomial time, checking whether
T is legal with respect to PD is possible in polynomial time.

3.3.3.1 Optimistic Planning
From the preparatory results, we thus obtain the following result on Optimistic Planning.

Theorem 3.3. Deciding whether for a given propositional planning problem P = {PD,q)
an optimistic plan exists is (i) NP-complete, if the plan length in q is fized to a constant,
and (ii) PSPACE-complete in general. The hardness parts hold even for plain P.

Proof. (i). The problem is in NP, since a trajectory T' = (t1,...,t;) where t; = (sj_1,4;,s;)
for j = 1,...,1, such that s; satisfies the goal G in ¢ = G ?(i) can be guessed and, by
Corollary 3.2, verified in polynomial time if 4 is fixed.

NP-hardness for plain P is shown by a reduction from the satisfiability problem (SAT).
Let ¢ = Ciy A--- AC}, be a CNF, i.e. a conjunction of clauses C; = L;1 V -+ V L; ,; Where
the L; ; are classical literals over propositional atoms X = {z1,...,z,}. We declare these
atoms and a further atom ’0’ as fluents in D, and put into the initially-section Ir of the

planning domain PD = (@, (D, R)) the following constraints:

total z;. forallz; € X
forbidden =.L;1,...,7.Lim;. 1<i<k
caused 0.

Here, the first constraint effects the choice of a truth value for each fluent z;, the second
excludes choices which violate clause C;, and the third adds ’0’ as a marker to the initial
state. Clearly, PD has a legal initial state iff ¢ is satisfiable. Thus, an optimistic plan P
exists for P = (PD,0 ? (0)) iff ¢ is satisfiable. As P can easily be constructed from ¢, the
result follows.

(ii). A proof of membership in PSPACE follows from the discussion of the main results
above at the beginning of Section 3.3.2 (note Lemma 3.1). We remark that the problem
can be solved by a deterministic algorithm in polynomial workspace as follows. Similar as
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in [Byl94], design a deterministic algorithm REACH(s, s',£) which decides, given states s
and s’ and an integer ¢, whether a sequence t1,...,t; of legal transitions ¢; = (s;—1, 4;, 8;)
exists, where s = 5o and s’ = s4, by cycling trough all states s” and recursively solving
REACH(s, s",£/2]) and REACH(s",s',[(£ + 1)/2]). Then, the existence of an optimistic
plan of length £ can be decided cyclic through all pairs of states s, s’ and testing whether s
is a legal initial state, s’ satisfies the goal in given in ¢, and REACH(s, ', £) returns true.
Since the recursion depth is O(log £), and each level of the recursion needs only polynomial
space, Lemma 3.1 implies that this algorithm runs in polynomial space.

For the PSPACE-hardness part, we describe how propositional STRIPS planning as in
[Byl94] can be reduced to planning in K, where the planning domain PD is plain.

Recall that in propositional STRIPS, a state description s is a total consistent set of
propositional literals, and an operator op has a precondition pc(op), an add-list add(op),
and a delete-list del(op), which all are lists of propositional literals. The operator op can be
applied in s if pe(op) C s holds, and its execution yields the state s’ = (s del(op)) Uadd(op)
(where s’ must be consistent). Otherwise, the application of op on s is undefined. A goal
v, which is a set of literals, can be reached from a state s, if there exists a sequence of
operators op1,. .., o0ps, where £ > 0, such that s; = op;(s;—1), for i = 1,...,¢, where 5o = s,
and v C sy holds. Any such sequence is called a STRIPS-plan (of length /) for s,v. Given
8,7, a collection of STRIPS operators ops,...,0p,, and an integer £ > 0, the problem of
deciding whether some STRIPS-plan of length at most £ exists is PSPACE-complete [Byl94].
As easily seen, this remains true if we ask for a plan of length exactly £ (just introduce a
dummy operation with empty precondition and no effects).

Each STRIPS operator op; is easily modeled as action in language K using the following
statements in the always-section, i.e. the C'g part of R:

executable op; if pc(op;).
caused L after op;. for each L € add(op;)
caused L after op;, L. for each L ¢ add(op;) U del(op;)

The last rule is an inertia rule for the literals not affected by op.
The initial state s of a STRIPS planning problem can be easily represented using the
following constraints in the initially-section, i.e. the Ir part of R:

caused L. forall L € s

Finally, C'r contains the mandatory rules for unique action execution in a plain planning
domain:

nonexecutable op; if op;. 1<i<j<n
caused false after not op;, not ops, ..., not opy,.

It is easy to see that for the planning problem P = (PD,q) where PD = (f), AD) and
g =~ ? (£), some optimistic plan exists iff a STRIPS-plan of length £ for s,~ exists. Since
P is constructible from the STRIPS instance in polynomial time, this proves the PSPACE-
hardness part. O

By minor adaptions of the above proof ideas, we can also show the following;:
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Corollary 3.4. For a propositional planning problem P, computing an optimistic plan is
NPMYV -complete if the plan length in q is fized.

While membership is a direct consequence of the considerations above, hardness can be
shown by a modification of the proof of Theorem 3.3 such that the plan itself corresponds
to a valid truth assignment of a propositional formula. We refer to a similar construction
showing NPMV-hardness in the proof of part (i) of Theorem 3.12 below.

On the other hand, if the plan length is not fixed, due to the possibly exponential length
printing the solution alone might take exponential time, and thus the computation of such
a plan is provably intractable.

3.3.3.2 Secure Planning
Secure Planning appears to be harder; already recognizing a secure plan is difficult.

Theorem 3.5. Given a propositional planning problem P = (PD, q) and an optimistic plan
P for P, deciding whether P is secure is (i) 1L -complete in general and (i) co-NP-complete,
if P is proper.'* Hardness in (i) and (i) holds even for fized plan length in q and sequential
P, and if P in (i) is moreover plain.

Proof. The plan P = (A4,..., A;) for P is not secure, if a trajectory T = (t1,...,t;), where
t; = (sj—1,4;,s;), for j =1,..., £ exists, such that either (a) £ =i and s; does not satisfy
the goal in ¢, or (b) £ < ¢ and for no state s, the tuple (sg, Asy1,5) is a legal transition.
A trajectory T of any length £ can, by Corollary 3.2, be guessed and verified in polynomial
time. Condition (a) can be easily checked. Condition (b) can be checked by a call to an NP
oracle in polynomial time. It follows that checking security is in co-NPNF = 7 in general.
If P is proper, condition (b) can be checked in polynomial time, and thus the problem is in
co-NP. This shows the membership parts.

IT}-hardness in case (i) is shown by a reduction from deciding whether a QBF & =
VX3Y ¢ is true, where X,Y are disjoint sets of variables and ¢ = C; A ... ACy is a CNF
over X UY. It is well-known that this problem is II¥-complete, cf. [Pap94]. Without loss
of generality, we assume that ¢ is satisfied if all atoms in X UY are set to true.

We declare the atoms in X UY as fluents in D, and further add the propositional
fluents state0 and statel. The initially-section Ir for AD = (D, R) has the following
constraints:

total x;. forall z; € X

caused stateO.
The always-section Cr of R contains the following rules. Suppose that L; 1, ...L;,, are
all literals over atoms from X which occur in Cj, and similarly that K; i, ... K; ., are all
literals over atoms from Y that occur in C;.

total y; after stateO. forally; €Y

forbidden —.Kj;1,...,7.K; m; after state0, ~.L;1,...,7. L. 1<i<k

caused statel after stateO.

14We are grateful to Hudson Turner for pointing out that in a draft of [EFL100a], a co-NP-upper bound
as reported there obtains only if deciding executability of an action (leading to a new legal state) is in P,
and that the complexity in the general case may be one level higher up in PH. In fact, we were mainly
interested in such domains, which are covered by our notion of proper domains.
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These rules generate 2/ X legal initial states sg, . . ., sg‘xl w.r.t. (0, AD), which correspond

1-1 to the truth assignments to the atoms in X. Each such s contains precisely one of z;
and —z;, for all z; € X, and the fluent state0. The totalization rule for y; effects that each
legal state s; following the initial state contains exactly one of y; and —y;. That is, s; must
encode a truth assignment for Y. The forbidden statements check that the assignment to
X UY, given jointly by s§ and si, satisfies all clauses of ¢. Furthermore, statel must be
contained in s; by the last rule.

Let us introduce an action a, which is always executable. Then, the assumption on ¢
implies that T' = ((so, A1, 51)), where so = X U {state0}, A; = {a}, and sy = X UY U
{statel}, is a trajectory w.r.t. PD = (), AD), and thus P = {A;) is an optimistic plan for
the planning problem P = (PD, q) where ¢ = statel ? (1). It is not hard to see that P is
secure iff @ is true. Since (PD, g) is easily constructed from ®, this proves the hardness part
of (i). The hardness part of (ii) is established by a variant of the reduction; we disregard
Y (i.e., Y = 0), and modify the rules as follows: false (after macro expansion) is replaced
by statel, and the rule with effect statel is dropped. Note that the resulting planning
domain is plain. Then, the plan P = (4;) is secure iff VX ¢ is true, i.e., the CNF ¢ is
unsatisfiable, which is co-NP-hard to check. O

For Secure Planning with fixed plan length, we obtain the following result.

Theorem 3.6. Deciding whether a given propositional planning problem P = (PD,q) has a
secure plan is (i) ©E-complete, if the plan length in q is fived, (ii) XL -complete, if the plan
length in q is fixed and P is proper. Hardness in (i) holds even for deterministic and plain
PD.

Proof. Membership (i) and (ii): A trajectory T' = {(so, A1, 51),-.-,(Si—1, A4, 8;)) of fixed
length ¢ that induces an optimistic plan P = (44,...,A4;) can be guessed and verified in
polynomial time (cf. Corollary 3.2), and by Theorem 3.5, checking whether P is secure is
possible with a call to an oracle for TI¥" in case (i) and for co-NP in case (ii). Hence, it
follows that the problem is in ¥ in case (i) and in %7 in case (ii).

For the hardness part of (i), we transform deciding the validity of a QBF ® = 3ZVX3Y ¢,
where X,Y, Z are disjoint sets of variables and ¢ = C;...C) is a CNF over X UY U Z,
which is ©F-complete [Pap94], into this problem. The transformation extends the reduction
in the proof of Theorem 3.5.

We introduce, for each atom z; € Z, a fluent z; and an action set,, in D. The initially-
section, i.e. the I'g part of R, contains the following constraints:

total z;. forall z; € X
caused stateO.

Cr contains the following rules. Suppose that L; 1, ... L; ,; are all literals over atoms from
X that occur in Cj, and similarly that K; i, ... K; p,; are all literals over atoms from Y U Z
that occur in Cj.
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executable set,,. for all z; € Z
caused z; after state0, set,,. for all z; € Z
caused —z; after state0, not set,;. for all z; € Z
caused statel after state0.

total y; after stateO. forally; €Y

forbidden —.Kj;1,...,.K; m, after state0, ~.L;1,...,7.Lijpn,. 1<i<k

Given these action descriptions, there are 2/X| many legal initial states Sy o) s%'xl for
the emerging planning domain PD = (f), AD), which correspond 1-1 to the possible truth
assignments to the variables in X and contain state0. Executing in these states s§ some
actions A means assigning a subset of Z the value true. Every state si reached from s} by a
legal transition must, for each atom o € ZUY, either contain o or —a, where for the atoms
in Z this choice is determined by A. Furthermore, si must contain the fluent statel.

It is not hard to see that an optimistic plan of the form P = (4;) (where A; C {set,, |
z; € Z}) for the goal statel exists w.r.t. PD = ((), AD) iff there is an assignment to all
variables in X UY U Z such that the formula ¢ is satisfied. Furthermore, P is secure iff A;
represents an assignment to the variables in Z such that, regardless of which assignment to
the variables in X is chosen (which corresponds to the legal initial states sf), there is some
assignment to the variables in Y (i.e., there is at least some state si reachable from s}, by
doing A1), such that all clauses of ¢ are satisfied; any such s{ contains statel. In other
words, P is secure iff ® is true.

Since PD is constructible from ® in polynomial time, it follows that deciding whether a
secure plan exists for P = (PD, q), where ¢ = statel ? (1), is ¥F-hard. This proves part
(i).

For the hardness part of (ii), we modify the construction for part (i) by assuming that
Y =0, and

e replace false in rule heads (after macro expansion) by statel;

e remove the rule for statel and the total-rules for y;).

The resulting planning domain PD’ is proper: since no causation rule in Cr contains
default negation, for each transition t = (s, A, s1), the reduct PD’ ¥ coincides with PD’ <S’A’0),
and thus existence of a a legal transition (s, A, s;) can be determined in polynomial time.
Furthermore, (s, A, s1) is determined, and thus PD' is also deterministic. We have again
21X1 initial states sé, which correspond to the truth assignments to X. An optimistic plan
for the goal statel of the form P = (A;), where A; C {set,, | 2; € Z}, corresponds to an
assignment to ZU X such that ¢ evaluates to false. The plan P is secure iff every assignment
to X, extended by the assignment to Z encoded by A;, makes ¢ false.

It follows that a secure plan for P = (PD’' ¢), where ¢ = statel ? (1), exists iff the
QBF 32V X ¢ is true. Evaluating a QBF of this form is ¥'-hard (recall that ¢ is in CNF).
Since P is constructible in polynomial time, this proves ¥ -hardness for part (ii). (|

Again, the guess and check algorithms sketched in the membership proof above can be
directly used for computing the respective plans, resulting in a transducer having secure
fixed length plans as output. This results in the following corollary:
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Corollary 3.7. Given a propositional planning problem P = (PD,q) computing a secure
plan is (i) STMV-complete, if the plan length in q is fized to a constant, (i) SLMV-
complete, if the plan length in q is fixed to a constant and P is proper.

As for hardness, we can use the QBF reduction from above, where the respective hard
problem for SFMV (or FMV, respectively) is computing an assignment for Z for the QBF
AZVX3IY ¢ (or AZVX ¢, respectively).

Next, we consider Secure Planning under (i) arbitrary given plan length and (ii) without
given plan length. Note that in K plan length is always considered to be given. However
the following theorem shows, that things get significantly harder in case of (ii), i.e. if we
modify the definition of K planning problems with this respect.

As mentioned above, we can build a secure plan step by step only if we know all states
that are reachable after the steps A1, ..., A; so far when the next step A;y1 is generated.
Either we store these states explicitly, which needs exponential space in general, or we store
the steps Aj,. .., 4; (from which these states can be recovered) which also needs exponential
space in the representation size of (PD,¢). In any case, such a nondeterministic algorithm
for generating a secure plan needs exponential time. The next result shows that NEXPTIME
actually captures the complexity of deciding the existence of a secure plan.

Note that, if we consider plan length 4 is unspecified in the input, i.e. we want to know
whether a secure plan of any length exists, the plan length for reaching a particular goal
state may intuitively be 2-EXP (double exponential) in the representation size of (PD,q),
as pinpointed above.

In fact, for any case we can show that in general there is no better solution than storing
these sets of states explicitly, which needs exponential space in general, i.e.

Theorem 3.8. Deciding whether a given propositional planning problem P = {(PD,q)
has a secure plan is (i) NEXPTIME-complete for arbitrary given plan length i and (ii)
EXPSPACE-complete if we do not consider plan length as part of the input. Hardness holds
in both cases even for plain (and thus deterministic) P.

Proof. As for the membership part of (i), the size of a string representing a secure plan
P = (A4,...,A;) of length i for the query ¢ = Goal ? (i) is at most O(i - |PD|), which
is single exponential in the sizes |PD| and logi of the strings for PD and i, respectively.
Hence, this string has size single exponential in the size of P. We can thus guess and verify
a secure plan P for P in (single) exponential time as follows:

1. Compute the set Sp of all legal initial states. If So = (), then P is not secure (in fact,
no secure plan exists).

2. Otherwise, for each j = 1,...,i, compute for each s € S;_; the set S;(s) = {s' |
(s, Aj,s') is a legal transition}, and halt if some S;(s) is empty; otherwise, set S; =
UsESj_1 SJ (S)

3. Finally, check whether the goal is satisfied in every s € S;, and accept iff this is true.

Therefore, the problem is in NEXPTIME for given plan length. 1® As for (ii), if we assume
that plan length is unspecified in the input, the above computation can still be done by

15i.e., the computation sketched here needs at most 2™ x 2" = 227 polynomial checks whether (s, A;, s’)
is a legal transition.
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guessing the A; stepwise instead of guessing the whole plan at once requiring exponential
space to store the current set of states S; at each step j. Furthermore we need a counter
for the plan length, to detect possible loops which are guaranteed after double exponential
time. This counter (in binary representation) also needs exponential space. This places the
general problem in NEXPSPACE=EXPSPACE.

The hardness part for (i) is shown by a generic Turing machine (TM) encoding. That
is, given a nondeterministic TM M which accepts a language L in exponential time and
an input word w, we show how to construct a plain planning problem P = (PD,q) in
polynomial time which has a secure plan iff M accepts w. Roughly, the states in the set Sy
of legal initial states encode the tape cells of M and their initial contents; the actions in a
secure plan represent the moves of the machine, which change the cell contents, and lead to
acceptance of w. While the idea is clear, the technical realization bears some subtleties.

The reduction is as follows. Without loss of generality, M halts on w in less than 2
many steps, where n = |w| is the length of the input and k& > 0 is some fixed integer
(independent of n), and M has a unique accepting state. We modify M such that it loops in
this state once it is reached. The cells Cy,C] ...,Cn, where N = on* 1, of the work tape of
M (only those are relevant) are represented in different legal states of the planning domain.

Initially, the cells Co, ..., Cj,|—1 contain the symbols wo,w; ..., w,|—1 of the input word
w, and all other cells C|, ..., Cn are blank.
The computation of M on w is modeled by a secure plan P = (A4,,..., Ay), in which

each A; contains a single action a,; which models the transition of M from the current
configuration of the machine to the next one. A configuration of M, given by the contents
of the work tape, the position of the read-write (rw) head, and the current state of the
machine, is described by legal knowledge states s;, 0 < ¢ < N, such that s; contains the
symbol o currently stored in C;, the current position h of the rw-head, and the current state
q of M; all this information is encoded using fluents.

The information to which cell C; a legal knowledge state corresponds is given by literals
+iq,...,£i,r, which represent the integer ¢ € [0, N] in binary encoding, where i; (resp.
—i;) means that the j-th bit of ¢ is 1 (resp. 0). The position of the rw-head, h € [0, N],
is represented similarly using further literals +hq,...,+h,». Each symbol ¢ in the tape
alphabet ¥ of M is represented by a fluent p,. Similarly, each state g in the set @ of states
of M is represented by a fluent p,; in each legal knowledge state, exactly one p, and one
pq is contained. There are on* legal initial knowledge states, which uniquely describe the
initial configuration of M, in which the rw-head of M is placed over Cy, M is in its initial
state (say, ¢1), and the work tape contains the input w.

The legal initial knowledge states s are generated using constraints which “guess” a value
for each bit of 4, initialize the contents of C; with the right symbol p,, include —h; for all
j=1,...,n*F (ie., set h = 0), and include ¢q;. More precisely, the initially-section, i.e.
Ig of R, in AD = (D, R) is as follows:
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total i;. forall j=1,...,n*

caused —h;. forall j=1,...,n* % set h=0
caused Py, if —i1, —l2,..., —iyk. % work tape position 0

caused Py, if 41, —%2,..., —lyk- % work tape position 1

caused py,,,_, if “code of [w| —1”. % work tape position |w| -1

caused p, if not p,,,...,n0t Py, . % rest of tape is blank
caused q;. % initial state is qq
Here, the tape alphabet ¥ is assumed to be ¥ = {U, 01, 02, ..., o}, where Ul is the

blank symbol.

The transition function of M is given by tuples 7 = (o, q, o', d, ¢'), which reads as follows:
if M is in state ¢ and reads the symbol o at the current rw-head position h (i.e., Cj, contains
o), then M writes o’ at the position h (i.e. into C}), moves the rw-head to position h + d,
where d = £1, and changes to state ¢’. (Without loss of generality, we omit here modeling
that the rw-head might remain in the same position.)

Such a possible transition 7 is modeled using rules which describe how to change a
current knowledge state s, which corresponds to the tape cell C;, to reflect C; in the new
configuration of M. Informally, its constituents are manipulated as follows.

work tape contents For the case that h = i, i.e., the rw-head is at position ¢, a rule
includes p, into the state. Otherwise, i.e., the rw-head is not at h, an inertia rule
includes p,, where ¢ is the old contents of C;, to the new knowledge state.

rw-head position The change of the rw-head position by +1, is incorporated by replacing
h with h + 1. This is possible using a few rules, which simply realize an increment
resp. decrement of the counter h. We assume at this point that M is well-behaved,
i.e., does not move left of Cy.

state A rule includes p, for the resulting state ¢’ of M into the new knowledge state.

To implement this, we introduce for each possible transition 7 = (o, q,0’,d,q') of M an
action ., whose executability is stated in C'g as follows:

executable a, if py, p,, h-atPosition_i.
executable «, if not h_atPosition _i.

Here h_atPosition_i is a fluent atom, which indicates whether the rw-head position h is
the index ¢ of the cell C; represented by the knowledge state.
Furthermore, several groups of rules are put in the always-section, i.e. Cr of R. The first

group serves for determining the value of h_atPosition_i, using auxiliary fluents ey, ..., e,x:
caused e; if hj, ;. forall j =1,...,nF
caused e; if —hj, —i;. forall j =1,...,n*
caused h_atPosition_i if eq1,...,epk.

The execution of «., effects a change in the state and the contents of C;:
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caused p, after a,, h_atPosition_i.
caused p, after a,, p,, not h_atPosition_i. for all o € &
caused p, after a;.

Depending on the value of d, different rules are added for realizing the move of the
rw-head. Recall that, given the binary representation £011---1 of an integer z, the binary
representation of z + 1 is £100---0. The rules for d = 1 are as follows.

caused h; after a,, —h;.
caused hy after a,, —hs, hy.
caused —h; after a,, —hsg, h;.

caused h,» after a,, —h,x, hpr_q1,...,h1.

caused —h,x_; after a,, —h,e, hpp_1,...,hy.

caused —h; after a;, —hpr, Apk_1,...,h1.

caused hy after a,, hy, —hj. where 1 < j < £ < nk
caused —hy after a,, —h¢, —h;. where 1 < j < £ < nk

The last two rules serve for carrying the leading bits of 4, which are not affected by the

increment, over to the new knowledge state. (This could also be realized in a simpler way

using inertial statements; however, recall that such rules are not allowed in plain domains.)
The rules for d = —1 are similar, with the roles of 0 and 1 interchanged:

caused —h; after a,, hi.
caused —hy after a,, ha, —h;.
caused h; after a,, ha, —h;.

caused —h,» after a,, hye, —hpr_q,...,—h1.

caused h,x_, after a,, hyx, —hye_1,...,—h1.

caused h; after a,, h,x, —hpk_1,--.,—h1.

caused hy after a,, he, hj. where 1 < j < £ < nk
caused —hy after a,, —hy, hj. where 1 < j < £ < nk

Further rules are added to Cg for carrying the cell index i over to the next knowledge
state:

caused ¢; after ¢;. forall j =1,...,n*
caused —i; after —i;. forall j =1,.. .,nk

Finally, the mandatory rules of a plain planning domain enforcing the execution of one
and only one action in each transition are added to Cg.

As easily checked, all rules that we have introduced satisfy the syntactic restrictions for
plain planning domains.

Without loss of generality, suppose now that g, € @ is the unique accepting state of M.
Then, a secure plan P = (Ay,..., Ay) of length £ reaching the goal ¢, corresponds to the
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fact that M will, starting from the initial configuration, be in the accepting state ¢,, after
executing the transitions 7i,..., 74, where A; = {a,}, for j = 1,...,£. By our assumption
on M, we know that M can reach some accepting configuration within N steps iff it can
reach an accepting configuration in exactly N steps. Thus, we have that M accepts the
input w iff there exists some secure plan of length N for the goal ¢,, in the planning domain
PD = (), AD) where AD is from above. In other words, M accepts w within N steps iff the
proper propositional planning problem P = (PD, g,, ? (N)) has a secure plan.

As easily seen, P can be constructed in polynomial time from M and w. This proves
NEXPTIME-hardness of deciding the existence of an exponential length secure plan, even
under the restriction to plain planning problems and concludes the proof of (i).

EXPSPACE-hardness of (ii) follows immediately from the proof of (i) and from the
fact that NEXPSPACE=EXPSPACE: we can take the proof of (i) as is with minor mod-
ifications; If we simply drop the restriction that M halts on w in less than 2n” many
steps, the encoding above models a NEXPSPACE Turing machine by our assumption of

an exponentially restricted worktape Co, C; ..., Cn, for which deciding acceptance on w is
EXPSPACE-hard. O

Finally, secure planning has lower complexity if the plan length is fixed and concurrent
actions are not allowed.

Theorem 3.9. Deciding whether a given propositional planning problem P = (PD,q) has
a secure sequential plan is (i) IIY -complete, if q is fived, and (ii) DY -complete, if q is fived
and P is proper. The hardness part of (ii) holds even for plain P.

Proof. Tf the plan length 4 in the query ¢ = Goal ? (i) is fixed, the number of candidate
sequential secure plans, given by (a+ 1), where a is the number of actions in PD, is bounded
by a polynomial.

A candidate P = (A;,...,A,) is not a secure plan, if (a) no initial state s¢ exists, or
(b) like in the proof of Theorem 3.5, a trajectory T' = (t1,...,ts), where t; = (s;j_1, Aj,;),
for j =1,...,¢ exists, such that either (b.1) £ =4 and s; does not satisfy the goal in ¢, or
(b.2) £ < i and for no state s, the tuple (s;, Agt1,5) is a legal transition. The test for (a)
is in co-NP, while the test for (b) is in £ in general and in NP if P is proper (cf. proof of
Theorem 3.5). Note that (a) is identical for all candidates.

Thus, the existence of a sequential secure plan can be decided by the conjunction of
a problem in NP and a disjunction of polynomially many instances of a problem in TI¥
in case (i) and in co-NP in case (ii); since NP C II and both TI¥ and co-NP are closed
under polynomial disjunctions and conjunctions of instances (i.e., a logical disjunction resp.
conjunction of instances can be polynomially transformed into an equivalent single instance),
it follows that the problem is in IT¥ in case (i) and in D¥ in case (ii).

17 -hardness for case (i) follows from the reduction in the proof of Theorem 3.5. There,
a secure, sequential plan exists for the query 1 ? (1) iff the plan P = ({a}) is secure.

D¥-hardness for case (ii) is shown by a reduction from deciding, given CNFs ¢ =
ANy Lii VL2V L3 and ¢ = /\;11 K;1V Kj2V K3 over disjoint sets of atoms X and Y,
respectively, whether ¢ is satisfiable and v is unsatisfiable.

The initially-section, i.e. Ig of R contains the following constraints:
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total x;. for all z; € X
caused L;, if =.L; 2, —.L; 3. foralli=1,...,n
total y;. forall y; €Y
caused f if . K; 1, .K;9, 7.K;3. foralli=1,...,m

Obviously, these rules satisfy the conditions for a plain planning domain. Then, for the
query ¢ = f ? (0), the only candidate for a sequential secure plan is the empty plan P = ().
As easily seen, P is a secure plan for g iff ¢ is satisfiable (which is equivalent to the existence
of some legal initial state) and 1) is unsatisfiable (which means that f is true in each initial
state). This proves the hardness part of (ii). O

We conclude this section with remarking that the constructions in the proofs of the
hardness parts of Theorem 3.5, items (i) and (ii) of Theorem 3.6, and item (i) of Theorem 3.9
involve planning problems that have length fixed to 1. For plan length fixed to 0, these
problems have lower complexity (co-NP-completeness for the problems in Theorem 3.5 and
D¥-completeness for the other problems).

3.3.4 Complexity of Planning with Action Costs

We will now extend our results to the language K¢ where action costs come into play. Here,
we will focus on the following questions:

Checking Well-Definedness: Decide whether a given action description is well-defined
wrt. a given planning domain PD, resp. whether a given planning domain PD is well-
defined.

Admissible Planning: Decide whether for a propositional planning problem P an admis-
sible (optimistic/secure) plan exists wrt. a given cost value ¢, resp. find such a plan.

Optimal Planning: Find an optimal (optimistic/secure) plan for a given planning prob-
lem. 16

As opposed to the previous section where we also investigated arbitrary plan length, in
this section, we confine the discussion to the case of planning problems P = (PD,Q ? (1))
which look for polynomial length plans, i.e. problems where the plan length [ is fixed, resp.
bounded by some polynomial in the size of the input.

3.3.4.1 Checking Well-Definedness

We start by considering checking well-definedness. For this problem, it is interesting to
investigate the non-ground case, assuming that the background knowledge is already eval-
uated. This way we can assess the intrinsic difficulty of this task obtaining the following
result.

16For optimal planning, plan ezistence is not a problem of interest since it obviously simply amounts to
checking well-definedness together with plan existence for the cost-free case.
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Theorem 3.10 (Complexity of checking well-definedness). Given a K¢ planning
domain PD = (I1, (D, R)) and the unique model M of 11, checking (i) well-definedness of
a given action declaration d of the form (38.5) wrt. PD and (ii) well-definedness of PD are
both TIL -complete.

Proof. Membership: As for (i), d is violated if it has a non-empty costs-part and a legal
action instance a = p(x1,...,%,) such that either (1) there exist witness substitutions
and @' for a such that timef = timef', costg(a) = val(C8) and costyr(a) = val(CE"), and
val(CO) # val(CH'), or (2) there is no witness substitution 6 for a such that costg(a) =
val(C0) is an integer. Such an a can be guessed and checked, via a witness substitution, in
polynomial time, and along with a also 8 and 8’ as in (1); note that, by definition, all variables
must be substituted by constants from the background knowledge (including numbers), and
so must be values for time if it occurs in ¢1,...,cx. Given a, we can decide (2) with the
help of an NP oracle. In summary, disproving well-definedness of d is nondeterministically
possible in polynomial time with an NP oracle. Hence, checking well-definedness of d is in co-
©P = TIL’. The membership part of (ii) follows from (i ) since well-definedness of PD reduces
to well-definedness of all action declarations in it, and II¥" is closed under conjunctions.
Hardness: We show hardness for (i) by a reduction from deciding whether a Quantified
Boolean Formula (QBF)
Q=VX3IYc1 A---Aeg

where each ¢; = L;1 V---V L4, 4 =1,...,k, is a disjunction of literals L; ; on the atoms
X=z1,...,2pand Y = Zp41...,Zm, is true. Without loss of generality, we may assume
that each ¢; contains three (not necessarily distinct) literals, which are either all positive or
all negative.

We construct a planning domain PD and d as follows. The background knowledge, II,
is

bo01(0). bool(1).
pos(1,0,0). pos(0,1,0). pos(0,0,1). pos(1, 1,0). pos(1,0,1). pos(0,1,1). pos(1,1,1).
neg(0,0,0). neg(1,0,0). neg(0,1,0). neg(0,0, 1). neg(1,1,0). neg(1,0,1). neg(0,1,1).

Here, bool declares the truth values 0 and 1. The facts pos(Xy, X2, X3) and neg(Xy, Xa, X3)
state those truth assignments to X7, X2, and X3 such that the positive clause X; V Xs V X3
resp. the negative clause 7 X7 V =Xy V = X3 is satisfied.

The rest of the planning domain PD consists of the single action declaration d of the
form

p(Vy,...,Vy) requires bool(Vy),..., bool(Vy) costs O where cf,...,cj.

where

. pOS(Vi’l,Vi,g,Vi@), if ¢; = Ti1 Vxi2 VX3, .
Cc. = . Z—].,...,k.
neg(Vi 1,Vio, Vig), ifc; =1 VoV a3,

For example, the clause ¢ = z1 V z3 V 26 is mapped to ¢* = pos(Vy,Vs,Ve). It is easy
to see that each legal action instance a = p(bi,...,b,) of d corresponds 1-1 to the truth
assignment o, of X given by o,(x;) = b;, for i = 1,...,n. Furthermore, a has a cost value
defined (which is 0) iff the formula 3Y (¢c104 A- - - Acgoy) is true. Thus, d is well-defined wrt.
PD iff Q is true. Since PD and d are efficiently constructible, this proves II¥-hardness. O
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Observe that in the ground case, checking well-definedness is much easier. Since no
substitutions need to be guessed, the test in the proof of Theorem 3.10 is polynomial. Thus,
by our assumption on the efficient evaluation of the background program, we obtain:

Corollary 3.11. In the ground (propositional) case, checking well-definedness of an action
description d wrt. a K¢ planning domain PD = (II,{D, R)), resp. of PD as a whole, is
possible in polynomial time.

We remark that checking well-definedness can be expressed as a planning task in K, and
also by a logic program; this will be considered in Section 4.3.7.

3.3.4.2 Admissible Planning
We now turn to computing admissible plans.

Theorem 3.12 (Complexity of admissible planning). For polynomial plan lengths,
deciding whether a given (well-defined) propositional planning problem (PD,q) has (i) some
optimistic admissible plan wrt. to a given integer b is NP-complete, and finding such a plan
is complete for NPMV, (ii) deciding whether (PD,q) has some secure admissible plan wrt. to
a given integer b is ¥ -complete, and computing such a plan is XYMV -complete. Hardness
holds in both cases for fized plan length.

Proof. Membership (i): The problems are in NP resp. NPMV, since if [ is polynomial in
the size of P, any optimistic plan P = (4;,...,A;) for P with a supporting trajectory
T = {t1,...,t;) for P can be guessed and, by Theorem 3.3, verified in polynomial time.
Furthermore, costp(P) < b can be efficiently checked, since costp(P) is easily computed
(all costs are constants).
Hardness (i): K is a fragment of K¢, and each K planning problem can be viewed as the
problem of deciding the existence of resp. finding an admissible plan wrt. cost 0. As was
previously shown in Theorem 3.3, deciding existence of an optimistic plan for a given K
planning problem is NP-hard for fixed plan length [; hence, it is also NP-hard for K.

Whereas we have only sketched how to show hardness for actually finding such a plan
in K (cf. Corollary 3.4), we will now give the full proof for admissible planning in K¢ We
show that finding an admissible optimistic plan is hard for NPMV by a reduction from
the well-known SAT problem, cf. [Pap94], whose instances are CNFs ¢ = ¢; A --- A ¢, of
clauses ¢; = L;1 V --+V L; m;, where each L; ; is a classical literal over propositional atoms
X ={z1,...,2n}

Consider the following planning domain PDy for ¢:

fluents: ri. ... Tnp. statel. statel.
actions: ¢y costs 1. ... ¢ costs 1.
sety,. ... sety,.
initially: total x1. ... total z,.
caused state0.
always: caused statel after stateO.
executable ¢; if —.Ly3, ..., =.Lim,-

forbidden after —.L;;, ..., —=.Lip,, not c;.
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executable ¢; if —.Lg1, ..., 2.Lpm,-
forbidden after —.Lgi, ..., —.Lgm,, Dot ci.
executable set,, if x;. forbidden after z;, not set,,.

executable set,, if z,. forbidden after z,, not set,,.

The fluents z; and state0 and the total statements in the initially-section encode
the candidate truth assignments. The subsequent statements force c; to be executed iff the
corresponding clause is violated by the truth assignment encoded in the initial state. The
final pairs of executable and forbidden statements force actions set,, to be executed iff
the corresponding fluents z; hold. This is because it is necessary to directly extract the
computed truth assignments from the plan, since we are dealing with a function class. The
fluent statel identifies the state at time 1.

Consider now the planning problem Py = (PDgy, statel1?(1)). Clearly, each optimistic
plan P for P corresponds to a truth assignment op of X and vice versa, and costp, (P) is
the number of clauses violated by op. Thus, the admissible optimistic plans for Py wrt.
cost 0 correspond 1-1 to the satisfying assignments of ¢. Clearly, constructing Py from ¢ is
efficiently possible, as is constructing a satisfying truth assignment ¢ from a corresponding
plan P (because of the actions set,,). This concludes the hardness proof.

Membership (i1): Since the security of each optimistic plan admissible wrt. cost k can be
checked, by Theorem 3.5, with a call to a II¥-oracle, membership in ¥ resp. in MV
follows by analogous considerations as in (i) (where no oracle was needed).

Hardness (ii): For the decision variant, ¥4 -hardness is again immediately inherited from the
P _completeness of deciding the existence of a secure plan of a problem in the language K,
with hardness even for fixed plan length (cf. Theorem 3.6 above). For the plan computation
variant, we give a reduction from the following %2 MV-complete problem: An instance I is
an open QBF

Q[Z] =VX3YP[X,Y, Z]

where X = z1,...,21, Y = y1,...,Ym, and Z = zq,..., z,, respectively, and ®[X,Y, Z] is
(w.l.o.g.) a 3CNF formula over X, Y, and Z. The solutions S(I) are all truth assignments
over Z for which Q[Z] is satisfied.

Suppose that ®[X,Y,Z] = ¢1 A... Acy where ¢; = ¢;1 V ¢i2 V ¢i,3. Now consider the
following planning domain PD gz for Q[Z], which is a variant of the planning domain given
in the proof of Theorem 3.6.

fluents: Ti. ... Zi- Y1- --- Ym- 21- -.. Zn. statel. statel.
actions: set,, costs 0. ... set; costs 0.
initially: total x;. ... total ;.
caused stateO.
always: caused statel after stateO.
executable set;,. executable set.,.... executable set. .

caused x; after x;. caused — x; after — z;.

caused z; after z;. caused —zx; after —z;.
total y; after state0. ... total y,, after stateO.
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caused z; after set,,. caused —2; after not set,.

caused 2z, after set, . caused — 2, after not set,, .
forbidden —.C4 1,—.C12,7.C1 3 after stateO.

forbidden —.Ck1,.Ch2,.Cr3 after state0.

There are 2% many legal initial states s', ..., 2™ for PDgz), which correspond 1-1
to the possible truth assignments to X and all these initial states contain state0. Starting
from any initial state s?, executing a set of actions represents a truth assignment to the
variables in Z. Since all actions are always executable, there are 2/4! executable action sets
Ay, ..., Ay z, which represent all truth assignments to Z.

For each pair s and A4; there exist 2/¥/ many successor state candidates s>?, . .., g2
which contain fluents according to the truth assignment to X represented by s, fluents
according to the truth assignment to Z represented by A;, and fluents according to a truth
assignment to Y, and the fluent statel. Of these candidate states, only those satisfying all
clauses in ®[X,Y, Z] are legal, by virtue of the forbidden statements.

It is not hard to see that an optimistic plan of the form P = (A;) (where A; C {set,, |
z; € Z}) for the goal statel exists wrt. PDz iff there is an assignment to all variables
in X UY U Z such that the formula ®[X,Y, Z] is satisfied. Furthermore, P is secure iff Ay
represents an assignment to the variables in Z such that, regardless of which assignment
to the variables in X is chosen (corresponding to a legal initial state s), there is some
assignment to the variables in Y such that all clauses of ®[X,Y, Z] are satisfied (i.e., there is
at least one state s»* reachable from s? by executing A4;); any such s* contains statel. In
other words, P is secure iff ®[X,Y, Z] is true. Thus, the admissible secure plans of PDg;z
wrt. cost 0, correspond 1-1 with the assignments to Z for which Q[Z] is true.

Since PDgz is constructible from ®[X,Y, Z] in polynomial time, it follows that com-
puting a secure plan for P = (PDgz), q), where ¢ = statel? (1), is YPMV-hard. O

3.3.4.3 Optimal Planning

We finally address the complexity of computing optimal plans.

Theorem 3.13 (Complexity of optimal planning). For polynomial plan lengths, (i)
computing an optimal optimistic plan for (PD,Q? (1)) in K¢ is FAY -complete, and (ii)
computing an optimal secure plan for (PD,Q? (1)) in K¢ is FAF -complete. Hardness holds
in both cases even if the plan length | is fized.

Proof. Membership (i): Concerning membership, by performing a binary search on the
range [0, max] (where maz is an upper bound on the plan costs for a plan of polynomial
length [ given by ! times the sum of all action costs) we can find out the least integer v such
that any optimistic plan P for P which is admissible wrt. cost v exists (if any optimistic
plan exists); clearly, we have costp(P) = v and cost}, = v, and thus any such plan P is
optimal. Since maz is single exponential in the representation size of P, the binary search,
and thus computing cost}, is, by Theorem 3.12, feasible in polynomial time with an NP
oracle. Subsequently, we can construct an optimistic plan P such that costp(P) = cost}
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by extending a partial plan P; = (Ay,...,4;), 1 = 0,...,1 — 1 step by step as follows.
Let A = {a1,...,am} be the set of all legal action instances. We initialize B;y; = A
and ask the oracle whether P; can be completed to an optimistic plan P = (44,..., 4;)
admissible wrt. cost}, such that A;11 C (Bjt1 \ {a1}). If the answer is yes, then we update
Biy1 := By \ {a1}, else we leave B;;; unchanged. We then repeat this test for aj;,
j = 2,3,...,m; the resulting B;;1 is an action set such that P11 = (Aj,...,A;, Ai11)
where A;;; = B;;; can be completed to an optimistic plan admissible wrt. cost},. Thus,
A;41 is polynomial-time constructible with an NP oracle.

In summary, we can construct an optimal optimistic plan in polynomial time with an NP
oracle. Thus, the problem is in FAZ.

Hardness (i): We show hardness for plan length [ = 1 by a reduction from problem MAX
WEIGHT SAT [Pap94], where an instance is a SAT instance ¢ = ¢; A --- A ¢ as in the
proof of Theorem 3.12.(i), plus positive integer weights w;, where ¢ = 1,..., k. Then, S(I)
contains those truth assignments o of X for which wy.(0) =3, . cio—true Wi i maximal.

To that end, we take the planning domain PDy as in the proof of Theorem 3.12 and
modify the cost of ¢; to w;, for i = 1,..., k, thus constructing a new planning domain PDj.
Consider now the planning problem P; = (PDy, statel?(1)). Since the actions ¢; are the
only actions with nonzero cost, any plan (corresponding to a truth assignment o) will be
associated with the sum of weights of violated clauses, wy;,(0) = (Ele W;) — Wsqt (o). Since
Zle w; is constant for I, minimizing wy, (o) is equivalent to maximizing wse: (o). Hence,
there is a one-to-one correspondence between optimal optimistic plans of Pr (for which
Wyio(0) is minimal) and maximal truth assignments for I. Furthermore, computing Py
from I and extracting a MAX-WEIGHT SAT solution from an optimal plan P is efficiently
possible. This proves FAF-hardness.

Membership (ii): The proof is similar to the membership proof of (i), but uses an oracle
which asks for completion of a partial secure plan P; = (Aq,...,A;) to a secure plan P =
(A1,...,A;) such that A;11 C (Biy1 \ {a;}) and P is admissible wrt. cost}, rather than of
a partial optimistic plan. This oracle is, as easily seen, in ©¥. Thus, computing an optimal
secure plan is in FAY.

Hardness (ii): We show hardness by a reduction from the following problem, which is FAL-
complete (cf. [Kre92]): Given an open QBF Q[Z] = VX3IY ®[X,Y, Z] like in the proof of
Theorem 3.12.(ii), compute the lexicographically first truth assignment of Z for which Q[Z]
is satisfied.

This can be accomplished by changing the cost of each action set.; in PDgz from 0
to 2" 7% ¢ =1,...,n. Let PD'[Q[Z]] be the resulting planning domain. Since the cost of
set,, (i.e., assigning z; the value true) is greater than the sum of the costs of all set; for
i+ 1 < j < n, an optimal secure plan for the planning problem (PD'[Q[Z]],statel? (1))
amounts to the lexicographically first truth assignment for Z such that Q[Z] is satisfied.
Thus, FAF-hardness of the problem follows. O



Chapter 4

Transformations to Answer Set
Programming

The goal of this chapter is to introduce transformations from planning problems in K¢ into
logic programs such that the answer sets of these programs correspond to solutions, i.e.
plans, of the problem at hand. In Section 3.3 we have already discussed that some planning
problems, such as secure planning and secure optimal planning do in general not allow for
such direct translations, even under fixed constant plan length. Whereas problems on the
second level of the polynomial hierarchy can be expressed as answer set programs by use
of disjunction, secure planning is located on the third level of the PH, even for plan length
fixed to a constant, unless the domain at hand is proper. We will on the one hand introduce
interleaved computations where direct encodings into a single program are too expensive
or not feasible but also identify some syntactic subclasses of proper K planning problems
where secure planning becomes easier.

The remainder of this chapter is organized as follows. First, we will recall general meth-
ods of problem solving in ASP by means of the so called “guess and check” paradigm [EFLP00],
which is intuitively splitting a problem into (i) guessing possible solutions first and (ii) then
checking these candidate solutions by appropriate constraints and rules. Many answer set
programs reflect this structure and can be divided into guessing and checking rules, re-
spectively. In the literature, this paradigm is also denoted as “generate and test” some-
times [Lif02].

We will furthermore introduce a general approach for integrating separate “guess” and
“check” programs into a single disjunctive logic program which solves the overall problem
by using meta-interpretation techniques. We will show the applicability of our method by
means of two well-studied problems in Answer Set Programming, namely, QBFs with one
quantifier alternation and “Strategic Companies”, a problem from the business domain.

After that we will gradually apply the introduced ASP methods to planning in K¢,
providing translations for optimistic planning, optimistic optimal planning, secure checking,
secure planning and secure optimal planning, respectively. Here, we will discuss direct
encodings in a single program as well as interleaved computations by separate “guess” and
“check” programs. The provided methods serve as a basis for the DLVX planning system
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which we present in Chapter 5.

4.1 General Methods for Problem Solving in ASP

Before discussing particular translations from planning problems in our formalism to logic
programs, we will discuss general methods of problem solving in ASP by means of the so
called “guess and check” paradigm. For instance, ASP allows for encoding hard problems
on the second level of the polynomial hierarchy by use of disjunctive logic programming
where solutions can be guessed and verified in polynomial time by means of an (co-)NP
oracle. As pinpointed in Section 3.3 some relevant problems concerning planning lie within
this class, e.g. checking plan security, or secure plan generation for proper planning domains
with fixed plan length. On the other hand, by well-known complexity results (cf. Theo-
rem 2.2), problems in this class are the “hardest” problems solvable with disjunctive logic
programming.'”

The idea behind the general discussion here and in the following section is that the
methods presented can successfully be applied in translations from K and K¢ planning
problems to logic programming which we will show in Section 4.3 below.

4.1.1 Guess and Check - The NP Case

A general method for solving NP problems using answer set programming is given by the
so called “guess and check” paradigm [EFLP00, LPF102]: First a (possibly disjunctive)
program is used to guess a set of candidate solutions, and then rules and constraints are
added which eliminate unwanted solutions. DLPs allow for the formulation of problems in
NP in a very intuitive way (e.g. solutions of 3-colorability, deterministic planning, etc.) if
checking is easy (polynomial), such as checking whether no adjacent nodes have the same
color, a course of deterministic actions reaches a certain goal, etc. For instance, given a
graph as a set of facts of the form node(z). and edge(z,y). we can write a simple DLP
which guesses and checks all possible 3-colorings as follows:

col(red,X) v col(green,X) v col(blue,X) :- node(X). } Guess
- edge(X,Y), col(C,X), col(C,Y). } Check

As easily seen, this program is head-cycle-free. Many NP-hard problems allow for such
concise HEDLP encodings within the framework of Answer Set Programming (cf. Proposi-
tion 2.3). In particular, we will discuss such intuitive HEDLP encodings for solving opti-
mistic planning problems with fixed plan length in Section 4.3.1, or checking plan security
for certain classes of proper planning domains in Sections 4.3.4.1 and 4.3.4.2 below.

However, we also might want to express a problem which is complementary to some NP
problem, and thus belongs to the class co-NP; it is widely believed that in general, not all
such problems are in NP and hence not always a polynomial-size “certificate” checkable in
polynomial time exists. One such problem is the property that a graph is not 3-colorable.
Such properties p can be expressed by a HEDLP II,, where the property holds iff II, has

17We note that additional features for optimal answer set computation such as weak constraints in DLV
further increase expressiveness to AL, cf. [BLR0O].
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no answer set at all. Checks in co-NP typically occur as subproblems within more complex
problems which have complexity higher than NP. An example for such a check is checking
plan security in proper planning domains (cf. Section 3.3).

4.1.2 Guess and Check - The X! Case

Encoding “guess and check” problems where the check itself is in co-NP but not known to be
polynomial or in NP is not always obvious. For instance, secure plan generation for proper
planning domains with fixed plan length as stated above involves such a co-NP check.

Similarly, checking plan security in general can be seen as such a problem, where a plan
P =(A4,,...,A,) is insecure if we can guess a (partial) trajectory ¢ which either (a) reaches
a non-goal sate in step n (this check is polynomial) or (b) reaches a state sj, j < n, such
that no legal transition (s;, Aj41,s;41) exists (co-NP check).

Problems involving such a hard check can also be found in other areas like solving
Quantified Boolean Formulae (QBFs) with one quantifier alternation (cf. Section 4.2.5.1),
finding a set of strategic companies (cf. Section 4.2.5.2), computation of minimal update
answer sets (cf. [EFST02]), etc.

This justifies the effort of spending some time on finding general strategies for solving
such kinds of problems within the Answer Set Programming framework.
A simple, commonly used workaround is to write two programs:

(i) anormal LP or HEDLP II,,.ss which guesses solution candidates, and

(i) a HEDLP (equivalently, normal LP) II.je.r which encodes the co-NP check,
and to proceed as follows:

1. compute, one by one, candidate solutions S1,S2, ... as answer sets of Il yess and
2. pipe each S; as input to I peck;

3. output S; if I pecr, U S; has no answer set.

However, by the computational power of full disjunctive logic programs (Xf’) cf. Sec-
tion 2.2.2), we know that such problems can also be expressed by a single EDLP, IT; .. In
the following, we will show a generic method which can be used to automatically combine
IIgyess and Ilcpecr into such a single program.

In general, it is not clear how to combine Ilyyess and Ilcpecr into a single program Ilgopye
which solves the overall problem. Simply taking the union Ilgyes5 UIlcpecr, does not work, and
rewriting is needed. Theoretical results [EGM97, LPF*02] informally give strong evidence
that for problems with ©¥-complexity, it is required that Il 4ect, (given as a normal logic
program or a head-cycle-free disjunctive logic program) is rewritten into a disjunctive logic
program II; ., where II', . “emulates” the inconsistency check for II, ., as a minimal
model check, which is co-NP-complete for disjunctive programs. The goal of such a rewriting
is that the answer sets of IIsove = Ilguess UIIL; .., yield the solutions of the problem. This
becomes even more complicated, as we will see, by the fact that II’,, .. can not crucially
rely on the use of negation.

These difficulties can make rewriting I;peck, to I, ... a formidable and challenging task.
The question thus rises how to construct II.,, ., from Il pecr, in general, and preferably in
an automatic way.
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4.2 Transforming co-NP Answer Set Checks to Strati-
fied Disjunctive Programs

In this section, we will provide a generic rewriting method from Icpecr to I, .. by using
a meta-interpreter approach. Thereafter, we will show how this method can be used to
achieve the integrated encoding IT;,ye.

In particular, we will proceed as follows:

1. We provide a polynomial-time transformation tr(IT) from propositional head-cycle-
free (extended) disjunctive logic programs (HEDLPs) II to (general) disjunctive logic
programs (DLPs), such that the following conditions hold:

T1 Each answer set S’ of the transformed program tr(II) corresponds to an answer
set S of II, such that S = {l | inS(!) € S’} for some predicate inS(-).

T2 If the original program has no answer sets, then #r(Il) has exactly one designated
answer set {2, which is easily recognizable.

T3 The transformation is of the form ¢r(II) = F(II) UIL,,ctq, where F(IT) is a factual
representation of II and II,,¢, is a fixed meta-interpreter.

T4 tr(Il) is modular at the syntactic level, i.e., tr(IT) = |J,.c; tr(r) holds. Moreover,
tr(IT) returns a stratified DLP which uses negation only in its “deterministic”
part, i.e. only concerning predicates which are deterministically defined by the
representation of II.

We also describe optimizations and a transformation to positive DLPs, and show that
in a precise sense, modular transformations to positive programs do not exist.

2. We show how to use tr(-) for integrating separate guess and check programs IIg,ess
and Il pecr into a single DLP Ilg,e such that the answer sets of Ilgy,. yield the
solutions of the overall problem.

The results from this section further promote and advance the guess and check pro-
gramming paradigm for ASP, and fill a gap by providing an automated construction for
integrating guess and check programs. Note that integrated encodings may be direct sub-
ject to automated program optimization, which considers both the guess and check parts as
well as their interaction in answer set engines like DLV or GNT; this is not possible for separate
programs. Furthermore, our results complement recent results about meta-interpretation
techniques in ASP, cf. [MRO01, DSTO01, EFLP03].

4.2.1 Meta-Interpreter Transformation

As mentioned above, a rewriting of a given program Il peck to a program II, .. for inte-
grating the guess and check parts into a single program is not easy to accomplish in general.
The problem is that the working of the answer set semantics is not easy to be emulated in
1T, ..k, since essentially we lack negation in IT’,, .- Upon a “guess” S for an answer set of
Msowe = Myuess UITL, .1, the reduct IS, is not-free. Recall that we want to consider only
such guesses for S, representing an answer set of IIg,.4s such that Ilpec, has no answer set.
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However, contrary to Il pc, there is no possibility to consider varying guesses for the value
of negated atoms in II’, . in combination with one guess for the negated atoms in IIgyess
— all we have is a one in one combination. Thus, we will “mark” inconsistency of Il ;¢ by
some special answer set of IT’,, _ ., which we will call 2. On the other hand, for “emulating”
negation we will have to make use of disjunction in II., . such that the non-existence of
an answer set of II', . will be encoded as a minimal model check for (2.

This leads us to consider an approach in which the program IT’, _ . is constructed by the
use of meta-interpretation techniques [MR01, DST01, EFLP03]. There, the idea is that a
program II is represented by a set of facts, F'(II), which is input to a fixed program II,,sq,
the meta-interpreter, such that the answer sets of IL,,¢¢, U F'(II) correspond to the answer
sets of II. Note that the meta-interpreters available are normal logic programs, and can not
be used for our purposes for the reasons explained above. We thus have to construct a novel
meta-interpreter which is essentially not-free but contains (non-head-cycle-free) disjunction.

To this end, we exploit the characterization of answer sets given for HEDLPs by Ben-
Eliyahu and Dechter (Theorem 2.1 on page 10). More precisely, we will use Theorem 2.1 as
a basis for a transformation from a given HEDLP II to a DLP ¢r(II) = F(II) U IT,;¢te such

that tr(II) fulfills the properties T1 — T4.

4.2.1.1 Input Representation F(II)

As input for our meta-interpreter Il,,¢:q, which we provide in the next subsection, we choose
the following representation F(II) of a propositional program II.

We assume that each rule r has a unique name n(r); for convenience, in the following
we simply identify r with n(r). For any rule r € II, we set up in F'(II) the facts

lit(h,l,r). atom(l,|l]). for each literal | € Head(r),
lit(p,l,r). for each literal I € Body™(r),
lit(n,l,r). for each literal I € Body™ (r).

While the facts for predicate 1it obviously encode the rules of II, the facts for predicate
atom indicate whether a literal is classically positive or negative. We only need this infor-
mation for head literals; this will be further explained below. Note that F(II) is a slightly
enriched representation of II and can be generated in linear time wrt. the size of II.

4.2.1.2 Meta-Interpreter II,,.¢,

We construct our meta-interpreter program II,,,¢¢,, which in essence is a positive disjunctive
program, in a sequence of several steps. They center around checking whether a guess for
an answer set S C Lit(IT), encoded by a predicate inS(-), is an answer set of II by testing
the criteria of Theorem 2.1. The steps of the transformation cast the various conditions
there into rules of I1,,,¢:,, and also provide auxiliary machinery where needed.

Step 1 We add the following preprocessing rules:

1: rule(L,R) :- 1it(h,L,R), not lit(p,L,R), not lit(n,L,R).
2: ruleBefore(L,R) :- rule(L,R), rule(L,R1), R1 < R.
3: ruleAfter(L,R) :- rule(L,R), rule(L,R1), R < Ri.



72 CHAPTER 4. TRANSFORMATIONS TO ASP

4. ruleBetween(L,R1,R2) :- rule(L,R1), rule(L,R2), rule(L,R3),
R1 < R3, R3 < R2.

5: firstRule(L,R) :- rule(L,R), not ruleBefore(L,R).

6: lastRule(L,R) :- rule(L,R), not ruleAfter(L,R).

7: nextRule(L,R1,R2) :- rule(L,R1), rule(L,R2), R1 < R2,

not ruleBetween(L,R1,R2).

8: before (HPN,L,R) :- 1it(HPN,L,R), 1lit(HPN,L1,R), L1 < L.

9: after (HPN,L,R) :- 1it(HPN,L,R), 1lit(HPN,L1,R), L < L1.

10: between(HPN,L,L2,R) :- lit(HPN,L,R), 1lit(HPN,L1,R),
1it (HPN,L2,R), L<L1, Li<L2.

11: next (HPN,L,L1,R) :- 1it(HPN,L,R), 1lit(HPN,L1,R), L < L1,

not between(HPN,L,L1,R).

12: first (HPN,L,R) :- 1it(HPN,L,R), not before(HPN,L,R).

13: last (HPN,L,R) :- lit(HPN,L,R), not after (HPN,L,R).

14: hlit(L) :- rule(L,R).

Lines 1 to 7 fix an enumeration of the rules in II from which a literal [ may be derived,
assuming a given order < on rule names (e.g. in DLV, the built-in lexicographic order; < can
also be easily generated using guessing rules). Note that under the answer set semantics, we
need only to consider rules where the literal [ to prove does not occur in the body: A rule r
cannot prove a literal [ in its head if it is positively or negatively cyclic; for the positive case
another rule r would be necessary to prove the body, making r redundant for the derivation
of 1, whereas, if [ occurs negatively in the body, the r is not in the reduct wrt. to any set S
containing /, and thus r can not contribute to prove [ either.

Lines 8 to 13 fix enumerations of Head(r), Body™ (r) and Body~(r) for each rule. The final
line 14 collects all literals that can be derived from rule heads. Note that the rules on lines
1-14 plus F(II) form a stratified program, which has a single answer set (cf. [Prz89, Prz91]).

Step 2 Next, we add rules which “guess” a candidate answer set S C Lit(II) and a total
ordering phi on S corresponding with the function ¢ in condition 2 of Theorem 2.1. We
will explain this correspondence in more detail below (cf. proof of Theorem 4.7).

15: inS(L) v ninS(L) :- hlit(L).

16: ninS(L) :- lit(pn,L,R), not hlit(L). } for each pn € {p,n}
17: notok :- inS(L), inS(NL), L !=NL, atom(L,A), atom(NL,A).

18: phi(L,L1) v phi(L1,L) :- inS(L), inS(L1), L < L1.

19: phi(L,L2) :- phi(L,L1),phi(L1,L2).

Line 15 focuses the guess of S to literals occurring in some relevant rule head in II; only
these can belong to an answer set .S, but no others (line 16). Line 17 then checks whether
S is consistent, deriving a new distinct atom notok otherwise.

We see that the input facts for atom were only needed in order to check consistency. We
could skip line 17 and the respective input facts if we prohibit classical negation in the input
program II.

Finally, line 18 guesses a strict total order phi on inS where line 19 guarantees transi-
tivity; note that minimality of answer sets prevents that phi is cyclic, i.e., that phi(L,L)
holds.
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In the subsequent steps, we will check whether S and phi violate the conditions of
Theorem 2.1 by deriving the distinct atom notok (considered in Step 5 below) in case,
indicating that S is not an answer set or phi does not represent a proper function ¢.

Step 3 Corresponding to condition 1 in Theorem 2.1, notok is derived whenever there is
an unsatisfied rule by the following program part:

20: allInSUpto(p,Min,R) :- inS(Min), first(p,Min,R).
21: allInSUpto(p,L1,R) :- inS(L1), allInSUpto(p,L,R),
next(p,L,L1,R).
22: allInS(p,R) :- allInSUpto(p,Max,R),last(p,Max,R).
23: allNinSUpto(hn,Min,R) :- ninS(Min), first(hn,Min,R).
24: allNinSUpto(hn,L1,R) :- ninS(L1), allNinSUpto(hn,L,R), for each
next (hn,L,L1,R). hn € {h,n}
25: allNinS(hn,R) :- allNinSUpto(hn,Max,R), last(hn,Max,R).
26: hasHead(R) :- 1lit(h,L,R).
27:  hasPBody(R) :- lit(p,L,R).
28: hasNBody (R) :- 1lit(n,L,R).
29: allNinS(¢h,R) :- 1it(HPN,L,R), not hasHead(R).
30: allInS(p,R) :- 1it(HPN,L,R), not hasPBody(R).
31: allNinS(n,R) :- 1it(HPN,L,R), not hasNBody(R).

32: notok :- allNinS(h,R), allInS(p,R), allNinS(n,R), 1it(HPN,L,R).

These rules compute by iteration over Body™ (r) (resp. Head(r), Body~(r)) for each rule
r, whether for all positive body (resp. head and default negated body) literals in rule r inS
holds (resp. ninS holds) (lines 20 to 25). Here, empty heads (resp. bodies) are interpreted
as unsatisfied (resp. satisfied), cf. lines 26 to 31. The final rule 32 fires exactly if one of the
original rules from II is unsatisfied.

Step 4 We derive notok whenever there is a literal [ € S which is not provable by any
rule 7 wrt. phi. This corresponds to checking condition 2 from Theorem 2.1.

33: failsToProve(L,R) :- rule(L,R), lit(p,L1,R), ninS(L1).

34: failsToProve(L,R) :- rule(L,R), lit(n,L1,R), inS(L1).

35: failsToProve(L,R) :- rule(L,R), rule(L1,R), inS(L1), L1 !=L, inS(L).

36: failsToProve(L,R) :- rule(L,R), 1lit(p,L1,R), phi(L1,L).

37: allFailUpto(L,R) :- failsToProve(L,R), firstRule(L,R).

38: allFailUpto(L,R1) :- failsToProve(L,R1), allFailUpto(L,R),
nextRule(L,R,R1).

39: notok :- allFailUpto(L,R), lastRule(L,R), inS(L).

Lines 33 and 34 check whether condition 2.(a) or (b) are violated, i.e. some rule can only
prove a literal if its body is satisfied. Condition 2.(d) is checked in line 35, i.e. r fails to
prove [ if there is some I’ # [ such that I' € Head(r) N S. Violations of condition 2.(e) are
checked in line 36. Finally, lines 37 to 39 derive notok if all rules fail to prove some literal
1 € S. This is checked by iterating over all relevant rules with [ € Head(r) using the order
from Step 1. Thus, condition 2.(c) is implicitly checked by this iteration.
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Step 5 Whenever notok is derived, indicating a wrong guess, then we apply a saturation
technique as in [EGM97, LRS01] to some other predicates, such that a canonical set
results. This set turns out to be an answer set iff no guess for S and ¢ works out, i.e., Il has
no answer set. In particular, we saturate the predicates inS, ninS, and phi by the following
rules:

40: phi(L,L1) :- notok, hlit(L), hlit(L1).
41: inS(L) - notok, hlit(L).
42: ninS(L) :— notok, hlit(L).

Intuitively, by these rules, any answer set containing notok is “blown up” to an answer
set ) containing all possible guesses for inS, ninS, and phi.

4.2.1.3 Answer Set Correspondence

Let ¢r(II) = F(II) U IL,;,etq, where F(II) is the input representation of Section 4.2.1.1 and
II,,et0 is the meta-interpreter from Section 4.2.1.2.

Clearly, tr(II) satisfies property T3, and as easily checked, ¢r(II) is modular. Moreover,
strong negation does not occur in tr(II) and default negation only stratified. The latter
is not applied to literals depending on disjunction; it thus occurs only in the deterministic
part of ¢r(II), which means T4 holds.

To establish T1 and T2, we define the literal set (2 as the following uniquely determined
set of ground literals.

Definition 4.1. Let II¢ .. be the set of rules in Iy, established in Step i € {1,...,5}.

For any program 11, let TIg = F(II) U Uieg1,3,4,51 I ;o U {notok.}. Then, Q is defined as
the answer set of Ilg.

Lemma 4.1. Q is well-defined and uniquely determined by II.

Proof. Follows immediately from the fact that Ilg is a stratified normal logic program
without — and constraints, which as well-known has a single (consistent) answer set (cf.
[Prz89, Prz91)). O

Theorem 4.2. For a given HEDLP 11 the following holds for tr(II):
1. tr(11) always has some answer set, and S' C Q for every answer set S' of tr(II).

2. S is an answer set of II & there exists an answer set S’ of tr(II) such that S = {l |
inS(l) € S'} and notok ¢ S.

3. II has no answer set < tr(Il) has the unique answer set 2.

Proof. 1. The first part follows immediately from the fact that ¢r(II) has no constraints,
no strong negation, and default negation is stratified; this guarantees the existence of at
least one answer set S of tr(Il) [Prz91]. Moreover, S’ C Q must hold for every answer set:
after removing {notok.} from Il and adding I ,,,, we obtain ¢r(II). Note that any rule
in I12,,,, fires wrt. S’ only if all literals in its head are in (2, and inS, ninS, and phi are

elsewhere not referenced recursively through negation or disjunction. Therefore, increasing
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S’ locally to the value of Q on inS, ninS, phi, and notok, and closing off thus increases it
globally to €2, which means S’ C ).

2. = Assume that S is an answer set of II. Clearly, then S is a consistent set of literals
which has a corresponding set S = {inS(l) |/ € S} U {ninS(l) | ! € Lit(II) \ S} being
one possible guess by the rules in lines 15 to 17 of II,;¢,- Let now ¢ : Lit(II) — IN be the
function from Theorem 2.1 for answer set S: Without loss of generality, we may assume two
restrictions on this function ¢:

e ¢(I)=0for all I € Lit(IT) \ S and ¢(I) >0 for all I € S.
o o(l) #o(l') for all 1" € S.

Then, the function ¢ can be mapped to a total order over S phi such that
phi(l,1") & ¢(1) > ¢(I') > 0.

This relation phi fixes exactly one possible guess by the lines 18 and 19 of IT,,¢44-

Note that it is sufficient to define phi only over literals in S: Violations of condition
2.(e) have only to be checked for rules with Body*(r) C S, as otherwise condition 2.(a)
already fails. Obviously, condition 2.(e) of Theorem 2.1 is violated wrt. ¢ iff (a) phi(Y,X)
holds for some X in the head of a rule with Y in its positive body or (b) if X itself occurs in
its positive body. While (a) is checked in lines 36, (b) is implicit by definition of predicate
rule (line 1) which says that a literal can not prove itself.

Given S and phi from above, we can now verify by our assumption that S is an answer
set and by the conditions of Theorem 2.1 that (a) notok can never be derived in tr(II)
and (b) S” and phi uniquely determine an answer set S’ of ¢r(Il) of the form we want to
prove. Here (a), can be argued by construction of Steps 3 and 4 of ¢r(II), where notok will
only be derived if some rule is unsatisfied (Step 3) or there is a literal in S (i.e. S") which
fails to be proved by all other rules (Step 4). On the other hand, as for (b), uniqueness
of S’ follows from the fact that by fixing S” and phi, the rules in Step 2 are “frozen” to
a particular guess, and that the rest of the program is free of disjunction and unstratified
default negation.

< We can prove this by similar considerations: Assume that S’ is an answer set of ¢r(II)
not containing notok. Then by the guess of phi in Step 5 a function ¢ : Lit(II) - N
can be constructed by the implied total order of phi as follows: We number all literals
leS ={l]inS(l) € S'} according to that order from 1 to |S| and fix ¢(l) = 0 for all
other literals in Lit(II). Again, by construction of Steps 3 to 5 and the assumption that
notok ¢ S’, we can see that S and the function ¢ constructed necessarily have to fulfill all
the conditions of Theorem 2.1; in particular, line 17 guarantees consistency. Hence S is an
answer set of II.

3. <= Assume that II has an answer set. Then, by the already proved Part 2 of the Theorem,
we know that there exists an answer set S’ C  of ¢r(IT) such that notok ¢ S’. By minimality
of answer sets, 2 can not be an answer set of ¢r(II).

= By Part 1 of Theorem 4.2, we know that ¢tr(IT) always has an answer set S’ C Q.
Assume that there is an answer set S’ G Q. We distinguish 2 cases: (a) notok ¢ S’ and
(b) notok € S'. In case (a), proving Part 2 of this proposition, we have already shown
that II has an answer set; this is a contradiction. On the other hand, in case (b) the
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final “saturation” rules in Step 5 “blow up” any answer set containing notok to €2, which
contradicts the assumption S’ ;% Q. O

The following proposition is not difficult to establish.

Proposition 4.3. Given a ground program II, the transformation tr(II), as well as the
ground instantiation of tr(II), is computable in LOGSPACE (thus in polynomial time).

Proof. Let I = |Lit(I)| be the number of distinct literals and » = |II| the number of rules
in the original program II. Then n = [ *r is (an upper bound of) the size of II. A relevant
part of the ground instantiation!® of transformation ¢r(II) consists of

e O(n) rules of constant size from the input representation F'(II),

O(I3r + Ir3) rules of constant size from Step 1 19,

O(I® +1r) rules of constant size from Step 2,

(
(
e O
(
(

3

I27) rules of constant size from Step 3,

O(I%r + Ir?) rules of constant size from Step 4, and
2

e (O(I?) rules of constant size from Step 5.

These ground rules can obviously be generated efficiently in LOGSPACE by a naive ground-
ing method using counters which iterate over the variables designating literals and rules of
II, respectively. Obviously, all steps of the translation ¢r(IT) as well as their ground instanti-
ations can be constructed by a fixed number of counters iterating over Lit(II) and the rules
of IT where each of these counters (in binary representation) only needs logarithmic space.
Intelligent, efficient grounding methods such as used in DLV [ELM*98a, FLMP99, LPF+02]
usually generate an even smaller ground instantiation. O

As noticed above, the transformation #r(IT) uses default negation only stratified and in a
deterministic part of the program?’; we can easily eliminate it by computing the complement
of each predicate accessed through not in the transformation and providing it in F(II) as
facts; we then obtain a positive program. (The built-in predicates < and ! = can be
eliminated similarly if desired.) However, such a modified transformation is not modular.

As shown next, this is not incidentally.

Proposition 4.4. There is no modular transformation tr'(I1) from HEDLPs to DLPs sat-
isfying T1, T2 and T3 such that tr' (1) is a positive program.

18Note that it is obviously not necessary to ground all variables over the whole Herbrand Universe, since
we do not have to ground variables designating rules by constants designating literals and vice versa.

19Here, I37 emerges from the instantiations of the rule in line 10 of II,etq: This rule has three variables
L,L1,L2 which range over all literals in Lit(II), and one variable R which ranges over the rules in II. A naive
grounding, taking all possible substitutions, results in exactly {3r ground rules. On the other hand, Ir3
emerges from the rule in line 4 which has one variable L which ranges over all literals in L4t(II), and three
variables R1,R2,R3 which range over the rules in II. For the other steps, similar considerations apply, where
the rules with the maximum number of distinct variables over r and [ cause the highest impact on the size
of the ground instantiation.

20Intuitively, default negation is only used to deterministically extend the information from the input
representation F(II).
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Proof. We assume that such a transformation exists and derive a contradiction. Let II; =
{ a - not b.} and II, = II; U {b.}. Then, ¢r'(Il;) has some answer set S,. Since tr'(-)
is modular, tr'(II;) C tr'(Il3) holds and thus Ss satisfies each rule in #r'(Il;). Hence, So
contains some answer set Sy of ¢r'(Il;) (by our assumption that ¢r'(-) is positive and by
monotonicity of positive logic programs). tr’'(IIy). Hence, Sy contains some answer set S.
By T1, we have that inS(a) € S; must hold, and hence inS(a) € S, as well. By T1 again,
it follows that IT, has an answer set S such that a € S. But the single answer set of I, is
{b}, which is a contradiction. O

We remark that Proposition 4.4 remains true if T1 is generalized such that the answer
set S of II corresponding to S’ is given by S = {l | S" = ¥(I)}, where ¥(z) is a monotone
query (e.g., computed by a normal positive program without constraints). Moreover, if a
successor predicate next (X,Y) and predicates first (X) and last (X) for the constants are
available (i.e., the universe of constants and rule names in II is finite), then computing the
negation of the non-input predicates accessed through not is feasible by a positive normal
program, since such programs capture polynomial time computability by well-known results
on the expressive power of Datalog [Pap85]; thus, negation of input predicates in F(II) is
sufficient in this case.

Note that properties T1 — T4 for tr(-) are somehow orthogonal to the notion of poly-
nomial faithful modular (PFM) transformations as introduced by Janhunen [Jan00, Jan01].
We recall the definition of PFM transformations:

Definition 4.2 (cf. [Jan00, Jan01]). Given two classes of logic programs C and C'
that are closed under union and the respective semantic operators Semc and Semcr, a
translation function Tr : C — C' is

e polynomial if for all logic programs 1 € C, the time required to compute Tr(I1) € C’
is polynomial in the size of II.

e faithful if (i) for all logic programs II € C, the Herbrand base HBn C H B,y and
(i) the models/interpretations in Semc(Il) and Semc: (Tr(Il)) are in a one-to-one
correspondence and coincide up to HBry.

o modular if (i) for all logic programs II1,IIs € C, the translation Tr(II; U II;) =
Tr(II;)UTr(I2) and (i) C' C C implies that the translation Tr(II') = II' for all logic
programs II' € C".

Our transformation ¢r(-) relates to PFM transformations as follows: On the one hand,
our translation is clearly polynomial and modular. Further, the requirement that H B C
H B,,(my and that answer sets coincide on H By (i.e., on Lit(IT)) could be fulfilled by adding
rules ! :- inS(l). for every | € Lit(Il). The number of such rules is clearly polynomial and
they could be added during input generation.

On the other hand, our condition T2 clearly contradicts faithfulness, since 2 never has
a corresponding answer set of II. Moreover, condition T1 is weaker than the one-to-one
correspondence between the answer sets of II and #r(II) required for faithfulness: In fact,
whenever II has positive cycles there might be several possible guesses for the ordering ¢
for an answer set S of IT in Theorem 2.1 reflected by different answer sets of tr(II). We
illustrate this by a short example:
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Example 4.1. Let II be the program consisting of the following four rules
rl: a = b. r2: b - a. rd: a. r4: b.

IT has a single answer set S = {a, b}, whereas tr(II) has two answer sets

S; ={...,inS(a), inS(b), phi(a,b),...} and

Sy = {...,inS(a), inS(b), phi(b, a), ...}, which intuitively reflect that the order of ap-
plications of rules r1 and r2 does not matter here, although they are cyclic. <

4.2.2 Optimizations

The above meta-interpreter Il,,.¢, can be improved in several respects. We discuss here some
modifications which, though not necessarily reducing the size of the ground instantiation,
intuitively prune the search of an answer set solver applied to #r(II).

Give up modularity (OPT,,,q) If wesacrifice modularity (i.e. that tr(IT) = J, oy tr(r)),
and allow that II,,,¢;, partly depends on the input, then we can circumvent the iterations in
Step 3 and part of Step 1. Intuitively, instead of iterating over the heads and bodies of all
rules in order to determine whether these rules are satisfied, we add a single rule in ¢r(II)
for each original rule r in II firing notok whenever r is unsatisfied. So, we replace the rules
from Step 3 by

notok :- ninS(h4), ..., ninS(ky), inS(h1), ..., inS(by),

ninS(by41), --. ninS(by,). (4.1)

for each rule r in II of form (2.1). These rules can be efficiently generated in parallel to
F(II). Lines 8 to 13 of Step 1 then become unnecessary and can be dropped.

We can even refine this further, in that for any normal rule r € Il with Head(r) = {h},
which has a satisfied body, we can force the guess of h: we replace (4.1) by

inS(h):- inS(b1), ..., inS(by),ninS(bm41), ... ninS(by,). (4.2)

In this context, adding facts 1it(p,l,c)., I € Bodyt(c) for a constraint ¢ € II is
unnecessary: Since ¢ only serves to “discard” unwanted models but cannot prove any literal,
clearly the rule (4.1) is sufficient.

However, note that dropping 1it(n,l,c¢). from F(II) requires more care: Assume that
1 € b~ (c¢) only occurs in negative bodies of constraints but nowhere else in II. Then, ninS(I)
can not be derived by any of the lines 15 or 16 in IT,,¢¢, once 1it(n,l,¢) . is dropped. Hence,
rule (4.1) for ¢ cannot “fire” in ¢r(IT) and a violation of the constraint would not be detected
in case 1it(n,l,¢). is dropped. Such critical / can be removed by simple preprocessing,
though, by removing all I € b~ (¢) which do not occur in any rule head in II. On the
other hand, all literals I € b~ (c) which appear in some other (non-constraint) rule r are not
critical, since facts 1it (hpn,l,r). (hpn € {h,p,n}) from this other rule will ensure that
either line 15 or line 16 in II,,.;, is applicable and therefore, either inS(l) or ninS (1) will be
derived. Thus, after elimination of critical literals in constraints beforehand, we can safely
drop the factual representation of constraints completely from F(II) (including 1it(n,l,c) .
for the remaining negative literals).
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Restrict to potentially applicable rules (OPT,,) We only need to consider literals
in heads of potentially applicable rules. These are all rules with empty bodies, and rules
where any positive body literal — recursively — is the head of another potentially applicable
rule. This suggests the following definition:

Definition 4.3. We call a set R of ground rules potentially applicable, if there exists an
enumeration (r;);cr of R such that Body™*(r;) C U;;ll Head(r;).

Proposition 4.5. Let IT be any ground HEDLP. Then there exists a unique mazimal set
R C 10 of potentially applicable rules, denoted by PA(II).

The set PA(IT) can be easily computed by adding a rule:
pa(r) :- lit(h,b1,R1), pa(R1), ..., 1lit(h,bm,Rn), paRm).

for any rule r of the form (2.1) in II. In particular, if m = 0 we simply add the fact pa(r).
Finally, we change line 1 in IT,¢4 to:

rule(L,R) :- 1lit(h,L,R), not 1lit(p,L,R), not lit(n,L,R), pa(R).

such that only “interesting” rules are considered.

Optimize guess of order (OPT,,) We only need to guess and check the order ¢
for literals L, L' if they cyclicly depend on one another through positive recursion wrt. a
set of literals S, i.e., they appear in the heads of rules within the same strongly connected
component of the program wrt. S.2! These mutual dependencies wrt. S are easily computed:

dep(L,L1) :- 1it(h,L,R),1it(p,L1,R),inS(L),inS(L1).
dep(L,L2) :- 1it(h,L,R),1it(p,L1,R),dep(L1,L2),inS(L).
cyclic :- dep(L,L1), dep(L1,L).

The guessing rules for ¢ (line 18 and 19) are then be replaced by:

phi(L,L1) v phi(L,L1) :- dep(L,L1), dep(L1,L), L < L1,cyclic.
phi(L,L2) :- phi(L,L1),phi(L1,L2), cyclic.

Moreover, we add the new atom cyclic also to the body of any other rule where phi appears
(lines 36 and 40) to check phi only in case II has any cyclic dependencies wrt. S.

Remark 4.1. We remark that in principle, the rule defining atom cyclic, as well as adding
this atom to the body of other rules seems superfluous at first sight. It is indeed, from
the viewpoint of declarative logic programming. However, this additional machinery has
proven successful experimentally, using DLV. Here, depending on the problem instance, DLV
can possibly recognize that there are no cyclic dependencies, and eliminates the respective
rules beforehand. For instance in our QBF encodings (cf. Section 4.2.5.1) Mcpecr never leads
to cyclic dependencies among literals, making the additional rules for guessing and checking
phi redundant in this example.

21 A similar optimization is used in [BED94], where ¢ : Lit(II) — {1,...,7} is only defined for a range r
bound by the longest acyclic path in any strongly connected component of the program.
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Note that it depends much (i) on the solver and grounding procedure, and (ii) the struc-
ture of the program IT whether these optimizations result in a performance gain. This is
especially the case for (OPT,,): In particular, potential applicability of rules is already
checked by intelligent grounding methods such as implemented in DLV in some cases, and
normally in a program (written by a human) we might assume that all rules are possi-
bly applicable. We refer to a more detailed discussion on the effects of optimizations in
Chapter 8.

4.2.3 Integrating Guess and co-NP Check Programs

As pinpointed in Section 4.1.2 above, many problems on the second level of the polynomial
hierarchy have an intuitive “guess and check” characteristics and can be divided into two
problems Ilg,e55, Which guesses some solution, and Il.pec; Which encodes the co-NP check,
If we assume that both problems are encoded as HEDLPs, and I p.r takes the solutions
of ITyess as input, any such solution with Il;pecr, having no answer set shall be accepted.

We will now show how to integrate two such programs into a single program Ilsy,e by
means of the translation ¢r(-) to solve the overall problem.

First, let us assume that the set Lit(II yes5) is a Splitting Set [LT94] of I yess U check,
i.e., no head literal from Il pecr, occurs in Ilgyess. Then, each rule r in I pecr is of the form

hiv --- v hy :=bcy, ..., bey, not bepy1, --., not bey,

(4.3)
bg1, ..., bgp, not bgpt1, ..., not by,.

where the bg; are the body literals of r defined in Iljyess- We write body,,s,(r) for
bgi, ..., bgp, not bgpt1, ..., not bg;. We will now redefine ¢r(Il) wrt. these rules in
I heck in order to obtain a new check program IT', . .. as mentioned in the beginning of this
section.

Program IT’ The program II' contains the following rules and constraints:
g check prog check g

1. The facts F(Il.peck) in a conditional version F' (T pecr): For each rule r € M peer of

form (4.3),
lit(h,l,7) :- bodyguess(r). atom(l,|l]). for each I € Head(r);
lit(p,bci,r) := bodyguess(T). for each 7 € {1,...,m};
lit(n,bc;,7) = bodyguess(r). for each j € {m+1,...,n}.

Intuitively, these rules generate literals similar to the original factual input represen-
tation F'(-) in dependence of Il ,.ss, since only those rules are “active” in F'(Ilcpeck)
where body,,,.s(r) is satisfied.

2. All rules in tr(II) \ F(II)
3. Finally, a constraint
= not notok.

This will eliminate all answer sets S of Ilgy.ss such that Il pe.r US has an answer set.
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The union of Ilgyess and I, ... then amounts to the desired integrated encoding Igpye,

which is expressed by the following result.

Theorem 4.6. Given Igyess and Mepecr, the answer sets Ssorve 0f Msotve =T guess ULy, ok
correspond one-to-one with those answer sets S of Hyyess where Ilcpeck, US has no answer
set.

Proof. This result can be obtained from Theorem 4.7 and the Splitting Set Theorem [LT94].
We consider the proof for the original transformation tr(-); optimizations (OPT,0q),
(OPTgcp), and (OPT,,04) will be considered separately, below. In what follows, let @
be a program over literals in HBry,,.,,Ull.p.cr Ullne:s @d S be a consistent set of literals.
Then Q[S] denotes the program obtained from () by eliminating every rule r such that
body g,es5(r) is false in S, and by removing body,,,s(r) from the remaining rules. Notice
that epecr U S and Iepecr[S]U S have the same answer sets.
We can rewrite Iz, as

Msorve = (Mgyess U F' (Mepeck)) U metq U { :- not notok. }

where F'(Ilcpecr,) denotes the modified factual representation for I peck, given in item 1. of
the definition of II., ., above. By hypothesis on Il yess U Ilcheck, the set Lit(Ilgyess) is a
Splitting Set for IIsope. As easily seen, also Lit(Ilgyess U F'(Ilchecr)) is a Splitting Set for
yoive, and Lit(Ilgyes,) is also a splitting for Mgyess U F'(Icpeck). Moreover, each answer
set S of Il yes5 is in one-to-one correspondence with an answer set S’ of Iyess UF' (Tlcheck)-
Then, S\ S = F(I peck[S]) U Ag such that F(I.peck[S]) is the factual representation of
eheck[S] in the transformation tr(Ilepeck[S]), and Ag = {atom(l, [I|). | | € Head(Ilchecr) \
Head(Iopecr[S]) }?2. Ag is an additional set of facts emerging by construction of F'(Iapecr):
We added facts atom(l, |I|). unconditionally, i.e. for all head literals of r € Il peck, not only
for those r where body,,.,s(r) was satisfied. Thus, there might be superfluous such facts
which we denote by the set Ag.

Now let Ssoive be any (consistent) answer set of Ilse. From the Splitting Set Theorem
[LT94], we conclude that Ssepe can be written as Sgowe = S U Scheck U As where S and
Scheck U Ag are disjoint, S is an answer set of Iljyess, and Scpeck U Ag is an answer set of
the program Iy = (Hsolve \ngess)[s]- Since FI(Hcheck) is the only part of Ilspe \ngess
where literals from Lit(II yess) occur, we obtain

Oy = F(Mcheck[S]) U As U ILpetq U {:- not notok.}, i.e.,
tr(Meheck[S]) U Ag U {:- not notok.}.

The additional facts Ag can be viewed as independent part of any answer set of II, since
the answer sets of IIs are the sets T'U Lit(Ag) where T is any answer set of IT'y \ Ag; note
that T'N Lit(As) = 0. Indeed, the only rule in ITs where the facts of Ag play a role, is line
17 of Ietq- All ground instances of line 17 are of the following form:
notok :- inS(l), inS(nl), ! !'=nl, atom(l,|l|), atom(nl,|l|).

where [ and nl denote two complementary literals. Let us assume that atom(l, |11) .€ Ag
(or atom(nl, |l]).€ Ag, respectively), i.e. intuitively that [ (or nl) does not occur in the
head of an “active” rule wrt. S. Then, in order for the above rule to fire, inS(l) and

22Here, for any program II, we write Head(Il) = U, .y Head(r).
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inS(nl) both have to be true. However, this can only be the case for literals [ (or nl)
occurring in a rule head of I pecr[S] (backwards, by the rules in line 15, 14 and 1 of II,e¢q
and by definition of IT., _ .), which contradicts our assumption that atom(l, |1]).€ Ag or
atom(nl, |1]) .€ Ag. Therefore, the additional facts of Ag do not affect the rule in line 17
and consequently IT% has an answer set if and only if IT; \ Ag has an answer set and these
answer sets coincide on Lit(Il%) \ Lit(Ag).

By Theorem 4.7, we know that (i) tr(Ilcpeck[S]) always has an answer set, and (ii)
tr(Meheck[S]) has any answer set containing notok if and only if Iepecr[S] has no answer
set. However, the constraint :- not notok. only allows for answer sets of II; containing
notok. Hence, Iy \ As has an answer set Scpeck if and only if ITpecx[S] has no answer set,
or equivalently, Il fccr U S has no answer set.

Conversely, suppose S is an answer set of Il yess such that IIcpecr, US has no answer set;
equivalently, Il pecr[S] has no answer set. By Theorem 4.7, we know that tr(Ilcpeck[S]) =
F( peck[S]) U Hppeta has a unique answer set Scpeck, and Scpecr contains notok. Hence,
also the program Qs = F(Icpeck[S]) U meta U {:- not notok.} has the unique answer set
Scheck- On the other hand, since S is an answer set of I yess and Lit(ILgyess) is a Splitting
Set for IIzope, for each answer set S” of the program II's = (Isppe \ Hgyess)[S], we have
that S U S" is an answer set of Iz, However, Iy = Qg U Ag; hence, S" = Scpeck U As
must hold and Syppe = S U Scheck U Ag is the unique answer set of I, which extends S.
This proves the result. O

The optimizations (OPT)p,) and (OPTgp) in Section 4.2.2 still apply. However, con-
cerning (OPT,,,4), the following modifications are necessary:

(1) For any rule 7, in analogy to in the input representation F' (I peck ), rules (4.1) and
4.2) have to be extended by adding bodyq.ss (r) as defined above.
9

(2) We mentioned above that the factual representation of literals in Body(c) may be
skipped for constraints ¢. This now only applies to literals in Bodyt(c); the rule 1it(n,l, ¢)
= bodyguess(c). for I € Body™(c) may no longer be dropped in general, as shown by the
following example.

Example 4.2. Let [Igyess = {g v -g. }and Hepeck = {rl: x == g., r2: :- not x.}
The “input” representation of I pecr Wrt. optimization (OPT,,04), i-e., the variable part
of I’ .., now consists of:

lit(h,x,rl) - g. 1lit(n,x,r2). inS(x) :- g. notok :- ninS(x).

where the latter two rules correspond to the conditional versions of rules (4.2) and (4.1).
If we now assume that we want to check answer set S = {-g} of Il yess, it is easy to see
that Il pecr has no answer set for S. Therefore, S should be represented by some answer
set which can be found by our integrated encoding IT;,;,e. Now assume that 1it(n,x,r2).
is dropped and we proceed generating the integrated encoding as outlined above wrt. to
(OPT,04)- Since g ¢ S and we have dropped 1it(n,x,r2) ., the “input” representation of
I peck for S comprises only the final rule notok :- ninS(x). However, this rule can never
fire because neither line 15 nor line 16 of II,,.¢, can ever derive ninS(c). Therefore, also
notok can not be derived and the integrated check fails. On the other hand, 1it(n,x,r2).
suffices to derive ninS(x) via line 16 of II,,¢,, SO notok can be derived and the integrated
check works as intended. <o
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In certain cases, we can still drop I € b~ (c). For example, if [ occurs in the head of a rule r
with bodygyess() = 0: In this case 1it (h,1,r) will always be added to the program I,y
and either inS(I) or ninS(!) will be contained in any answer set of I, _ ..

Remark 4.2. For the encoding of QBFs in Section 4.2.5.1, considerations upon nega-
tive literals in constraints in (OPTyeq) do not play a role because all literals in the con-
straints of QBF .p..1. are positive. On the other hand, in the encoding of Strategic Companies
from Section 4.2.5.2, depending on the concrete problem instance, SCcpecr contains critical
constraints ¢, where not stratl1(-) occurs, such that 1it (n, "strat1(-)",c) must not be
dropped here.

Similarly, for the general translations of planning problems wrt. the integrated encodings
introduced in Sections 4.3.3 and 4.3.5 there might be cases where we might not drop negative
literals from constraints in the “input” representation offhand.

Remark 4.3. Note that the translations defined here are only applicable for ground pro-
grams I gyess and  pecr. So, when solving such problems given non-ground programs Ilg,ess
and ek, Tespectively, we have to ground the problems before applying these translations.
However, as grounding in general can be exponential, our transformations, though polyno-
mial on ground programs can add a significant blowup with respect to the original (non-
ground) program. Investigating how the presented transformations can partly be lifted to
non-ground problems is part of future research.

4.2.4 Integrating Guess and NP Check Programs

We remark that integrating a guess program Ilg,.s; and a check program Il peck, which
succeeds iff M pecr, U S has some answer set, is easy. Given that I pecr is a HEDLP again,
this amounts to integrating a check which is in NP. After a rewriting to ensure the Splitting
Set property (if needed), simply take I o1pe = Mgyess U Hepecr; its answer sets correspond
on the predicates in Il ,ess to the desired solutions.

4.2.5 Applications

We now exemplify the use of our transformation for two %Z'-complete problems, which
are well-studied in Answer Set Programming. One is about Quantified Boolean Formulae
(QBFs) with one quantifier alternation, another about a business problem on Strategic
Companies [LPFT02]; both problems involve co-NP-complete solution checking.

Further examples from the area of planning will be given in the Sections 4.3.3 and 4.3.5.
Remarkably, compared to the QBF and Strategic Companies problems from this Section,
no previous ad hoc encodings existed for these planning problems but, as will be shown, our
general method can be applied with minor modifications there as well.

Note that our method is applicable to any check encoded by inconsistency of a HEDLP;
co-NP-hardness is not a prerequisite.
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4.2.5.1 Quantified Boolean Formulae

We now exemplify the use of our translation for solving Quantified Boolean Formulae (QBF's)
with one quantifier alternation.

Given a QBF F = 3z --- 3z, Vy1 - - - Vy, @, where ® = ¢; V --- V ¢, is a propositional
formula over 1, ...,%m,Y1,...,Yn in disjunctive normal form, i.e. each ¢; = a;1 A+~ Aagy,
and |a; ;| € {z1,-.,Zm,Y1.-.,Yn}, compute the assignments to the variables z1,...,2n
which witness that F' evaluates to true.

Intuitively, this problem can be solved by “guessing and checking” as follows:

(QBF ) Guess a truth assignment for the variables z1,...,Zmn.

guess

(QBF ;..r) Check whether this (fixed) assignment satisfies ® for all assignments of vari-
ables y1,...,Yn.

Both parts can be encoded by very simple HEDLPs (or similarly by normal programs):

QBFguess : QBFcheck :
1 vV —Z1. --- XTm V —Im. Y1 V. —Yl. .- Yn V —Yn.
= a1,1,---5,01,0 -
Ak Okl

Obviously, both programs are head-cycle-free and for every answer set S of QBF ..,
representing an assignment to z1,...,%n, the program QBF ... U S has no answer set iff
every assignment for yq,...,y, satisfies formula ®, because of the constraints. Intuitively,
the constraints in QBF' .., only accept “bad” assignments to variables yi,...,y, which
make no disjunct true. If, conversely, there is no such “bad” assignment, then the candidate
guess S represents a valid assignment to 1,...,Zy,.

By the method sketched above, we can automatically generate a single program Il
integrating the guess and check programs. For a full encoding of a sample QBF example
we refer to Appendix A.1. Note that the customary (but tricky) saturation technique to
solve this problem (cf. [EGM97, LPF02]) is fully transparent to the non-expert, who might
come up with the two programs above easily.

4.2.5.2 Strategic Companies

Another ¥¥-complete problem is the strategic companies problem from [CEG97]. Briefly, a
holding owns companies, each of which produces some goods. Moreover, several companies
may have jointly control over another company. Now, some companies should be sold, under
the constraint that all goods can be still produced, and that no company is sold which would
still be controlled by the holding after the transaction. A company is strategic, if it belongs
to a strategic set, which is a minimal set of companies satisfying these constraints. Guessing
a strategic set, and checking its minimality, respectively, can be done by the following two
programs:

STRATCOM Pyyess : STRATCOMP,pecr -
strat(X) v -strat(X) :- company(X). strat1(X) v -strat1i(X) :- strat(X).
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= prod_by(X,Y,Z), not strat(Y), = prod_by(X,Y,Z), not strati(Y),
not strat(ZzZ). not stratl(Z).
= contr_by(W,X,Y,Z), not strat(W), - contr_by(W,X,Y,Z), not strati(W),
strat(X), strat(Y), strat(Z). strati1(X), strati(Y), strati(Z).
smaller :- -strati(X).

- not smaller.

Here strat(C) means that C is strategic, prod_by(P, C1, C2) that product P is produced
by companies C1 and C2, and contr by(C,C1, C2,C3) that C is jointly controlled by
C1,C2 and C3; We have adopted from [CEG97] that each product is produced by at most
two companies and each company is jointly controlled by at most three other companies.
We assume facts company(-) ., prod by(:,-,-)., and contr by(:,-,-,-). to be defined in a
separate program which can be considered as part of STRATCOM Pyyes5.

The two programs above intuitively encode guessing a set strat of companies which
fulfills the production and control preserving constraints, such that no real subset strati
fulfills these constraints. While the ad hoc encodings from [EFLP00, LPF+02] are not
immediate (and require some thought), the above programs are very natural and easy to
come up with.

Given a concrete problem instance by facts defining companies and the production and
control relations as mentioned above, integration of these programs after grounding is again
possible by our method in an automatic way.

4.3 From K to Logic Programming

In this section, we will show how planning problems defined so far, namely finding opti-
mistic (optimal) plans and secure (optimal) plans as well as secure checking, can be solved
by polynomial reductions to logic programming. To this end, we will apply the methods
sketched above, where the theoretical results from Section 3.3 serve as a basic guideline
which reductions are feasible.

4.3.1 Optimistic Planning — Translation ip(P)

First, we will review the translation of fixed length optimistic planning problems in the
basic language K to logic programs as presented in [EFLT03a] with some refinements. As
pinpointed in Section 3.3, this task is possible by a polynomial translation from a K planning
problem P into a HEDLP (or into a normal LP, respectively), since the problem lies in
NPMV.

We assume a K planning problem P, given by a background knowledge IT and a K
program in the enhanced syntax described in Section 3.1.3, which we translate into a logic
program Ip(P), whose answer sets represent the optimistic plans of P. For the sake of our
translation, we extend fluent and action literals by a timestamp parameter T such that
an answer set M of the translated program Ip(P) corresponds to a successful trajectory
T = {{(s0,41,81)s - -+, (8n—1,An,sn)) of P. More precisely, we define Ip(P) such that the
following properties LP1 — LP4 are fulfilled:

LP1 The fluent literals in M having timestamp 0 represent a (legal) initial state so of T.
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LP2 The fluent literals in M having timestamp 7 > 0 represent a state s; obtained after
executing 7 many action sets (i.e., they represent the evolution after ¢ steps).

LP3 The action literals in M having timestamp ¢ represent the actions in A;,; (i.e., those
actions which are executed at step ¢ + 1 of the plan).

LP4 The fluent literals in M having timestamp n represent a state s, which establishes
the goal.

In total, these properties say that trajectories encoded in the answer sets of Ip(P) estab-
lish the goal of the planning problem, and the underlying sequence of action sets is therefore
an optimistic plan. In the following, we incrementally describe a transformation from a
planning problem P to a logic program Ip(P) satisfying the properties LP1 — LP4. We will
illustrate this transformation on the Bridge Crossing planning problem from Section 3.1.4.

Step 0 (Macro Expansion): In a preliminary step, replace all macros in the K program
by their definitions (cf. Appendix 3.1.3.2).

Example 4.3. In the encoding of Bridge problem, among others the macros

nonexecutable takeLamp(X) if hasLamp(X).
inertial at(X,S).

are replaced by

caused false after takeLamp(X),hasLamp(X).
at(X,8) if not —at(X,S) after at(X,S).

<

Step 1 (Background Knowledge): The background knowledge II is already given as a
logic program; all the rules in II can be directly included in Ip(P) without further modifi-
cation.

Step 2 (Auxiliary Predicates): To represent time steps, we add the following facts to
Ip(P)

time(0).,...,time(3).
next(0,1).,...,next(i — 1,4).

where i is the plan length of the query ¢ = G7(i) € P at hand. The predicate time
denotes all possible timestamps and the predicate next describes a successor relation over
the timestamps in our program.

Note that we refrain from using built-in predicates of a particular logic programming
engine here. In the DLV implementation, these auxiliary predicates are efficiently handled
in a preprocessing step.

Example 4.4. For the original formulation of the Bridge Crossing problem Ppcp (see
p- 38), where the goal query is given by
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q = at(joe,across), at(jack,across), at(william,across),
at(averell,across)? (5)

we add the following facts:

time(0). time(1). time(2). time(3). time(4). time(5).
next(0,1). next(1,2). next(2,3). next(3,4). next(4,5).

Step 3 (Causation Rules): For each causation rule r
caused H if B after A.

in Cg, we include a rule ' in Ip(P) as follows:

0, if H = false,

Head(r') = { fET), it H=f@, f € of!

Body(r") consists of the following literals:

e each (default negated) type literal in r, i.e., (not)l € AU B where | € Lyy;

(not) b(f, T1), where (not) b(f) € B and b(f) € L;
(not) b(, Tp), where (not) b(f) € A and b(f) € Layn-

for timing, we add

— time(T}), if A is empty;

— next(7p,T;), otherwise.

To respect typing declarations and to establish safety of »/, for any fluent literal in H
and any default negated fluent/action literal in AU B we add typing information from
the corresponding action/fluent declaration. That is, if H = (=)p(f) or not (=)p(t) €
AUB, p() € Layn, where

—

p(Y) requires t1 (Y1), ..., tm(Ym)

is an action/fluent declaration (standardized apart), and € is a witness substitution
such that Y8 = #, then we add t,(Y1)8,...,tm(Yn)8 to Body(r'). If p has multiple
action/fluent declarations, each of them is considered separately, which gives rise to
multiple typed versions of r'.

Here, Ty and T} are new variables not occurring in H U AU B.
Example 4.5. In our encoding of the Bridge Crossing problem, the statements

caused —hasLamp(X) after takeLamp(Y), hasLamp(X), X!=Y.
caused hasLamp(X) if not ~hasLamp(X) after hasLamp(X).
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(where the latter is an expanded inertial rule) lead to the following rules in Ip(P):

hasLamp(X,T;) :- takeLamp(Y,To), hasLamp(X,To), person(X), next(To, T1).
hasLamp(X,Ty) :- not —~hasLamp(X,Ty), hasLamp(X, Tp), person(X), next(To,T1).

Here, the timing atom next(Ty,Ty), and the type information person(X) for the fluent
hasLamp(X) in the H-part of each statement are added. Note that we do not have to add
person(Y) in the translation of the first statement, as takeLamp(Y) does not occur default
negated and therefore cannot harm safety. <

Step 4 (Executability Conditions): Next, we introduce rules and constraints which
“guess” an executable action set at each time step. For each executability condition e of
the form

executable a(f) if B.
in Cgr, we introduce the following rules in Ip(P):

1. A rule e} of the form
a(t,To) v —a(t,Tp) - next(To, T1), Type.

Here, Body(e}) is contains type information literals Type for a(f) obtained from the
respective action declaration similar as in Step 3 (and like there we may obtain multiple
rules in case of multiple declarations of the same action). These rules “guess” each
action at the transition from time step Ty to 7.

2. A rule ¢}, with
Head(eh) = exec,(t,To)

Body(e}) consists of the following literals:

e cach (default negated) type literal in e, i.e., (not)l € B where [ € Lyp;
(not) b(f, Tp), where (not) b(f) € B and b(f) € Layn;
next(Tp,T1)

for typing and safety, type information literals for a(f) and every default negated
literal not (=)p(f) € B such that p(f) € Layn, similar as in Step 3 (which may
again lead to multiple rules eb).

3. Finally, a constraint e}, which forbids that action a(f) is guessed by e} without being
executable:
= a(t,Tp), not exec,(t, Tp).

where Tp, Ty are new variables not occurring in {a(#)} U B.

Simplified translation: Note that this translation differs slightly from the original
translation in [EFL*03a]. There, we assumed that executability conditions are never cyclic,
i.e., the directed graph built from all executability conditions in C'g such that each action
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atom occurring in Cg is a node and there is an edge from a’ to a iff there is an executability
condition e in P such that in a = h(e) and a' € pre™ (e), is acyclic. Under this assumption,
we can optimize Step 4 by substituting the above rules ej—e}; with a single rule ¢’ with
Head(e') = Head(e}) and Body(e') = Body(e,).

This is only applicable for acyclic executability conditions, since in general the rule €'
is not appropriate. In fact, minimality of answer sets can cause problems when action
executability involves cyclic mutual dependencies as shown by the following example (which
is a slight variation of our original Bridge Crossing example).

Example 4.6. In our running example, assume an additional action carryLamp(X) express-
ing that person X carries the lamp over the bridge. We want to express that crossing is only
executable simultaneously with carrying the lamp and vice versa as follows:

executable carrylLamp(X) if cross(X),hasLamp(X).
executable cross(X) if carryLamp(X).

(For simplicity, we ignore the action crossTogether and its causation rules). Following
the semantics of K, any executable action set A contains either both or none of the actions
cross(z) and carryLamp(z) for any person z. The two executability conditions above
introduce in Ip(P) the rules

carryLamp(X, To) v —carryLamp(X, To) :- person(X), next(To, T1)-
€X€CcarryLamp(X, To) :~ person(X), cross(X,To), hasLamp(X,Tp), next(To,Ty).
:- carryLamp(X, Tp), not execCcarryramp(X, To)-

cross(X,To) v —cross(X, To) :- person(X) ,next(To, Ty).
eXeCeross(X, To) i— person(X), carryLamp(X,To), next(To, Ty).
- cross(X, Tp), not execcross(X, To)-

where type information person(X),location(L) has been added. Taking only this clip-
ping of the program, we can easily verify that the corresponding answer sets are exactly
the guesses where for each person z and time point ¢ either cross(z,t) and carryLamp(z,t)
are true or none of both whenever x has the lamp. This perfectly reflects the semantics of
executable actions sets.

On the other hand, the simplified translation above would result in the following two
rules:

carryLamp(X,To) v —carryLamp(X,To) :- cross(X,Tp), hasLamp(X, To),
person(X), next(To, Ty)-
cross(X,To) v —cross(X,To) :- carryLamp(X, Ty), person(X), next(To,Ty).

where none of the literals cross(z,t), carryLamp(z,t), —cross(z,t), or —carryLamp(z,t) is
contained in any answer for a person x and time point ¢, due to minimality of answer sets. In
general, the simplified translation is not applicable whenever (positive) cyclic dependencies
among executability conditions occur. <

Step 5 (Initial State Constraints): Initial state constraints in I, are transformed like
static causation rules r (i.e., A is empty) in Step 3 but we use the constant 0 instead of the
variable T} and omit the literal time(0).
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Example 4.7. The facts in Ig:

initially: caused at(X,here).
caused hasLamp(joe).

become:

at(X,here,0) :- person(X).
hasLamp(joe, 0) :- person(joe).

Step 6 (Goal Query): Finally, the query g¢:
goal: gl(ﬂ): cee gm({m)an(’t gm+1({m+1)a ...,n0t gn(Fn) 7 (4).
is translated to:

goal_reached :- g1 (1,%),- - -, 9m (tm;4), 00t Grmg1 (Frng1,9), - - -, 00t gn(tn, 7).
:- not goal_reached.

where goal reached is a new predicate symbol. Intuitively, the final constraint invalidates
any answer set of [p(P) such that the goal is not reached in the final time step .

Example 4.8. For our running example,

goal : at(joe,across), at(jack,across), at(william,across),
at(averell,across)? (5)

is translated to:

goal reached :- at(joe,across,b), at(jack,across,5),
at(william,across,5),at(averell,across,5).
:- not goal _reached.

<

The complete transformation of the basic Bridge Crossing problem, Ppcp from Fig-
ure 3.1, after expansion of all macros (see Section 3.1.3.2), is shown in Appendix A.2.

4.3.1.1 Answer Set Correspondence

The following result formally states the desired correspondence between the solutions of a
K planning problem P and the answer sets of the logic program Ip(P) obtained by following
the procedure described above.

Theorem 4.7. Let P be a planning problem given by a background knowledge II and o K
program, and let Ip(P) be the logic program generated by Steps 0—6 above. Define, for any
consistent set of ground literals S, the sets Af ={a)|a(f,j—1) €8, a€ o} and

s ={ f() | (&) € S, f(E) € L1}, for all j > 0. Then,
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(1) for each optimistic plan P = (A4, ..., A;) of P and witnessing trajectory T = {(so, A1, 51),
(s1,A2,82), ..., {si—1,4i,8;)), there exists some answer set S of Ip(P) such that
A; =Af forallj=1,...,i and s; =sf, forallj=0,...,4;

(i) for each answer set S of Ip(P), the sequence P = (Ai,...,A;) is a solution of P,
i.e. an optimistic plan, witnessed by the trajectory T = ({s¢, A1, 1), (51, A2,82), ...,
(si—1,Ai,5:)), where Aj = A5 and s = s for all j=1,...,i and k =0,...,i.

We remark that this correspondence reflects exactly the desired properties LP1 — LP4
from above.

Proof. The proof is again based on the well-known notion of splitting of a logic program
as defined by Lifschitz and Turner [LT94], were we use the theorem on Splitting Sequences
which extends the Splitting Set Theorem to a monotone sequence of Splitting Sets. We
define the Splitting Sequence U = (Upg, Uy, .- .,U;,Ug) = (BG,BGU Sy, ..., BG U Sy U
...US;,BGU SpU...US; UG) of the ground program P’ = Ip(P)] as follows:

e BG is the set of type literals and time and next literals occurring in P';

e S, 0<j <i,is the set of literals in P’ of the form f(f, ), where f € o#!, and of the
forms a(t,j — 1), exec,(t,j — 1), where a € 02°;

e G = {goal reached}.

By the Splitting Sequence Theorem of [LT94], P' (and thus Ip(P)) has some (consistent)
answer set S iff S = XpgUXoU...UX;UXg for some solution X = (Xpg, Xo,...,Xi, Xag)
of P’ wrt. U. We note the following facts.

o Ppg = by, (P') (as defined in [LT94], intuitively the program corresponding to Upg)
consists of the background program and of the facts defining time and next.

o Py = evpe(buy(P) \ buge (P'), XBa) (as defined in [LT94], intuitively the program
corresponding to Up) consists of rules and constraints which are translations of initial
state constraints and static rules (i.e., causation rules with an empty after-part),
where the argument of time and the last argument of the head predicates has been
instantiated with 0.

[ Pj = er—1(ij (PI) \ bU]._l(Pl),XBG UXoU-- -Xj_l), for1<j <1 (intuitively, the
program corresponding to Uj), consists of rules and constraints which are translations
of causation rules and executability conditions in the always-section, in which the
argument of time and the second argument of next is instantiated with j (thus,
the last argument in head predicates of rules from causation rules and executability
conditions is j and j — 1, respectively).

e P = ey, (bus (P")\bu,(P'), XpcUXoU--- X;) (intuitively the program corresponding
to Ug) consists of the rule and the constraint which were generated by Step 6.

e XpaUXoU...UX;UXg is a consistent set iff each of the sets Xpg, Xo, ..., Xi, Xg
is consistent, since there is no literal in any of the sets BG, Sy, . ..,S;, G such that its
complement is contained in any other of these sets.
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We now prove (i) and (ii) of the theorem.

(i) We show that for each optimistic plan a corresponding answer set S of [p(P) as described
exists. By the Splitting Sequence Theorem, we must prove that a respective solution X =
(XBG, Xo,---,Xi, Xg) of Ip(P) exists:

Xpag: As sg is a legal initial state, the background knowledge has a consistent answer set.
Thus, by definition of Pgg, it clearly has a consistent answer set Xpgg.

Xo: sg in the witnessing trajectory must be a legal initial state, so sq satisfies all rules in the
initially-section and the rules in the always-section with empty after-part, under
the answer set semantics if causal rules are read as logic programming rules. These
rules are essentially identical (modulo the time literals and the timestamp arguments)
to Py, so Xp exists and so = sj .

X;: For 1 < j <1, (sj_1,A4;,s;) must be a legal transition. We proceed inductively. A;
has to be an executable action set wrt. sj_1, so each action a € A; must occur in
the head of an executability condition whose body is true wrt. s;_;. There must
be a corresponding rule in P; constructed by Step 4 of the translation with head
exec,(j — 1) such that its body is true wrt. X;_;. If we choose X; such that A7 = A;,
then all the guessing rules from Step 4 are satisfied and none of the constraints from
Step 4 is violated: For each rule in P; which has an action literal [, in the head such
that I, is not in A;, we include its negation —l, in X in order to satisfy the remaining
guessing rules.

Furthermore, s; satisfies all causal rules from the always-section whose after-part is
true wrt. s;_; and A; under the answer set semantics. From the correspondence of
causal rules from the always-section and rules in P;, we may thus conclude that P;
has an answer set X s.t. s; = s7 and A; = A7, as seen above.

Xg: s; satisfies the goal of P. Let g1,...,9m,n0t gma1,--.,00t g,7(i) be the goal of P.
Then {g1,-.-,9m} C si and {gms1,--->9gn} Ns; = 0 hold. Since s; = s;*, the body of
the rule generated in Step 6 is true and therefore X = {goal reached} exists.

In total, we have shown that for each optimistic plan of P a corresponding answer set S
of Ip(P) exists, which contains literals representing a witnessing trajectory.

(ii) We must prove that for each answer set S of Ip(P), a corresponding optimistic plan
of P exists. By the Splitting Sequence Theorem, a solution X = (Xgg, Xo,---, Xi, Xa)
exists for Ip(P). Since Xy is an answer set for the program corresponding to initial state
constraints and static rules, a legal initial state sy = s§ must exist as well.

For X;, 1 < j < i, we proceed inductively. All rules corresponding to executability
conditions wrt. time j — 1 must be satisfied, so for every literal [, in X; which corresponds
to a positive action literal, a rule in P; whose body is true wrt. X;_; and which has a
corresponding exec, in the head must exist in order to not violate the constraint from
Step 4. By construction, an executability condition whose body is true wrt. s;_; and whose
head is the corresponding action literal, must exist in P, so an executable action set A; = Af
exists wrt. sj_1.

All rules in P; corresponding to causal rules from the always-section of P must be
satisfied by X; and X; ; (for literals translated from after-parts). So for each causal rule
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in P, either its after-part is false wrt. A; and s;_i, or the causal rule is satisfied by the
state s; = 5.

Finally, since X exists, goal reached must be true. Hence, the body of the rule
generated in Step 6 must be true, and therefore s; must establish the goal of P.

In total, we have shown that for each answer set S of Ip(P) an optimistic plan of P

exists, such that the witnessing trajectory can be constructed from S as described. O

4.3.1.2 Special Translation for Macros

Some macros allow for more concise translations before expansion in Step 0 of Ip(P). In
particular this applies to the total macro and to noConcurrency.

Macro total: Instead of expanding a statement
total f(f) if B after A.

(where f € of!) like in Section 3.1.3.2 and translating the resulting two causation rules
separately, this statement can equivalently be translated to a single disjunctive rule r’ with
Head(r') = { f(Tv),~f(ET) }
where T} is a new variable. As for body Body(r') and the safety of Head(r') we proceed
analogously to the translation of causation rules in Step 3 above. Note that in this special
case, disjunction is semantically equivalent to the regular translation by the two rules from
page 37, which involves non-stratified negation. This is the case because the implicit con-
straint :=f(£,T),~f(,T1). (cf. Footnote 5 in Section 2.1) imposes a restriction similar to
head-cycle-freeness, since any possible head-cycle would cause inconsistency: Head-cycle-
freeness ensures that literals in the same rule head do not mutually depend on each other
in any answer set, which is also enforced here, since a literal can not positively depend on
its complement (in any consistent answer set).

As easily seen, the original macro translation amounts exactly to the rewriting for head-
cycle-free disjunction pinpointed in Section 2.1.4.1 on page 10, just in the opposite direction.

Macro noConcurrency: Exploiting the recent extension of DLV by aggregates [DFI*03],
we can find an alternative translation for the noConcurrency macro which, as we will see,
allows for more flexibility than the simple expansion of the macro in Section 3.1.3.2. Here,
we use the built-in #count aggregate in order to count the number of actions per time step
T: For any action name a € 0® with arity n, we add a rule

occurred(a,X1,...,Xn,0,...,0,T) == a(Xy,...,Xn,T).

where occurred is a new distinct predicate with arity | + 2, where [ is the maximum arity
of all actions in PD. We add [ —n parameters with constant “0” between X,, and T if n < [.
This is necessary in order to get uniform arity [ + 2 for predicate occurred.

Finally, we add a single constraint involving the DLV #count aggregate, for limiting the
actions per time:

- next (T, T1), 0 <= Fcount{ occurred(A,X;,...,X;,To) } <= 1.
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Note that this translation allows, with slight modification, for arbitrary upper and lower
bounds x and y, respectively, on the number of actions per time instead of 0 and 1, be-
yond noConcurrency. In fact, this translation is used for the -planminactions=2 and
-planmaxactions=y command-line options of the DLVX system presented in Chapter 5.

4.3.1.3 Alternative Translation for SMODELS

As the reader can easily verify, the above transformation Ip(P) employs disjunction only
in Step 4 for translating executability conditions (we consider only the original translation
for macro total). Furthermore, negated action atoms —a(f,T) occur only in the heads of
the rules of Ip(P). Thus, the program is head-cycle-free, which is profitably exploited by
the DLV engine underlying our implementation. The disjunction, which informally encodes
a guess of whether the action a(f) is executed or not at time Tj, may equivalently be
replaced by disjunction-free guessing rules as shown in Section 2.1.4.1 (see p. 10). The
adapted transformation can then also be used on engines for computing answer sets of
normal programs, such as SMODELS.

4.3.2 Optimistic Optimal Planning — Translation [p”(P)

From [BLRO0] we know that, given a head-cycle-free (extended) disjunctive program with
weak constraints (HEDLP%) as defined in Section 2.1.5.1, deciding whether a query ¢ is
true in some optimal answer set is A¥-complete. The respective class for computing such
an answer set is FAY-complete. Together with the results from Section 3.3 this indicates
that translations of optimal planning problems to head-cycle-free disjunctive logic programs
with weak constraints or the language of SMODELS are feasible in polynomial time.

To this end, we extend the basic translation Ip(-) for a K¢ problem P to a HEDLP"
Ip™ (P) which computes optimistic optimal plans: Ip*(P) includes all rules of Ip(P,,.), where
Pnc is obtained from P by stripping off all cost parts. Furthermore, we add the following
step:

Step 7 (Action Costs): For any action declaration d of form (3.5) with a non-empty
costs-part, add:
(i) A new rule rq of the form

costp(Xy,...,Xn, T,CO) := p(Xy,...,%q,T), t,..., tn, (4.4)
ci16,...,c8,U=T+ 1. ’
where costy is a new symbol, T and U are new variables and § = {time — U}. As an
optimization, U= T + 1 is only present if U occurs elsewhere in r4.23

(ii) A weak constraint weq of the form

i~ costp(Xy,...,Xy, T,CH). [CO ] (4.5)

Example 4.9. For example, the cross action from the Quick Bridge Crossing problem
Popcp (see p. 44) is translated to

231n the current implementation we simply add next(T, T1) and replace all occurrences of ”time” by T1.
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coSteross(X, T, WX) :- cross(X,T), person(X), walk(X, WX).

i~ COSteress(X, T, WX). [WX :]
O

For a complete translation of the Quick Bridge Crossing example, we refer to Ap-
pendix A.2.

4.3.2.1 Answer Set Correspondence

As we have shown, the answer sets of Ip(P) correspond to trajectories of optimistic plans
for P. The following theorem states a similar correspondence result for Ip¥(P) and optimal
plans for P.

A? and s? are defined as above. It is easy to see that Theorem 4.7 applies wrt. candidate
answer sets of [p”(P) as well, and we can slightly extend it by costs:

Theorem 4.8 (Answer Set Correspondence). Let P = (PD,q) be a (well-defined) K¢
planning problem, and let [p¥(P) be the above program. Then,

(i) for each optimistic plan P = (A4, ..., A;) of P and supporting trajectory T = ({so0, A1, S1),
(s1,A2,82), ..., (s1—1,41,81)) of P, there exists some answer set S of lp*(P) such
that Aj = A3 for all j = 1,...,1, s5; = 3, for all j = 0,...,1 and costp(P) =
costyyw (P) (5)7

(i) for each answer set S of Ip*(P), the sequence P = (A1,..., A;) is a solution of P,
i.e., an optimistic plan, witnessed by the trajectory T = ((so, A1,51), (51, A42,82), ...,
(s1-1, A1, 81)) with costp(P) = costyyw(p)(S), where A; = Af and s, = sy for all
i=1...,land k=0,...,L

The proof is based on the respective correspondence result for K in Theorem 4.7:

Proof. Disregarding weak constraints, we can split the program [p¥(P) into a bottom part
consisting of Ip(Py.), where P, is P with the cost information stripped off, and a top part
containing the remaining rules; we then derive the correspondence between optimistic plans
for P and answer sets of [p¥(P) from the similar correspondence result for Ip(P,,.).

By Theorem 4.7, any answer set S’ of Ip(Pr.) corresponds to some trajectory T” of an
optimistic plan P’ for P,. and vice versa.

In what follows, when talking about Ip(Py.) and Ip* (P), we mean the respective grounded
logic programs. Ip”(P) augments Ip(Pnc) by rules (4.4) and weak constraints (4.5). Let
now U = lit(Ip(Pn.)) be the set of all literals occurring in Ip(Py.). Clearly, U splits Ip¥(P)
as defined in [LT94], where we disregard weak constraints in [p*(P), since the rules of form
(4.4) introduce only new head literals. Consequently, we get by (Ip¥(P)) = Ip(Pn.)- Then,
for any answer set S’ of Ip(P,,.), each rule in ey (Ip* (P) \ by (Ip¥(P)), S') is of the form

costo (L1, ..., Tn,t,c) = Body.

From the fact that all these rules are positive, we can conclude that with respect to the split
by U, any answer set S’ of Ip(Pp.) induces a unique answer set S D S’ of Ip¥(P). Therefore,
modulo costs, a correspondence between supporting trajectories T and candidate answer sets
S as claimed follows directly from Theorem Theorem 4.7.
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It remains to prove that costp(P) = costyw(p)(S) holds for all candidate answer sets
S corresponding to an optimistic plan P = (A;,...,4;) for P. By the correspondence

shown above, any action p(zi,...,2,) € A; corresponds to exactly one ground atom
p(z1,. .., 20,5 — 1), j € {1,...,1}. Therefore, if p(xy,...,z,) is declared with a non-
empty costs-part, by (4.4) and well-definedness, modulo x1,...,,, there is exactly one

fact costy(z1,...,2n,J — 1,¢) in the model of ey (Ip*(P) \ bu(ip*(P)), S).

Furthermore, by definition of (4.4), we have that ¢ = cost;(p(z1,...,2)), i.e., the cost
of action instance p(z1,...,z,) at time j. Consequently, by the weak constraints of form
(4.5) for the corresponding in Ip*(P) for each action instance p(x1,...,z,) at time j, ¢ is
added to cost;w(p) (S)

Since all violation values adding to cost;,w(p)(S) stem from weak constraints (4.5), in

total we have costy,w (p) (S) = 2221 > aea, cost;j(a) = costp(P). This proves the result. [J

From this result and the definitions of optimal cost plans and optimal answer sets, we
conclude the following result:

Corollary 4.9 (Optimal answer set correspondence). For any well-defined K¢ plan-
ning problem P = (PD,Q? (1)), the trajectories T = ((so,41,81), -.., {si—1,4,5;)) of op-
timal plans P for P correspond to the optimal answer sets S of Ip“(P), such that A; = Af
forallj=1,...,1 and s; =s3-9, forallj=0,...,1.

Proof. For each a € Aj;, the weak constraint (4.5) causes a violation value of cost;(a).
Furthermore, these are the only cost violations. Thus, a candidate answer set S is optimal
if and only if costy,w (p) (S) = costp(P) is minimal, i.e., S corresponds to an optimal plan. [

A similar correspondence result also holds for admissible plans:

Corollary 4.10 (Answer set correspondence for admissible plans). For any well-
defined K¢ planning problem P = (PD,Q7?(l)), the trajectories T = ({(so,A1,51), ---,
(si—1, 41, 81)) of admissible plans P for P wrt. cost ¢ correspond to the answer sets S of
Ip*(P) having costyye (py (S) < ¢, such that A; = AF for all j =1,...,1 and s; = 55, for all
i=0,....1

4.3.2.2 Alternative Translation for SMODELS

Apart from the presented translation using weak constraints, one could also choose an
alternative approach for the translation to answer set programming. SMODELS [SNS02]
supports another extension to pure answer set programming allowing to minimize over sets
of predicates (cf. Section 2.1.5.2) which (together with the rewriting of disjunctive rules for
SMODELS outlined above) allows for optimal plan computation as well. To this end, we use
SMODELS minimize statement in an alternative formulation of Step 7:

Step 7a: For action declarations with non-empty costs-parts, we add a new rule of form

cost(p,X1,...,%n,0,...,0,T,CO) := t1,...,tn, c16,...,c8,U=T + 1. (4.6)
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similar to Step 7 above, with two differences: (1) action name p is now a parameter, and
(2) we add I — n parameters with constant “0” between X, and T where [ is the maximum
arity of all actions in PD. This is necessary in order to get unique arity [ + 2 for predicate
cost. Furthermore, we add

occurs(p,Xs,.--,%Xn,0,...,0,T) := p(X1,..-, X0, T), t1,.-.,tn, 4.7)

This second rule adds the same “0” parameters as for to achieve unique arity [+ 1 of the new
predicate occurs. Using SMODELS syntax, we can now compute optimal plans by adding

minimize[occurs(A,Xy,...,X;, T) : cost(A,Xy,...,X;, T,C) = C].

4.3.3 Secure Checking in General — Translation Ip°° (P, P)

Before discussing how to encode secure planning in logic programming, we first have to
consider the subproblem of checking plan security. Since secure checking in general is already
17 -complete (cf. Theorem 3.5) and secure planning even for fixed plan length is on the third
level of the PH (cf. Theorem 3.6) we can only encode the former as a DLP, but not the
latter. In this section, we will proceed as follows: After providing a general method for
secure checking by means of logic programming based on the ideas from Section 4.2, we will
identify some syntactic subclasses of proper K planning problems where easier co-NP checks
can be applied. We will then show how to integrate these easier checks by the method from
Section 4.2.

Given a K planning problem P =(PD,q ) and a sequence of action sets P = (A;,..., A,),
we now want to decide whether P is a secure plan by Answer Set Programming methods. The
basic idea for solving the IT¥-complete problem of checking plan security is as follows: We
will construct a program IpS® (P, P) solving the complementary problem, deciding whether
P is insecure, such that any answer set of IpS® (P, P) corresponds to a witness for plan
insecurity. On the other hand, whenever ip®“ (P, P) has no answer set at all, then P shall
be secure.

The question whether P is insecure consists of two parts: Namely, P is insecure if there
exists a (partial) trajectory T' = ((so, A1, s1), (51, A2, 82), ..., (sj—1, Aj, s;)) such that either

(a) j =n and the goal is not satisfied in s;, or

(b) j < n and no legal transition (s;, Aj1,s;41) exists.
So, we can split the problem into “guess” and “check” parts as follows:
Guess: guess a (partial) trajectory for plan P.
Check: check conditions (a) and (b) from above.

In the following, we will assume that P is propositional, the background knowledge II
is empty, and that the requires parts of all declarations are empty as well. This is no
restriction since such a problem can be easily constructed from an arbitrary problem P by
the following transformation:

Recall that £pp is the set of all legal action instances and literals of legal fluent instances
in PD (cf. Definition 3.9, p. 33). Let M be the unique answer set of the background
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knowledge II. Then, we denote by P’ the ground planning problem obtained from P,
where we substitute PD| = (I1}, (D, R})) by PD’ = (§,{D’, R")) such that D' amounts to a
ground action/fluent declaration with empty requires-part for each ! € EJISD and we obtain
R' from R| by dropping all r € R} such that
(i) h(r) Z EPD, or
(i) (pre*(r) Upost™ (1)) N Liyp € M, or
(iii) (pre=(r) Upost=(r)) N M # 0

and removing alll € Ly, from the remaining rules. Intuitively, this means that we remove all
“unnecessary” rules from R| which do not comply with the legal action/fluent instances and
the background knowledge. Note that Lpp = Lpp' and each causation rule or executability
condition ' € PD' is satisfied iff the corresponding r € PD| is satisfied. On the other hand,
each r € PD| which does not correspond to any rule in PD’ is unsatisfied by definition. We
get:

Proposition 4.11. The optimistic (or secure, resp.) plans of P and P’ coincide.

4.3.3.1 [p°°(P,P) — Guess Part

As for the guess part of our integrated secure check program Ip° (P, P), we need a HEDLP
which guesses all legal trajectories T' wrt. plan P. Translation Ip(P) serves as a basis for
this program Ip? (P, P). Since we may assume that macros have already been expanded and
II is empty, we can skip Step 0 and Step 1. Steps 2 and 3 are included as is. In Step 4 (see
p. 88), we have to fix the plan P = (4,,..., A,) by the following modification:

Step 4a (Executability Conditions): We now only consider those executability condi-
tions which involve actions in P. So, for any a € 4;, 1 < j < n, and executability condition
e of the form executable a if B. in Cg, we add the following rules:

1. A fact e} of the form
a(j —1).

Facts of this form represent all actions in P.

2. A rule e}, with
Head(ey) = execy(j — 1)

Body(e}) consists of the following literals:
(not) b(j — 1), where (not) b € B and b € Layn;

Type literals and safety information can be ignored due to our assumption that P is
propositional and II is empty.

3. Finally, a constraint ej which forbids that action a € A; is not executable:

== a(j — 1), not execy(j — 1).
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Step 5 again remains as in I[p(P). Finally, we add Step 6, but remove the constraint
:- not goal_reached. there.

We denote this modified program by Ip? (P, P). Since the modification in Step 4a enforces
the actions in P and ensures that each A; € P is an executable action set, by similar
considerations as used in the proof of Theorem 4.7, we obtain the following result:

Lemma 4.12. For any plan P = (A1, As, ..., A,) the answer sets of Ip? (P, P) are in
one-to-one correspondence with all legal trajectories T = ({0, A1,81), {(s51,A2,82), ...,
(Sn_1,An,55)) of length n. Furthermore, there exists an answer set S of lpT (P, P) such
that goal reached € S if and only if P is an optimistic plan.

Informally, IpT (P, P) guesses all legal trajectories T of length n corresponding to plan
P = (44,...,A,). We further define Ip] (P, P) for j < n as the program obtained in
the same way as Ip? (P, P) from the planning problem P(j) = (PD,}?(j)) where we only
consider the prefix (Ay,...,A4;) of P. Le., lpf(’P,P) is the program computing all partial
legal trajectories of length j in PD which match a prefix of P with length j.

4.3.3.2 [p5 (P, P) — Check Part

Intuitively, in order to check insecurity of P = (Ay,...,A,) we could proceed as follows:
Tteratively, compute lpjT(’P, P) for j =0,...,n and check for each answer set S of lpf(P, P,
i.e. each (partial) trajectory, whether

(a) j =n and the goal is not satisfied in sf (as defined in Theorem 4.7, p. 90).
(b) j < n and no legal transition (sf, Ajy1,8541) exists.

While (a) can be checked easily, (b) is a co-NP-complete check in general which can be
integrated in a single program “guess and check” program by our method from Section 4.2.3
for any fixed reachable state s;. However, we have to check (b) for each reachable state s;
at j < n, so the method from Section 4.2.3 can not be applied straightforward but needs
some refinements. To this end, we will adapt the approach from Section 4.2 in order to
reflect the stepwise computation for states reachable in 1,2, ...,n steps.

As a basis, we take the Steps 2 to 5 from Ip? (P, P), i.e. the auxiliary facts from Step 2,
and rules of the following form from Steps 3 (causation rules), 4 (executability conditions),
and 5 (initial state constraints):

r: f(t1) = gi(t1), ..., gk (t1),n0t gry1(t1),not gi(t1),

4.8
hi(to),- -y hm(to),not hpy1(to),not hy(to), Auz. (48)
Particularly, to, %1 and Auz have the following assignments in the rules from Steps 3 to 5:

Step 3 For rule 7', we have to = To,t; = Ty, and Auz = next(Toy, T1) (resp. time(T,)) for
dynamic (resp. static) rules.

Step 4a For each a € Aj, for rules e} and e} we have: ¢ = j — 1 and Auz = .
Remark: We ignore the constraint e} for the moment.

Step 5 For rule r', we have t; = 0 and Auz = (.
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We want to generate an integrated program by means of the meta-interpreter from
Section 4.2 which checks for any state that is reachable by executing a prefix of plan P
whether some legal transition to a successor state exists wrt. the actions in P. Informally,
we need one meta-interpreter for every stage 1,...,n of the plan.

For each rule of the form (4.8) coming from Step 3, we define

body,,..(r,t1) = inS(h1,to) .. ., inS(hm, to), ninS(hmy1,t0), - - -, ninS(hy, to), Auz
Furthermore, we define body,,.(r,t1) = 0 for the rules from Steps 4a and 5.

Now we are ready to construct the integrated program for secure checking Ip°“ (P, P)
which consists of the following rules:

1. For every rule r of form (4.8), we add

lit(h, f,r,t1) ;= bodypre(r,t1). for | € Head(r);
atom(l,|l|,t1) == bodypre(r,t1)-

lit(p,g:i, 7, t1) i bodypre(r, t1). for each ¢ € {1,...,k};
lit(n,gj, 7, t1) == bodypre(r,t1)- foreach j e {k+1,...,1}.

These rules correspond to the conditional version of F(II) from Section 4.2 where we
enrich the input predicates by a timestamp ¢; as defined in rule (4.8). We denote the
rules added in this step as F°°(P, P).

2. Further, we add timestamped versions of Il,,44, called Ipeq(j), for each j € {0, ..., n},
where II,,,¢¢,(7) is obtained from IL,,¢¢, by adding parameter j to every literal in IT,,¢¢q.

3. Note that in F°C(P,P) we have not considered the constraints e} from Step 4a.
Instead, for any a € A; we add an extra rule:

notok(j) :- inS(a,j — 1), ninS(exec,,j — 1) (4.9)

Intuitively, this amounts to the meta-interpreter representation of constraint e} similar
to rule in (4.1) in Section 4.2.2 where notok(j) will be derived for in the state after a
has been executed in plan P.

4. Finally, we add the following rule:
notok(Ti) - notok(To), next(To, T1). (4.10)

This rule propagates the timestamped version of notok to all subsequent time steps,
leading to saturation in all I ¢, (j) for ¢ < j < m as soon as some notok (i) has been
derived.

In analogy to Ipj (P, P) we define Ip5®

Ip°C (P, P) to timestamps up to j, that is,

(P, P) as the program obtained by restricting

195 (P, P) = Myneta(0) U ... U Tlnera(§) U FYC (P, P)

where FC(P, P) is the ground instantiation of F*“(P, P) obtained from instantiating ¢,
with 0 up to j for all rules in F5¢(P, P).
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Similar to s7 in Theorem 4.7, for any answer set S of Ip;“ (P, P) we define
s9ci =1{l|1 € Ly AinS(1,1) € S}

for0<i<jand
Ao ={l|1€ Lact AinS(1,i - 1) € S}

for 0 <4 < 5.
Now let us state some properties of lpSC(P P):

Proposition 4.13. Given a planning problem P and sequence of action sets P = (Ay,..., A,)

(i) If lpSC(P P) has an answer set S, such that notok(j) € S then there exists a legal
tm]ectory T = ((s0,A1,81),-..,(sj-1,Aj,8;)) of length j for P corresponding to the
prefic P = (Aq,..., A;) of P.

(ii) Each legal trajectory T corresponding to the prefix P = (Ai,...,A;) of P is encoded
by some answer set S of Ip;° (P, P), where s; = s3¢; for 0 <i < j and A; = Ay,
is an executable action set wrt. Si_1.

(i) Each answer set S of lpSC(P P) which contains notok(j), where i < j is the small-
est timestamp such that notok(i +1) € S, corresponds to a partial trajectory T =
((s0,A1,51),---,(si_1,A;i,8;)) where Sgc,i marks a state s; such that no legal transi-
tion {(s;, Aiy1,Sir1) exists.

Proof. (Sketch) We proceed inductively:

e Ip5© (P, P): Since Ip§© (P, P) in principle amounts to ¢r(Ipg (P, P)) from Theorem 4.2,
by this Theorem and Lemma 4.12 each answer set S of Ip5© (P, P), such that notok (0)
¢ S, represents a legal initial state of P by sgo,o (i-e. a legal trajectory of length 0).
This proves (i), and (ii), respectively. We remark that the existence of an answer set
Q(0) of Ip5° (P, P) containing notok (0) indicates that P has no legal initial state.?*
Therefore, (iii) is trivially satisfied for j = 0, since non-existence of a legal initial state
also implies that no legal transition (sq, A1, s1) exists.

o 1p§ (P, P), for j > 0:

(i) Assume that S is an answer set of lle(’P P) such that notok(j +1) ¢ S. By
this assumption and rule (4.10) we can further conclude that notok(j) ¢ S. We again
use the Splitting Set Theorem: Obviously, Lit(Ip;“ (P, P)) splits Ip;¢, (P, P), so there
exists a subset S’ C S, such that S’ is an answer set of lpSC(’P P) By the induc-
tion hypothesw S' represents a partial trajectory T' = ({so, Al, 51)5---5(8j-1,4;,5;5))
where s; = 550 It remains to show that (s;, Aj;1,s;41) is a legal transition. First,
by rule (4.9) above and our assumption that notok(j + 1) ¢ S, we conclude that
Aji1 = Asc,j+1 must be an executable action set. Note that s SIC denotes exactly

the literals from S’ which are relevant for the evaluation of the top part of lp] (P, P),

240(0) is defined analogously to ©Q in Section 4.2 taking the additional parameters 0 in II,,etq(0) into
account.
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since only those literals from S affect the bodies of rules in F35 (P, P) \ F7¢(P, P):
Intuitively, F5 (P, P) \ F“(P, P) encodes the “input representation” of the rules
for Mesq(j + 1) corresponding to causation rules and executability conditions r with
a satisfied pre(r)-part, i.e. e (j + 1) together with this input and the rule (4.9)
computes all legal successor states satisfying the causation rules. Again, by simi-
lar considerations as in Theorem 4.2 combined with Theorem 4.7, we conclude that

sgla j+1 represents one such successor state, since notok(j +1) ¢ S. This proves (1).

(ii) follows from similar considerations: We assume that
T = ((s0,A1,51),---,(s5j—1,4;,5;), (55, Aj41,5j+1)) is a legal trajectory, and by the
induction hypothesis the trajectory ((so, A1, s1),-.-,(sj—1,A4;,s;)) is represented by
an answer set S’ such that 5j = Sgc We know that Ajy1 is an executable action set
wrt sj, and (sj, Aj11,841) is a legal transition. Again, by the layered construction of

p; Ip?¢) (P, P) together with the Splitting Set Theorem and in analogy to Theorem 4.2,
we can conclude that S’ can be extended to an answer set S such that sj41 = s9,
and notok (j + 1) ¢ S. This proves (ii).

(iii) It is sufficient to consider the case, where notok(j + 1)€ S and notok (i) & S
for any 7 < j: By rule (4.10) whenever notok(7) is derived, all subsequent states will
be saturated, so only the first step where notok(j + 1) holds could be a witness for a
problematic state.

’]+1

Now let T' = ((so, A1,81),.-.,{sj—1,4j,s;)) be a partial trajectory witnessing prefix
(A1...,A4;) of P. We know there is a corresponding answer set S’ of lpSC(P P) and
there could be two reasons for the nonexistence of a transition (s;, A]+1) Sj41):

— A1 is not an executable action set wrt. s;, or

— there is no state sj;1 such that the causation rules in PD are satisfied wrt.
s; U Aj+1 .

While the former is checked by rule (4.9), the latter amounts to the existence of an
answer set, for the logic program encoded (F£S (P, P)\ F{°(P, P)) Ul yera(j +1). By
similar arguments as in the proof of Theorem 4.7, notok(j + 1) € S holds whenever
one of these two conditions applies.

On the contrary, let S be an answer set of lpJ+1(P P) such that notok(j+ 1) € S
and notok (i) &€ S for any ¢ < j. Then again by the Splitting Set Theorem, we
can conclude that there is an answer set S’ of lpSC(P P) which represents a partial
trajectory T = ((s0, A1,81),.--,(sj—1,4;,5;)) correspondmg to the prefix (4, ..., A4;)
of P. On the other hand, by construction of lpffl (P, P), notok(j + 1) will only be
derived in S if

— Ajy1 is not an executable action set wrt. s; = 3¢, ; by rule (4.9), or

— no legal successor state exists by the causation rules in PD.

Thus, by our assumption that notok(j + 1) € S, s; marks a state where no legal
transition (s;, A1, $;41) exists.

O
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Note that (iii) is particularly interesting since it indicates that by the answer sets of
Ip5C (P, P) we can not only derive all legal trajectories of length n corresponding to P, but
also all partial trajectories which, by execution of P, lead to a state where P can not be
further executed.

Still, we are not yet completely done. Now, we extend IpS© (P, P) by the following rules:

e Similar to Step 6 in translation Ip(P) above, for goal query ¢
goal: gi,...,9k,00t ggi1,...,00t g 7 (n)
we add

Tgoal : goal :- inS(gy,n),...,inS(gk,n),ninS(gx+1,n) ...,ninS(gy,n).

e and the constraint

Csecure © = goal,not notok(n).

Tg0al together with the constraint csecure check exactly the conditions (a) and (b) for
insecure plans by allowing only answer sets such that at least one of the conditions is violated.
This leads to the following theorem:

Theorem 4.14. Given a K planning problem P = (PD,q) and a sequence of action sets
P= (Ala AZ; QRN An): the pbrogram HSC’ = lPSC (Pa P) U {rgoal; csecure} has no answer set Zf
and only if P is a secure plan.

Proof. (=) Assume that P is insecure, i.e. (a) or (b) from above holds. Let us first
consider (b), i.e., we assume that there is a state s; with j < n such that no legal transition
(sj,Ajt1,8;41) exists. From Proposition 4.13 (iii) above and by rule (4.9), we can conclude
that any such state s; is witnessed by an answer set S of Ip°“ (P, P) such that notok(n)
€ S. Since therefore constraint csecyre iS not violated, S is also an answer set of Ilgc.

(a) on the other hand means that there is a supporting trajectory for P which does not
achieve the goal. Again, by Proposition 4.13 we know that any such supporting trajectory
for P corresponds to an answer set of [p°“ (P, P) such that notok(n) ¢ S. However, since
goal can not be derived from 74,4 (and goal does not appear in any other rule head in
IIsc), again constraint Csecyre is not violated and S is also an answer set of IIg¢.

(<) Now assume that IIgc has an answer set S. Thus, constraint ¢gecyre must not be
violated, i.e., either goal € S or notok(n) € S. By similar considerations as above and
from Proposition 4.13 it follows that P must be insecure. O

Note that the answer sets of IIg¢ (if existing) allow to extract a counterexample for plan
security. Let S be an answer set of IpS® (P, P); we distinguish two cases:

e Assume that there exists a j < n such that notok(j) € S. If j = 0, then there exists
no legal initial state for P. If j > 0 and notok (j—1) ¢ S, then T = ((s3¢ o, A1, 53¢.1),
-y (880 _2sA4j — 1,830 ;1)) marks a partial trajectory such that no legal transition

5 S :
(83¢,j—1,Aj;850,;) exists.
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e Otherwise notok(n) & S, and S marks a supporting trajectory T' = ((sgcyo, A, sgc’l),
e <S§C,n71’ Ap, sgc,n)) such that the goal is not achieved by sgan.

Although this method for checking plan security is universally applicable to any K plan-
ning problem and plan at hand, it is very intricate and obviously expensive in general as it
uses full DLPs with head-cycles.

In the next subsection, we will identify security checks for some syntactic subclasses of
planning domains which are easier to compute.

4.3.4 Secure Checking for Proper Domains

As we have seen, in arbitrary planning domains the security check is II¥’-complete and thus,
by widely believed complexity hypotheses, it is not polynomially reducible to a SAT solver
or any other computational logic system with expressiveness bounded by NP or co-NP.
The checking method proposed in the previous section is computationally expensive and
in many cases an “overkill”: As shown in Section 3.3, a polynomial reduction from the
secure checking problem to co-NP is possible for the class of proper propositional planning
problems. This is in particular interesting, as a co-NP check could, by the method proposed
in Section 4.2, be integrated into a single DLP computing secure plans at once without
having to split the problem into guessing optimistic plans and then checking each plan in a
separate computation.

We recall that a planning problem P is proper, if the underlying planning domain PD is
proper, i.e., given any state s and any set of actions A, deciding whether some legal state
transition (s, A, s') exists is possible in polynomial time.

In the DLVX system, described in the next chapter, we have focused on certain proper
propositional planning domains, and we have implemented security checking by polynomial
reductions to logic programs with complexity in co-NP.

Note that for any proper planning domain PD, there is an algorithm 4pp which, given
an arbitrary state s and a set of actions A, decides in polynomial time whether some legal
transition (s, A, s') exists. The existence of such an algorithm App is difficult to decide, even
in the propositional case, and App is not efficiently constructible under widely accepted
complexity beliefs. We thus looked for suitable semantic properties of planning domains
which can be ensured by syntactic conditions and allow for a simple (or even trivial) check
for the existence of a legal transition (s, A, s'), which uniformly works for a class of accepted
planning domains.

Let us recall the conditions for insecurity of a plan P = (44,...,A,) from above: P
is insecure if and only if there is a (partial) trajectory T = {{so, A1, 51), {s1,A2,82), ---,
(Sj_l, Aj, S]>) such that either:

(a) j =n and the goal is not satisfied in s;, or
(b) j < n and no legal transition (s;, Aj1,s;41) exists, i.e.,

(b1) Aji: is not an executable action set in s; or

b2) A,y is executable but there is no state s;y; such that (s;, A;11,s;11) is a legal
Jj+ Jj+ Jor i +15 95+
transition.
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While checking (a) and (bl) is clearly feasible in polynomial time (cf. Lemma 3.1 in
Section 3.3), (b2) is the critical (co-NP-complete) part. We will now introduce syntactic
subclasses of planning problems, where checking (b2) is easier.

4.3.4.1 false-Committed Domains and Security Check SC,

One such condition is when, informally, the existence of a legal transition (s, A, s') can only
be blocked by a causal rule with head false or by an (implicit) consistency constraint
- £,—f. That is, if such constraints are disregarded, some legal transition (s, A, s') always
exists, and otherwise, if some constraint is violated in any such s', no legal transition (s, A, s)
exists. As we will see, this condition can be ensured by a syntactic condition which employs
stratification on the causation rules.

With this in mind, we develop a security check SC;, which, given an optimistic plan
P = (A,,...,A,;) of length n > 0 for a planning problem P, rewrites the logic program
Ip(P) from Section 4.3.1 to a logic program Ip°“1(P, P) and returns “yes” (i.e., the plan is
secure) if this program has no answer set, and “no” otherwise.

The modifications are as follows:

(1) As for checking condition (bl), we substitute Step 4 by a further variant, which is
more or less a combination of the original Step 4 from Ip(P) (see p. 88) and the alternative
Step 4a (see p. 98) from Ip°C (P, P). We call this Step 4b:

Step 4b (Executability Conditions):?®> We again only consider those executability con-
ditions which involve actions in P. So, for any a(f) in A; and corresponding executability
condition e of the form executable a(t) if B in Cg, we introduce the following rules in
Ip°C1 (P, P):
1. A fact e} of the form
a(f,j —1).
These facts add all actions in P. Note that we do not restrict ourselves to propositional
planning problems as in IpSY (P, P).
2. Rule ¢}, is taken from Step 4 of Ip(P), i.e. we add a rule e}, with
Head(eh) = exec,(t,Tp)
Body(e}) consists of the following literals:
e Each (default negated) type literal in e, i.e., (not)l € B where [ € Lyyp;
e (not) b(t, Tp), where (not) b(f) € B and b(t) € Layn;
o next(7y,71) where T is a new variable;

e for typing and safety, type information literals for a(f) and every default literal
not (—)p(t) € B such that p(f) € Lgyn, as in the original Step 4 above.

3. Finally, we slightly modify the constraint e} from Step 4 which forbids that the action
is not executable:
notex :- a(t,Tp), not exec,(t,Tp).

where Ty, T are new variables.

25 A slightly different version for the simplified Step 4 for acyclic executability conditions mentioned above
has been introduced in [EFL103a].
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Here, notex is a new auxiliary predicate which intuitively expresses that the plan P can not
be properly executed; its truth allows building a witness for the insecurity of P.

(2) Concerning condition (b2), in any situation where a causal rule with head false is
violated or a fluent inconsistency arises, an answer set witnessing the insecurity of P should
be generated. To this end, the transformation is modified as follows:

Each constraint :- Body, time(T}). in Ip(P) which stems from a static causal rule of the form
caused false if ... is rewritten to

notex :- Body, next(Ty,T1).
= Bodyé. (4.11)

where 6 is a substitution mapping T to 0. Observe that the violations of constraints referring
to an initial state do not generate a counterexample which is reflected by changing time(T})
to next(Tp,T1) and by leaving the constraints for timestamp 0 unaffected, expressed by the
final constraint.

Each constraint :- Body, next(Ty,T1). in Ip(P) which stems from a dynamic causal rule

caused false (if ...) after ... is rewritten to

notex :- Body, next(Ty,T1). (4.12)

And for each fluent f(X), the (implicit) consistency constraint (discussed in Footnote 5 in
Section 2.1) is transformed to a rule for non-initial states

notex :- f(X,T1), *f(X;Tl); next (7o, T1). (4.13)

while those for the initial state remain unchanged:

—

B f(‘X-:70)7 7f(X70) (414)

Constraint violations (explicit or implicit) in non-initial states therefore lead to a witnessing
answer set containing notex.

(3) Finally, for condition (a), the goal constraint :- not goal reached. is modified to

:- goal_reached, not notex.

(4.15)

We can read the rewritten goal constraint as follows: The constraint is satisfied, and thus
the plan P is not secure, if (i) either notex is true, which means that some action in P
cannot be executed or a constraint is violated when executing the actions in P, or (ii) if
goal reached is false, which means that after successfully executing all actions in P, the
goal is not established.
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Before we can state the informal conditions, under which the security check SC; works,
more precisely, we need some auxiliary concepts.

Definition 4.4 (constraint-free, constraint- & executability-condition-free shadow).
For any planning domain PD = (II, (D, R)), let ¢fs(PD) denote the planning domain which
results from PD by dropping all causal constraints with head false and interpreting negative
fluents as new (positive) fluents, and call it the constraint-free shadow of PD. Furthermore,
let cefs(PD) denote the planning domain derived from ¢fs(PD) by omitting all executabil-
ity conditions and adding executable a. for each legal action instance a, and call it the
constraint- and executability—condition-free shadow of PD .

Definition 4.5 (false-committed planning domains). We call a planning domain PD
false-committed, if the following conditions hold:

(i) If s is a legal state in PD and A is an action set which is executable in s wrt. PD,
then either (i.1) every legal transition (s, A, s’} in ¢fs(PD) is also a legal transition in
PD, or (i.2) no (s, A,s") is a legal transition in PD, for all states s” in PD.

(ii) For any state s and action set A in cefs(PD), there exists some legal transition (s, A4, s)
in cefs(PD).

We call a planning problem P = (PD,q) false-committed, whenever PD is false-
committed.

Example 4.10 (Bridge Crossing with Nondeterminism (cont’d)). Let us reconsider
problem Ppopge. from page 41. As easily verified, Ppopsec is false-committed. Indeed,
PDpcpsec contains four occurrences of default negation not, via the inertial statements
(after macro expansion)

caused at(X,S) if not —at(X,S) after at(X,S).
caused hasLamp(X) if not —hasLamp(X) after hasLamp(X).

and the two statements from expansion of the macro total

caused hasLamp(X) if not ~hasLamp(X) after cross(X), X!= joe.
caused —hasLamp(X) if not hasLamp(X) after cross(X), X!= joe.

all of which are not critical for the existence of a successor state in cefs(PDpcpsec), SO
condition (ii) is guaranteed. (Informally, this is the case, because all cycles in the dependency
graph of the respective logic program containing default negation have even length, which
is a sufficient condition for answer set existence, resp. successor state existence in our case,
cf. [PS94].) As for condition (i), for each consistent state s and action set A, which is
executable in s, every legal transition (s, A, s') in ¢fs(PD) is also a legal transition in PD:

e Except for the noConcurrency macro, our domain is essentially free of explicit con-
straints. Thus, the only constraints possibly violated emerge from |A| > 1, where (i.2)
holds.
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e Furthermore, we have to consider the implicit constraints by possible inconsistencies
in successor states for the remaining A with |A| < 1: For the empty action set A =
(), which is trivially executable, obviously the only rules applicable are those from
inertial statements: Here, no inconsistencies can arise, i.e. condition (i.1) holds. On
the other hand, for all other action sets involving a single action, one can easily verify
that

1. for action set A = {a} where a € {cross(z) | z € {jack,william,averell}},
the total rule is applicable and the two possible successor states which either
contain hasLamp(x) or —hasLamp(z) but not both, are both consistent;

2. for all other (single action) action sets A, a unique consistent successor state
exists.

Therefore, we have (i.1) for all action sets A with |A| < 1.
Consider the secure plan P; from page 41:

P, = ({takeLamp(joe)}, {crossTogether(joe, jack)}, {cross(joe)},
{crossTogether(joe, william)}, {cross(joe)}, {crossTogether(joe,averell)} )

Indeed, an attempt to build an answer set S of I[p°©1 (Ppcpsec, P») fails: starting from any

initial state, the actions in A; are always executable and no constraint is violated, thus
notex cannot be included in S. Thus, in order to satisfy the rewritten goal constraint
- goal reached, not notex., goal reached must not be included in S. As easily seen, the
atoms at(joe,across), at(jack,across), at(william,across), at(averell,across) are
included in any answer set S. This, however, means that goal reached has to be included
in S, which is a contradiction. Thus, no answer set S of Ip>“t (Ppcpsee, Po) exists, which
means that the plan P» is secure.

Let us now modify the number of steps in the goal to ¢ = 5, and consider the optimistic
plan P,

P, = ({crossTogether(joe, jack)}, {cross(joe)}, {crossTogether(joe,william)},
{cross(joe)}, {crossTogether(joe,averell)} )

In this case we can build an answer set of Ip°C1 (Pgcpsec, P1) starting from an initial state in

which joe does not have the lamp, by including at each stage the literals that are enforced.
Then, the first action is no longer executable and notex can be derived in Step 4b. Thus,
the constraint :-goal_reached,not notex. in Ip°“t (Pgcpsec, Py ) is satisfied, admitting an
answer set which witnesses the insecurity of P;. Hence, the check outputs “no”, i.e., the
plan is not secure. <&

To show that the security check SC; works properly for all false-committed planning
domains, we need the notions of soundness and completeness for security checks.

Definition 4.6 (security check). A security check for a class of planning domains PD is
any algorithm which takes as input a planning problem P in a planning domain from the
class PD and an optimistic plan P for P, and outputs “yes” or “no.” A security check is
sound, if it reports “yes” only if P is a secure plan for P, and it is complete if it reports
“yes” whenever P is a secure plan for P.
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In other words, for a sound security check only “yes” can be trusted, while for a complete
security check only “no” can be trusted.

Theorem 4.15. The security check SCy is sound and complete for the class of false-
committed planning domains.

Proof. We outline the proof, but omit the details. Let P = (A;,...,A,) be an optimistic
plan for a planning problem P in a false-committed planning domain PD.

(Soundness) Suppose that P is not secure. This means that an initial state so and a
trajectory T = ((so, A1,51),---,(sj-1,4;,5;)) in PD (where 0 < j < n) exist, such that
one of the conditions (a) or (b) for plan security stated at the beginning of this section is
violated. We then can build an answer set S of the program Ip°“1 (P, P), in which, starting
from s, respective literals are included which correspond to the legal transitions in 7" as in
Ip(P). We consider the three cases:

Suppose first that condition (bl) is violated, i.e., some action a() in the action set A;
of P is not executable. Then, no rule with head a(¢, 7) fires, and thus we may add notex to
S, as it can be derived from the rule notex :- not a(Z,j). By (ii) of false-committedness
for PD, we can add literals for the stages j + 1, ..., n modeling transitions in cefs(PD) to
S such that we obtain an answer set of Ip>“1 (P, P).

Suppose next that condition (b2) is violated, i.e., no successor state exists. By (ii) of
false-committedness for PD, we can add literals to S modeling a legal transition
(sj, Ajt1,85+1) in ¢fs(PD), and by (i) of false-committedness for PD, notex will be de-
rived, as in PD some rule with head false fires or opposite fluent literals £, — — f are in
S. Using (ii) again, we can add literals for the remaining stages j + 2, ..., n modeling
transitions in cefs(PD), such that we obtain an answer set S of Ip“1 (P, P).

Suppose finally that condition (a) is violated. That is, j = n and the goal is not satisfied
by s,,. Then, the rule with head goal _reached is not applicable, the modified goal constraint
is satisfied, and an answer set S exists. Note that this also includes the case n = 0.

In any of these three cases, an answer set S of Ip>©1 (P, P) exists, and SC; (P, P) outputs
no.”

(Completeness) Suppose SCq(P,P) outputs “no,” i.e., ipS“1(P, P) has some answer
set S. Then, either notex € S or goal reached ¢ S must hold. In the former case,
notex must be derived either i) from some rule 7 : notex :- not a(¢, )., or ii) from some
rule notex :- ... time(j). corresponding to a rewritten constraint with head false or a
consistency constraint for strong negation. Let r be such that j is minimal. Then S encodes
with respect to the stages 0,...,5 — 1 a trajectory T = ({so, A1, 1), ---,(sj—1,4;,8;)),
such that A,y is not executable in s; wrt. PD. In case i), we immediately obtain that
condition (b1) of security is violated and hence that P is not secure. In case ii), a trajectory
T = ((s0, A1,81),...,(8j-2,A4j_1,8j-1)) in PD exists such that executing A; in s;_; wrt.
cfs(PD) as encoded in S leads to a state s; which violates some constraint of PD with head
false or contains opposite literals. By item (i) of false-committedness for PD, we can
conclude that no legal transition (s;j_1,A;,s;) exists in PD, which violates condition (b2)
of security. On the other hand, if goal reached ¢ S while notex ¢ S, then S encodes
a trajectory T = {(so, A1,81),---,(8n—1, An,8n)) wrt. PD such that in the final state s,
the goal is false, i.e., condition (a) of security is violated. That is, in all cases P is not
secure. o

13
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Now that we have introduced the class of false-committed planning domains, we look
for syntactic conditions on planning domains which can be efficiently checked and guarantee
false-committedness. One such condition can be obtained by imposing stratification on
causation rules as follows: For any causation rule r of the form (3.2) let Ip(r) be the
corresponding logic programming rule f:-by,...,bg,not bgy1,...,not b;. which emerges by
skipping the after-part.

Definition 4.7 (stratified planning domain). A planning domain PD = (II, (D, R)) is
stratified, if the logic program IIpp consisting of all rules Ip(r), where r € Cg has h(r) #
false and a non-empty if-part, is stratified in the usual sense (and strongly negated atoms
are treated as new atoms).

For example, the planning domain PDy,. described in Section 6.3.1 is stratified whereas
PDyyy is obviously not.

It is easy to see that stratified planning domains are false-committed. Indeed, since
any constraint-free stratified logic program is guaranteed to have an answer set, item (ii) of
Definition 4.5 holds. Furthermore, for each legal state s and action set A which is executable
in s wrt. PD, there exists a single candidate state s’ for a legal transition (s, A, s') in ¢fs(PD),
which is computed by evaluating a subset of the rules of Il pp; this transition is not legal in
PD if s’ violates some constraint in Cr with head false or introduces inconsistency. Note
that stratified planning domains PD are proper.

Corollary 4.16. The security check SC1 is sound and complete for the class of stratified
planning domains.

A possible extension of Corollary 4.16 allows for limited usage of unstratified causation
rules. For example, pairs

inertial f.
inertial —f.

of positive or negative inertia rules for the same ground fluent £, which amount to the rules

T'}L: caused f if not —f after f.
r;: caused —f if not f after —f.

violate stratification. Nevertheless, pairwise inertia for a fluent £ can be allowed safely, if
each of the two rules together with the remainder of the planning domain is stratified. That
is, we check for stratification of the two sub-domains that result from the planning domain
PD by omitting the positive and negative inertia rules for f, denoted by PD~/ and PD*/,
respectively. If both PD~f and PD*/ are stratified, then SC; is sound and complete for
PD. This holds because in any state s, at most one of the rules r;[ and Ty can be active
with respect to s.

We can further extend this to multiple pairs of ground inertia rules, where combinations
of positive and negative inertia rules have to be checked. We go one step further and extend
it to mux-stratified planning domains, which we define next.

Two causation rules ro, r1 in PD are a mutually exclusive pair (muz-pair), if their after-
parts are not simultaneously satisfiable in any state s and for any executable action set A
wrt. s in PD.
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Definition 4.8 (mux-stratified planning domains). Let PD be a planning domain and
E = {(rio,r,1) | 1 <i<n},n >0, aset of mux-pairs in PD. Then, PD is called muz-
stratified wrt. E, if each planning domain PD’ that results from PD by removing one of the
rules r; 0 and r;; for all ¢ = 1,...,n is stratified.

Notice that E does not necessarily contain all mux-pairs occurring in PD; we may even
choose E = (), where the notion of mux-stratified coincides with stratified planning domain.

Note that E induces a bipartite graph G g, whose vertices are the rules occurring in E
and whose edges are the pairs in E. The removal sets for building PD’ which need to be
considered are given by the maximal independent sets of Gg. There may be exponentially
many such sets, and thus the cost for (simple) mux-stratification testing grows fast.

We now establish the following result.

Theorem 4.17. Every planning domain PD which is muz-stratified wrt. some set of mux-
pairs E is false-committed.

Proof. Consider any state s and executable action set A wrt. s in PD. Denote by
active(s, A, PD) the set of all ground rules in IIppl which correspond to instances r' of
causation rules in PD such that the after-part of r' is true wrt. s, A and the answer set
M of the background knowledge.

Then, we claim that active(s, A, PD) is stratified, i.e., its (ground) dependency graph
does not contain a negative cycle. Indeed, towards a contradiction assume that the (ground)
dependency graph of active(s, A, PD) contains a negative cycle C. Then, C involves only
rules which correspond to instances of causation rules not occurring in E, and rules which
correspond to instances of causation rules from ry;,,...,7p,i,, where E = {(r;0,7;1) | 1 <
i <n}andi; € {0,1}, for all j = 1,...,n. (A rule R is involved in all edges Iy — [y
of the dependency graph, where Iy € H(R) and I, € B(R).) This means that C is also
present in the ground dependency graph of IIpps for some PD' which results from PD by
removing the causation rules that correspond to instances of 711 4, T2,1-is, -5 Tn1—in-
Consequently, the (non-ground) dependency graph of Il ppr contains a negative cycle. This,
however, contradicts that PD is mux-stratified wrt. E; the claim is proved.

Since the ground program active(s, A, PD) is stratified, it is easily seen that conditions
(i) and (ii) of false-committedness hold for s. Since s was arbitrary, it follows that PD is
false-committed. O

By combining Theorems 4.15 and 4.17, we obtain the following corollary.

Corollary 4.18. The security check SCy1 is sound and complete for the class of muz-
stratified planning domains, and in particular if E consists of opposite ground inertial-
rules.

A generalization of the result in Corollary 4.18 to sets E of non-ground opposite inertial
rules fails. The reason is that in this case multiple transition candidates (s, A,s’) may
exist in ¢fs(PD), which correspond to multiple answer sets of the program active(s, A, PD).
However, some of these might not be legal in PD, and condition (i) of false-committedness
may be violated.

Take for instance the following short example:
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Example 4.11. Let P = (PD, q) be given by background knowledge II = {bk(a). bk(b).}.
and the following K program:

fluents: f£(X) requires bk(X).

initially: —f(a). £(b).
always: g-
inertial f(X).
inertial —f(X).
caused f(a) if not f(b) after f(b).
caused —f(b) if not —f(a) after f(b).
caused false if —f(a), f(b) after f(b).
goal : g?(1)

This planning domain has the (non-obvious) secure plan P = {@). Secure check SC; does
not apply here, since the domain is not false-committed: We obtain c¢fs(PD) (=cefs(PD))
essentially by ignoring the last causation rule. Starting with the single initial state sg =
{—£(a),f(b)}, the domain cfs(PD) allows for two legal transitions ¢t1 = {(so, ), {—£(a), £(b)})
and t2 = (so,0,{f(a),~£(b)}) where #; is not legal in PD as it violates condition (i) in
Definition 4.5. Furthermore, P is also not mux-stratified wrt. opposite ground inertia rules.
However, as easily verified, ignoring either of the non-ground inertia rules would lead to a
stratified domain in both cases. This shows that checking mux-stratification for opposite
inertia rules on the non-ground level is not sufficient to guarantee false-committedness.
Indeed, if we apply secure check SC; to this example it will misleadingly answer “no”
when testing P = (f). Therefore, the example shows that SC; is too cautious in some cases
and proves incompleteness of SC1 in general. <

The next example shows that planning problems not even need to involve default nega-
tion or constraints in order to prove incompleteness of SC;:

Example 4.12. Let P = (PD, q) be given by the following K program (with empty back-
ground knowledge II):

fluents: f. g.

always: caused g if f.
caused —g.
total f.

goal : —g7(1)

There is one legal initial state so = {—f,—g} in this domain. In ¢fs(PD) (=cefs(PD)), we
have two legal transitions ¢; = (s¢,0, s0) and t2 = (so,0,{f,g,—g}). However, only #; is
also legal in PD, so false-committedness does not hold by violation of condition (i) in
Definition 4.5. Again, SC; will wrongly reject the secure plan P = ((). O

In fact, SC; is not even sound in general, witnessed by another simple example:

Example 4.13. Let P = (PD, q) be given by the following K program (with empty back-
ground knowledge II):
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fluents: f. g.
initially: total g.

always: f.
caused g if not g after g.
goal : £7(1)

Obviously, this domain has two legal initial states sg,0 = {£f,g} and so,1 = {f,—g}. Further-
more, P = (()) is an optimistic plan witnessed by the trajectory (so,1,0,{f}). However, there
is no legal transition starting with sg, i.e. P is not secure. As easily verified, this is not rec-
ognized by SC1, which returns that P is a secure plan. Clearly, PD is not false-committed
due to violation of condition (ii) of Definition 4.5. <o

The DLVX system provides limited support for testing mux-stratification, which currently
works for the set E consisting of all pairs of rules (rg,r;) such that 7o and r; contain
“opposite” literals in the after-parts of ground causation rules (which covers in particular
opposite inertia rules). Formally, by opposite literals we mean that for rules r¢ and r;

1. there exist [ € pret(rg), such that —.l € pret(ry), or
2. (pre™(ro) Npre™(r1)) U (pre* (r1) N pre™(ro)) # 0

Clearly, all such pairs of rules form mux-pairs in any planning domain.
Notice, that deciding whether a given pair of causation rules (rg,r;) is a mux-pair in a
given planning domain is intractable in general.

4.3.4.2 Serial Planning Domains and Security Check SC»

Besides SCy, we provide an alternative security check SCs for handling other classes of
proper planning domains. This check somehow combines the ideas from the general secure
check Ip°¢ (P, P) and the simpler secure check Ip°“1(P, P) to a further class of proper
planning domains, so-called serial planning domains. These are planning domains where in
each state s for each action set A which

1. satisfies at least one executable statement, and

2. does not violate any nonexecutable statement
(more precisely, any rule of the form caused false after B)
at least one legal trajectory (s, A, s') is guaranteed to exist.
The check SC» is obtained by the following modifications of ipS“1(P, P), resulting in a
program Ip°©2 (P, P):
1. Each literal notex from Ip°C1 (P, P) is extended by a timestamp as follows:

(a) In Step 4b from above we write notex(Tp) in the head of e}.

(b) For all other rules in IpS®1(P, P) with Head(r) = notex we change the head to
notex(T}) instead.

(c) We change the final constraint (4.15) from IpS“1(P, P) to
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- goal_reached, not notex(l).
where [ is the plan length of P = (PD, Q7(1)).
2. Furthermore, we add a rule

notex(T1) :- next(Tp,T1), notex(Tp).

which propagates violations of plan security to the successor states.
3. The head notex(T}) of

(a) each rule of the form (4.11) or (4.12) which stems from a causation rule such that
h(r) = false and the if-part is not empty, and

(b) each rule of the form (4.13) which stems from a consistency rule
is shifted to the negative body such that
notex(7T1) - Body.

is rewritten to

= Body, next(Ty,T1), not notex(Tp).

This shift means that the violation of a constraint on the successor state s’ is tolerated,
and we eliminate s’ as a counterexample to the security of the plan. Here, we have to
add not notex(7)) in the negative body of the constraint, because a constraint shall
not eliminate counterexamples which stem from problems in previous states.

Remark 4.4. By the labeling of predicate notex we achieve a machinery similar to the
general secure check Ip°C (P, P). The derivation of notex(t) can be usefully exploited for
finding counterexamples which indicate time step t at which an error occurred.

We will see that the check SCo works for the following class of planning domains.

Definition 4.9 (serial planning domains). ?¢ A planning domain PD is serial, if it has
the following property: Let s be a state, and A be a set of actions in PD. Whenever

(i) A is an executable action set in s wrt. PD, and,
(ii) no rule of the form caused false after B.2" is violated in s
then some legal transition (s, A, s') is guaranteed to exist

We call a planning problem P = (PD, q) serial, whenever PD is serial.

Given a state s and a set of actions A both conditions (i) and (ii) can be checked in
polynomial time and therefore such domains/problems are obviously proper. The following
can be observed:

26Note that this definition of serial domains covers a broader class of proper domains than the correspond-
ing definition in [EFL*03a)].
27Tn particular, this applies to nonexecutable statements.
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Theorem 4.19. The security check SCs is sound and complete for serial planning domains.

The proof argument of this result is similar to the proof of Theorem 4.15 combined with
the ideas from Proposition 4.13, and we thus omit it.

Example 4.14. Let P = (PD, q) be given by the following K program (with empty back-
ground knowledge II):

fluents: f. g.

actions: a.

always: executable a if f.
caused g after a.
total f.
caused false if —f.

goal : g? (2)

The final two causation rules in the always-section are semantically equivalent to caused f.
As easily verified, the domain is serial. Let us now consider the (secure) plan P = (@, {a}).
The check program IpS©2(P, P) for this plan looks as follows.

% Auxiliary predicates:

time(0). time(1). time(2).
next (0,1). next(1,2).

% ¢¢inherit?’ notex:
notex(T1) :- notex(TO), next(TO,T1).

% Add the plan:
a(l).

% executable a after f.
exec_a(TQ) :- £(TO),next(TO,T1).
notex(T0) :- a(T0), not exec_a(T0).

% caused g after a.
g(T1) :- a(T0), next(TO,T1).

% total f.
f(T1) v -f(T1) :- time(T1).

% caused false if -f.
1= —£(0).
1= -f(T1), time(T1), next(TO,T1), not notex(TO0).

% goal: g7 (2)
goal_reached :- g(2).
:— goal_reached, not notex(2).

Indeed, this program has no answer set and thus, the plan P is secure. <

Remark 4.5. We remark that the additional timestamps are essential for the correct work-
ing of secure check SCo: Simply taking SC1 and shifting notex as in item 3. on page 114
is not sufficient in general. This applies, for instance, to Example 4.1/ above where this
simplified version of SCo from [EFLY 03a] does not work.

A syntactic class which guarantees serial domains are for instance stratified planning
domains PD which contain no rules 7 such that h(r) = false and which do not employ
strong negation. The serial property is preserved if we also allow arbitrary totalization
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statements and limited use of strong negation, e.g. if either all occurrences of a fluent are
strongly negated or none is. Note that such planning domains are not false-committed in
general.

We remark that the problems from Example 4.11 and Example 4.12 are serial and there-
fore can be correctly solved using security check SC». However, Example 4.13, is clearly not
serial, so SC2 is not applicable, and unsound in general. We leave it as an exercise for the
reader to show that for Example 4.13 P = (()) will wrongly be accepted.

Note that SC» is not subsuming SC;. There are also domains, where SC; applies rather
than SCs:

Example 4.15. Let P = (PD, q) be given by the following K program (again with empty
background knowledge II):

fluents: f. g. abs.

initially: g.

always: total f after g.
caused abs after —f.
caused false if abs.
caused f after f.

goal : £7(2)

Let us consider the optimistic plan P = (@, §}), which is not secure: There is one legal initial
state s = {g} in this domain. In ¢fs(PD) (=cefs(PD)), we have two legal trajectories of
length 2: Ty = ((s0,0,{£}), ({£},0,{£})) and T> = ((s0, 0, {£}, ({-£},0, {abs}))). However,
T, is invalid for PD: State {-f} does not allow for any legal transition to a successor state
in PD. Thus, the domain is not serial, and indeed, SC; fails by incorrectly accepting plan
P. However, any state including —f satisfies condition (i.2) in Definition 4.5 and on all other
states condition (i.1) applies; condition (ii) holds as well. Thus, PD is false-committed
and SC; works properly, rejecting P. <

We see that SCy might be too brave in certain cases, where SC1 works. On the other
hand, SC» may also be profitably combined with SC; in order to enlarge classes for which
security checking is supported, as shown next.

4.3.4.3 Incomplete Security Checking

The DLVX system described in the next chapter provides secure checks SC; and a simpli-
fied version of SCy as described in [EFLT03a], and the system design easily allows the
incorporation of further security checks.

We may combine (fast) security checks which are sound and security checks which are
complete to obtain checks which return the correct answer if possible, and leave the answer
open otherwise. This is similar to the use of incomplete constraint solvers in constraint
programming, which return either “yes,” “no,” or “unknown” if queried about satisfiability
of a constraint; the obvious requirement is that the answer returned does not contradict the
correct result.

Suppose that we have a suite of security checks SCy,...,SC,, where SCy,..., SC;, for
some j < n, are known to be sound for a class of planning domains PD and SCy,...,SCy,
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for some k < n, are known to be complete for PD. Then, we can combine them to the
following test 7 :

“yes”, if SC;(P,P) = “yes,” for some i € {1,...,j};
T(P,P)=< “no”, if SC;(P, P) = “no,” for some i € {k,...,n};
“unknown”, otherwise.

Observe that in the “yes” case of T, SC;(P, P) = “yes” must hold for all i € {k,...,n},
and symmetrically in the “no” case that SC;(P,P) = “no,” for all i € {1,...,5}; this can
be used for checking integrity of the sound or complete security checks involved.

Note that we can always use a dummy complete security check which reports “yes” on
every input. By merging the “unknown” case into the “no” case, we thus can combine
sound security checks SCy,...,SC; to another, more powerful sound security check SC for
the class PD. In particular, if SCy,...,SC; are known to exhaust all secure plans, then SC
is a sound and complete security check for PD.

4.3.5 Secure Planning

Our general secure check IpS© (P, P) from Section 4.3.3 solves a problem at the second level
of the PH. Thus, in general the best we can do in order to compute secure plans for a given
planning problem P is interleaving optimistic plan generation using the translation Ip(P)
with checking each resulting plan P using one of our secure checks ip°“ (P, P), Ip“1 (P, P),
or Ip°“2(P,P). Such an interleaved computation is implemented in the DLV® planning
system, which we will present in the next chapter.

On the other hand, the programs Ip(P) and each of the easier check programs ipS“: (P, P)
and [p5“2(P, P) are HEDLPs, i.e., they represent an NP guess for optimistic plans and
respective checks in co-NP. So we can integrate guessing optimistic plans by program Ip(P)
and check programs Ip°“1(P, P) or IpS“2(P,P) into a single program II%  with slight
modifications by the method from Section 4.2.3.

Integrated Secure Planning - Guess Part:

Note that Ip®©1 (P, P) and Ip®“2 (P, P) both check action executability and goal achievement
for all possible trajectories of P. Hence, we can simplify the guessing part:

The idea is not to guess an optimistic plan, but an arbitrary sequence of actions, inde-
pendent of state information. Let Hfuess be the program obtained from only the rules e} of
Step 4 in Ip(P) plus background knowledge II. Then, the answer sets of II7, .. represent
any possible sequence of actions in P enriched by the unique answer set M of II. H;’uess
will serve as guess program for an integrated encoding in the sense of Section 4.2.3.

Note that, in order to prune the number of guesses, we still might want to have only
action sequences which actually correspond to optimistic plans as candidates. To this end,
we can use an alternative guess program based on Ip(P): We remark that Ip(P) does not
satisfy the splitting condition on Ip(P) U IpS“i (P, P), where i € {1,2}. Therefore, in order
to use Ip(P) as a basis for the integrated program II% ., we first have to rename fluent
literals in Ip(P) such that they do not conflict with the fluent names in Ip°“ (P, P), i.e. we
rename any predicate f(Z,t) in Ip(P) emerging from a fluent f(F) to f'(Z,t). This modified
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program, H;DuessOpﬂ can then be used alternatively instead of H;’uess. We remark that no

such renaming is necessary for type literals, since we conceive background knowledge II as
part of the guess.

Integrated Secure Planning - Check Part:

We slightly modify Ip°“: (P, P), i € {1,2}, by omitting the rules €| from Step 4b, since
the input is no longer a fixed plan to be checked but given by the individual answer sets of

H;’uess. We denote the modified programs by H§C1 or HECQ, respectively.

For integrating these check programs, we obtain ngcl (1'["5722, resp.) from HECZ (H§C2,
resp.) as defined in Theorem 4.6.

In total, we obtain the following results from Theorems 4.6, 4.15 and 4.19:

Proposition 4.20. Let P be o false-committed planning problem.
Then, the answer sets of
P _ 1P P
Meesc, =11 Ullge,

guess

correspond with the secure plans of P.

Proposition 4.21. Let P be o serial planning problem.
Then, the answer sets of
P _ P p
Meesc, =11 Ullge,

guess
correspond with the secure plans of P.

Both propositions above analogously hold for the alternative guess program H:fuessOpt‘

As pinpointed above, for general P, due to the inherent complexity of security checking,
no such integrated encoding Ip(P)se. exists.

4.3.6 Secure Optimal Planning:

As for optimal secure planning, things are getting more involved. In principle, the secure
checking methods discussed above carry over to planning with action costs in a straightfor-
ward way, and optimal (or admissible) secure plans can be similarly computed by answer
set programming.

However, we are bound to interleaved computation here, since checking plan optimality,
can not simply be integrated for secure plans.

Note that checking whether a cheaper plan of fixed length ¢ than a given plan P ex-
ists amounts to deciding admissible plan existence (wrt. costp(P) — 1). This problem is
NP-complete (cf. Theorem 3.12 in Section 3.3), i.e., not harder than checking general plan
existence for fixed plan length. Analogously, checking whether a cheaper secure plan of
length i exists is again ¥Z-complete in general and ¥£-complete for proper planning do-
mains. So, for proper domains, like the serial and false-committed domains mentioned
above, a NP program for checking plan insecurity could be combined with an additional
check whether a cheaper secure plan exists in a single £ check program, using the same
building blocks as the encodings above. As easily recognized, the immediately resulting
algorithm for computing optimal secure plans for proper domains lies in XYMV: So, a
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naive algorithm in worst case has to check all possible plans by means of an expensive IT¥
check (checking plan security plus non-existence of a cheaper secure plan), even for proper
domains.

However, combining results from Theorems 3.6 and 3.13, we can conclude with the
following corollary:

Corollary 4.22 (Complexity of optimal secure planning in proper domains). For
plans of fized length |, computing an optimal secure plan for (PD,Q? (1)) in K¢ is FAL-
complete, if PD is proper.

Proof. (Sketch) Membership can be easily shown from the considerations above and the
proof of Theorem 3.13, where compared with the original proof we can, by Theorem 3.6,
employ a ©¥ oracle, since PD is proper. The hardness part can be shown starting from a
similar idea like the reduction in Theorem 3.13, and making appropriate modifications. [

It is widely believed that (unless the PH collapses) problems in AL are a proper subset of
P and therefore also that the inclusion FAY C S¥MYV is strict. Indeed, we can find a more
sophisticated algorithm for computing optimal secure plans, as it has been implemented in
the DLVX planning system which will be presented in Chapter 5:

To find an optimal secure plan for a K¢ planning problem P, we proceed with the
following interleaved computation.

AQ0) initialize currentBestPlan := nil and currentBestCost := 0.

A1) Compute candidate optimistic plans P admissible wrt. currentBestCost — 1 (e.g.
by using the program [p®(P)) and their costs costp(P), and check each plan in an
interleaved manner:

A2) While A1 produces plans, check for each plan P whether it is secure (co-NP for
proper domains). If P is secure and costp(P) < currentBestCost, then store P, and
set currentBestPlan := P and currentBestCost := costp(P).

Finally, output currentBestPlan.

Obviously, this computation returns an optimal secure plan, if one exists and nil other-
wise. Note that in A1 due to the interleaved checks the costs are unbound (co = oo — 1)
until the first secure plan has been found and they are steadily improving for further secure
plans found.

Remark 4.6. Note that in the light of the architecture of the answer set solver DLV, which
is separated into o model generator and a model checker, the algorithm can be viewed as
follows: Let II be a program with weak constraints. For optimal answer set computation
(as described in Section 2.1.5.1) DLV’s model generator generates one candidate model after
another, similar to A1 outlined above, and for each such candidate model DLV’s model checker
checks whether this model is indeed an answer set, similar to A2 above. The currently
cheapest answer set is always recorded and the model generator will iteratively return “better”
answer set candidates S wrt. costrr(S). This is where we hook in: When using lp*(P) as
input program, this method computes optimal answer sets corresponding to optimal optimistic
plans (cf. Theorem 4.8). So, for computing optimal secure plans, all we have to do is to
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intercept the model checker and admit only such candidate answer sets, which correspond
to secure plans. This can be decided by one of the secure check methods described above in
o separate call to DLV. The overall computation perfectly matches the algorithm described in
Steps AO0-A2 above. We refer to Chapter 5 for a more detailed description of the system.

4.3.7 Checking Well-Definedness

To conclude this section, we will, show how to check the well-definedness of a planning
problem P = (PD,Q7?(l)) by evaluating a logic program. To that end we construct such
logic program Il p extending the background knowledge II as follows. Similar to Step 7 of
the translation Ip*(P), for any action declaration in PD with a non-empty costs-part

p(X1,...,Xn) requires B costs C where W.

we add the rules:

cp(X1,..., X, T,C0) :- B,W6,t(T).
scp(X1,---,%,T) = cp(Xq,...,Xp, T,C).

to Dwp, where § = {time/T}, T is a new variable, and t is a new predicate. Here, predicate

cp encodes some cost value of a legal action instance according to the respective declaration

and the projection sc; is used to derive that some cost value exists for a legal action instance.
Furthermore, we add the facts:

For each action declaration in AD, we add three constraints using the auxiliary predicates
defined before:

= B,t(T),not scy(Xy,...,%,, T).
== ¢p(X1,...,%a, T,C), not #int(C).
i cp(Xe,- - %n, T,C), cp(Xy, ..., Xq, T,C1), C < CL.

where B again is the requires-part of the respective declaration.

Knowing that II has a unique answer set, the following result is obvious as the three
constraints exactly check the conditions of well-definedness (i.e. that for any legal action
instance costs are defined, integer and unique):

Proposition 4.23. The logic program Iy p has an answer set if and only if the planning
problem P is well-defined wrt. action costs.

Note that by the predicate t(X) we only consider a limited time range from 1 up to the
plan length [ of P in our translation in order to keep the program finite. Although this
does not exactly reflect Definition 3.23 where we claimed that an action-declaration is only
well-defined if costs are uniquely defined for all integers, it is sufficient for well-definedness of
the costs of a plan: Concerning the unique costs of a plan for problem P, only the observed
range between 1 and [ is relevant, while ambiguous costs for integers outside this range
do not influence plan costs. If, on the other hand, we define the predicate t(X) over all
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integers, this would result in a logic program over an infinite domain, which is, in general,
undecidable.

In a similar way, checking well-definedness is alternatively possible via planning in the
language K: From the original K¢ planning problem P =(PD,Q7? (1)), we construct a K
planning domain PDyw p and goal ¢, such that the planning problem (PDy p, q) has a plan
just if PD is well-defined.

As background knowledge, we take the background knowledge II augmented by the facts

t(1). ... t().

for a fresh predicate t. Similar as above, we add for any action declaration in D fluent
declarations

cp(Xy,..., X, T,C0) requires B, W6, t(T).
scp(Xy,...,Xn, T) requires B, t(T).

to Dwp, where § = {time/T} and T is a new variable. Furthermore, we add a distinct
fluent wd with an empty requires-part in its declaration. The initially-section in PDwp
merely contains

caused wd.

In order to check well-definedness, it is now sufficient to add the following rules in the
initially-section of PDw p:

caused cp(X4,...,%n, T,C).

caused scp(X1,...,Xn, T) if cp(X1,...,Xs, T, C).
forbidden c,(Xy,...,Xn, T,C), cp(X1,...,Xa, T,C1), C < C1.
forbidden not scy(Xy,...,Xn, T).

forbidden cp(Xy,..., X, T,C), not #int(C).

The always-section in PDy p is empty. The rules are similar to those in the logic program
IIw p, but exploit implicit typing.

Proposition 4.24. A K¢ planning problem P is well-defined, if and only if the K planning
problem Pwp = (PDwp,wd?(0)) has an optimistic plan. (assuming that PDwp has a legal
initial state).

Similar considerations upon the finiteness of the background predicate t(X) as above
apply here, since the planning domain Py p constructed here is a one-to-one transformation
of the logic programming encoding IIyy p for checking well-definedness shown before.

Remark 4.7. A well-definedness check is not yet included in the current implementation
presented in Chapter 5. Strictly speaking, in the current implementation of DLV (or DLV,
respectively) such a check is not feasible in exactly the form presented, since the built-in
predicate #int must not be used under default negation. Nevertheless, this could be easily
remedied by substituting #int in the encoding above with a new unary predicate symbol
integer and adding a rule integer(X) :- #int(X).






Chapter 5

The System pLvi

In this chapter, we describe the DLVX planning system, which provides an implementation of
the language K and its extension K¢ as a front-end of the Answer Set Programming system
DLV [LPF+02]. The implementation is based on the translations presented in Chapter 4, in
principle transforming planning problems to logic programs which are then solved by calls
to the underlying DLV solver.

We first describe how planning problems are specified in DLVX, followed by the usage of
the system, and finally the architecture of DLVX. For exposition of the diverse features, we
occasionally refer to the Bridge Crossing example already known from the previous chapters;
further examples and details will be given in Chapter 6 below.

The chapter will be concluded with an outlook on further possible optimizations of the
system.

5.1 Input

The DLV system accepts as input K¢ planning problems specified in the enhanced syntax
presented in Section 3.1.3.

A planning problem P = {(,,(Q,?))(¢)) has to be provided by the user in one or more
input files as follows.

e The background knowledge II, consisting of a DLP in DLV syntax is expected to be
specified in one or more files bk, ..., bk, whose names do not end with suffix .plan.
IT is then assumed to be the union of all rules in those files. Note that we do not
allow full DLV syntax; special DLV features like weak constraints and aggregates (cf.
Section 2.1.5.1) are prohibited in the background knowledge.

e The planning domain and goal are specified in one or more files pp; .plan, ...,
PPm -plan whose names end with suffix .plan in sections of the form

fluents: <list of fluent declarations>
actions:  <list of action declarations>
always : <list of rules, macros, and executability conditions>

123
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initially: <list of initial state constraints>
goal : <goal query>

similar to the form defined in Section 3.1.3, with the extension that the sections may
be specified in arbitrary order possibly split over several input files. Multiple sections
of the same kind, where in case of multiple goal : sections only the last goal specified
in the input is taken. Furthermore, each fluent/action has to be declared before being
used in an initially: or always :) section. Apart from K¢ declarations, rules, and
macros, the user might add the command securePlan. anywhere in an initially:
or always : section which lets DLV compute only secure plans.

5.2 Usage and Features

DLVX is a command-line oriented system, which is realized as front-end to the DLV logic
programming system. To start DLVX you have to use DLV with one of the command-line
options -FP,-FPopt, or -FPsec in order to invoke the planning front-end:

Usage:
DLV -FP|-FPopt|-FPsec [options] [filename [filename [...]]1]

DLVX knows the following special command-line options (we refer to the DLV-Manual [FP96]
for other options not directly related to the planning front-end):

-FP
This option starts DLVX in the standard interactive mode where each optimistic plan is
displayed and the user can choose per plan whether she wants to check plan security inter-
actively.

-FPopt
This option lets DLVX only compute optimistic plans without asking whether a secure
check should be performed for each plan. Note that this command-line option overrides
securePlan. in the input.

-FPsec
This option lets DLV compute only secure plans without asking whether a secure check
should be performed for each plan. This option is equivalent to the securePlan. command
in the input. By default, check SC; is performed.

-FPcheck=n
This option lets the user chose which method of secure checking is used in combination with
options -FP or -FPsec. Currently, we have implemented secure checks SC;, and SC» as
described in Sections 4.3.4.1 and 4.3.4.2 invoked by n = 1, resp. n = 2. By default, check
SC; is performed.

-FPsoundcheck=n, -FPcompletecheck=m
The user can even refine this by choosing separate check methods which she knows to be
sound, resp. complete, for the problem at hand. These options only take effect any front-end
option -FP, -FPopt or -FPsec has been chosen. In this case, DLV® does displays possibly
secure plans as follows:
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PLAN (secure): plan in case the sound check method succeeds.

PLAN (security unknown): plan in case the sound check fails but the complete check
succeeds.

PLAN: for plans for which neither check succeeds (in case of front-end option -FPsec these
plans are omitted).

Whenever only one of -FPsoundcheck=n -FPcompletecheck=m has been specified by the
user, SC; is taken by default for the other. These options are rather experimental in
the sense that at the current state they might not often seem significant, but might be
informative in presence of more than the two checks implemented so far. Similarly, other
checks which do not only check plan security but also other properties could be included in
future versions and checked this way. We remark that we could add arbitrary such checks
within our framework.

-planlength=n
This option lets the user set the plan length and overrides the plan length specified in the
goal query in the input. DLVX computes plans of fixed plan length but using this option
one can eagily write a script which incrementally computes the shortest plan for a planning
problem.

-planminactions=n, -planmaxactions=m
These two options can be used to specify the minimum and maximum number of actions
per time in the plans computed by DLVX (cf. Section 4.3.1.2 for details). Default for n is 0
and m is unbound by default. If set to 0 and 1, respectively this is semantically equivalent
to macro noConcurrency. Note that either of these options overrides noConcurrency. in
the input.

-plancache=n
In order avoid checking the same plan for security several times, DLVX keeps a fixed number
of n plans and the results of secure checks for these plans cached (see below). Cache size
currently defaults to 10,000 plans.

-costbound=c
By default, in presence of action costs DLV computes optimal plans, whereas this option
lets DLVX compute admissible plans wrt. cost c.

-n=n
This option limits the number of plans computed by DLVX. In order to compute only one
plan, set n = 1. By default, DLVX prints all possible plans.

-N=N
This option sets an upper bound of N for the builtin integer arithmetics in DLV, DLVX. It
limits the integers which may be used in a program wrt. to its ground instantiation; the
built-in predicate #int is true for all integers 0 ...N. Setting N high enough, taking
into account the outcome of built-in arithmetic predicates A = B+ C and A = B x C,
is important to get correct results. In general, it is not sufficient to set NV simply to the
maximum integer occurring in the background knowledge in our system since the pre-defined
arithmetic predicates “a = b + ¢” and “a = b * ¢” might produce larger results. You have to
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keep in mind to set the upper bound higher than the maximum expected integers occurring
in the program with respect to these pre-defined predicates (cf. DLV-Manual [FP96] for details
of the built-in integer arithmetics). Examples will be provided in Chapter 6.

For e detailed description of warnings and error messages, we refer to Appendix B.

5.3 Solving the Bridge Crossing Example in DLVX

Assume the program from Figure 3.1 given in a file named crossing.plan and background
knowledge Ilg;;qge in a file crossing.bk.
A sample run of DLVX looks as follows:

$ DLV -FP crossing.plan crossing.bk

STATE 0: at(joe,here), at(jack,here), at(william,here), at(averell,here),
hasLamp (joe)

ACTIONS: crossTogether(joe,jack):2

STATE 1: -at(joe,here), -at(jack,here), at(william,here), at(averell,here),
hasLamp(joe), at(joe,across), at(jack,across)

ACTIONS: cross(joe):1

STATE 2: at(joe,here), at(william,here), at(averell,here), hasLamp(joe),
-at(joe,across), at(jack,across)

ACTIONS: takeLamp(averell)

STATE 3: at(joe,here), at(william,here), at(averell,here), -hasLamp(joe),
hasLamp(averell), at(jack,across)

ACTIONS: crossTogether(william,averell):10

STATE 4: at(joe,here), -at(william,here), -at(averell,here), hasLamp(averell),
at (jack,across), at(william,across), at(averell,across)

ACTIONS: takeLamp(jack)

STATE 5: at(joe,here), hasLamp(jack), -hasLamp(averell), at(jack,across),
at(william,across), at(averell,across)

ACTIONS: cross(jack):2

STATE 6: at(joe,here), at(jack,here), hasLamp(jack), at(william,across),
at (averell,across), -at(jack,across)

ACTIONS: crossTogether(joe,jack):2

STATE 7: -at(joe,here), -at(jack,here), at(joe,across), hasLamp(jack),
at (jack,across), at(william,across), at(averell,across)

PLAN: crossTogether(joe,jack):2; cross(joe):1; takeLamp(averell);

crossTogether(william,averell) :10; takeLamp(jack);
cross(jack) :2; crossTogether(joe,jack):2 COST: 17

Check whether that plan is secure (y/n)? y
The plan is secure.

Search for other plans (y/n)? n

In interactive mode (-FP) as chosen in this example (similarly, in optimistic mode,
-FPopt) for each plan found the whole corresponding trajectory is displayed, i.e., the states
(STATE) and the action sets (ACTIONS) performed at each state. Finally, the whole plan

(PLAN) is displayed again, where parallel actions are separated by ’,” and action sets are
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separated by ’;’. Whenever an action produces some costs, they are displayed after the

resp. action separated by a colon, and the summed up overall plan cost (COST) is printed
after the plan. For each plan found, the user can decide whether she wants to perform a
secure check, and whether she wants to proceed searching for more plans.

5.4 Architecture

The architecture of the DLVX system is outlined in Figure 5.1. It accepts files containing DLVX
input and background knowledge stored as plain Datalog files. Then, by means of suitable
transformations from K¢ to disjunctive logic programming as described in the previous
chapter, it uses the classic DLV core to solve the corresponding planning problem.

> """" @: pLv* Core Controller
- ’ F N

ge’y Flan G:r.‘l\eratox#l;z Checl%re;HEEn Printer‘

|

DLV Core ﬂ

— Control Flow
,,,,,,,,,, > Data Flow :

Figure 5.1: DLV® System Architecture

DLVX comes with two parsers for the respective different input files: The first accepts
DLVX files, that is, files with a filename extension of .plan that constitute a DLV program,
while the second parser accepts optional background knowledge files as defined above. Both
parsers are able to read their input from an arbitrary number of files, and both convert this
input to an internal representation and store it in a common database.

The actual DLVX front-end consists of four main modules, the Controller, the Plan Gen-
erator, the Plan Checker, and the Plan Printer. The Controller manages the other three
modules; it performs user interactions (where appropriate), and controls the execution of
the entire front-end.

To that end, the Controller first invokes the Plan Generator, which translates the plan-
ning problem at hand into a suitable program in the core language of DLV (disjunctive logic
programming, eventually including weak constraints as described in Section 2.1) according
to the transformation Ip* (P) provided in Section 4.3.2.

The Controller then invokes the DLV kernel to solve the corresponding problem. In case
that optimistic planning is not explicitly enforced by option -FPopt after grounding , before
starting the actual answer set computation, the Controller interrupts DLV and performs a
check for mux-stratification, wrt. opposite literals in the after parts of causation rules on
the ground instantiation of the program, considering all rules emerging from the translation
of causation rules. A warning is printed, if this mux-stratification check fails.

Then, the DLV model generator is invoked in order to produce answer sets. The resulting



128 CHAPTER 5. THE SYSTEM DLVX

answer sets (if any) are fed back to the Controller, which extracts the solutions to the
original planning problem from these answer sets, transforms them back to the original
planning domain, and saves them into the common database.

The Controller then optionally (if the user specified the securePlan. command, option
-FPsec, or invoked a secure check interactively) invokes the Plan Checker. Similarly to
the Plan Generator, the Checker uses the original problem description together with the
optimistic plan computed by the Generator to generate a disjunctive logic program that
solves the problem of verifying whether this (optimistic) plan is in fact also a secure plan,
depending on which check method has been chosen. Currently implemented secure checks
are SCy and SC> as introduced in Sections 4.3.4.1 and 4.3.4.2. Here, in order avoid checking
the same plan for security several times the checker keeps a fixed number of plans and the
results of secure checks cached. Since the number of plans might be exponential, we have
chosen a fixed cache size which adds/deletes plans with a first-in-first-out strategy.

In normal (non-optimal) planning, the checker is simply invoked for each answer set
returned right before transforming it back to user output. In the case of optimal secure
planning, on the other hand, the candidate answer set generation of the DLV kernel has to be
“intercepted”: The kernel proceeds computing candidate answer sets, returning an answer
set with minimal sum of violation costs wrt. the weak constraints from translation [p¥(P),
by running through all candidates. Here, in order to generate optimal secure plans, the
planning front-end interrupts computation, allowing only answer sets which represent secure
plans to be considered as candidates by means of interleaved calls to the Plan Checker. The
computation of candidate answer sets in the DLV kernel which is paused during this plan
check, is resumed after the check. In fact, the system implements exactly the algorithm
outlined in Section 4.3.6 for computing the first optimal plan and starts a second run where
it only computes admissible plans wrt. the optimal costs found in the first run in order to
compute further optimal plans.

Finally, the Plan Printer, translates the solutions found by the Generator (and optionally
verified by the Checker) back into suitable output for the planning user and prints it in the
format shown above.



Chapter 6

Knowledge Representation in K°

In this chapter, we will show how standard planning problems, as well as interesting elab-
orations beyond the classical formulations of these problems, can be encoded in K¢ and
solved by the DLVX planning system.

We start with a short discussion of the Crossing the Bridge example which has been
used for exemplification throughout Chapter 3, recalling some the presented features again.

Thereafter, we will continue with a classical problem from the Blocks World, where we
will discuss basic principles of knowledge representation in K¢, and which we will reuse later
on for further elaborations.

Next, we will provide several encodings of problems with incomplete information and
nondeterministic actions. Among those, we will discuss several elaborations of the famous
“Bomb in the Toilet” problem, which, as we will see, in fact can be formalized as a determin-
istic planning problem under the inherent knowledge state view of language K. Furthermore,
we will discuss another well-known problem on self-location of a robot in a grid with un-
known initial location.

We also provide two novel scenarios. The first example which models a simple counter
shall illustrate reasoning in belief states with K. The second example about painting a house
concentrates on modeling disjunctive knowledge and the applicability of our knowledge state
view to different domains.

A further block is dedicated to optimal planning, where we will make use of the exten-
sion of our basic language K by action costs. We will discuss the combination of different
optimization criteria in a simple Blocks World domain on the basis of respective encod-
ings in K¢. Furthermore, we will investigate elaborations of another optimization problem,
Traveling Salesperson, where we add exceptional time-dependent costs. At the end of this
block we will discuss resource based planning in our approach with a simple example on
admissible planning.

Finally, we will discuss general design principles for K and K¢, further explaining our
knowledge state view, which should enable the reader to encode arbitrary domains in our
language.

We have chosen a description of the relevant concepts by example as we believe that these
examples give the reader a general idea of the relevant modeling issues in our language and
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serve to transfer the concept into modeling new domains.

6.1 Crossing the Bridge

Let us first recall the features we have already seen in the elaborations of Problem 3.1 about
Bridge Crossing. Figure 3.1 (p. 38) shows an encoding of the basic Bridge Crossing problem
Pacp in K.

First of all, by use of background knowledge II, K allows for a very flexible way of
typing. While we have used this only for simple factual knowledge about persons, and the
different sides of the river, or walking times in the Bridge Crossing example, the background
knowledge allows much more flexibility in general. The only restriction we have to obey, is
that IT needs to have a unique answer set, but apart from that it allows the full flexibility
of logic programming. We will see some example, where exceptions are encoded in the
background knowledge in Section 6.5.

As for modeling action qualifications in K, we have seen in Ppcp (see Figure 3.1 on p. 38)
that the user might specify several alternative preconditions by multiple positive executabil-
ity conditions and/or negative executability conditions for actions. For instance, crossing
in two is possible, whenever either of the two involved persons has the lamp. Furthermore,
actions might also depend on each other wrt. to executability. Apart from defining only se-
quential action execution by the macro noConcurrency, we may define arbitrary constraints
describing which actions might occur in parallel. As a short example we will model parallel
moves of Blocks in the subsequent section.

As for action effects, K allows for conditional effects as well as static effects (ramifica-
tions). An example for the former is the effect of the action cross(X), which depends on
where person X has been in the previous state. We will see several more examples in the
following. Also here, K allows for full flexibility of logic programming, allowing to model
nondeterminism by negation as failure, adding state constraints, etc. We have seen some
example of modeling incomplete knowledge about the initial state and nondeterministic ac-
tion effects in another elaboration of the Bridge Crossing example, namely Ppcpsec (see
p- 41). Furthermore, negation as failure was used in an elegant formulation of frame azioms
by macro inertial. We will further exploit these features in the subsequent examples.

Next, we have considered an elaboration of the Bridge Crossing example where action
costs where used to obtain optimal plans. This can also be combined with incomplete
information and nondeterministic action effects, which we have elaborated in the examples
Popcp and Popcopsec (see p. 44). We will see further examples how action costs can be
used for various optimization tasks and also examples modeling time-dependent, dynamic
costs of actions.

The goal of the remainder of this chapter is to further explain and elaborate the use of
these features for knowledge representation in X and K°.

6.2 A Classical Problem — Blocks World

Let us now have a closer look at one of the most well-known scenarios when introducing the
concepts of AI Planning, namely the Blocks World. Here, the goal is to build some stacks
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of blocks which are located on a table. Figure 6.2 shows a simple instance. The planning
problem consists of an initial configuration of blocks and a (probably partly specified) goal
configuration. The only action allowed is moving a block z to a location [, i.e. onto the table
or on top of another block which is not occupied. We refer to Blocks World with parallel
moves allowed, where minimizing the total number of moves is an issue. A K¢ encoding for
this domain, where plans are serializable, is shown in Figure 6.1. Serializability here means
that parallel actions are non-interfering and can also be executed sequentially in any order,
i.e. each parallel plan can be arbitrarily “unfolded” to a sequential plan.

fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).

actions: move(B,L) requires block(B), location(L) costs 1.

always : executable move(B,L) if B!=L.
nonexecutable move(B,L) if blocked(B).
nonexecutable move(B,L) if blocked(L).
nonexecutable move(B,B1) if move(B1,L).
nonexecutable move(B,L) if move(B1,L), B < B1, block(L).

nonexecutable move(B,L) if move(B,L1), L < L1.

caused on(B,L) after move(B,L).

caused blocked(B) if on(B1,B).

caused moved(B) after move(B,L).

caused on(B,L) if not moved(B) after on(B,L).

Figure 6.1: K¢ encoding for the Blocks World domain

A concrete instance is depicted in Figure 6.2. The planning problem emerging from the
initial state and the goal state in Figure 6.2 can be modeled using the background knowledge
Ilp:

block(1). block(2). block(3). block(4). block(5). block(6).
location(table).
location(B) :- block(B).

and extending the program in Figure 6.1 as follows:

initially: on(1,2). on(2,table). on(3,4). on(4,table).

12 4] [6] 3] 4] 5]
L] L]

Figure 6.2: A simple Blocks World instance
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on(5,6). on(6,table).

goal : on(1,3), on(3,table), on(2,4), on(4,table),
on(6,5), on(5,table) ? (I)

Before discussing the solutions of this instance, let us take a closer look on this K¢ for-
mulation of the Blocks World problem: As opposed to the formulations discussed in the
Preliminaries we have chosen a formalization with three fluents on, blocked and moved.
Furthermore, we have one action move describing the usual movement of blocks to loca-
tions. Fach of these moves costs 1, i.e. any optimal plan minimizes the total number of
moves. In the always section, serializable, parallel moves are described by executable and
nonexecutable statements restricting moves such that:

e a block can (by default) be moved to any location except onto itself,

occupied blocks can not be moved,

a block can not be moved to an occupied block,

a block can not be moved on top of another block which is moved at the same time.

two different?® blocks can not be moved to the same block at once, and
e a block can not be moved to two divergent?® locations at once.

Only positive effects are described in this encoding, which we will explain in further
detail below. Being blocked is an indirect/static effect here. A succinct description of the
only relevant frame axiom in this domain stating that an unaffected block remains at its
location is also described as an “indirect effect” of not being moved, where we use default
negation. The other effects are direct consequences of the move action.

The fluent on(B, L) expresses the location of a block in the usual way, i.e. that a certain
block B resides at location L.

In analogy to the fluent clear often used in other formulations of this problem (cf.
Section 2.4), fluent blocked(B) expresses that a block is occupied by another block at the
current state. One might argue, that this is just the opposite view and we could similarly
use clear instead. As we will see, a reasonable choice for formulating fluents positively or
negatively is essential in K¢ in order to exploit the inherent knowledge state view: We only
want to express what we know in each state, as opposed to complete truth assignments for
all fluents (i.e., world states). In fact, by design choices, modeling the domain the above
K program does not contain any occurrence of true negation. We do not need the usual
inertial macro (which involves true negation) here in favor of the final frame axiom. The
additional fluent moved indicates which blocks have actually been affected by moves per
time step. For moved blocks, information about their former location is simply “forgotten”
since the frame rule does not apply to carry this information over to the next state. We
see that, besides the standard inertial macro, K allows for different formulations of frame
axioms as well.

28 Note that we used built-in “<” in the final two nonexecutable rules in order to express inequality. In
these two cases “<” is semantically equivalent with “!=", but avoids symmetric ground instantiations.
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Obviously, any state reachable by a legal transition in the domain PDy,, given by the
program in Figure 6.1 does only consist of positive fluents on(B,L) and blocked(L) describing
a “relevant clipping” of knowledge. We do not care which blocks are unblocked or wherever
a block is not located currently. In K, we do not have to completely specify truth values for
all fluents but only describe what is necessary.

Each move is penalized with cost 1, which results in a minimization of the total number
of moves.

Let P(I) denote the planning problem for plan length I. For [ = 2, we have an optimal
plan which involves six moves, i.e. cost;,@) =6:

P, = ({move(1, table), move(3, table), move(5, table)}, {move(1,3),move(2,4),move(6,5)})

By unfolding the steps, this plan gives rise to similar plans of length [ = 3,...,6 that have
cost 6. For [ = 3, we can find the following optimal plan, which has cost 5:

P3 = ( {move(3, table)}, {move(1,3),move(5,table)}, {move(2,4),move(6,5)})

This plan can not be further parallelized to having only two steps. For any plan length
[ > 3, we will obtain optimal plans similar to Ps, extended by void steps. So, the cheapest
plans wrt. the total number of moves all have cost 5 and need at least three steps. Note
that shortest parallel plans (of length 2) are more expensive, as explained above.

Thus, when minimizing the number of moves is our goal, the shortest plan is not neces-
sarily the optimal one. This motivates a more detailed discussion about different, possibly
conflicting optimization criteria in ¢ which we will provide in Section 6.4.

6.3 Planning with Incomplete Knowledge

Let us now focus on domains comprising incomplete knowledge about the initial state and
nondeterministic action effects. We have already seen representation techniques for such
scenarios in the example Pgcpse. from Section 3.1.4. We will now discuss some K¢ encod-
ings of standard conformant planning problems. As we will show, the language K is capable
of expressing classical encodings based on states of the world. However, by its design it
is very well-suited for encodings based on states of knowledge. We will see how particular
conformant planning problems can profit from knowledge state encodings as opposed to
world state encodings. We show both types of encodings on some “Bomb in the Toilet”
planning problems, and discuss the two different approaches, highlighting some computa-
tional advantages of the encodings based on states of knowledge. On the other hand, we
will also show the limitations of the knowledge state view by examples where encoding all
contingencies can not be avoided.

6.3.1 Bomb in the Toilet - World State Encodings

We will first turn our attention to the “Bomb in the Toilet” problem [McD87] and its
variations. We will describe these domains gradually, starting with two versions which
involve deterministic action effects and incomplete initial state specifications. Only after
these, variants comprising nondeterministic action effects and some additional elaborations
are presented. We employ a naming convention which is due to [CRO00].
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BT(p) - Bomb in Toilet with p packages We have been alarmed that there is a bomb
(exactly one) in a lavatory. There are p suspicious packages which could contain the bomb.
There is one toilet bowl, and it is possible to dunk a package into it. If the dunked package
contained the bomb, the bomb is disarmed.

For the K encoding, the background knowledge Il;; consists of a definition of the pack-
ages:

package(1). package(2). ... package(p).

Using the DLV builtin predicate #int we can equivalently define this background knowledge
such that we can set the number of packages by command-line option -N=p:

package(P) :- #int(P),P > 0.

We use two fluents: armed(P) holds if package P contains an armed bomb (this is an
inertial property), and unsafe expresses the fact that there are armed bombs. Only one
action, dunk(P), is required, which is always executable and the effect of which is that
package P is no longer armed.

For the initial state, total armed(P). expresses the fact that the armed bomb might be
in any package P, while forbidden armed(P), armed(P1),P !=P1. enforces that at most one
package can contain an armed bomb. The statement forbidden not unsafe. is included to
guarantee that at least one package contains an armed bomb in the initial state.

The goal is to achieve a state in which no armed bomb exists, i.e., which is not unsafe.
This goal gpomps will be the same for all following variations of the “Bomb in the Toilet”
problems, the respective plan lengths j will be stated for each problem. We thus arrive at
the following planning problem Py = (PDyy, qhoms):

fluents: armed(P) requires package(P).

unsafe.
actions: dunk(P) requires package(P).
always : inertial armed(P).

caused —armed(P) after dunk(P).
caused unsafe if armed(P).
executable dunk(P).

initially: total armed(P).
forbidden armed(P), armed(P1), P!=P1.
forbidden not unsafe.

goal : not unsafe ? (j)

Note that in the formulation of this simple domain there is only one deterministic action,
while the initial state is incomplete since it is not known which of the p packages contains
the bomb. In this encoding we adopt a world state view for the initial state, since any legal
initial state contains complete information on the fluent armed for each package. Note that,
strictly speaking, this is not the case for the successor states, where we keep only positive
information on armed by statement inertial armed(P). In principle this is a world state view
with the closed world assumption (CWA) applied to fluent armed, i.e. as soon as we do not
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know that a package is armed, we assume it not to be. True negation via the initial total
statement and the effect of dunking (caused —armed(P) after dunk(P).) is only needed to
override positive inertia. A strict world state view with explicit representation of negative
information in any state can be achieved by adding inertial —armed(P). as well.

Usually, a plan should be produced which establishes the goal no matter in which package
the bomb is in, so we look for a secure plan. If concurrent actions are allowed, the following
secure plan for j = 1 (dunking all packages at the same time) can be found:

P={( {dunk(1),...,dunk(p)} )

Secure sequential plans (achieved by adding macro noConcurrency. in the program above
or by setting command-line option -planmaxactions=1 consists of dunking all packages
sequentially, so j = p:

P={( {dunk(1)},...,{dunk(p)} )

Any permutation of these action sets is also a valid secure plan.
Given IIy; in file bt.bk and the program above in file bt.plan we can compute these
(sequential) plans for BT (p) using DLV by :

$ DLV -FPsec -planmaxactions=1 bt.plan bt.bk -planlength=p -N=p

BTC(p) - Bomb in Toilet with certain clogging Let us now consider a slightly more
elaborate version of the problem: Assume that dunking a package clogs the toilet, making
further dunking impossible. The toilet can be unclogged by flushing it. The toilet is assumed
to be unclogged initially. Note that this domain still comprises only deterministic action
effects.

We extend PDy; = (I, { Dy, Rps)) to PDyse = (g, {Dise, Rpie)) by adding a new fluent,
clogged, and a new action, flush, to Dp,:

fluents: clogged.
actions: flush.

clogged is inertial, is a deterministic effect of dunk, and is terminated by flush. flush
is always executable, so the following rules are added to CRg,,.:

always: inertial clogged.
caused —clogged after flush.
caused clogged after dunk(P).
executable flush.

The executability statement for dunk has to be modified, as dunk is not executable if
the toilet is clogged.

executable dunk(P) if not clogged.

Since clogged is assumed not to hold initially, and since it is interpreted under the
CWA, nothing has to be added to Ig,,..

For the planning problem Py = (PDpic, @ooms) We are only interested in sequential
plans, as dunking and flushing concurrently is not permitted. A minimal secure plan can
be found for j = 2p —1:
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P = ( {dunk(1)}, {flush}, {dunk(2)}, ..., {flush}, {dunk(p)})

Again, the action sets containing dunk actions can be arbitrarily permuted, as long as the
flush actions are executed between the dunk actions.

BTUC(p) - Bomb in Toilet with uncertain clogging Consider a further elaboration
of the domain, in which clogged may or may not be an effect of dunking. In other words,
the action dunk has a nondeterministic effect, and the toilet is clogged or not clogged after
having executed dunk.

This behavior is modeled by declaring clogged to be total after dunk has occurred.
Therefore the action effect

caused clogged after dunk(P).

in PDy;. is modified to

total clogged after dunk(P).

yielding the planning domain PDp;,.. The planning problem Pptyc = (PDptuc, Ghomp) admits
the same secure plans as Phpic.

BMTC(p,t), BMTUC(p,t) - Bomb in Toilet with multiple toilets Yet another
elaboration is to assume that several toilet bowls (¢, rather than just one) are available in
the lavatory. The modifications to PDy yielding PDpmtc = (Mpme, {Domic, Romic)) and to
PDyyyc yielding PDymiue = (Mpme, (Dbmtuc, Robmiuc)) are rather straightforward.

The background knowledge IT; is simply extended to contain also a definition of the ¢
toilets, by adding:

toilet(1). toilet(2). ... toilet(t).

arriving at Ip,,;. The fluent and action declarations for clogged, dunk, and flush must be
parameterized wrt. the affected toilet. The updated definitions wrt. Dy (resp. Dyiyc) are
as follows:

clogged(T) requires toilet(T).
dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).

Furthermore, each occurrence of clogged, dunk, and flush in Ry (resp. Rpiyc) must
be updated by adding a variable T (representing the toilet) to its parameters.

Since multiple resources can be used concurrently here, we add some concurrency con-
ditions for the actions to PDyg. (resp. PDpgyc): dunk and f£lush should never be executed
concurrently on any toilet. Furthermore, at most one package should be dunked into a toilet,
and any package should be dunked into at most one toilet at a time. These conditions are
captured by the following rules:
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always : nonexecutable dunk(P,T) if flush(T).
nonexecutable dunk(P,T) if dunk(P1,T), P!=P1.
nonexecutable dunk(P,T) if dunk(P,T1), T!=T1.

In total, {Dymiucs Romtue) Of PDpmiyc looks as follows:

fluents: clogged(T) requires toilet(T).
armed(P) requires package(P).
unsafe.
actions: dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).
always : inertial armed(P).
inertial clogged(T).
caused —clogged(T) after flush(T).
caused —armed(P) after dunk(P,T)
total clogged(T) after dunk(P,T)
caused unsafe if armed(P).
executable flush(T).
executable dunk(P,T) if not clogged(T).
nonexecutable dunk(P,T) if flush(T).
nonexecutable dunk(P,T) if dunk(P1,T), P!=P1.
nonexecutable dunk(P,T) if dunk(P,T1), T!=T1.
initially: total armed(P).
forbidden armed(P), armed(P1), P!=P1.
forbidden not unsafe.

’

The secure plans for Pymic = (PDpmic, Ghoms) a0d Pomiue = (PDbmtuc, @oomb) are similar
to those for Ppie and Ppiye, respectively. The differences are that up to ¢ dunk and flush
actions, respectively, can be executed in parallel (so the plans are no longer sequential), and
that ¢ — 1 flushing actions can be saved since no final flushing is required for any toilet.
Therefore any secure plan consists of 2p—t actions and in @pomp, the minimal plan length is:
Jj = 2[%]—1. We remark that the nonexecutable conditions concerning concurrent actions
again guarantee serializability in the sense discussed in Section 6.2 above, i.e. parallel dunks
or flushes on different toilet bowls can be sequentially applied in arbitrary order.

The world-state encodings of BT (p), BTC(p), and BMTC(p, t) are stratified, so the secu-
rity check SC; is guaranteed to be sound and complete for these problems by Corollary 4.16.
In the case of BTUC(p) and BMTUC(p,t) in the world-state programs, the macro total
violates stratification. However, both BTUC(p) and BMTUC(p, t) are false-committed
domains, and thus the security check SCi is sound and complete for these problems by
Theorem 4.15 as well. Indeed, the respective programs have no cycle with an odd number of
negative arcs in their dependency graphs (see the BMTUC(p, t) encoding above; BTUC(p, t)
and BMTUC(p,t) have the same dependency graph, since the only difference is that some
fluents get an additional argument), so by well-known results at least one answer set is
guaranteed, and thus condition (ii) of false-committedness holds. Furthermore, the only
constraints are those resulting from expanding the nonexecutable statements. Since these
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constraints refer only to actions, either all s’ in a transition (s, A, s') satisfy them or no s’
does. Therefore, condition (i) of false-committedness is enforced as well.

6.3.2 Bomb in the Toilet - Knowledge State Encodings

In this section, alternative planning domains for “Bomb in the Toilet” will be presented.
These encodings will be based on states of knowledge, a distinguishing feature of K, rather
than states of the world as in the previous sections. We will use the same background
knowledge Iy (resp. Hpme) and the same goal gpomp with the same values for the plan
length j as in Section 6.3.1.

BT(p) In Section 6.3.1 we have represented the initial situation by means of totalization
on armed(P), leading to multiple initial states, corresponding to different possible states of
the world. From the knowledge perspective, nothing definite is known about armed(P) (and
about —armed(P)) for a particular package P, so the initial situation can be represented by
one state in which neither armed(P) nor —armed(P) holds. The action dunk(P) has the effect
that —armed(P) is known to hold, and —armed(P) is inertial. We state the planning domain
PDy;;, as follows:

fluents: armed(P) requires package(P).

unsafe.
actions: dunk(P) requires package(P).
always : inertial —armed(P).

caused —armed(P) after dunk(P).
caused unsafe if not —armed(P).
executable dunk(P).

The advantage of this encoding is that multiple initial states do not have to be dealt with.
Note that in this formulation, it is not of much help to encode in addition the restriction that
exactly one package is armed: Nothing is known about the armed status of any individual
package whatsoever, and any of the packages could be the armed package. Without sensing,
or other appropriate determining actions, we can not detect it, and thus we can not fruitfully
make use of definite knowledge armed(P) or —armed(P). Furthermore, since the domain is
deterministic, optimistic and secure plans coincide.

BTC(p) PDyicr is extended from PDyyy, in the same way as PDp;. was obtained from PDy,
in Section 6.3.1, i.e., by adding declarations for clogged and flush, adding rules for action
effects wrt. clogged, defining clogged to be inertial, stating £1ush to be always executable,
and by modifying the executability condition for dunk(P).

Note that in this encoding clogged is still interpreted under the CWA.

BTUC(p) In the variant with uncertain clogging, the effect of dunk(P) is that the truth of
clogged is unknown. K has the capability of representing a state in which neither clogged
nor —clogged holds, but to do this, we should no longer interpret clogged under the CWA,
as we would not like to assume that clogged does not hold if it is unknown. For this reason
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inertial — clogged. is included, and for the initial state, it must be stated explicitly that
the toilet is unclogged.

Unfortunately, there is no construct in X, with which an action effect of some fluent being
unknown can be expressed directly. However, it is possible to modify the inertial rules for
clogged and —clogged, so that inertia applies only if no package has been dunked. That
means that dunking stops inertia for clogged, and clogged will be unknown unless it
becomes known otherwise. Since this technique encodes inertia under some conditions, we
call it conditional inertia.

To achieve this, a new fluent dunked is introduced, which holds immediately after dunk(P)
occurred for some package P. The inertial macros are then extended by the additional con-
dition. The precise meaning of the resulting program is that neither clogged nor —clogged
will hold after dunk(P) has been executed for some package P, unless one of them is caused
by some other rule different from inertia.

To summarize, the following is added to PDpcg:

fluents:  dunked.

always: inertial clogged if not dunked.
inertial —clogged if not dunked.
caused dunked after dunk(P).
caused —clogged after flush.
executable dunk(P) if —clogged.

initially: —clogged.

while a few statements are dropped:

always: inertial clogged.
caused clogged after dunk(P).
executable dunk(P) if not clogged.

yleldlng P-Dbtuck-

Note that also PDpyiycr, is deterministic and has a unique initial state, so optimistic
and secure plans coincide. These examples shows that it is possible to find an encoding
which is substantially less complex to solve by using techniques, which exploit the “state
of knowledge” paradigm of the language K. We would like to point out that this is not
a contradiction to complexity results in Section 3.3 below (finding secure plans is more
complex than finding optimistic plans): BTUC(p) per se is an easy problem (it is solvable
in linear time), it is just the representation requiring examination of alternatives which
makes it appear hard.

BMTC(p,t), BMTUC(p,t) As in Section 6.3.1, a generalization to domains involving
multiple toilets is straightforward and can be achieved by applying the changes described
there, resulting in the planning domains PDyy,¢cr, and PDpptyck, respectively. Find PDppgyck
as an example below (Ilpy; is omitted):

fluents: clogged(T) requires toilet(T).
armed(P) requires package(P).
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dunked(T) requires toilet(T).
unsafe.
actions: dunk(P,T) requires package(P), toilet(T).
flush(T) requires toilet(T).
always : inertial —armed(P).
inertial clogged(T) if not dunked(T).
inertial —clogged(T) if not dunked(T).
caused dunked(T) after dunk(P,T).
caused —clogged(T) after flush(T).
caused —armed(P) after dunk(P,T).
caused unsafe if not —armed(P).
executable flush(T).
executable dunk(P,T) if —clogged(T).
nonexecutable dunk(P,T) if flush(T).
nonexecutable dunk(P,T) if dunk(P1,T), P!=P1.
nonexecutable dunk(P,T) if dunk(P,T1), T!=T1.
initially: —clogged(T).

P
P

?

Also in this case the resulting problem domains are deterministic and hence optimistic
plans and secure plans coincide. This indicates that planning problems of this section can be
solved faster than those of Section 6.3.1. Indeed, we have observed this also experimentally;
as will be shown in Chapter 8, the encodings of Section 6.3.2 can often be solved several
orders of magnitudes faster than those of Section 6.3.1 using the DLV system.

For this particular domain, the informal reason why such a concise encoding is possible
is the fact, that both actions dunk and flush gain knowledge in some sense, i.e. we know
that package p is unarmed after being dunked and we know that toilet ¢ is unclogged after
being flushed. Both actions prune the set of possible world states “deterministically” in
some sense.

On the other hand, the nondeterminism arising from dunking in BTUC and BMTUC is
not knowledge-gaining at all but leaves all possibilities on the value of clogged open. In
this sense, by dunking we lose all knowledge about the fact whether the toilet is dunked or
not and can forget about it in a knowledge state view. Here, one knowledge state represents
several belief states. We will discuss “forgetting” and where it can be applied in more detail
below in Section 6.3.5.

It has been recognized that the “Bomb in the Toilet” domain is in fact easy under our
view. Also other planning systems like for instance Conformant-FF [BH03] which solve
“Bomb in the Toilet” rather quickly as support the assumption that this is not a hard
conformant problem. The authors of [BHO3] claim that in their formalism (which, however,
only allows for initial uncertainty so far in a language close to ADL) problems are generally
easier to solve with their planner, if actions do not have conditional effects: this is indeed the
case for the “Bomb in the Toilet” domain. The relation between these results and possible
structural analysis of problems in our more general language in order to eventually optimize
domains beforehand by structural analysis appears to be promising.
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6.3.3 Square

In this section, we consider a conformant planning domain which has seemingly harder
problems than the above-mentioned “Bomb in the Toilet” domain. It is about self-location
of a robot which moves in a wall-bounded n x n grid. The robot can move in four directions
(up,down, left, right) and we do not know its initial position. Moving towards a wall has
no effect, i.e. the robot stays in its position. The problem of finding a conformant plan for
reaching a fixed position (for simplicity, we assume reaching the corner position (0,0)), is
referred to as SQUARE(n) in the literature, cf. [BG00, PR95]. Extensions to 3-dimensional
movement, CUBE(n) are obvious, but we only consider the two-dimensional problem here.

A K encoding for this problem is as follows, where I 4yqre consists solely of the built-in
predicates #int and #succ.

fluents: atX(P) requires #int(P).
atY(P) requires #int(P).
anywhere.

actions: up. right. left. down.

always: executable up.
executable right.
executable left.
executable down.
nonexecutable up if down.
nonexecutable left if right.
caused atY(Y) after atY¥(Y1l), #succ(Y,Y1),
caused atY(Y1l) after atY(Y), #succ(Y,Y1
caused atX(X) after atX(X1), #succ(X,X1
caused atX(X1) after atX(X), #succ(X,X1
caused —atX(X) if atX(X1), X1 !=X after atX(X).
caused —atY(Y) if atY(Y1), Y1 !=Y after atY(Y).
inertial atX(X).
inertial atY(Y).

down
,left.
,rlght.

—

initially: total atX(X). total atY(Y).
forbidden atX(X), atX(X1), X!=X1.
forbidden atY(Y), atY(Y1), Y!=Y1.
caused anywhere if atX(X), atY(Y).
forbidden not anywhere.

goal : atX(0),atY(0)?(n)

The encoding is more or less self-explanatory. Fluents atX(-) and atY(-) mark the coor-
dinates of the current position of the robot in the grid, and the conditional effects of moving
in either direction are modeled by simple causation rules. We refrained from encoding the
position into a single fluent at(X,Y), since this would need more overhead for modeling the
respective effects rules. For the initial state we use an auxiliary fluent anywhere which
enforces that the robot has an initial location, similar to the fluent anybodyHasLamp from
our nondeterministic Bridge Crossing example Ppcopsec (see p. 41). Note that diagonal
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moves are allowed, i.e. executing up/down and left/right in parallel, and only parallel oc-
currences of opposite moves are constrained by the two nonexecutable statements. With
this program, we can solve SQUARE(n + 1) by calling bLVX as follows:

$ DLV -FPsec square.plan -N=n -planlength=n -n=1

We only need plan length n here, since we do allow diagonal moves.

0o 1 2 3
[l
2
1 Iy
2
3

Figure 6.3: SQUARE(4)

For instance, a secure plan for SQUARE(4), as shown in Figure 6.3

P=( {left,up}, {left, up}, {left, up})

is a three-step secure plan.

Note that in this domain the only source of uncertainty is the initial state. All actions
are always executable and effects are deterministic. Therefore, the domain is trivially false-
committed. However, the exponentially many initial states make this problem difficult and
hard to solve. Furthermore, as opposed to the “Bomb in the Toilet” examples, the actions
do not “gain” additional knowledge at once like above. Action effects are conditional, i.e.
depend on the previous state, which hinders us from giving a more concise representation
in terms of knowledge states here: Although we do not know the exact position in the
beginning, we need to know the position at each step in order to determine the action
effects, such that the best we can do is encoding all possible initial world states here. This
also corresponds to the observations made by Brafman and Hoffman [BHO03], who state that
conditional effects complicate things in their formalism.

6.3.4 Counter Reset - Reasoning about Belief States

The following problem exemplifies the inherent complexity of secure planning in the general
case in a descriptive way. As already shown in the Square problem above, it is not always
possible to simply “compile down” belief states (i.e. sets of possible world states) to a single
knowledge state like we demonstrated it for the knowledge state encodings of the “Bomb in
the Toilet” problem. This is particularly true if the outcome of actions is conditional, i.e.
depending on the previous state. In order to demonstrate how to reason on belief states in K
in a more illustrative way, we will now show another small, but interesting secure planning
problem.

Let us assume a binary counter by,...,b, with n bits where again the initial state is
unknown and our goal is to find a secure plan which brings it to a particular state, similar
to the Square example above.

The counter has 2 buttons (actions):
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1. Add: Adds one to the counter.

2. Inverse: If we press this button and the counter is currently in position 1, ...,

143

1, all

bits of the counter will be inverted. I.e., it resets the counter to zero, but this only

works in position 1,...,1, otherwise the counter remains unaffected.

Our goal is to bring the counter to position 1,...,1.

Figure 6.4 shows the shortest possible secure plan for this problem with a 2-bit counter by
transitions between the belief states, i.e. sets of possible world states. Each oval symbolizes

a belief state, i.e. a set of knowledge states.

The following K program models the discussed problem P.oynt, (Where Il.pyp: implicitly

consists only of the built-in predicates, #int, #succ and <):

fluents: bit(X) requires #int(X).
some_zero.
all one_upto(X) requires #F#int(X).

actions: add. inv.
initially: total bit(X).

always: executable add.
executable inv.

caused some zero if —bit(X).

caused all one_upto(0) if bit(0).
()

caused all one upto(Y) if bit(Y), all one_upto(X), #succ(X,Y).
caused bit(0) after add, —bit(0).
caused bit(Y) after add, -bit(Y), all_one_upto(X), #succ(X,Y).

goal :

caused -bit(X) after add, all_one_upto(X).

caused
caused

caused
caused
caused

caused
caused

bit(X) after add, bit(X), -bit(Y), ¥ < X.
-bit(X) after add, -bit(X), -bit(Y), ¥ < X.
—bit(X) after inv, not some_zero.

bit(X) after inv, bit(X), some_zero.
-bit(X) after inv, -bit(X), some_zero.

false after not add, not inv.
false after add, inv.

not some zero? (i)

There are two actions add and inv corresponding to pressing either of the buttons, which
are both always executable. We use the following fluents to model the current state of the

counter: bit(z) indicates whether bit z is currently set, where = € {0, ...,

n — 1} for an

n-Bit counter. Furthermore, we have two auxiliary fluents some_zero, which says that there

are some unset bits, and all one upto(z), which says that all bits ¢ < z are set.

The

values of these auxiliary fluents are described by static effects in the first block of causation
rules. The effect of action add is described by the subsequent block of five causation rules.
Intuitively, a bit is toggled if all previous bits are set. The subsequent three causation rules
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Figure 6.4: Reset a 2-bit counter.

describe the effect of action inv as described above. Finally, execution of exactly one action
is enforced by the final two constraints.
For a 2-bit counter, by calling DLVX with

$ DLV -FPsec counter.plan -N=1 -planlength=12 -n=1

we obtain the following 12-step plan, which is the shortest possible solution, as illustrated
in Figure 6.4:

P=( {inv}, {add}, {add}, {add}, {inv}, {add}, {add}, {add}, {inv},
{add}, {add}, {add})

As easily seen, the given K program is false-committed, even plain (strictly speaking,
the ground instantiation is, since IL.yqyp: is not empty using built-ins); the only nondetermin-
ism is in the initial state, and exactly one action occurs per step. Still, we see in Figure 6.4
that the problem is hard to solve: The picture illustrates that for secure planning, the num-
ber of states is not necessarily an upper bound for the plan length: In this problem the
number of (counter) states (2", where n is the number of bits), is not an upper bound; the
shortest secure plan is 2" % (2" — 1) for n = 2 which means that in any supporting trajectory
of the secure plan there are states which are visited more than once.

The conditional effects make a knowledge state encoding again infeasible. Intuitively,
the only knowledge “gaining” action here is inv, which, depending on the current belief
state, collapses the two counter states 0,...,0 and 1,...,1.

Remark 6.1. While we have not proven for n > 2 that the shortest plan takes always
2™ % (2™ — 1) steps, it is obvious that (i) we need at least 2™ — 1 inv actions plus 2" — 1 final
add actions to achieve the goal state after the last inv, and (i) that a secure plan of length
2" x (2™ — 1) can always be found.
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In other domains it might even be necessary to step through all possible belief states,
before reaching the goal conformantly, making minimal plan length in worst case double
exponential, i.e. 0(22") as mentioned in Section 3.3. A respective example is constructible
from the proof of Theorem 3.8 where the Turing machine to encode simply counts from 0 to

o

6.3.5 Paint the House Green — Nondeterminism vs. “Forgetting”

“Forgetting” in our sense cannot be emulated by formalisms which adopt a world state view.
In those formalisms, leaving fluents open amounts to a disjunction over all possible world
states, whereas we can explicitly distinguish between such “totalization” and “unknown”
features. In Section 6.3.2 above, we have seen examples of nondeterminism, which in fact
makes some fluents unknown. This allowed for a very concise knowledge state encoding
in this domain. However, we point out that “forgetting” does not always make sense, as
shown by the following example. Intuitively, we might distinguish between different forms
of nondeterminism: Whenever the value of a some fluent is completely open after executing
an action, this suggests that we can “forget” about it in some sense. On the other hand,
nondeterminism is often more “specific”, including disjunctive information. For example,
we might know that the effect of some action act is either f(a) or f(b), but for sure f(c)
is false after executing act. Here, just leaving fluent f(-) open would be counterproductive,
since we know something. We illustrate this by another example.

Paint the House Green — Basic Encoding: Assume that you tell joe from our Bridge
crossing example to paint a blue house green, but joe can not distinguish between red and
green?® After joe having painted the house, we do not know whether it is green or red,
but we do know that it is definitely not blue (true negation), for example. So, “forgetting”
about the color might not be a good choice in this example, as we actually know something
about the color of the house.

Let us take a closer look at an encoding of this domain in K where the background
knowledge II,4in: defines the colors, painters and whether a painter is color blind:

c(blue). c(red). c(green).
painter(joe). painter(jack).
colorblind(joe).

An encoding of PDpgint is shown in Figure 6.5. The first two causation rules express
that painting the house in a certain color is successful if either the painter is not color
blind or the color is neither red nor green. Furthermore, we add negative knowledge by a
static law expressing that whatever color the house currently has, it doesn’t have any other
color.The next four causation rules, which involve unstratified negation express the two
possible outcomes of painting the house green (resp. red) in case the painter is color blind.
Finally, we add inertia on positive knowledge on fluent color. Negative inertia for —color
can safely be ignored since —color is a static effect for all colors which do not represent
the current color of the house by the third causation rule in the encoding of Figure 6.5

29 A form of color blindness which is known as Daltonism after the Physicist John Dalton.
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fluents: color(C) requires c(C).
actions: paint(C,A) requires c(C), painter(A).
always : executable paint(C,A).
noConcurrency.
caused color(C) after paint(C,A), not colorblind(A).
caused color(C) after paint(C,A), C != red, C != green.
caused —color(C1) if color(C), C != C1.
caused color(red) if not color(green) after paint(green,A), colorblind(A).
caused color(green) if not color(red) after paint(green,A), colorblind(A).
caused color(red) if not color(green) after paint(red,A), colorblind(A).
caused color(green) if not color(red) after paint(red,A), colorblind(A).

inertial color(C).
initially: color(blue).

Figure 6.5: An encoding of the painting domain PDyqint

as mentioned above. Clearly, the knowledge states reachable from the initial state in this
domain encoding are in one-to-one correspondence with the actual world states.

Remark 6.2. Note that the effect rules for action paint suggest that allowing some limited
form of disjunction in the syntax of K could be useful for more concise encodings. Indeed,
we could define additional macros for disjunction in the after-part of causation rules as
follows:

caused f if B after f, A;.
caused f if B after Ay v ... v A, = :
caused f if B after f, A,.

We remark that disjunction in the caused- or if-parts requires more caution, for instance
due to possible head-cycles (cf. Section 2.1.4.1).

Our goal is to achieve that the color of the house changes, i.e. we accept any color but
the initial blue.

goal : —color(blue)? (1)

If we combine this line and the domain description in a file paint.plan and I, in file
paint.bk DLVX computes the following secure plans:

$ DLV -FPsec paint.plan paint.bk

PLAN: paint(green,jack)
PLAN: paint(red,jack)
PLAN: paint(green, joe)
PLAN: paint(red, joe)

which indeed are all secure plans in this domain.
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Paint the House Green, Incomplete Initial State — World State View: In a further
elaboration, we assume that we do not know the initial color of the house. Obviously, we
could adopt a world state view, i.e. encoding all possible initial states explicitly by:

initially: total color(X).
forbidden —color(red), —color(green), —color(blue).

The resulting secure plans remain the same as above.

Paint the House Green, Incomplete Initial State — Knowledge State View: We
can relax our assumptions a bit, leaving the initial state open by simply dropping the
initially: section completely. This means we do not apply a world state view in the
initial state any longer, leaving color unknown. This results in a single initial knowledge
state, corresponding to three possible actual world states.

Note that intuitively, as opposed to the Square example, we may just leave color open in
the initial state, since the effect of painting is not conditional and gains further knowledge.
The resulting secure plans still remain the same as for the original problem.

Paint the House Green — Can we use “Forgetting”? Note that, however, there is no
easy way to express the nondeterminism of action paint by “forgetting” like in the Bomb
in Toilet domain in Section 6.3.2: For instance, one might come up with a solution like:

always : executable paint(C,A).
noConcurrency.
caused color(C) after paint(C,A), not colorblind(A).
caused color(C) after paint(C,A), C != red, C != green.
caused —color(Cl) if color(C), C != C1.
).

caused painted after paint(C,A
inertial color(C) if not painted.

where painted is a new fluent. Here, painting only has an effect if the painter is either not
color blind or the color is different from green or red. By the modified frame axiom, the
previous color is only inherited to the next state if no painting action occurred. This leaves
the value of fluent color open in the next state, whenever a color blind painter p executed
paint(red,p) or paint(green, p).

We could now modify the goal accordingly from

goal : —color(blue)? (1)

by using default negation to

goal : not color(blue)? (1)

in order to obtain the same plans as above for this domain, but this does not reflect the
effects of the actions correctly: Assume we change our goal objective additionally claiming
that the house should neither be red nor blue. In the original formulation of the goal, this
is expressed by
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goal : —color(blue),—color(red)? (1)

and from the above plans, only
PLAN: paint(green, jack)

remains secure. If we rewrite the goal accordingly in our “forgetting” encoding, we end up
with:

goal : not color(blue),not color(red)? (1)

which still allows for plans

PLAN: paint(green, joe)
PLAN: paint(red,joe)

Since we do not know anything about the color after joe painted the house green, resp.
red in this formulation both actions seem reasonable plans, which is wrt. to our intention
incorrect. We see that in this particular example we need the explicit (negative) knowledge
about what is known to be false illustrating the difference between default negation and
true negation.

Analogously, we could think of disjunctive goals such as wanting the house to be green
or red. In K we do not directly allow for such disjunctive goals but this could easily be
emulated by an additional fluent, for instance named green_or_red where we add

caused green or red if color(red).
caused green.or red if color(green).

to the always : section and change the goal to:

goal : green or red? (1)

While this again works fine for the original encoding, the proposed “forgetting”-version still
does not work.

Paint the House Green — Improved Encoding: However, combining the ideas from
above we could still apply some improvement on the original encoding: At a closer look we
can provide a more concise encoding of the nondeterministic action effect by adding fluent
painted and changing the always : section from Figure 6.5 as follows:

always: executable paint(C,A).

noConcurrency.
caused color(C) if not —color(C) after paint(C,A).
caused —color(C1) if color(C), C = C1.

caused color(red) if not color(green) after paint(green,A), colorblind(A).
caused color(green) if not color(red) after paint(red,A), colorblind(A).

caused painted after paint(C,A).
inertial color(C) if not painted.
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Here, the first causation rule states that painting normally works out fine, using default
negation. The static effect remains as is.

Only the two special cases expressed by the following causations are needed in order to
model the possible exceptions. Each of those two rules form a “guess” together with the
first causation rule, in case the painter is color blind.

Note that we kept the modified frame axiom by conditional inertia formulation from the
previous encoding here, in order to avoid unwanted nondeterminism by negation as failure
“hidden” inside the inertial macro. The conditional formulation above overrides inertia,
whenever a paint action has occurred. We leave it as an exercise to the reader to show why
for instance

PLAN: paint(green,jack)

is not a secure plan if using simply inertial color(C). in the final rule. For further dis-
cussion of “hidden” default negation, we refer to Section 6.6.2 below.

6.4 Cost Efficient versus Time Efficient Plans

We will now show how the language K¢ can be used to minimize plan length in combina-
tion with minimizing the costs of a plan. This is especially interesting in settings where
parallel actions are allowed as in our Blocks World formalization above (cf. [KW99, LLO01,
EFL*03c]).

For such domains with parallel actions, Kautz and Walser propose various optimization
criteria, for instance the number of actions needed, or the number of time steps when parallel
actions are allowed, as well as combinations of these two criteria [KW99]. By exploiting
action costs and proper modeling, we can solve such optimization problems in K¢ as well.

In particular, we will consider the following optimization criteria:

() Find a plan with minimal cost (cheapest plan) for a given number of steps.
(8) Find a plan with minimal time steps (shortest plan).
(v) Find a shortest among the cheapest plans.
(6) Find a cheapest among the shortest plans.

Problem () is what we have already defined as optimal planning so far. We will now
show how to express () in terms of optimal cost plans, and how to extend this elaboration
with respect to the combinations () and (d) with elaborations of our Blocks World example
from Section 6.2.

6.4.1 Cheapest Plans with Given Plan Length («)

Let again P(l) denote planning problem P where the plan length in goal ¢ is changed to [.
We recall the Blocks World encoding from Figure 6.1 above where our goal was to find a
cheapest plan wrt. the total number of (possibly parallel) moves.

In DLVX one can compute optimal plans for given plan length [ by using the command-
line option -planlength=l, i.e. assuming PDy,, and Il;,, are given in files bwalpha.plan
and bw.bk, we can compute cost;;(l) as follows
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$ DLV -FPopt bwalpha.plan bwalpha.bk -planlength=]

resulting for I = 2 and [ = 3 in exactly the plans P, and Ps; shown in Section 6.2.

By simply assigning cost 1 to all moves as in the encoding in Figure 6.1, we only solve
criterion () for our Blocks World example. This can be arbitrarily extended to other cost
criteria expressible by action costs. For instance, we have shown some examples in our
elaborations of the Bridge Crossing Problem. In particular, we can also minimize the plan
length wrt. a given upper bound, which we show next.

6.4.2 Shortest Plans (5)

Intuitively, it should be possible to include the minimization of time steps in the cost func-
tion. We describe a preprocessing method which, given a K planning domain PD, a list @ of
ground literals, and an upper bound i > 0 for the plan length, generates a planning problem
Ps(PD, Q,1) such that the optimal plans for Pg correspond to shortest plans which reach
Q in PD in at most i steps, i.e., to plans for (PD,Q ? (1)) such that [ < i is minimal. We as-
sume that no action costs are specified in the original planning domain PD, and minimizing
time steps is our only target.

First we rewrite the planning domain PD to PDg as follows: We introduce a new distinct
fluent gr and a new distinct action finish, defined as follows:

fluents: gr.
actions: finish costs time.

Intuitively, the action finish represents a final action, which we use to finish the plan. The
later this action occurs, the more expensive the plan as we assign time as cost. The fluent
gr (“goal reached”) shall be true and remain true as soon as the goal has been reached, and
it is triggered by the finish action.

This can be modeled in K¢ by adding the following statements to the always section of
the program:

executable finish if (), not gr.
caused gr after finish.
caused gr after gr.

Furthermore, we want finish to occur exclusively and we want to block the occurrence
of any other action once the goal has been reached. Therefore, for every action A in PD, we
add

nonexecutable A if finish.

and add not gr to the if-part of each executability condition for A. Finally, to avoid any
inconsistencies from static or dynamic effects as soon as the goal has been reached, we add
not gr to the if-part of any causation rule of the PD except nonexecutable rules which
remain unchanged.3?

30There is no need to rewrite nonexecutable rules because the respective actions are already “switched
off” by rewriting the executability conditions.
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We define now Ps(PD, Q,i) = (PDg,gr ?(i +1)). We take ¢ + 1 as the plan length since
we need one additional step to execute the finish action.

By construction, it is easy to see that any optimal plan P = ( Ai,...,4;, Aj41, ..., Aiy1)
for the planning problem Pz must have A4, = {finish} and Aj;» = ... = Aj31 = 0 for
some j € {0,...,i}. We thus have the following desired property.

Proposition 6.1. The optimal plans for Pg are in 1-1 correspondence to the shortest plans
reaching ) in PD. That is, P = (A1,...,Aj41,0,...,0) is an optimal optimistic plan for
Ps(PD,Q,i) and Ajyq = {finish} if and only if P' = (A1,...,A;) is an optimistic plan
for (PD,Q7?(j)) where j € {0,...,i}, and (PD,Q7?(j')) has no optimistic plan for each
Jj'<j.

In our Blocks World example, using this method we get all 2-step plans, if we choose i > 2.

To compute shortest plans over all plan lengths, we can set the upper bound ¢ large
enough such that plans of length [ < ¢ are guaranteed to exist. A trivial such bound is
the total number of legal states which, however, is in general exponential in the number of
fluents. Remarkably, as we have seen in Section 3.3, for secure planning this bound is even
higher in general.

However, many typical applications have an inherent, much smaller bound on the plan
length. For instance, in a Blocks World with n blocks, any goal configuration can be reached
within at most 2n — Sinit — Sgoar Steps, where Sinit and sgoq; are the numbers of stacks in
the initial and the goal state, respectively.3! Therefore, 6 is an upper bound for the plan
length of our simple instance.

We remark that this approach for minimizing plan length is only efficient if an upper
bound close to the optimum is known. Searching for a minimum length plan by iteratively
increasing the plan length may be much more efficient if no such bound is known, since
a weak upper bound can lead to an explosion of the search space (cf. the benchmarks in
Section 8).

For computing the shortest plans for our Blocks World instance from above, we modify
the program from Figure 6.1 as follows:

e remove the costs-part from action declaration for move.

e add action finish and fluent gr and the respective rules as defined above, in particular
change the executability for move and the final four causation rules from the original
program to

nonexecutable move(B,L) if finish.
executable move(B,L) if B!=L, not gr.

caused on(B,L) if not gr after move(B,L).

caused blocked(B) if on(B1,B), not gr.

caused moved(B) if not gr after move(B,L).

caused on(B,L) if not moved(B), not gr after on(B,L).

310ne can solve any Blocks World problem sequentially by first unstacking all blocks which are not on
the table (n — sinit steps) and then building up the goal configuration (n — sg44; Steps).



152 CHAPTER 6. KNOWLEDGE REPRESENTATION IN K¢

e we further remove the original goal and add:

always : executable finish if on(1,3), on(3,table), on(2,4),
on(4,table), on(6,5), on(5,table), not gr.
goal: gr?(7)

where plan length 7 of the modified problem Py, g emerges from the upper bound 6
plus one additional time step for executing finish.

Upon call with the modified file bwbeta.plan

$ DLV -FPopt bwbeta.plan bw.bk

DLVX returns the indented shortest plan:

PLAN: move(1,table), move(3,table), move(5,table);
move(1,3), move(2,4), move(6,5); finish:3;
(no action); (no action); (no action); (no action) COST: 3

i.e., the plan

P = ({move(1, table), move(3, table), move(5, table)},
{move(1,3), move(2,4),move(6,5)}, {finish}, @, @, @, @)

with costp,, ,(Ps) = 3, corresponding to P, from above. Using our method, the shortest
plan length can be easily derived from costp,, ,(P3) — 1 = 2.

6.4.3 Shortest among the Cheapest Plans ()

In the previous subsection, we have shown how to calculate shortest plans for K programs
without action costs. Combining arbitrary K¢ programs and the rewriting method described
there is easy. If we want to find a shortest among the cheapest plans, we can use the same
rewriting, with just a little change. All we have to do is setting the costs of all actions
except finish at least as high as the highest possible cost of the finish action. The
highest action cost for finish is obviously the plan length 7 4+ 1. So, we simply modify all
action declarations

A requires B costs C where D.

in Pg by multiplying the costs with factor ¢ + 1:

A requires B costs C; where C; = (i+1)*C, D.

This lets all other action costs take priority over the cost of finish and we can compute
plans satisfying criterion (vy). Let P, denote the resultant planning problem. Then we have:

Proposition 6.2. The optimal plans for P., are in 1-1 correspondence to the shortest among
the cheapest plans reaching Q) in PD within i steps. That is, P = (Ay,...,Aj+1,0,...,0)
is an optimal optimistic plan for P,(PD,Q,i) and Aj41 = {finish} if and only if (i)
P' = (A4,...,A;) is a plan for P; = (PD,Q7?(j)), where j € {0,...,i}, and (%) if P" =
(A1,...,Ay) is any plan for Py = (PD,Q7?(j')) where j' < i, then either costp,(P") >
costp,(P') or costp, (P") = costp; (P') and j' > j.
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fluents: on(B,L) requires block(B), location(L).
blocked(B) requires block(B).
moved(B) requires block(B).

gr.

actions: move(B,L) requires block(B), location(L) costs C where C=7x 1.
finish costs time.

always : executable move(B,L) if B!=L,not gr.

nonexecutable move(B,L) if blocked(B).
(B,L) if blocked(L).
nonexecutable move(B,L) if move(B1,L), B < B1, block(L).
nonexecutable move(B,L) if move(B,L1), L < L1.
nonexecutable move(B,B1) if move(B1,L).

nonexecutable move

caused on(B,L) if not gr after move(B,L).

caused blocked(B) if on(B1,B), not gr.

caused moved(B) if not gr after move(B,L).

caused on(B,L) if not moved(B), not gr after on(B,L).

executable finish if on(1,3),on(3,table),on(2,4),on(4,table),
on(6,5), on(5, table),not gr.

caused gr after finish.

caused gr after gr.

nonexecutable move(B,L) if finish.

initially: on(1,2). on(2,table). on(3,4). on(4,table). on(5,6). on(6,table).

goal : gr? (7)

Figure 6.6: Computing the shortest plan for a Blocks World instance with a minimum
number of actions

Figure 6.6 shows Py, , for our Blocks World instance where ¢ = 6. One optimal plan for
Prw,y is

P = ( {move(3,table)}, {move(l,3),move(5,table)},
{move(2, 4), move(6,5)}, {finish}, 0, 0, 0 ),

which has costp_ (P) = 39. As easily seen, this plan corresponds to P3 from above.

We can now compute the optimal cost wrt. optimization (y) by subtracting the cost of
finish and dividing by ¢ +1: (39 —4) + (i +1) = 35+ 7 = 5. Thus, we need a minimum of
5 moves to reach the goal. The minimal number of steps is obviously all steps, except the
final finish action, i.e. 3. Thus, we need at least 3 steps for a plan with five moves.

The resp. call to DLV is as follows:

$ DLV -FPopt bwgamma.plan bw.bk -N=7

resulting in the above plan:



154 CHAPTER 6. KNOWLEDGE REPRESENTATION IN K¢

PLAN: move(3,table):7, move(5,table):7;
move(1,3):7, move(6,5):7;
move(2,4):7; finish:4;
(no action); (no actiom); (no action) COST: 39

where option -N=7 is needed because of the costs definition for move in Py, , which uses
the integer arithmetics built-in “¥” as shown in Figure 6.6.

6.4.4 Cheapest among the Shortest Plans (¢)

Again, we can use the rewriting for optimization (3). The cost functions have to be adapted
similarly as in the previous subsection, such that now the cost of the action finish takes
priority over all other actions costs. To this end, it is sufficient to set the cost of finish
high enough, which is achieved by multiplying it with a factor F higher than the sum of
all action costs of all legal action instances at all steps j = 1,...,i + 1. Let Ps denote the
resulting planning problem. We have:

Proposition 6.3. The optimal plans for Ps are in 1-1 correspondence to the cheapest
among the shortest plans reaching Q in PD within i steps. More precisely, P = (A4,
ey A1, 0,...,0) is an optimal optimistic plan for Ps(PD,Q,i) and Ajyq = {finish} if
and only if (i) P' = (A1,...,A;) is a plan for P; = (PD,Q7(j)), where j € {0,...,i},
and (i) if P" = (Aq,..., A1) is any plan for Py = (PD,Q7? (j')) where j' < i, then either
j'>j, or j' = j and costp, (P") > costp, (P').

In our example, there are 36 possible moves. Thus, we could take F' = 36 * (i + 1) and
would set the costs of finish to time * 36 x (i + 1). However, we only need to take into
account those actions which can actually occur simultaneously. In our example, at most
six blocks can be moved in parallel. Therefore, it is sufficient to set F' = 6 x (i + 1) and
assign finish cost time * F' = time % 42. Accordingly, the action declarations are modified
as follows:

actions: move(B,L) requires block(B), location(L) costs 1.
finish costs C where C = time % 42.

An optimal plan for the modified planning problem Pj is:

P = ( {move(1,table), move(3,table), move(5, table)},
{move(1,3),move(2,4),move(6,5)}, {finish}, 0, @, 0, @)

We have costp, (P) = 132. Here, we can compute the optimal cost wrt. optimization (J) by
simply subtracting the cost of finish, i.e. 132 — 3 x 42 = 6, since finish occurs at time
point 3. Consequently, we need a minimum of 6 moves for a shortest plan, which has length
3—1=2.

The resp. call to DLV is as follows:

$ DLV -FPopt bwdelta.plan bw.bk -N=1000

resulting in the above plan:
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PLAN: move(1,table):1, move(3,table):1, move(5,table):1;
move(1,3):1, move(2,4):1, move(6,5):1;
finish:126;
(no action); (no actiom); (no action); (mo action) COST: 132

Note that we have to set the integer limit high enough again, in order to produce correct
results. Any value for -N=n below 7*42=294 will cause bogus results; due to the limitations
outlined in the previous chapter, for n < 294 finish will not produce any violation costs in
Ip¥(P) when executed at time 7, since the resp. constraint

i~ costs$_finish$(6,294). [294:1]

will not be instantiated by DLV.

Indeed, we have seen that (and how) the optimization problems (a) through (&) can
be represented in K°. We remark that the transformations Pg, P, and Ps all work under
the restrictions to secure and/or sequential plans as well with respect to the integrated
computation implemented in DLVX. Furthermore, we have seen some of the restrictions
of this transformations with respect to the current implementation which we will try to
circumvent in Section 7.1.1 below.

6.5 Route Planning - Variants of Traveling Salesperson

As another illustrating example for optimal cost planning, we will now introduce an elabo-
ration of the Traveling Salesperson Problem with exceptional time-dependent action costs.

Traveling Salesperson Problem (TSP). We start with the classical Traveling Sales-
person Problem (TSP), where we have a given set of cities and connections (e.g., roads,
airways) of certain costs. We want to know a most economical round trip which visits all
cities exactly once and returns to the starting point (if such a tour exists). Figure 6.7 shows
an instance representing the capitals of all Austrian provinces. The dashed line is a flight
connection, while all other connections are roads; each connection is marked with the costs
in traveling hours.

brg ... Bregenz
eis ... Eisenstadt
gra... Graz

ibk ... Innsbruck
kla ... Klagenfurt
lin ... Linz

sbg ... Salzburg
stp ... St. Pdlten
vie ... Vienna

Figure 6.7: TSP in Austria
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We represent this in K¢ as follows. The background knowledge IIrgp defines two predi-
cates city(C) and conn(F, T, C) representing the cities and their connections with associated
costs. Connections can be traveled in both ways:

conn(brg, ibk, 2
conn(sbg,kla, 2

( ). conn(ibk, sbg, 2). conn(ibk, vie,5). conn(ibk,kla, 3).
( ). conn(sbg, gra, 2). conn(sbg, 1in, 1). conn(sbg, vie, 3).
conn(kla,gra,2). conn(lin, stp, 1). conn(lin,vie,2). conn(lin, gra,2).
conn(gra,vie, 2). conn(gra,eis, 1). conn(stp, vie, 1). conn(eis, vie, 1).
conn(stp, eis, 2). conn(v1e,brg, 1).

conn(B, A,C) :- conn(A,B,C).

city(T) :- conn(T,_,.).

A possible encoding of TSP starting in Vienna (vie) is the K¢ program in Figure 6.8.
It includes one action for traveling from one city to another.

fluents: unvisited.
in(C) requires city(C).
visited(C) requires city(C).

actions: travel(X,Y) requires conn(X,Y,C) costs C.
always : executable travel(X,Y) if in(X).
nonexecutable travel(X,Y) if visited(Y).
nonexecutable travel(X,vie) if city(C), not visited(C), C = vie.

caused unvisited if city(C), not visited(C).
caused in(Y) after travel(X,Y).

caused visited(Y) after travel(X,Y).
inertial visited(C).

noConcurrency.
initially: in(vie).
goal : notunvisited, in(vie)? (9)

Figure 6.8: Traveling Salesperson

Note that compared to our original encoding provided in [EFL*03c] this encoding only needs
one action. Every city traveled to is marked as visited. The goal is to reach Vienna, with
having all cities visited, where the first nonexecutable statement prohibits traveling to a
city already visited. The second nonexecutable statement adds control knowledge in some
sense, pruning attempts to visit Vienna, as long as there are some other unvisited cities which
has proven reasonable also in our experiments. We remark that for this example the only
necessary frame axiom is the simple inheritance over states for fluent visited. Since the
value of visited can never be invalidated once a city has been visited, there is no need to use
the inertial macro here and we could equivalently write caused visited after visited.
instead. As for the fluent in, although any no-op step would lead to “forget” about in
we are implicitly only interested in plans where exactly one action travel per time occurs,
such that the value of in is always determined and no extra frame axiom is needed.
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The problem has ten optimal 9-step solutions with cost 15. We show only the first five
here, as the others are symmetrical:

P; = ({travel(vie,stp)}, {travel(stp,eis)}, {travel(eis,gra)}, {travel(gra,lin)},
{travel(lin, sbg)}, {travel(sbg,kla)}, {travel(kla,ibk)}, {travel(ibk,brg)},
{travel(brg, vie)} )

P, = ({travel(vie,eis)}, {travel(eis,stp)}, {travel(stp,lin)}, {travel(lin,sbg)},
{travel(sbg,gra)}, {travel(gra,kla)}, {travel(kla,ibk)}, {travel(ibk,brg)},
{travel(brg, vie)} )

P; = ({travel(vie,eis)}, {travel(eis,stp)}, {travel(stp,1lin)}, {travel(lin, gra)},
{travel(gra,kla)}, {travel(kla,sbg)}, {travel(sbg, ibk)}, {travel(ibk,brg)},
{travel(brg,vie)} )

P, = ({travel(vie, 1lin)}, {travel(lin,stp)}, {travel(stp,eis)}, {travel(eis,gra)},
{travel(gra,kla)}, {travel(kla,sbg)}, {travel(sbg, ibk)}, {travel(ibk,brg)},
{travel(brg, vie)} )

Ps = ({travel(vie,gra)}, {travel(gra,eis)}, {travel(eis,stp)}, {travel(stp,lin)},

{travel(lin, sbg)}, {travel(sbg,kla)}, {travel(kla,ibk)}, {travel(ibk,brg)},

{travel(brg, vie)} )

TSP with variable costs. Let us now consider an elaboration of TSP, where we assume
that the costs of traveling different connections may change during the trip. Note that three
of the five solutions in our example above include traveling from St.Poélten to Eisenstadt
or vice versa on the second day. Let us now assume that the salesperson, who starts on
Monday, has to face some exceptions which might increase the cost of the trip. For instance,
(i) heavy traffic jams are expected on Tuesdays on the route from St.Polten to Eisenstadt
or (i) the salesperson shall not use the flight connection between Vienna and Bregenz on
Mondays as only expensive business class tickets are available on this connection in the
beginning of the week. So we have to deal with different costs for the respective connections
depending on the particular day.

To this end, we first add a new predicate cost(4,B,W,C) to the background knowledge
II7sp representing the cost C of traveling connection A to B on weekday W which can take
exceptional costs into account:

cost(A,B,W,C) :- conn(A,B,C), #int(W), 0 <W, W<=7, not ecost(4,B,W).
ecost(A,B,W) :- conn(A,B,C), cost(A,B,W,C1), C!=C1.

The original costs in the predicate conn(A,B,C) now represent defaults, which can be over-
ridden by explicitly adding different costs. For instance, to represent the exceptions (i) and
(ii), we add:

cost(stp,eis, 2,10). cost(vie,brg,1,10).
setting the exceptional costs for these two critical connections to 10. Weekdays are coded

by integers from 1 (Monday) to 7 (Sunday). We represent a mapping from time steps to
the weekdays by the following rules which we also add to IIrgp:

weekday(1,1).
weekday(D,W) :-D=D1+1, W=W1+ 1, weekday(D1,W1), W1 < 7.
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weekday(D,1) :- D =D1+ 1, weekday(D1,7).

Note that although the modified background knowledge II7sp is not stratified (since cost
is defined by cyclic negation), it has a total well-founded model, and thus a unique answer
set.

Finally, we change the costs of traveling in the K¢ program from Figure 6.8:

actions: travel(X,Y) requires conn(X,Y,C1) costs C
where weekday(time,W), cost(X,Y,W,C).

Since now the costs for Py (which includes traveling from St.Polten to Eisenstadt) on the
second day have increased due to exception (i), only four of the plans from above remain
optimal. Note that unlike the default costs, exceptional costs do not apply bidirectionally, so
the exception does not affect P, and Ps. Furthermore, due to exception (ii) the symmetrical
round trips starting with the flight trips to Bregenz are no longer optimal.

The presented encoding proves to be very flexible, as it allows for adding arbitrary ex-
ceptions for any connection on any weekday by simply adding the respective facts; moreover,
even more involved scenarios, where exceptions are defined by rules, can be modeled.

6.5.1 A Small Example for Planning under Resource Restrictions

Although planning with resources is not the main target of our approach, the following
encoding shows that action costs can also be used in order to model optimization of resource
consumption in some cases. An important resource in real world planning is money. For
instance, let us consider a problem about buying and selling [LLO1]:

“I have $6 in my pocket. A newspaper costs $1 and a magazine costs $3. Do I
have enough money to buy one newspaper and two magazines?”

In K¢, this can be encoded in a very compact way by the following background facts:
item(newspaper,1). item(magazine,?2).

combined with the following short K¢ program:

actions: buy(Item,Number) requires item(Item,Price), #int(Number)
costs C where C = Number * Price.

fluents: have(Item, Number) requires item(Item,Price), #int(Number).

always : executable buy(Item, Number).

nonexecutable buy(Item,N1) if buy(Item,N2), N1 < N2.
caused have(Item, Number) after buy(Item, Number).

goal : have(newspaper, 1), have(magazines,?2)? (1)

The action buy is always executable, but one must not buy two different amounts of a
certain item at once. Obviously, no admissible plan wrt. cost 6 exists, as the optimal plan
for this problem, ({buy(newspaper, 1), buy(magazine,2)}) has cost}; = 7. Therefore, the
answer to the problem is “no.”

The problem can be solved by the following call to our prototype:
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$ DLV -FP buying.bk buying.plan -N=10 -planlength=1 -costbound=6

Correctly, no admissible plan is found. When calling the system again without cost
bound, the prototype calculates the following optimal cost plan:

PLAN : buy(newspaper, 1) : 1, buy(magazine,2):6 COST: 7

Again, when solving th problem with DLVX one has to bear in mind to set option -N properly.
As for the cost function in the where-part of the declaration of action buy (see Section 6.5.1),
buying 2 magazines would result in C to be instantiated with 6. If now option =N would be
set too low, we get a bogus result, for instance:

$ DLV -FP buying.bk buying.plan -N=3 -planlength=1 -costbound=6
computes the same plan as above but with the wrong cost value COST : 1.

Our approach considers only positive action costs and does not directly allow modeling
full consumer/producer/provider relations on resources in general, in favor of a clear non-
ambiguous definition of optimality. For instance, by allowing negative costs one could always
add a producer action to make an existing plan cheaper, whereas in our approach costs are
guaranteed to increase monotonic, allowing for a clear definition of plan costs and optimality.

On the other hand, we can encode various kinds of resource restrictions by using fluents
to represent these resources. We can then model production/consumption as action effects
on these fluents and add restrictions as constraints. This allows us to model even complex
resource or scheduling problems; optimization, however, remains restricted to action costs.

In this context, Lee and Lifschitz [LL01, LLO3] proposed an interesting and useful ex-
tension of the action language C+ called “Additive Fluents” which enables the user to flexi-
bly model such producer/consumer relations in their language, by incremental/decremental
effects and cumulative effects of parallel such productions and consumptions. Weak con-
straints or DLV’s #sum aggregate which can be used to partly emulate these additive fluents
are still limited to aggregation of positive values by DLV’s restrictions on integer arithmetics.
However, [LL01, LLO03] do only allow for fixed limits via constraints on these fluents but do
not offer means of optimization.

6.6 Features and Pitfalls

After having presented multiple aspects of knowledge representation in K¢ by means of
several well-known and also novel planning examples, we now summarize and discuss the
features and pitfalls of encoding domains in our language in more detail.

We have seen that default negation and the concepts of K provide a flexible tool for
knowledge representation in the field of planning but using negation as failure also involves
some subtleties via the full freedom of normal logic programs to describe state constraints. In
analogy to the term “Planning as Satisfiability” (coined by Kautz and Selman) our approach
may well be conceived as “Planning as Answer Set Programming” or even “Answer Set
Programming as Planning”, to some extent.

In general, K (resp. K¢) can not be seen as a classical action language where transitions
are defined between completely defined world states or sets of such states (i.e. belief states)
although this view can be expressed as shown for instance in Sections 6.3.4 and 6.3.1. In
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fact, the knowledge state view implicit to the semantics of X, while allowing great flexibility
as shown above, requires the K user to know about basic principles of logic programming
and especially how to deal with non-monotonic (default) negation.

We can state two major design principles in this context:

Design Principle 1: Only describe what is necessary.>?

Design Principle 2: Forget unnecessary information rather than keep complete state in-
formation explicitly, where possible.??

Knowledge state encodings relieve the user somehow from encoding every possible con-
straint on legal states of a particular domain by simply leaving “irrelevant” information
open. We have discussed the applicability of the knowledge state view vs. the world state
view and the concept of “forgetting” about fluents with illustrative examples in the “Bomb
in the Toilet” and “House Painting” domains.

In order to design planning domains in K, one has to be aware of the inherent non-
monotonicity of the knowledge state view by default negation (explicitly or implicitly via
the inertial, total and default macros). We will discuss the use of macros in this context
below.

Informally, a transition (s, 4,s’) in K¢ can be viewed as a transition between (answer
sets of) normal logic programs where causation rules of the form

caused f if b1,...,bg,no0t bgt1,...,n0t b
after ay,...,am,n0t Gm41,...,00t an.

form a logic program Iy consisting of all rules r
f = bi,...,bg,n0t bgy1,...,n0t by.

such that {a1,...,am} € sUA and {am+1,...,an} N (s UA) = 0. IIy then has all legal
successor states for s and A as its answer sets.

We will give another example below showing the strength of this logic programming
view in planning: Modeling transitive closure in K is more concise and in our opinion more
natural than in similar formalisms.

6.6.1 Transitive Closure

The next short example shows how to model transitive closure in K. This is straightforward
due to the answer-set-programming-based semantics of K. Let us assume there is a fluent
on(B, L) which represents whether a block B resides on location L in the Blocks World.

Now, we want to define causation rules for a fluent above(B,L) which states that block
B resides somewhere above location L. This can be modeled by static rules as follows:

caused above(B,L) if on(B,L).
caused above(B,L) if on(B,B1), above(B1,L).

32 However, both these statements should also be viewed in the light of “elaboration tolerance” in the
sense of McCarthy [McC99b]. Flexible frameworks such as our language K leave much of the responsibility
how far domain- and problem-specific knowledge is exploited up to the user.
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While in K these two rules sufficiently describe the values of fluent above, in action language
C or other formalisms based on complete state information, we would have to add negative
information on fluent above explicitly in order to avoid nondeterminism.

On the other hand, we can easily “complete” each knowledge state wrt. fluent above in
the example, for instance by adding:

default —above(X,Y).

6.6.2 Using Macros

Here, we will discuss by example what the user has to bear in mind when using macros,
mainly concerning knowledge states vs. world states again.

“Hidden” Default Negation in Macros

As we have already seen in the previous examples, default negation “not ” allows a great

degree of freedom and flexibility in the encoding of planning domains. However, default
negation and nondeterminism might sometimes not be obvious when dealing with K macros.
For instance, inertial statements might interfere with other rules with default negation
as seen in the final variant of the example of Section 6.3.5. Furthermore, combinations of
inertial and default might cause eventually unintended nondeterminism: Consider for
instance the rules

default —hasLamp(joe).
inertial hasLamp(joe).

in a state s = {hasLamp(joe)}, with the empty action set A = (). Here, there are two legal
transitions (s, 4, s') and (s, 4, s'"), where s’ = {hasLamp(joe)}, resp. s = {~hasLamp(joe)}
as in the semantics of K inertia does not take priority over defaults.

For the sake of simplicity we refrained from a more complicated definition of default
and inertial such that this priority would hold. We could proceed similarly to encoding
orders among Defaults in Reiter’s Default logic as proposed for example in [Luk90]: A simple
redefinition of default and inertial such that inertia takes priority over default could look
as follows:

caused ¢nerty if B after f, A.

i tial £ if B aft A.
inertia 1 atter caused f if not —.f, B after f, A.

default f. & caused f if not —.f,not inert_:.

where for any positively (resp. negatively) inertial fluent fl we additionally have to add a
new distinct fluent inertys; (resp. inert—z;) in a declaration analogous to the declaration of
fl wrt. the requires-part.

Note that we have used a similar “trick” above to override inertia in the improved
formulation of the “Paint the House Green” example.

Remark 6.3. We remark that in the macro definition above, we assume that B is “reason-
able” in the sense that it does not contain £ (nor —£,not £,not —£, respectively) itself, since
the occurrence of £ in the if-part could again cause unstratified negation.
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Nonexecutability and Knowledge States

Similar considerations apply to the executability /non-executability of actions. For instance,
in the above example, assume that we had expressed executability of takeLamp in line 9 of
Figure 3.1 (see p. 38) by the following statement:

nonexecutable takeLamp(X) if hasLamp(Y), at(X,SX), at(Y,SY), otherSide(SX, SY).

Intuitively, this says that the lamp might not be taken by X if we know that Y holds it
and Y is on the other side of the bridge. Here, default negation is intuitively “hidden”
in a constraint. 32 While one might think on a first glance that this is a good way to
model action takeLamp correctly, assume that nobody has the lamp, which could happen
for example in our Scenario Ppcpsec (see p. 41) where the lamp might be lost. With this
reformulation the lamp could “rematerialize” by being taken by any person at any point
after being lost. So, modeling it this way is somehow “elaboration intolerant”, in the sense
of [McC99b] while it works well in the basic formulation of Ppcp.

33In fact, any rule caused false if A after B. can semantically equivalent be rewritten to a rule
caused p if not p, A after B. where p is a new propositional fluent not occurring elsewhere in the do-
main.



Chapter 7

Language and System
Extensions

In this chapter, we will discuss some language extensions which are either under investigation
or have already found their way in the implemented DLVX system. Furthermore we will
discuss open implementation issues and optimizations.

7.1 Language Extensions

In the following we will discuss some possible syntactic and semantic extensions of K¢ which
are currently under investigation. We will also sketch the realization of these features and
their impact on computational complexity.

7.1.1 Improving the Implementation of (5) — (9)

When showing a method to encode the computation of shortest plans in K¢ by means
of action costs above (cf. Section 6.4), we have seen that combining the minimization of
several criteria in parallel such as finding shortest among cheapest plans or cheapest among
shortest plans requires some overhead. In particular for optimization (), i.e. finding the
cheapest among the shortest plans, it might not always be obvious beforehand what the
cost value of finish should be. Recall that we had to set the costs of action finish to a
constant value higher than all other costs in order to achieve priority over all other action
costs for optimization (4); similar considerations were necessary for (). This approach had
some drawbacks: First, as already mentioned, the particular cost value to be chosen for
action finish is not necessarily obvious for an arbitrary domain; next, the optimal cost
value with respect to the original criterion is no longer immediately visible from the plans
after our preprocessing step. Furthermore, keeping in mind the limit for integer arithmetics
(command-line option -N) in DLVX for () and (&) seems to be inconvenient when actually
solving the problems with our system.

Note that we can circumvent the adaption of cost values wrt. action finish in () and
(0) by a simple and straightforward extension of the K¢ syntax and/or translation Ip*(P)
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which will be discussed next.

7.1.1.1 Cost Levels

When introducing weak constraints in DLV in Section 2.1.5.1 we mentioned that DLV allows
for cost levels. Cost levels could with minor modifications of Ip¥(P) safely be allowed in K¢
as well. To this end, we have to

(1) adapt the syntax of action declarations wrt. the costs-part by also allowing declara-
tions of the form:

p(X4,...,X,) requires ty,...,ty costs C': L wherecy, ..., Cg- (7.1)

where for level L the same syntactical restrictions apply as for C' in the original declarations
of the form (3.5) in Section 3.2.

(2) modify Step 7 in of Ip*(P) in Sections 4.3.2 accordingly:

Step 7 (Action Costs): For any action declaration d of form (7.1) with a non-empty
costs-part, add:
(i) A new rule r4 of the form

costp(X1,..., %, T,C0,1L8) == p(Xy,...,%Xn,T), t1,..., tm, (7.2)

010,...,ck0,U=T+1. ’
where cost, is a new symbol, T and U are new variables and § = {time — U}. As an
optimization, U =T + 1 is only present if U occurs elsewhere in r4. (ii) A weak constraint
weg of the form

i~ costp(X1,...,%, T,C,L). [C: L] (7.3)

This extension allows the user to encode P, (resp. Ps) simply by assigning finish a
lower (resp. higher) cost level than all the other actions in P.

The extension to use cost levels in K¢ action declarations has already been implemented
in the latest DLVX version to be released.

7.1.1.2 Alternative Translation

We propose another alternative which also makes use of cost levels in the translation Ip* (P)
itself in order to compute shortest plans. Here, no preprocessing of the domain P is necessary
but the translation itself is affected.

Shortest plan in the sense of optimizations (8)—(d) where an upper bound i for the plan
length is given can be achieved alternatively by a simple extension of Step 2 in translations
Ip(P) (resp.lp®(P)):
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Step 2 (Auxiliary Predicates): To represent steps, we add the following facts to Ip(P)

time(I) :- #int(I), p1(L), I <= L.
next(I,J) :- #succ(I,J), pl(L), J <= L.
pl(0) vpl(1l) v ... v pl(s).

i~ pl(X). [X: ]

where 7 is the upper bound for the plan length of P and [ is a cost level which again has to
be chosen lower (resp. higher) than all cost levels of all the other actions in P in order to
achieve (), resp. (d). For (8) we can simply fix [ to 1.

Indeed, this simple extension of [p¥(P) achieves optimizations (8), (v), and (§) analo-
gously without having to rewrite the problem P itself beforehand and could be integrated
into DLVX easily.

As for secure planning, the extension again works fine wrt. the interleaved computation
implemented in DLVY.

7.1.2 TIterative Search for Shortest Plans

Fixed plan length is obviously a limitation compared with other planners which search for
the shortest possibly plan without a given upper bound. Most existing planners iteratively
search for longer plans until one is found.

In our language, we consider plan length as part of the input and therefore, plan length
is always fixed in some sense. However, if we leave plan length unspecified in the input,
incremental search seems the best we can do.

We remark that such incremental search strategies for finding the shortest plan are only
applicable for optimization criteria (8) and (§) from Section 6.4. As soon as other objectives
than minimizing plan length alone come into play, iterative plan search is infeasible. For
instance, for criterion (), i.e. finding the shortest among t he cheapest plans wrt. some
other cost criterion we can not proceed iteratively: Unless we know the optimal cost of a
cheapest plan beforehand, we need to investigate plans of all possible lengths up to an upper
bound.

However, in many cases iterative search makes sense, especially, as mentioned above, if
no good upper bound is known. As for our approach, all we can do so far is incrementing
plan length after failing to find a plan and restart from scratch.

Possible improvements, for instance by deriving counterexamples from an unsuccessful
search for plans of length n which can be exploited to prune the search space for plans of
length n + 1 remain to be further investigated.

We remark that the impact of leaving the plan length unspecified on the complexity of
computing optimistic and secure plans has already been discussed in Section 3.3 (cf. proof
of Theorem 3.8, p. 56).

7.1.3 Multi-Valued Fluents

Fluent literals in K¢ can only represent Boolean predicates. However, in planning we often
have to face state variables which do not only take Boolean values but a range of values
from a (finite) domain.
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Taking a closer look to our Bridge Crossing Example in Figure 3.1 (see p. 38), one
might criticize some deficiencies in the way fluents are represented: For the example above,
a person can always be at at most one location (here,across) or exactly one person has
the lamp. In order to express such settings, multi-valued fluents which are available in
many other action languages, e.g. in C+ [GLLT01, LLO1, GLL*03], but also Ar [GKL97]
would be desirable where fluents can take a distinct value from a certain range rather than
only true or false. Multi-valued (also known as “functional” fluents) fluents have already
been introduced in the Situation Calculus, and are also allowed in a functional extension to
STRIPS called FSTRIPS [Gef00], and in the currently most wide-spread planning language
PDDL, called “functions” there.

Intuitively, we would preferably write something like:

caused hasLamp = jack after takeLamp(jack).

instead of two causation rules:

caused hasLamp(jack) after takelLamp(jack).
caused —hasLamp(P) after takelLamp(jack), person(P), P != jack.

as effect of takeLamp(jack) in a state where joe has the lamp. Here, the fluent hasLamp
changes its value rather than the Boolean fluent hasLamp(jack) becomes true and all other
Boolean fluents hasLamp(p) become false. In K¢ we often use classical negation only to
“override” inertia, if fluents are concerned which can only take a distinct value at each point
of time. Using this notation, our example in Figure 3.1 could be represented more compact
and comprehensive.

We therefore extend the notion of fluent declarations of the form (3.1) in order to allow
for multi-valued fluent declarations of the form:

p(Xy,...,X,) : range requires t1,...,tn, (7.4)

where p is the fluent name, X3,...,X,, are variables and n > 0 is the arity of p. t1,...,t;m
refer to background predicates, m > 0, every X; occurs in t1,...,t,, and range is a unary
predicate from the background knowledge. Furthermore, causation rules may contain multi-
valued fluent literals of the form p(Xi,...,X,) =V in this extended version, where V is a
constant or a variable. Note that we do not allow for true negation of these special literals.
The semantics can be defined by viewing multi-valued fluent literals as macros for regular
Boolean fluent literals, where we execute the following preprocessing steps:
(i) Each multi-valued fluent declaration

fluent : £1(X) : type requires...
will be rewritten to a Boolean fluent declaration:
fluent : £1(X,Val) requires type(Val)...

(ii) Causation rules with multi-valued fluent literals can be naively rewritten as follows:
Each causation rule with a multi-valued fluent literal in the head will be transformed as
follows:
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caused f1(%,val) ...

caused f1(X) =val ... caused —f1(X%,Vall) if val!=Vall, type(Vall) ...

where type is the range predicate from the fluent declaration of £1. A (possibly default
negated) multi-valued fluent literal £1(X) = Val in the if (resp. after) part of a causation
rule or executability condition can then be simply rewritten to its Boolean counterpart
£1(%,Val).

Special attention in this context is needed for the inertial and total macros which
need to be redefined for multi-valued fluents. For a multi-valued fluent f, we define:

inertial f(X) if B after A. & caused f(X,Val) if not —f(X,Val),B after £(X,Val), A.

For the total macro, we now want to totalize a fluent over all possible values of its
range. Therefore, we define:

caused f(X,Val) if not —£(X,Val), B after A.

caused —£(%,Val) if not £(X,Val), B after A.
total f(X) if B after A. & forbidden £(X,Val), £(%,Vall), Val = Vall.

caused totals(X) if £(X,Val).

forbidden not totals(X).

These rules guess exactly one value for £(X), if B is satisfied in the current state and A is
satisfied in the predecessor.

We remark that in these macro translations, we do not yet make use of an important
representational advantage of K¢: As stated above, classical negation is only used here to
“override” the old fluent value, and the subsequent state, i.e. we do not necessarily want to
carry over all negative values of —f1 to the next state. In K¢’s knowledge state view, states
are defined as consistent sets of fluent literals (i.e. the current knowledge of the planning
agent about the world) and not as a mapping from fluents to truth values like in other
approaches. As for the macros above again “hidden” guesses via default negation can play
a role (cf. Section 6.6.2).

Further simplifications of this transformation under certain circumstances remains to be
investigated.

7.1.4 Fluent-Dependent Action Costs

A further extension of K¢ are fully dynamic action costs. Recall that plan costs in K¢ are
defined in Section 3.2 as the sum of the costs of all actions in the plan (cf. Definition 3.24),
where plans are sequences of (sets of) actions. At present, K¢ only allows for action costs
with very restricted means of dynamic cost contributions: Action costs may only depend
on background knowledge facts or on the time when the action occurs, but not on dynamic
fluent values.

However, these current restrictions have a pragmatic reason: Whereas in deterministic
planning with complete knowledge each plan corresponds to a unique sequence of states,
whenever nondeterminism comes into play, each plan might have several possible trajecto-
ries. The current restrictions guarantee unique costs of plans, since different intermediate
states, i.e. different fluent values can not influence action costs by definition.

Nevertheless, dynamic costs are an important issue, as shown by the following example.
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Example 7.1. For instance, in our Quick Bridge Crossing example (see Section 3.2.3, p. 44)
we have no possibility to express that a person gets tired when crossing several times. Recall
that each person needs a certain amount of time for crossing the bridge, which is expressed
by predicate walk(X,SX) as defined in the background knowledge Ilgpcp. Now we want to
express that each time a person crosses the bridge, he/she becomes slower and needs one
minute more for subsequent crosses.

If fluent-dependent costs were allowed, this could for instance be expressed by means of
an additional fluent fatigue(X) as follows3*:

fluents: fatigue(X): #int requires person(X).

actions: cross(X) requires person(X) costs C
where walk(X,SX),
fatigue(X) =K, C=SX+K.

always : caused fatigue(X) =K1 after
cross(X), fatigue(X) =K, K1 =K+ 1.
inertial fatigue(X).

A person fatigues from subsequent crosses, so the cost of crossing is dependent on the new
multi-valued fluent fatigue whose value increases by one after each crossing.

Things get even more involved if fatigue is nondeterministic, i.e. a person might fatigue or
not from crossing. However, this could be modeled by a simple modification of the encoding
above as follows.

always : caused fatigue(X) =K1 if not fatigue(X) =K after
cross(X), fatigue(X) =K, K1 =K+ 1.
inertial fatigue(X).

Indeed, these two rules model a nondeterministic guess again; nondeterminism via unstrat-
ified negation is “hidden” inside an inertial macro (cf. Section 6.6.2) in this encoding.
For exemplification, we restricted ourselves to the definitions of the effects of action cross
here, and remark that the declaration and effects of action crossTogether would need to be
modified analogously. Now that a plan might have different costs in different trajectories,
the most important question is what the costs of an optimal plan are? We have opted for
a cautious view where we take the mazimum, i.e. worst cost possible for a plan execution,
which we define below. <o

In a setting with dynamic costs, we first have to modify the definition of action decla-
rations (cf. Definition 3.20, p. 42) such that fluent literals are allowed in the where part of
the costs clause:

Definition 7.1. A generalized action declaration d in K¢ is of the form:
p(Xi,...,X,) requires t1,...,t, costs C where cy,...,Ck. (7.5)

where

34Here, we already use the multi-valued fluent notation from Section 7.1.3
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(1) p€ o,
(2) Xi,...,X, € oV where n > 0 is the arity of p,

(8) t1,...,tm are from Liyp such that every X; occurs in ti,...,tm,

(4) c1,...,ck are from Liyp U L yp.

(5) C is either an integer constant, a variable from the set of all variables occurring in
t1,--ytm, C1,---,C (denoted by o¥*"(d)), or the distinguished variable time,

(6) o?°"(d) C o¥*" U {time}, and
(7) time does not occur in ty,...ty.

The modification in item (4) allows costs to dynamically depend on fluent values. Next, we
have to redefine the cost of an action instance wrt. the current state (cf. Definition 3.22,
p. 43).

Definition 7.2. Let a = p(x1,...,%,) be a legal action instance of a declaration d of the
form (7.5), let i > 1 be a time point, s be a state, and let 0 be a witness substitution for a.
such that time@ = i. Then

0, if the costs-part of d is empty;
costyg(p(x1,...,2,),8) =< val(CO), if{c10,...,c,0} C M Us;
undefined  otherwise.

where M is the unique answer set of I and val : 0°°™ — N is defined as the integer value
for integer constants and undefined for all non-integer constants.

We also need to modify the definition of well-definedness wrt. the current state (cf. Defini-
tion 3.23, p. 43):

Definition 7.3. Let P = (PD,Q?(l)) be a K¢ planning problem. A legal action instance
a=p(x1,...,%,) is well-defined, wrt. P if it holds that

(i) for any time point 1 < i <1 and reachable state s in P, there is some witness substi-
tution 6 for a such that time,0 =i and costg(a) is defined, and

(i1) costg(a,s) = costg(a,s) holds for any two witness substitutions 6,6' which coincide
on time and have defined costs.

For any well-defined a, its unique cost at time point i > 1 in state s is given by cost;(a,s) =
costy(a, s) where 0 is as in (i).

Note that here we define well-definedness wrt. to any reachable state in P = (PD,Q?(l)),
i.e. states reachable from a legal initial state within no more than [ steps via legal state
transitions. It would not make much sense to claim well-definedness wrt. any state, i.e.
any consistent set of fluent literals: In this case, for instance, fluent-dependent cost values
could never be well-defined since the empty set is a state by our definition but does not
allow for a witness substitution such that the costs are defined. Therefore, well-definedness
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in this context means that the domain has to satisfy that cost definitions are “reasonable”
in that action costs do not depend on possibly undefined fluents. We could further loosen
the well-definedness restriction by claiming well-definedness only wrt. states where action
a is actually executable. On the other hand, then we should define well-definedness wrt.
executable actions sets rather than for single actions, since executability might depend on
other actions (cf. Definition 3.13).

For instance, generalized action declarations with costs only depending on multi-valued,
inertial fluents with a domain D C IN are generally safe in this context: Whenever costs
only depend on such fluents, and the value of all these fluents is defined in the initial state,
then a unique cost value, and therefore, well-definedness is guaranteed in any state.

We remark that with the extension to fluent-dependent costs, we could drop the special
keyword time, without loss of expressive power: A time stamp can easily be encoded as
an extra (multi-valued) fluent with initial value 1 which increases by one at each time step.
Anyway, we keep time here, since it is convenient for problem representation.

Next, we will extend our definition of plan costs from Definition 3.24 (see p. 43) wrt.
trajectories:

Definition 7.4. Let T = (t1,...,t;) be a trajectory, where so is a legal initial state, and
t; = (sj—1,Aj,s;) is a legal state transition from state sj_1 to state s; executing a set of
actions A; (5 =1,...,1). Then, the cost of T wrt. a K¢ planning domain is defined as
l
cost(T) =Y, | X costj(a,sj—1) ]| -
=1 \a€A;

J

where costj(a, sj—1) is the cost of action a wrt. state s;_1 at time j according to the costs-
part of the resp. action declaration of a.

Now that action costs depend on the state where they are executed we have to change
the definition of plan costs accordingly:

Definition 7.5. Let P be a K¢ planning problem. Then, for any plan P = (A,,..., A;)
for P, where A; is the set of actions executed at time i, the cost of P is defined as the
mazimum cost over all supporting trajectories T constituting a successful execution of P
(written T |= P), i.e.
tp(P) = t(T).
costp(P) %n'zi)lc)cos( )

An optimal optimistic plan is again an optimistic plan with minimal cost. As for secure
planning, we define optimal secure plans as plans with minimal costs among all secure plans.
Analogously, an admissible (optimistic/secure) plan wrt. cost ¢ is an (optimistic/secure) plan
with costp(P) < c.

Our cautious definition of plan costs by the maximum costs among the supporting tra-
jectories could be in particular important for an estimation of worst case bounds in presence
of uncertainty in critical applications. However, also different measures such as the average
costs among the supporting trajectories of a plan, or some other aggregate function over the
costs of the corresponding trajectories might be of interest; exploring this in detail requires
further work.



7.1. LANGUAGE EXTENSIONS 171

As for implementation, our current approach for computing optimal plans outlined above
is not feasible any longer wrt. this definition. In order to surmount this, a naive approach
would be caching all plans and their maximal costs during answer set computation. However,
as there might be an exponential number of plans, caching would be highly inefficient. A
better strategy is again “intercepting” candidate answer set generation at the same point
where checking plan security is performed now: In order to find the optimal plan, consider
only those answer sets representing maximum cost trajectories by checking whether there
is a more expensive trajectory for the plan at hand.

7.1.4.1 Impact on Complexity Results

The additional expressivity of full dynamic action costs does not come for free. In the
following, we will sketch how far the complexity results from Section 3.3 are affected.

Complexity of checking well-definedness The complexity of checking whether a do-
main PD is well-defined increases from IIJ’ to PSPACE in general (unless plan length is
polynomially bounded):

Proposition 7.1. Given a K¢ planning problem P = (PD,Q(1)?) where PD = (II, (D, R))
with fluent-dependent action costs and the unique model M of 11, checking well-definedness
of a given action declaration d of the form (7.5) wrt. PD and well-definedness of PD are (i)
Y complete if plan length [ is bound polynomially and (i) PSPACE-complete in general.

Proof. (Sketch) We deploy similar considerations as for the proof of Theorem 3.10 (see
p- 62), i.e. we will guess an action a plus a state s reachable within (at most) I steps
and verify well-definedness. Without loss of generality, we now assume states reachable in
ezxactly | steps.

From Theorem 3.3 we already know that for plan length fixed to a constant (or polynomi-
ally bounded plan length, respectively) we can guess and check a trajectory, i.e. a reachable
state s, in polynomial time. We get membership in IT¥ for (i) by similar considerations as
in the proof of Theorem 3.10, since the additional guess for a reachable state s (by means
of an NP-oracle) does not increase overall complexity.

Concerning membership in PSPACE for (ii), we have sketched an algorithm REACH(so, s, 1)
in the proof of Theorem 3.3 verifying for a state s whether it is reachable from an initial
state sq in [ steps using polynomial space.?® Thus, we can guess and verify a reachable state
s in NPSPACE = PSPACE. For this s we can again check well-definedness of any action a
in I’ C PSPACE, proving membership in PSPACE of the overall problem.

Hardness of (i) has already been shown in the proof of Theorem 3.10 for action costs
which do not depend on the current state. As for hardness of (ii), we will reduce STRIPS
planning to a well-definedness check. Here, we can use the reduction from the proof of The-
orem 3.3 with a small extension: For the STRIPS goal ¢ = ? (£) we add new propositional
fluents nogoal and goal (with declarations having empty requires-parts) and causation
rules:

35Recall that if the plan length is not fixed to a constant or polynomially bounded, we can not simply guess
the whole trajectory leading to s as in (i) since the representation of this trajectory might be exponential
in (the binary representation of) I.
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always: caused goal if 7.
always: caused nogoal if not goal.

Next, we add an action dummy with declaration

always: dummy costs O where nogoal.

Now, whenever there is no reachable goal state within [ steps, i.e. no STRIPS plan exists,
then the domain is well-defined, whereas well-definedness is violated in any goal state for
action dummy. This proofs hardness for co-PSPACE = PSPACE. O

Note that analogously, checking well-definedness for propositional domains as described
in Corollary 3.11 increases to PSPACE in general and to co-NP for polynomially bounded
plan length: We again have to check that there exists no reachable state such that the costs
of some action a are undefined.

This result has an impact on the encodings for checking well-definedness in Section 4.3.7
which do not work as proposed any longer. Rather, in order to obtain a logic program for
checking well-definedness we would need to combine the program from Section 4.3.7 with the
translation Ip(P), which (when the goal is left empty) can serve to compute the reachable
states.

For the following results, we begin with some preliminary thoughts: First, checking
whether a supporting trajectory has maximal cost among all supporting trajectories for
plan P is in co-NP since a more expensive trajectory for P can be guessed and checked in
polynomial time:

Corollary 7.2. For plan P and trajectory T, deciding whether cost(T) = cost(P), i.e.
whether T has mazimal cost among all supporting trajectories for P is in co-NP.

Hardness can also be shown, by adaptions of the proof of Theorem 3.12. Furthermore,
by similar considerations as used in the proof of Theorem 3.13 the following can be shown:
Let P be a plan for a K¢ planning problem P with fluent-dependent action costs, then
computing cost(P) is FAL-complete, and computing costyp becomes FAZ-complete.

Complexity of admissible/optimal planning As for the complexity of admissible opti-
mistic planning the complexity of admissible planning increases from NP (cf. Theorem 3.12)
to ¥¥ due to the need of a co-NP oracle for checking whether the guessed trajectory is
maximal. Consequently, optimal planning rises one step in PH from FAL to FAY. Again,
the hardness proof needs adaptions compared with Theorem 3.12.

Complexity of optimal/admissible secure planning Remarkably, complexity does
not change for admissible and optimal secure planning, since, informally, the additional
check whether no more expensive trajectory for P exists can be “hidden” inside the secure
check: As for admissible secure planning, we remain in ¥ since, if we guess plan P and
a corresponding trajectory T', we can use the II{-oracle in the proof of Theorem 3.12 in
order to additionally check whether 7" has maximal cost among the supporting trajectories,
letting only those plans/trajectories pass the secure check for which no cheaper trajectory
exists. Analogous considerations apply to secure optimal planning, where complexity for
computing a secure optimal plan remains in FAY.
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7.2 Implementation and Optimization Issues

7.2.1 Integrated Encodings

The reason why we have chosen an interleaved computation for secure planning is that the
integrated encodings for SCy (resp. SC») discussed in the Chapter 4 are not competitive at
the current stage wrt. performance.

This might also hold for the general secure check Ip°“ (P, P) described in Section 4.3.3
which is not yet implemented. Moreover, we have experienced that for a wide range of
problems SC; (resp. SC») are sufficient and the additional overhead for the general secure
check does not pay off for many problems. In order to fruitfully integrate the general check,
probably a structural analysis to decide which approach suits best and further optimizations
of the integrated encodings wrt. the concrete planning problem at hand are needed for
improving performance.

For further details, we refer to Chapter 8 where we compare the interleaved computa-
tion of DLVX with the integrated encodings for conformant planning wrt. to the integrated
encoding for secure check SC; outlined in Section 4.3.5.

7.2.2 Relaxed Plans and Goal Regression

A basic idea behind many of the most successful classical planners [BF97, HNO1] is the
computation of so called “relaxed” plans by ignoring delete-lists (in STRIPS-like settings,
cf. Section 2.4) and checking beforehand whether the goal actually can be reached in this
relaxed setting, thus pruning the forward search space. Such ideas partly have a practical
counterpart in our implementation wrt. to the intelligent grounding methods of the underly-
ing DLV system which prunes the search space beforehand by grounding only DLP rules and
constraints which can actually be “reached” starting from the facts. For instance, stratified
normal logic programs are solved in DLV by the grounding at once. Sophisticated pruning
methods like in classical planners such as in the Graphplan algorithm [BF97] are not yet ex-
ploited. However, it is questionable how far such techniques which rely on the STRIPS-style
framework can be exploited in the more general framework of action languages at all. Still,
for instance efforts to adapt and combine these methods for the planning as satisfiability
framework [KS99, Bra01] might apply to the answer set planning as well to some extent.

On the other hand, classical planners also often use goal regression in order to search
backwards from the goal. A method for “emulating” regression search for queries in LPs,
so-called Magic Sets [BMSU86, Ull89], is currently being implemented in DLV. Investigating
the applicability to our planning encodings or respective extensions remains part of further
research.






Chapter 8

Experimental Evaluation

In this chapter, we give an overview on the experimental evaluation of the described methods
which has been conducted in the course of this work.

We will report on several experiments with our implemented system DLYX. Here, we first
focus on conformant planning under incomplete knowledge and/or nondeterministic action
effects. To this end, we have compared the system with other conformant planning systems
on elaborations of the “Bomb in the Toilet” domain from Section 6.3.1. The original data
for this experiments stems from our article on the DLV* system [EFL*03a.

Next, we will draw our attention to planning under action costs. Here we especially focus
on problems which can not be represented in other formalisms or existing systems offhand.
To get a picture of the system performance on optimal planning problems, we have tested
our elaborations of the Blocks World domain on several instances wrt. the optimizations
(a) — () from Section 6.4. We have also conducted a series of experiments on the route
planning problems with exceptional time-dependent costs from the Traveling Salesperson
domain mentioned in Section 6.5. A more detailed discussion of these experiments can be
found in our article on planning under action costs [EFL*03c].

Remark 8.1. Note that, apart from experimenting with DLV® and its underlying Answer Set
solver DLV, we have also experimented with alternative translations for SMODELS and GNT.
We refrain from detailed discussion here, since the (i) translations mentioned in this thesis
are optimized for DLV and SMODELS performance was worse than DLV (e.g., around factor
10 for the tested TSP instances with the alternative translation mentioned in Chapter 4)
and (i) there is no integrated planning front-end available for SMODELS or GNT providing a
high-level planning language. Nevertheless, as we have shown, our approach can, with minor
modifications, be adopted in a planning system based on these systems or any other efficient
Answer Set solver.

In a further part of this chapter we report on the experimental evaluation of our method
for automatically generating integrated encodings of separate “guess” and “check” programs,
which was introduced in Section 4.2.3. Here, we will first report on general experiments
using the approach on some well-studied %¥'-complete problems compared with existing ad
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hoc ASP encodings. Namely, we have tested respective encodings for QBFs and Strategic
Companies (cf. Sections 4.2.5.1 and 4.2.5.2). Afterwards, we report on the application of
the method to integrated computation of secure plans (cf. Section 4.3.5) and compare it
against the interleaved computation implemented in DLVX. These results have partly been
reported in [EP03].

We will conclude with a short summary and discussion of the results.
8.1 Overview of Compared Systems

For our experiments we considered the following systems.

CCALC

The Causal Calculator (CCALC) is a model checker for the languages of causal theories
[MT97]. It translates programs in the action language C+ into the language of causal theories
which are in turn transformed into SAT problems using literal completion as described in
[MT98]. This approach is based on Satisfiability Planning [KS92], where planning problems
are reduced to SAT problems which are then solved by means of an efficient SAT solver. The
current version of CCALC uses mChaff [MMZ101] as its default SAT solver, but also other
solvers such as like SATO [Zha97] or relsat [BS97] can be used. Minimal length plans are
generated iteratively increasing the plan length up to an upper bound. CCALC is written
in Prolog.

Though its input language allows nondeterminism in the initial state and also nonde-
terministic action effects, CCALC as such is not capable of conformant planning and only
computes “optimistic plans” (according to DLVX terminology). Plan length is fixed, and
both sequential and concurrent planning are supported. Still, we mention the system here,
due to its close relationship to our approach. A conformant planner based on CCALC is
described next.

CCALC is written in Prolog. For our tests, we used version 2.04b of CCALC which we
obtained from <URL:http://www.cs.utexas.edu/users/tag/cc/> and a trial version of
SICStus Prolog 3.9.1.;

CPLAN

Introduced in [Giu00, FG00, CGT02], CPLAN is a conformant planner based on CCALC
and the C action language [GL98b, Lif99a, LT99]. This language is similar to K in many
respects, but close to classical logic, while K is more “logic programming oriented” by the
use default negation (see [EFL103b] for further discussion). CPLAN uses CCALC only to
generate a SAT instance and replaces the optional SAT-solvers used by CCALC with an own
procedure that extracts conformant plans from these SAT instances. CPLAN implements
full conformant planning and supports the computation of both minimal length plans as
well as plans of fixed length, by incrementing plan length from a given lower bound until a
plan is found or a given upper bound is reached. We set the upper and lower bound equal
to the minimal plan length of the specific problems for our experiments to be comparable
with DLVX. Sequential and concurrent planning are possible; nondeterminism is allowed in
the initial state as well as for action effects.



8.1. OVERVIEW OF COMPARED SYSTEMS 177

For our tests, we used CPLAN 1.3.0, which is available at <URL:http://frege.mrg.
dist.unige.it/"otto/cplan.html>, together with CCALC 1.90 to produce the input for
CPLAN. We had to use the older version of CCALC, since CPLAN is not longer maintained
and does not work together with the more current version CCALC 2.0.

CMBP

The Conformant Model Based Planner [CR00] is based on the model checking paradigm
as well and relies on symbolic techniques such as BDDs. CMBP only allows sequential
planning. Its input language is an extension of AR [GKL97]. Unlike action languages such
as C or K, this language only supports propositional actions. Nondeterminism is allowed
in the initial state and for action effects. The length of computed plans is always minimal,
but the user has to declare an upper bound using command-line option -pl. If -pl is set
equal to the minimal plan length for the specific problem, this can be used to fix the plan
length in advance. We used this method to be comparable with DLV which currently can
only deal with fixed plan length.

For our tests, we used CMBP 1.0, available at <URL:http://sra.itc.it/people/
roveri/cmbp/>.

We remark that in between, with the MBP [BCPTO01] system a more powerful exten-
sion of CMBP is available. MBP extends CMBP by allowing for conditional planning and
furthermore offers a very expressive goal description language. Furthermore, as opposed to
CMBP it does not use AR as input language but a nondeterministic extension of PDDL which
is not restricted to propositional actions. We refer to Chapter 10 for further discussion.

GPT

The General Planning Tool [BG00] employs heuristic search techniques like A* to search
the belief space. Its input language is a subset of PDDL. Nondeterminism is allowed in
the initial state as well as for action effects. GPT only supports sequential planning and
calculates plans of minimal length.

We used version GPT 1.14 obtained from <URL:http://www.cs.ucla.edu/ bonet/
software/>.

SGP

In addition to conformant planning, Sensory Graphplan [WAS98] can also deal with sensing
actions. SGP is an extension of the Graphplan algorithm [BF97]. Its input language is an
extension of PDDL [GHK*98]. Nondeterminism is allowed only in the initial state. The
program always calculates plans of minimal length.36 SGP does not support sequential plan-
ning, but computes concurrent plans automatically recognizing mutually exclusive actions.
That means, minimal length plans in terms of SGP are not plans with a minimal number
of actions but with a minimal number of steps needed. At each step an arbitrary number of
parallel actions are allowed, as long as the preconditions or effects are not mutually exclusive
which is automatically detected by the algorithm.

36SGP comprises the functionality of another system by Smith and Weld called CGP (Conformant Graph-
plan, [SW98]), but is slower in general. As CGP is no longer maintained and not available online, we
nevertheless decided to choose SGP for our experiments.
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SGP is written in LISP and available at <URL:http://www.cs.washington.edu/ai/
sgp-html>. For our tests, we used a trial version of Allegro Common Lisp 6.0.

8.1.0.1 Specific System Features

We would also like to point out further specific features of some of these special purpose
planning systems:

e SGP automatically recognizes mutually exclusive actions in concurrent plans. It is
possible to encode concurrent plans in DLVX by explicitly describing the mutually
exclusive actions, as done in our encodings of the “Bomb in the Toilet” benchmark
problems for multiple toilets (see Section 8.2.1). However, the language K is more
complex than PDDL, which makes automatic recognition of possible conflicts of actions
much harder in our framework. On the other hand, our notions of executability and
nonexecutability allow more flexible encodings of parallel actions than SGP.

e GPT and SGP always compute minimal plans, which is not directly possible in the
current version of DLVX (cf. Sections 6.4 and 7.1.2 for further discussion).

e CMBP and CPLAN optionally compute minimal plans, where the user may specify
upper and/or lower bounds for the plan length.

Table 8.1.0.1 provides a comparison of DLV and all the systems introduced above. Note
that CCALC is not capable of conformant planning, and thus we cannot use it on the
respective benchmark problems, but we will reconsider it later for the benchmarks on optimal
planning.

DLV | CCALC | CPLAN | CMBP | SGP | GPT
Input Language K c c AR PDDL | PDDL
Sequential plans yes yes yes yes no yes
Concurrent plans yes yes yes no yes no
Conformant plans yes no yes yes yes yes
Minimal plan length no no yes yes yes yes
Fixed plan length yes yes yes no* no no

% An upper bound can be specified, but computed plans are always minimal.

Table 8.1: Overview of System Features

8.1.1 Test Environment

All tests in Sections 8.2 and 8.3 were performed on an Intel Pentium IIT 733MHz machine
with 256 MB of main memory running SuSE Linux. The performance results for these
tests reflect the state of DLVX in early 2002 for the results in Section 8.2, and early 2003
for the results in Section 8.3. Note that for CCALC the results include startup time for
SICStus Prolog, and loading CCALC while for SGP startup time for Allegro Common Lisp
is included (cf. [EFL+03a, EFL*03c] for details).
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The more recent tests in Section 8.4 were performed on an AMD Athlon 1200MHz
machine with 256MB of main memory running SuSE Linux using DLVX (or DLV for the
respective manual encodings) in a version reflecting the development state of July 2003.

8.2 Conformant Planning

In the following, we will compare DLVX with several state-of-the-art conformant planning
systems, and report about experimental results about the performance of the system in the
“Bomb in the Toilet” domain. The results presented here are mainly intended to give a
momentary view. To that end, we present extensive benchmark results, and also compare
the expressive power and flexibility of the various systems. The underlying data stems
from experiments which date back to early 2002 and we emphasize that both DLVX and
other planners have advanced since then. We refer to Section 10.5 for a discussion of latest
developments.

8.2.1 Benchmark Problem and Encodings — Bomb in the Toilet

To show the capabilities of DLVX on planning under incomplete information, and in particular
conformant planning, we have chosen different variations of the well-known “Bomb in the
Toilet” problem [McD87]. Here, we employ a naming convention from Section 6.3.1.

The respective planning domain comprises actions with nondeterministic effects, the
initial state is incomplete and, in more elaborated versions, several actions are available that
can be done in parallel. Furthermore it allows for good comparison between knowledge-based
and world state encodings wrt. our action language K.

As far as possible, we used the original encodings which come along with the distributions
of the compared systems.

CCALC/CPLAN: CCALC is not capable of conformant planning (while CPLAN proved
very slow on deterministic domains in preliminary experiments). So, we have used CPLAN
for the “Bomb in the Toilet” problems with slight modifications of the C encodings provided
with the CPLAN distribution.

CMBP: For CMBP, we used the “Bomb in the Toilet” encodings which are included in
the distribution. BMTUC(p, t) is not included, but only a trivial modification of BMTC(p, t)
is needed to obtain an encoding for BMTUC.

GPT: The distribution of GPT provides encodings for various “Bomb in the Toilet” prob-
lems; BMTUC(p, t) was not included, but the respective extension of BTUC(p) is trivial.

SGP: For SGP we used the bomb in toilet encodings coming with the distribution.
BTUC(p) and BMTUC(p, t) cannot be encoded in SGP which only allows nondeterminism
in the initial state. SGP generates concurrent plans (in fact, serializable concurrent plans),
so we did not compare the sequential versions of BT (p) and BMTC(p, t).
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DLVX: We have tested the “Bomb in the Toilet” problems for the two different encodings
introduced in Sections 6.3.1 and 6.3.2. The first one, labeled ws in the results, mimics
world-state planning as in Section 6.3.1, in which the different completions of the states
(“totalizations”) to world-states are considered. The second one, labeled ks, uses the power
of knowledge-state planning by the improved encodings of Section 6.3.2; it does not complete
the states right away, but leaves the value of unknown fluents open in accordance with the
real knowledge of the planning agent about the state of affairs. In both encodings, we first
consider concurrent actions as well as sequential planning.

As discussed in Section 6.3.2, thanks to the knowledge-state representation, the domains
become deterministic and have unique initial states, so the security check is trivial and
negligible for timing since optimistic and secure planning coincide for these encodings.

On the other hand, the world-state encodings of “Bomb in the Toilet” are clearly not
deterministic, so the security check is responsible for a considerable portion of the timings.
We have discussed the applicability of DLVX’s default secure check SC; for these encodings
in Section 6.3.1.

8.2.2 Results and Discussion — Bomb in the Toilet

Tables 8.2.2.3-8.2.2.3 show the results for the various “Bomb in the Toilet” problems. The
minimal plan length is reported in the second column of each table. Run-times exceeding
1200 CPU seconds were omitted, which is indicated by a dash in the tables.

In this section, we compare the various systems in terms of representation capabilities
and run-time benchmarks.

8.2.2.1 Performance

Under the world-state encodings of the different “Bomb in the Toilet” instances, DLVX is not
competitive except for BT(p) with concurrent dunks, where plan length is always 1, and
BMTC(p). This indicates that DLVX’s performance is quite sensitive to (increasing) plan
length, especially for sequential planning. Still, DLV® outperforms SGP, a special purpose
planning system, on all comparable instances, and also CPLAN (which is the system most
comparable to DLVX in terms of expressiveness and similar in nature) seems to be within
reach.

Under the knowledge-state encodings, DLV outperforms its competitors in many of the
chosen examples. The sensitivity to increasing plan length/search space can, however, also
partly be observed here, where execution times seem to grow drastically from one instance
to the next. This can be partly explained by the general heuristics of the underlying DLV
system, which which might not scale up well in some cases. For instance, DLV as a general
purpose problem solver does not include special heuristics towards plan search. In particular,
during the answer set generation process, no distinction is made between actions and fluents,
which might be useful for planning tasks to control the generation of answer sets resp. plans;
this may be part of further investigations.
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8.2.2.2 Effect of Concurrent Actions and Knowledge-State Encodings

Once we also consider concurrent actions (which are not supported by GPT and CMBP),
DLVX performs better than CPLAN on some larger instances of BMTC(p, t) and BMTUC(p, t)
(see Tables 8.2.2.3 and 8.2.2.3).

Using the expressive power of default negation to express unknown fluents with the
knowledge-state encodings of “Bomb in the Toilet” in X pays off well: DLVX outperforms all
other systems, including the special purpose conformant planners GPT and CMBP, except
on sequential BMTC(p, t) and BMTUC(p, t) with more than two toilets (see Tables 8.2.2.3
and 8.2.2.3), where CMBP is fastest.

8.2.2.3 Summary of Experimental Results

Overall, the results indicate that DLV is competitive with state of the art conformant plan-
ners, especially when exploiting the K language features in terms of knowledge-state problem
encodings. Recall, however, that some of the systems compute minimal plans, which is (cur-
rently) not supported by DLVX. The comparison of DLV* to CCALC/CPLAN is particularly
relevant, since these systems are closest in spirit to DLVX. As we can see, the advanced fea-
tures of knowledge-state encoding lead to significant performance improvements. However,
as discussed in Chapter 6 such knowledge state encodings which exploit the structure of the
problem can not always be applied, especially if actions have conditional effects, which is
not the case for the “Bomb in the Toilet” problems.

8.3 Optimal Planning

As for planning with action costs, it is harder to find good comparison data on our approach,
since most other systems do not allow for optimal plan computation in our sense. Whereas in
the International Planning Competition [ea02] numerical domains where some cost function
has to be optimized are part of the competition and plan length is a measure for plan quality,
optimal solutions are not required, which are much harder to find in general. Problem sizes
there include plans with hundreds of steps and objects, which is beyond the capacity of our
current approach. In order to emphasize the features of our approach, we therefore decided
to test two of the domains introduced in Chapter 6. Namely, we have tested elaborations of
Blocks World under various optimization criteria and TSP with exceptional costs which are
not easily expressible in other planners. We present some encouraging experimental results
for planning with action costs in these two domains.

Where possible, we also report results for CCALC, due to its comparable capabilities
of expressing resource constraints and its similar input language C+. We refrained from
comparing the other systems above which are mainly tailored for conformant planning, but
for instance showed bad performance on tests with many action instances such as in the
Blocks World instances which we investigate here.

In the tables below, run-times exceeding 4000 CPU seconds were omitted, which is
indicated by a dash again.



EXPERIMENTAL EVALUATION

CHAPTER 8.

182

BT(p) steps DLV* CPLAN | SGP
ws ks
BT(2) 1 || 0.01s | 0.01s 1.38s 0.69s
BT(3) 1 || 0.02s | 0.01s 1.38s 0.80s
BT(4) 1 || 0.01s | 0.01s 1.39s 0.95s8
BT(5) 1 || 0.02s | 0.01s 1.42s 1.21s
BT(6) 1 0.02s | 0.01s 1.47s 1.55s
BT(7) 1 || 0.02s | 0.01s 1.56s 2.00s
BT(8) 1 || 0.02s | 0.01s 1.79s 2.56s
BT(9) 1 || 0.01s | 0.02s 2.29s 3.32s
BT(10) 1 || 0.02s | 0.02s 3.41s 4.27s
BT(11) 1 || 0.02s | 0.02s 6.04s 5.34s
BT(12) 1 || 0.02s | 0.02s | 11.98s 6.66s
BT(13) 1 || 0.03s | 0.02s | 25.28s 8.16s
BT(14) 1 || 0.03s | 0.01s | 57.71s 9.98s
BT(15) 1 || 0.03s | 0.01s | 127.75s | 12.11s
BT(16) 1 || 0.03s | 0.01s | 294.44s | 14.57s
BT(17) 1 || 0.03s | 0.02s | 678.19s | 17.43s
BT(18) 1 || 0.03s | 0.02s - 20.74s
BT(19) 1 || 0.03s | 0.02s - 24.47s
BT(20) 1 || 0.04s | 0.02s - 28.78s

Table 8.2: Experimental results for BT (p), concurrent dunks

BT(p) steps DLV* CPLAN | CMBP GPT
ws ks
BT(2) 2 0.02s [ 0.02s 1.37s 0.03s 0.565
BT(3) 3 0.03s | 0.02s 1.39s 0.04s 0.55s
BT(4) 4 0.11s | 0.02s 1.39s 0.04s 0.61s
BT(5) 5 1.50s | 0.03s 1.45s 0.04s 0.61s
BT(6) 6 || 28.78s | 0.03s 1.81s 0.04s 0.63s
BT(7) 7 || 593.15s | 0.03s 5.12s 0.05s 0.67s
BT(8) 8 - 0.05s | 65.85s 0.06s 0.68s
BT(9) 9 - 0.06s - 0.07s 0.78s
BT(10) 10 - 0.08s - 0.10s 0.95s
BT(11) 11 - 0.10s - 0.19s 1.27s
BT(12) 12 - 0.13s - 0.39s 2.12s
BT(13) 13 - 0.16s - 0.82s 3.89s
BT(14) 14 - 0.21s - 1.76s 8.87s
BT(15) 15 - 0.28s - 4.00s 19.13s
BT(16) 16 - 0.35s - 8.82s 42.17s
BT(17) 17 - 0.47s - 19.03s | 93.69s
BT(18) 18 - 0.61s - 38.95s | 208.00s
BT(19) 19 - 0.78s - 91.89s | 496.95s
BT(20) 20 - 0.98s - 199.63s | 546.43s

Table 8.3: Experimental results for BT (p) sequential
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BMTC(p, t) steps DLVX CPLAN SGP
ws ks
BMTC(2,2) 1 0.02s 0.01s 1.41s 0.95s
BMTC(3, 2) 3 0.04s 0.02s 1.50s 3.40s
BMTC(4, 2) 3 0.11s 0.03s 1.72s 7.17s
BMTC(5, 2) 5 2.79s 0.04s 3.37s -
BMTC(6, 2) 5 37.04s 0.07s 13.04s -
BMTC(7,2) 7 - 0.52s 71.508 -
BMTC(8, 2) 7 - 10.66s - -
BMTC(9, 2) 9 - 206.27s - -
BMTC(10, 2) 9 - - - -
BMTC(2, 3) 1 0.02s 0.02s 1.62s 1.15s
BMTC(3, 3) 1 0.02s 0.02s 2.31s 1.76s
BMTC(4, 3) 3 0.08s 0.03s 4.81s 15.01s
BMTC(5, 3) 3 0.35s 0.03s 13.55s 76.28s
BMTC(6, 3) 3 17.81s 0.06s 43.34s | 592.41s
BMTC(7, 3) 5 || 223.31s 0.13s 210.71s -
BMTC(8, 3) 5 - 0.74s 417.62s -
BMTC(9, 3) 5 - 5.90s - -
BMTC(10, 3) 7 - 389.08s - -
BMTC(2,4) 1 0.02s 0.02s 2.89s 1.52s
BMTC(3,4) 1 0.02s 0.02s 9.19s 2.34s
BMTC(4,4) 1 0.03s 0.02s 37.55s 3.71s
BMTC(5, 4) 3 0.18s 0.04s 158.74s | 372.74s
BMTC(6, 4) 3 5.29s 0.05s 571.77s -
BMTC(7, 4) 3 61.73s 0.09s - -
BMTC(8, 4) 3 || 668.74s 0.41s - -
BMTC(9, 4) 5 - 1.06s - -
BMTC(10,4) 5 - 12.14s - -

Table 8.6: Experimental results for BMTC(p), conc. dunks

BMTC(p, t) steps DLVX CPLAN | CMBP | GPT
ws ks
BMTC(2,2) 2 0.02s 0.02s 1.41s 0.04s 0.76s
BMTC(3,2) 4 0.07s 0.02s 1.50s 0.05s 0.78s
BMTC(4, 2) 6 2.47s 0.04s 1.64s 0.06s 0.81s
BMTC(5, 2) 8 || 208.52s | 0.05s 2.66s 0.06s 0.82s
BMTC(6, 2) 10 - 0.07s 32.77s 0.09s 0.86s
BMTC(7,2) 12 - 0.10s 12.46s 0.12s 0.96s
BMTC(8, 2) 14 - 0.13s - 0.23s 1.11s
BMTC(9, 2) 16 - 0.20s - 0.48s 1.48s
BMTC(10, 2) 18 - 0.28s - 0.96s 2.265
BMTC(2, 3) 2 0.02s 0.02s 1.50s 0.04s 0.76s
BMTC(3, 3) 3 0.03s 0.02s 1.85s 0.04s 0.81s
BMTC(4, 3) 5 1.84s 0.03s 2.86s 0.06s 0.84s
BMTC(5, 3) 7 || 291.24s | 0.06s 5.92s 0.09s 0.90s
BMTC(6, 3) 9 - 0.09s 14.50s 0.14s 0.99s
BMTC(7, 3) 11 - 0.25s 40.41s 0.30s 1.17s
BMTC(8, 3) 13 - 15.42s - 0.62s 1.66s
BMTC(9, 3) 15 - - - 1.44s 2.79s
BMTC(10, 3) 17 - - - 3.31s 5.64s
BMTC(2, 4) 2 0.02s 0.02s 2.02s 0.04s 0.81s
BMTC(3, 4) 3 0.41s 0.02s 3.67s 0.05s 0.83s
BMTC(4, 4) 4 0.60s 0.03s 9.03s 0.07s 0.92s
BMTC(5, 4) 6 || 149.65s | 0.06s 30.55s 0.13s 1.01s
BMTC(6, 4) 8 - 0.10s 0.23s 1.27s
BMTC(7, 4) 10 - 0.15s | 199.73s 0.51s 1.85s
BMTC(8, 4) 12 - 0.47s - 1.13s 3.34s
BMTC(9, 4) 14 - 67.07s - 2.94s 7.18s
BMTC(10, 4) 16 - - - 6.38s | 17.34s

Table 8.7: Experimental results for BMTC(p) sequential
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8.3.1 Benchmark Problem and Encodings — Blocks World

We used encodings taken from [LLO01] for parallel Blocks World adapted for CCALC 2.0.
These encodings are included in the current download version of the system. For sequential
Blocks World we adapted the encodings by adding the C+ command “noConcurrency.”
which resembles the respective X command.

Tables 8.10-8.13 show the results for our different Blocks World encodings in Sections
6.2 and 6.4 on several configurations: PO denotes our simple instance from Figure 6.2, while
P1-P5 are instances used in previous work [EFL103a, Erd99].

Table 8.10 shows the results for finding a shortest sequential plan. The second and third
column show the number of blocks and the length of a shortest plan (i.e., the least number
of moves) solving the respective Blocks World instance. The execution time for solving the
problem using the shortest-plan encoding Pg in Section 6.4 is shown in column five, using
the upper bound shown in the fourth column on the plan length. Column six shows the
execution time for finding the shortest plan in an incremental plan length search starting
from 0, similar to the method used for CCALC. The last column shows the results for
CCALC.

Table 8.11 shows the execution times for parallel blocks world with fixed plan length
where the number of moves is minimized, i.e. problem (a) in Section 4.2.2. We used the
encoding in Figure 6.1, which generates parallel serializable plans. As CCALC does not
allow for optimizing other criteria than plan length, we only have results for bLV® here.

Next, Table 8.12 shows some results for finding a shortest parallel plan, i.e. problem
(8) in Section 4.2.2. First, the minimal possible number of steps is given. We processed
each instance (i) using the encoding Ps from Section 6.4, (ii) without costs by iteratively
increasing the plan length and (iii) using CCALC, by iteratively increasing the plan length
until a plan is found. For every result, the number of moves of the first plan computed is
reported separately.

Finally, Table 8.13 shows the results for the combined optimizations (y) and () for
parallel Blocks World as outlined in Section 6.4. The second column again contains the
upper bound for the plan length of the respective instance. The following three columns
present the results on finding a shortest among the cheapest plans, i.e. problem (v) in
Section 4.2.2:

DLVX  refers to the results for our combined minimal encoding P, and as described in
Section 6.4;

DLVE . refers to the results for incrementally searching for the shortest among the cheapest

Problem | #blocks | min. #moves (=#steps) | upper bound #steps | DLVX | DLVX || CCALC
PO 6 5 6 0.48s | 0.29s 4.658
P1 4 4 4 0.05s | 0.08s 3.02s
P2 5 6 7 0.24s | 0.27s 4.02s
P3 8 8 10 25.32s | 2.33s 10.07s
P4 11 9 16 - 8.28s 27.19s
P5 11 11 16 - 12.63s 32.27s

Table 8.10: Sequential Blocks World - shortest plans
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Problem | #blocks | #steps(fixed) | min. #moves | DLVX
PO 6 2 6 0.05s
PO 6 3 5 0.09s
P1 4 3 4 0.04s
P2 5 5 6 0.10s
P3 8 4 9 0.21s
P4 11 5 13 0.81s
P5 11 7 15 327s

Table 8.11: Parallel Blocks World — minimal number of moves at fixed plan length ()

upper bound | min. #steps DLVX DLVE CCALC
#moves | time #moves | time #moves time
PO 6 2 6 0.52s 6 0.09s 6 4.05s
P1 4 3 5 0.07s 5 0.08s 4 2.95s
P2 7 5 9 0.39s 9 0.21s 6 3.70s
P3 10 4 - - 12 0.43s 9 7.69s
P4 16 5 - - 18 1.54s 13 20.45s
P5 16 7 - - 26 3.45s 15 23.22s

Table 8.12: Parallel Blocks World — shortest plan (5)

plans: This is done by means of the -costbound=i command-line option taking the
minimal sequential costs (i.e., the shortest sequential plan length as computed in
Table 8.10) as an upper cost limit. As our encodings compute serializable plans, the
minimal sequential length can be used as cost limit in this special case.

CCALC A similar technique can be used with CCALC when encoding bound costs
through “additive fluents” [LLO1].

Note that the incremental strategy (used by DLV . and CCALC) takes advantage of
our specific formulation of the parallel Blocks World problem: In general, when allowing
parallel actions which are not necessarily serializable and have arbitrary costs, the optimal
parallel cost might differ from the optimal sequential solution. In particular, plans which
are longer than the cheapest sequential plans (which, in this example, coincide with the
shortest sequential plans) may need to be considered. This makes incremental search for a
solution of problem () infeasible in general.

The last test is finding a cheapest among the shortest plans, that is, problem (§) in
Section 4.2.2. Again we have tested the integrated encoding with an upper bound (Ps)
resp. incrementally finding the shortest plan. Unlike for problem (v), we cannot derive a
fixed cost limit from the sequential solution here; we really need to optimize costs, which
makes an encoding in CCALC infeasible.

8.3.2 Results and Discussion — Blocks World

The Blocks World experiments show that DLVX can solve various optimization tasks in a
more effective and flexible way than the system compared. On the other hand, as already
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) (%)

upper bound || steps/moves | DLVX | DLVE = | CCALC | steps/moves | DLVF | DLVK
PO 6 3/5 38.5s | 0.18s 5.89s 2/6 0.26s | 0.09s
P1 4 3/4 0.07s | 0.l1s 3.47s 3/4 0.08s | 0.08s
P2 7 5/6 2.08s | 0.21s 5.658 5/6 0.78s | 0.28s
P3 10 5/8 - 1.57s | 15.73s 4/9 177s | 0.45s
P4 16 9/9 - - 73.64s 5/13 - 1.86s
P5 16 11/11 - - 167s 7/15 - 323s

Table 8.13: Parallel Blocks World — (7),(d)

stated above, for the minimal plan length encodings in Section 6.4, we can only solve the
problems where a tight upper bound for the plan length is known. Iteratively increasing
the plan length is more effective, especially if the upper bound is much higher than the
actual optimal solution. This becomes drastically apparent when execution times seem to
explode from one instance to the next, in a highly non-linear manner as in Table 8.10 where
a solution for P3 can be found in reasonable time whereas P4 and P5 could not be solved
within the time limit of 4000 seconds. This observation is also confirmed in the other tables
(instance P5 in Table 8.11, etc.) and is partly explained by the behavior of the underlying
DLV system, which is not geared towards plan search, and as a general purpose problem
solver uses heuristics which might not work out well in some cases.

Interestingly, CCALC finds “better quality” parallel solutions for problem (3) (cf. Ta-
ble 8.12), i.e. solutions with fewer moves, although it is significantly slower than our system
on these instances. For the incremental encoding of problem (), CCALC seems even more
effective than our system. However, CCALC offers no means of optimization; it allows for
admissible but not for optimal planning. This makes our approach more flexible and gen-
eral. As stated above, we could fortunately exploit the fixed cost bound in this particular
example for CCALC, which is not possible in general instances of problem (7).

Problem () is also intuitively harder than simply finding a shortest plan or a cheapest
among all shortest plans in general: While these problems can always be solved incremen-
tally, for () we must consider all plans of all lengths. A longer plan may be cheaper, so we
cannot freeze the plan length once a (shortest) plan has been incrementally found.

8.3.3 Benchmark Problem and Encodings —TSP

Some experimental results on TSP with variable costs are reported in Tables 8.14 and 8.15.
Unlike for blocks world, no comparable systems were available; none of the systems from
above supports cost optimal planning as needed for solving this problem. Here, the plan
length is always given by the number of cities.

Table 8.14 shows the results for our TSP instance on the Austrian province capitals as
in Figure 6.7 (nine cities, 18 connections), with and without the exceptional costs as in
Section 6.5 (with and without subscript ezc in the table). Further instances reported in this
table with different cost exceptions (we, lwe, rnd) are described below.

Results for some bigger TSP instances, given by the capitals of the 15 members of the
European Union (EU) with varying connection graphs and exceptional costs are shown in
Table 8.15. We have used the flight distances (km) between the cities as connection costs.
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Instance #£cost exceptions | cost/time

TSP Austria 0 15/0.31s

TSPAust'ria,emc 2 15/0.325

TSP Austria,we 36 12/0.34s

TSP Austria,lwe 54 11/0.35s

TSPAustria,rnd 10 14/0.305

TSPAustria,rnd 50 15/0.31S

TSPAustria,rnd 100 23/0.35S

TSPAustria,rnd 200 36/0.375

Table 8.14: TSP — Results for TSP 44stri¢ With varying exceptions
Instance F#£conn #except. cost/time Instance #conn. | #except. cost/time
TSPgy1 30 0 -/9.11s TSPrus 40 0 17483/142.7s
TSPEU1,we 30 60 -/11.93s TSP EU6,we 40 80 14336/150.3s
TSPEy1,iwe 30 90 -/13.82s TSP 5y6,1we 40 120 13244/154.7s
TSPry1,rnd 30 100 -/11.52s TSP 5y6,rnd 40 100 15630/142.5s
TSPEU1,rmd 30 200 -/12.79s TSP gy6,rmd 40 200 14258/137.2s
TSPry1,rnd 30 300 -/14.64s TSP EU6,rnd 40 300 11754/120.5s
TSPEU1rnd 30 400 -/16.26s TSP py6,rmd 40 400 11695/111.4s
TSP gya 30 0 16213/13.27s TSP py6,rnd 40 500 12976/120.8s
TSPEU2,we 30 60 13195/16.41s TSPruz 55 0 15022/102.6s
TSP g2 iwe 30 90 11738/18.53s TSP £u7,we 55 110 12917/112.2s
TSP pu2,rnd 30 100 15190/15.54s TSP pu7,iwe 55 165 11498/116.2s
TSPry2,rnd 30 200 13433/16.31s TSP ru7,rnd 55 100 13990/104.2s
TSPEy2,rnd 30 300 13829/18.34s TSPEy7,rmd 55 200 12461/100.8s
TSPru2,rnd 30 400 13895/20.59s TSP gu7,rnd 55 300 13838/106.9s
TSPy 35 0 18576/24.11s TSPy, 55 400 12251/96.58s
TSP U3, we 35 70 15689/28.02s TSPEU7,rnd 55 500 16103/109.2s
TSP g3, 1we 35 105 14589/30.39s TSPEU7,rmd 55 600 14890/110.3s
TSPrU3,rnd 35 100 19410/26.75s TSP pu7,rnd 55 700 17070/110.7s
TSPru3,rnd 35 200 22055/29.64s TSPrus 64 0 10858/3872s
TSP pu3, rnd 35 300 18354/31.54s TSP £us,we 64 128 9035/3685s
TSPEy3.rnd 35 400 17285/32.66s TSP pys,iwe 64 192 8340/3324s
TSPrya 35 0 16533/36.63s TSPgus,rmd 64 100 10283/2603s
TSP pu4,we 35 70 12747/41.72s TSPgys,rmd 64 200 9926/1372s
TSP Er4,iwe 35 105 11812/43.12s TSP gys,rmd 64 300 10028/1621s
TSPgu4,rnd 35 100 15553/39.17s TSP pus,rnd 64 400 8133/597.7s
TSPEya,rma 35 200 13216/41.19s TSPrys,rmd 64 500 8770/573.3s
TSPEya,rmd 35 300 16413/43.51s TSP gys,rmd 64 600 8220/360.7s
TSPru4,rnd 35 400 13782/45.69s TSP rus,rnd 64 700 6787/324.6s
TSPrus 40 0 15716/91.83s TSP pus,rnd 64 800 11597/509.5s
TSPEUswe 40 80 12875/97.73s
TSP gus,iwe 40 120 12009/100.14s
TSPEUs,rmd 40 100 13146/85.69s
TSPEys,rmd 40 200 12162/83.44s
TSPRys.rnd 40 300 12074/76.81s
TSPEys,rma 40 400 12226/82.97s
TSPEys,rmd 40 500 13212/82.53s
Table 8.15: TSP — Various instances for the capitals of the 15 EU members
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Instances TSP gy1—TSPgye have been generated by randomly choosing a given number of
connections from all possible connections between the 15 cities. Note that TSP gy has no
solution; the time reported here is until DLV® terminated, and for all other instances until
the first optimal plan was found.

We have also tested some instances of more practical relevance than simply randomly
choosing connections: TSP g7 is an instance where we have taken the flight connections of
three carriers (namely, Star Alliance, Alitalia, and Luxair), and in TSP gyyg we have included
only direct connections of at most 1500km. Such a “capital hopping” is of interest for a
small airplane with limited range, for instance.

For each instance in Tables 8.14-8.15 we have measured the execution time:

e without exceptional costs,
e with 50% costs for all connections on Saturdays and Sundays (weekends, we)

e with 50% costs for all connections on Fridays, Saturdays and Sundays (long weekends,
lwe),

e for some random cost exceptions (rnd): We have added a number of randomly gener-
ated exceptions with costs between 0 and 10 for TSP gys¢rie and between 0 and 3000
for the instances FUI to EUS.

8.3.4 Results and Discussion — TSP

Instance TSP Egys shows the limits of our system: the given data allows for many possible
tours, so finding an optimal one gets very tricky. On the other hand, a realistic instance like
TSP g7 with real airline connections is solved rather quickly, which is not very surprising:
Most airlines have a central airport (for instance Vienna for Austrian Airlines) and few
direct connections between the destinations served. This allows for much fewer candidate
answer sets, when (as in reality) the number of airlines we consider is limited. E.g., TSP gyz
has no solution at all if only two out of Star Alliance, Alitalia, and Luxair are allowed. Of
course, we cannot compete with dedicated TSP solvers/algorithms, which are able to solve
much bigger TSP instances and have not been considered here. However, to our knowledge,
none of these solvers can deal with features such as incomplete knowledge, defaults, time
dependent exceptional costs, etc. directly. Our results even show that execution times are
stable yet in case of many exceptions. In contrast, instance TSP gyg shows that exceptions
can also cause a significant speedup. This is due to the heuristics used by the underlying
DLV system, which can single out better solutions faster if costs are not spread evenly like in
TSP gyg without exceptional costs.

8.4 Integrated Encodings

In this section, we evaluate the automatic generation of integrated (single-program) encod-
ings to evaluate ¥ -complete problems which has been presented in Section 4.2.3. Recall
that this approach merges two HEDLPs, Ilyess and Il pecr, where the answer sets of ILgyess
serve as input for I pec,. Our approach merges these two programs into a single DLP I,
such that the answer sets of Iljycss for which Ilcpec, has no answer set are computed. We
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have conducted a series of experiments using this method for the problems outlined in the
Section 4.2.5, and for the integrated computation of secure plans.

8.4.1 Benchmark Problem and Encodings — QBF, Strategic Com-
panies

First, we investigated QBFs with one quantifier alternation and the Strategic Companies
problem as introduced in Section 4.2.5. Both these problems are well-studied in Answer Set
Programming. We were mainly interested in the following question:

o What is the performance impact of our automatically generated, integrated encoding
compared with existing ad hoc encodings of £¥ problems?

We have therefore compared our automatically generated integrated encodings of QBFs
and Strategic Companies against the following ad hoc encodings:

(i) The integrated encoding obtained from our QBF “guess” and “check” programs from
Section 4.2.5.1 have been compared against the ad hoc encoding for QBFs described
in [LPF*02] (this encoding coincides with the one used in the proof of Theorem 2.2,
p. 16).

(ii) The integrated encoding obtained from our “guess” and “check” formulation of Strate-
gic Companies from Section 4.2.5.2 has been compared against the two ad hoc encod-
ings for the Strategic Companies Problem from [EFLP00].

These two encodings significantly differ: The first encoding, which is very concise,
integrates guessing and checking in only two rules; it is an illustrative example of the
power of disjunctive rules:
strat(Y) v strat(Z) :- prod-by(X,Y,Z).
strat(W) - contr_by(W,X,Y,Z),
strat(X), strat(Y), strat(Z).

We will denote this encoding as adhoc; in the following. Here, predicate names are as
in Section 4.2.5.2.

The second ad hoc encoding, denoted as adhocs, has a more obvious separate structure
of the guessing and checking parts of the problem at the cost of some extra rules:

strat(X) v —strat(X) :- company(X). }(}uess

= prod.-by(X,Y,Z), not strat(Y), not strat(Z).
= contr_by(W,X,Y,Z), not strat(W),
strat(X), strat(Y), strat(Z).
= not min(X), strat(X).
- strati(X,Y), —strat(Y).
- strati(X,X). Check

min(X) v strati(X,Y) v strati(X,Z) :- prod_by(G,Y,Z),
strat(X).
min(X) v strati(X,C) :- contr_by(C,W,Y,Z), strat(X),
strat1(X,W), strati(X,Y), strati(X,Z).
strat1(X,Y) :- min(X), strat(X), strat(Y), X<>Y.

However, in our opinion, none of these two ad hoc encodings is obvious at first sight
compared with the separate guess and check programs shown in Section 4.2.5.2.
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Concerning (i) we have tested randomly generated QBF instances with n existentially
and n universally quantified variables (QBF-n), and three literals per clause. In these
instances, the number of clauses equals the overall number of variables (that is, | X| + |Y|,
i.e. 2n), as suggested by Cadoli et al. [CGS97].

Concerning (ii) we have chosen randomly generated instances involving n companies
(STRATCOMP-n). Here, we have used a random instance generator kindly provided by
Gerald Pfeifer (cf. [LPFT02]).

8.4.2 Benchmark Problem and Encodings — Secure Planning

Here, we were mainly interested in the following question:

o What is the performance impact of the automatically generated, integrated encoding
compared with interleaved computation of guess and check programs?

To this end, we have tested the performance on solving some secure planning problems
with integrated encodings compared with interleaved computation as implemented in DLVX
(cf. Chapter 5) For our experiments we have used elaborations of “Bomb in the Toilet” as
described in Section 6.3.1, namely “Bomb in the Toilet with clogging” BTC(%), and “Bomb
in the Toilet with uncertain clogging” BTUC(%), where we focused on world-state encodings.
We remark that since secure and optimistic plans coincide for the knowledge state encodings
of these examples, the integration of secure checks does not pay off.

For comparison with DLVF, we have tested BTC(i) and BTUC(4) with the integrated

encoding for secure check SCy, erc’ sc,» sketched in Proposition 4.20. Here, we used the
P

guessOpt?
interleaved computation of DLVX and proved to be faster than guessing arbitrary action

sequences (as in HZ’UCSS, cf. Section 4.3.5 for details).

alternative “guess” program II which returns optimistic plans. This reflects the

8.4.3 Results and Discussion

Since our method works on ground programs, we had to ground all instances (i.e. the
corresponding guess and check programs) beforehand whenever dealing with non-ground
programs. Here, we have used DLV grounding with most optimizations turned off®”: Some
optimizations during DLV grounding rewrite the program, adding new predicate symbols,
etc. which we turned off in order to obtain correct input for the meta-interpreters.

In order to assess the effect of various optimizations and improvements to the transfor-
mation ¢r(-), we have also conducted the above experiments with the integrated encodings
based on different optimized versions of tr(-).

The results of our experiments are shown in Tables 8.16-8.18. In theses tables, we report
the following variations for the integrated encodings that we have tested:

e meta indicates the unoptimized meta-interpreter Il c¢q

e mod indicates the non-modular optimization (OPT,,,4) including the refinement for
constraints.

37Respective ground instances have been produced with command dlv -OR- -instantiate (cf. the DLV-
Manual for details [FP96]) which turns off most of the grounding optimizations.
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e dep indicates the optimization (OPT4.p) where phi is only guessed for literals mu-
tually depending on each other through positive recursion.

e opt indicates both optimizations (OPT,,q) and (OPTgp) turned on.

Remark 8.2. We did not consider optimization (OPTp,) in our experiments, since the
additional overhead for computing unfounded rules in the check programs we used did not
pay off. In fact, (OPT,,) is irrelevant for QBF and Strategic Companies):

(1) (OPT,,) does not play a role in our QBF encoding; the only rules in QBF .., with
non-empty heads are always potentially applicable as their bodies are empty.

(2) As for Strategic companies, again all rules with non-empty heads are either possibly
applicable or “switched off ” by SCyyess. Since there are no positive dependencies among the
rules, pa(-) does not play a role.

(3) Regarding the integrated encodings for the “Bomb in the Toilet” instances from Sec-
tion 6.3.1, though there might be rules which are not possible applicable wrt. to a guessed
plan, the additional overhead for computing unfounded sets did not pay off experimentally.
Preliminary experiments with other well-known planning domains (e.g. SQUARE) showed
similar results.

We remark that the computation of predicate pa(-) comes at a cost: Informally, a profit
of optimization (OPTy,) might only be expected in domains with a reasonable number of
rules which positively depend on each other and might on the other hand likely be “switched
off 7 by particular guesses in Ilgyess.

All times reported in the tables represent the execution times for finding the first answer
set where we set a time limit of 600 CPU seconds for QBF's and Strategic Companies, and
4000 CPU seconds for the “Bomb in the Toilet” instances. Moreover, we set a limit of 256
MB on memory consumption (in order to avoid swapping) for all the tests. A dash in the
tables indicates again that one or more instances exceeded these limits.

The results in Tables 8.17-8.18 show that the “guess and saturate” strategy in our ap-
proach benefits a lot from optimizations for all problems considered. However, we emphasize
that it might depend on the structure of Il yess and Ilcpecr which optimizations apply. We
strongly believe that there is room for further improvements and optimizations both on the
translation and for the underlying DLV engine.

Interestingly, for the QBF problem, the performance of our optimized translation stays
within reach of the ad hoc encoding in [LPF02] (adhoc) for small instances. Overall, the
performance shown in Table 8.16 is within roughly a factor of 5-6 (with few exceptions for
small instances), and thus scales similarly.

For Strategic companies, we have in Table 8.17 an even more interesting picture. Un-
surprisingly, the automatically generated encoding is inferior to the first, succinct ad hoc
encoding (adhoc; ); it is more than an order of magnitude slower and scales worse. However,
while it is slower by a small factor than the second, more involved ad hoc encoding (adhocs)
on small instances, it scales much better and quickly outperforms this encoding.

For the planning problems, the integrated encodings tested still stay behind the inter-
leaved calls of DLVX. One might argue that the results of table 8.18 show that the integrated
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adhoc [LPF102] meta mod dep opt

AVG MAX AVG | MAX | AVG | MAX | AVG | MAX | AVG | MAX
QBF-4 | 0.01s 0.02s 0.16s | 0.18s | 0.10s | 0.15s | 0.09s | 0.11s | 0.07s | 0.09s
QBF-6 0.01s 0.02s 1.11s 1.40s | 0.25s 1.12s | 0.17s 0.21s | 0.08s | 0.12s
QBF-8 | 0.01s 0.06s 10.4s | 16.3s | 1.18s | 7.99s | 0.49s | 0.87s | 0.10s | 0.23s
QBF-10| 0.02s 0.09s 82.7s 165s 4.34s | 30.7s | 1.74s | 3.67s | 0.12s | 0.36s
QBF-12| 0.02s 0.16s - - - - - - 0.15s | 0.79s
QBF-14| 0.06s 1.21s - - - - - - 0.34s | 5.87s
QBF-16| 0.08s 1.85s - - - - - - 0.44s | 10.3s
QBF-18| 0.19s 7.12s - - - - - - 1.04s | 38.8s
QBF-20| 1.49s 21.3s - - - - - - 7.14s 101s

Average and maximum times for 50 randomly chosen instances per size.

Table 8.16: Experiments for QBF

adhoci [EFLP00] | adhocz [EFLPOO] meta mod dep opt

AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX AVG MAX
STRATCOMP-10 0.01s 0.02s 0.05s 0.05s 0.66s 0.69s 0.49s 0.51s 0.36s 0.38s 0.13s 0.15s
STRATCOMP-15 0.01s 0.02s 0.11s 0.13s 1.82s 3.23s 1.50s 3.12s 0.64s 0.68s 0.20s 0.22s
STRATCOMP-20 0.02s 0.02s 0.26 0.27s 3.75s 3.90s 3.34s 3.61s 1.07s 1.13s 0.26s 0.27s
STRATCOMP-25 0.02s 0.02s 0.51s 0.54s - - - - 1.63s 1.68s 0.33s 0.35s
STRATCOMP-30 0.02s 0.03s 0.91s 0.97s - - - - 2.35s 2.47s 0.42s 0.44s
STRATCOMP-35 0.02s 0.03s 1.50s 1.60s - - - - 3.17s 3.27s 0.54s 0.56s
STRATCOMP-40 0.03s 0.03s 2.52s 2.70s - - - - 4.25s | 4.43s | 0.68s | 0.71s
STRATCOMP-45 0.03s 0.04s 4.503 4.97s - - - - 5.46s 5.77s 0.84s 0.90s
STRATCOMP-50 0.03s 0.04s 8.38s 8.68s - - - - 6.73s 6.86s 1.00s 1.02s
STRATCOMP-60 0.04s 0.05s 22.6s 24.3s - - - - 10.2s 10.6s 1.47s 1.53s
STRATCOMP-70 0.04s 0.05s 44.2s 48.1s - - - - 14.7s 15.4s 2.05s 2.10s
STRATCOMP-80 0.04s 0.05s 75.9s 82.5s - - - - 19.7s 21.0s 2.78s 3.05s
STRATCOMP-90 0.05s 0.06s 125s 130s - - - - 26.8s 27.6s 3.67s 3.85s
STRATCOMP-100 0.06s 0.08s 196s 208s - - - - 34.8s 36.3s 4.70s 4.80s

Average and maximum times for 10

Table 8.17: Experiments for Strategic Companies

DLVK | meta | mod dep opt
BTC(2) 0.01s | 1.16s | 0.80s | 0.15s | 0.08s
BTC(3) 0.11s | 9.33s | 9.25s | 8.18s | 4.95s
BTC(4) 4.68s | 71.3s | 67.8s | 333s 2565
BTUC(2) | 0.01s | 6.38s | 6.26s | 0.22s | 0.17s
BTUC(3) | 1.78s 28.1s | 13.0s
BTUC(4) | 577s - 2322s

BTC, BTUC with 2,3 and 4 packages.

randomly chosen instances per size.

Table 8.18: Experiments for Integrated Secure Planning — Bomb in the Toilet
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encoding grows slower than the interleaved computation, but this conclusion could not be
verified: Since the results grow exponentially with the number of packages for world state
encodings in either case, the number of solvable instances is too small and more extensive
tests will be necessary. In all cases, time limit of 4000 CPU seconds was exceeded earlier
(for smaller instances) than memory, but especially for bigger instances of “Bomb in the
Toilet” (and also for “Strategic Companies”) there were also cases where memory exceeded
within the time limits for some encodings (for instance BTUC(5), even with the optimized
version of our transformation).

Clearly, the performance of the automatic integrated encodings was expected to stay
behind the best ad hoc encodings or the interleaved methods. However, the strength of our
approach outcrops if an integrated ad hoc encoding is non-obvious. Then, by our method
such an encoding can be generated automatically from separate guess and check programs,
which are often easy to formalize, while a manual integrated encoding may be difficult to
find (as in the case of conformant planning or minimal update answer sets [EFST02] where
such integrated encodings did not exist before for the general case).

8.5 Final Remarks

As for DLVX, in all tables great sensitivity to increasing plan length/search space can be
observed, where execution times seem to grow drastically from one instance to the next.
This can be partly explained by the general heuristics of the underlying DLV system, which
which might not scale up well in some cases. For instance, DLV as a general purpose problem
solver does not include special heuristics towards plan search. In particular, during the
answer set generation process, no distinction is made between actions and fluents, which
might be useful for planning tasks to control the generation of answer sets resp. plans; this
may be part of further investigations.

We have seen that integrated encodings showed some promising results for hard problems,
for instance on the Strategic Companies problem where an ad hoc guess and check encoding
from the literature [EFLP00] was even outperformed. As for planning problems structural
analysis of the domain beforehand and further optimizations might successfully improve our
methods also for planning problems: For example, we might profit from the observation
that the check programs for the cheap secure checks SC; and SC, already have a certain
form. E.g., in the check program for SC;, there are no constraints for timestamps greater
than 0, etc. An in-depth analysis of such properties is crucial for future improvements.






Chapter 9

A Practical Scenario — Planning
as Monitoring

This chapter shall give a practical scenario where we apply our planning formalism in the
field of agent monitoring as an application domain for planning. This chapter is somehow
independent of the rest of this work in that the monitoring approach outlined here is not
restricted to our particular approach to planning but we will introduce a general method for
applying planning techniques in the fields of monitoring and design of multi-agent systems
in order to give a clearer idea of a possible more realistic application domain for planning
techniques. It shall also provide a perspective for further research directions.

9.1 Overview

Multi-Agent systems have been recognized as a promising paradigm for distributed problem
solving, and numerous multi-agent platforms and frameworks have been proposed, which
allow to program agents in languages ranging from imperative over object-oriented to logic-
based ones [LMPGO02]. A major problem which agent developers face with many platforms
is verifying that a suite of implemented agents collaborate well to reach a certain goal (e.g.,
in supply chain management). Tools for automatic verification®® are rare. Thus, common
practice is geared towards extensive agent testing, employing tracing and simulation tools
(if available).

We suggest a monitoring approach which aids in automatically detecting that agents do
not collaborate properly. In the spirit of Popper’s principle of falsification, it aims at refuting
from (possibly incomplete) information at hand that an agent system works properly, rather
than proving its correctness. In our approach, agent collaboration is described at an abstract
level, and the single steps in runs of the system are examined to see whether the agents
behave ”reasonable,” i.e., ”compatible” to a collaboration plan for reaching a goal.

Even if the internal structure of some agents is unknown, we may get hold of the messages
exchanged among them. A given message protocol allows us to draw conclusions about the

38By well-known results, this is impossible in general but often also in simple cases if details of some
agents (e.g., in a heterogenous environment) are missing.
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correctness of the agent collaboration. Our monitoring approach hinges on this fact and
involves the following steps:

(1) The intended collaborative behavior of the agents is modeled as a planning problem.
More precisely, knowledge about the agent actions (specifically, messaging) and their effects
is formalized in an action theory, T, which can be reasoned about to automatically construct
plans as sequences of actions to reach a given goal.

(2) From T and the collaborative goal G, a set of intended plans, I-Plans, for reaching G
is generated via a planner. For this purpose we will employ DLVX.

(3) The observed agent behavior, i.e., the message actions from a message log, is then
compared to the plans in I-Plans.

(4) In case an incompatibility is detected, an error is flagged , pinpointing to the last
action causing the failure so that further steps might be taken by the developer or user,
respectively.

Steps 2-4 can be done by a special monitoring agent, which is added to the agent system
providing support both in testing, and in the operational phase of the system. Among the
benefits of this approach are the following:

e It allows to deal with collaboration behavior regardless of the implementation lan-
guage(s) used for single agents.

e Depending on the planner used in step 2, different kinds of plans (optimal, confor-
mant, admissible ...), might be considered, reflecting different agent attitudes and
collaboration objectives.

e Changes to the agent messaging by the system designer may be transparently incorpo-
rated to the action theory 7', without further need to adjust the monitoring process.

e Furthermore, T' adds to a formal system specification, which may be reasoned about
and used in other contexts.

e As a by-product, the method may also be used for automatic protocol generation, i.e.,
determine the messages needed and their order, in a (simple) collaboration.

The next section describes the basic agent framework that we build upon and presents
a simplified version of a multi-agent system in the postal services domain. After that, in
Section 9.3 we describe how to model the intended behavior of a multi-agent system as
an abstract planning problem, and instantiate this for our example system using action
language K. Our approach to agent monitoring is then discussed in Section 9.4, where we
also investigate some fundamental properties. After a brief discussion of the implementation
in Section 9.5 and a review of related work on planning in multi-agent systems in Section 9.6,
we conclude this chapter with an outlook on further research.
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9.2 Message Flow in a Multi-Agent System

In a multi-agent system (MAS), a set of autonomous agents are collaborating to reach a
certain goal. Our aim is to monitor (some aspects of) the behavior of the agents in order
to detect inconsistencies and help debugging the whole system.

As opposed to verification, monitoring a MAS does not require a complete specification
of the behavior of the particular agents. Rather, we adopt a more general (and in prac-
tice much more realistic) view: We do not have access to the (entire) internal state of a
single autonomous agent, but we are able to observe the communication between agents of
the system. By means of its communication capabilities, an agent can potentially control
another agent. Our aim is to draw conclusions about the state of a multi-agent system by
monitoring the message protocol and its correspondence to reasonable plans for the agent
collaboration.

Basic Framework

We consider multi-agent systems consisting of a finite set A = {ay,...,a,} of collaborating
agents a;. Although agents may perform a number of different (internal) actions, we assume
that only one action is externally observable, namely an action called send msg(m), which
allows an agent to send a message, m, to another agent in the system. Every send msg action
is given a timestamp and recorded in a message-log file containing the history of messages
sent. The following definitions do not assume a sophisticated messaging framework and
apply to almost any MAS. Thus, our framework is not bound to a particular MAS.

Definition 9.1 (Message, M, file). A message is a quadruple m = (s,r,c,d), where
s,T € A are the identifiers of the sending and the receiving agents, respectively; ¢ € C is
from a finite set C of message commands; d is a list of constants representing the message
data. A message-log file is an ordered sequence Moy = t1:m1,t2:ma,. .., ty:my of messages
m; with timestamps t;, where t; < tiy1, 1 < k.

The set C constitutes a set of message performatives specifying the intended meaning of
a message. In other words, it is the type of a message according to speech act theory: the
illocutionary force of an utterance. These commands may range from ask/tell primitives to
application specific commands fixed during system specification.

Often, an agent a; will not send every kind of message, but use a message repertoire
C; C C. Moreover, only particular agents might be message recipients (allowing for simplified
formats). Given that the repertoires C; are pairwise disjoint and each message type c has a
unique recipient, we use {c,d) in place of m = (s,r,c,d).

Finally, we assume a fixed bound on the time within the next action should happen in
the MAS, i.e., a timeout for each action (which may depend on previous actions), which
allows to see from M,, whether the MAS is stuck or still idle.

Gofish Post Office

We consider an example MAS called Gofish Post Office for postal services. Its goal is to
improve postal product areas by mail tracking, customer notifications, and advanced quality
control. The following scenario is our running example:
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Example scenario: Pat drops a package, p1, for a friend, Sue, at the post office. In the
evening, Sue gets a phone call that a package has been sent. The next day, Sue decides to
pick up the package herself at the post office on her way to work. Unfortunately, the clerk
has to tell her that the package is already on a truck on its way to her home.

The overall design of the Gofish MAS is depicted in Figure 9.1. An event dispatcher
agent (disp) communicates system relevant (external) events to an event management agent
(em) which maintains an event database. Information about packages is stored in a pack-
age database manipulated by a package agent (pa). The notification agent (notify) notifies
customers about package status and expected delivery time, for which it maintains a statis-
tics database. Finally, a zip agent (zip) informs responsible managers, stored in a manager
database, about zip codes not being well served.

Example 9.1 (Simple Gofish). To keep things simple and illustrative, we restrict the
Gofish MAS to the package agent, pa, the event management agent, em, and the event
dispatcher agent, disp; thus, A = {pa,em, disp}.

The event dispatcher informs the event manager agent about the drop off of a package
(identified by a unique identifier), its arrival at the distribution center, its loading on a
truck, its successful delivery, or when a recipient shows up at the distribution center to
pick up a package by herself: Cgisp = {dropOff, distCenter, truck, delivery, pickup}. The event
manager agent instructs the package agent to add a package to the package database after
drop off, as well as to update the delivery time after delivery or customer pickup: Cem =
{addPackage, setDelivTime}. The package agent here only receives messages, thus Cp, = {}.
Running scenario: The message-log My, contains the messages: m; = (dropOff, p1), ma
= (addPackage, p1), ms = {(distCenter, p1), m4 = (truck, p1), and ms = (pickup, p1). The
corresponding (time-stamped) entries are

0: (disp, em, dropOff, p1),
5: (em,pa,addPackage, p1),
13: (disp, em, distCenter, p; ),
19: (disp, em, truck, p1 ), and
20: (disp, em, pickup, p1 ).

<

9.3 Modeling Agent Behavior via Declarative Planning

We now discuss how to formalize the intended collaborative agent behavior as an action
theory for planning in X, which encodes the legal message flow. In it, actions correspond to
messages and fluents represent assumptions about the current state of the world.

We remark that this approach is not limited to K. Under suitable encodings, we could use
planning formalisms like STRIPS [FN71], PDDL [GHK198] or HTN [EHN94] based planners
to model simple agent environments. In fact, HTN planning has recently been incorporated
ina MAS [DMANZ02]. Another powerful language suitable for modeling control knowledge
and plans for agents is GOLOG [LRL*97]. However, due to its high expressive power (loop,
conditionals) automated plan generation is limited in this formalism. In the following we
give a generic formulation of our approach, independent of a particular planning mechanism.
Then, we instantiate this high-level description using our action language K.
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Figure 9.1: The Gofish post office system.

Modeling Intended Behavior of a MAS

Our approach to formalize the intended collaborative behavior of a MAS consisting of agents
A ={ai,...,a,} as a planning problem P comprises three steps:

Step 1: Actions (Act). Declare a corresponding action for each message m = (s,r,c,d)
in our domain, i.e., we have c(s,r,d) € Act (see Def. 9.1). Again, if the message
repertoires C; are pairwise disjoint and each message type ¢ has a unique recipient, we
use in short c(d). These actions might have effects on the states of the agents involved
and will change the properties that hold on them.

Step 2: Fluents (Fl). Define properties, fluents, of the “world” that are used to describe
action effects. We distinguish between the sets of internal fluents, Fl,, of a particular
agent a®® and external fluents, Fl.,;, which cover properties not related to specific
agents. These fluents are often closely related to the message performatives C; of the
agents.

Step 3: Theory (T) and Goal (G). Using the fluents and actions from above, state various
axioms about the collaborative behavior of the agents as a planning theory T. The
axioms describe how the various actions change the state and under which assumptions
they are executable. Finally, state the ultimate Goal G (in the running scenario: to
deliver the package) suitable for the chosen planning formalism.

We end up with a planning problem P whose solutions are a set of P-Plans. Note that the
precise formulation of these notions depends on the underlying planning formalism. For
example, in HTN planning one has to specify operators and methods and their effects (this
is closely related to Act and Fl above), as well as a domain description and a task list (which
corresponds to T and G above): we refer to [DKNO02b] for a full discussion. The above is
a generic formulation suitable for many planning frameworks. Here, we will exemplify the
approach for the DLVX planning framework.

39Tnternal fluents especially can describe private values which might be inaccessible by an external observer.
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Using Action Language K

In this section, we instantiate the planning problem described above to a problem P formu-
lated in action language K.

In K, as for Steps 1 and 2 we first have to identify and declare the relevant actions
Act and fluents FI from our MAS. Concerning Step 3, in the K framework T comprises
background knowledge II and all axioms of the domain formalized as causation rules and
executability conditions as well as a description of the initial state, i.e. a K planning domain
PD. These steps yield a K planning domain where finally the goal G, can be added as a
set of ground fluent literals in order to obtain the K formulation of the planning problem
P =(PD, G) corresponding to our intended MAS collaboration.

Example 9.2 (Simple Gofish cont’d). In the Gofish example, the following K actions
and fluents are declared:
actions: drop0ff(P) requires pkg(P). )

addPkg(P) requires pkg(P).
distCenter(P) requires pkg(P).
truck(P) requires pkg(P). \ Act
delivery(P) requires pkg(P).
pickup(P) requires pkg(P).
setDelivTime(P) requires pkg(P).

fluents: pkgAt(P,Loc) requires pkg(P),loc(Loc).)
delivered(P) requires pkg(P).
recipAtHome(P) requires pkg(P). \ Bl
added(P) requires pkg(P).
delivTimeSet(P) requires pkg(P).

/

Actions simply correspond to the defined messages in our MAS. The first three external
fluents describe the current location of a package, whether it has successfully been delivered,
and whether its recipient is at home, respectively. The last two fluents are internal fluents
about the state of agent pa; whether the package has already been added to the package
database resp. whether the delivery time has been set properly.

A possible package (e.g., a generic p;) and its locations are background knowledge rep-
resented by the set of facts gorisn ={pkg(p1), loc(drop), loc(dist), loc(truck)}. Now we
specify further axioms for PDg,y;sn as follows:

initially: recipAtHome(p).

always : noConcurrency.

inertial pkgAt(P,L). inertial delivered(P).
inertial recipAtHome(P). inertial added(P).
executable dropO0ff(P) if not added(P).

caused pkgAt(P,drop) after dropOff(P).
nonexecutable dropO0ff(P) if pkgAt(P,drop).

executable addPkg(P) if pkgAt(P,drop),not added(P).
caused added(P) after addPkg(P).
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executable distCenter(P) if added(P),pkgAt(P,drop).
caused pkgAt(P,dist) after distCenter(P).
caused —pkgAt(P,drop) after distCenter(P).

executable truck(P) if pkgAt(P,dist),notdelivered(P).
caused pkgAt(P,truck) after truck(P).
caused —pkgAt(P,dist) after truck(P).

executable delivery(P) if pkgAt(P,truck), notdelivered(P).
caused delivered(P) after delivery(P),recipAtHome(P).

executable setDelivTime(P,DTime) if delivered(P).
caused delivTimeSet(P) after setDelivTime(P).

executable pickup(P) if pkgAt(P,dist), notdelivered(P).
executable pickup(P) if pkgAt(P,truck), notdelivered(P).
caused delivered(P) after pkgAt(P,dist), pickup(P).
total recipAtHome(P) after pickup(P).

Most of the theory is self-explanatory. The recipient is at home initially. The keyword
noConcurrency specifies that concurrent actions/messages are disallowed.*?

An important aspect is modeled by the final total statement. It expresses uncertainty
whether after a pickup attempt at the distribution center, the recipient will be back home,
in particular in time before the truck arrives to deliver the package, if it was already on the
way. Finally, the goal is G = delivTimeSet(p;) or

delivTimeSet(py) 7(I)

in K notation for plan length [.
The following (optimistic) plans reach G in 7, 6 and 5 steps, respectively:

P, = (drop0f£(p1); addPkg(pi); distCenter(p;); truck(pi);
pickup(p1);delivery(p:); setDelivTime(p1))

P, = (drop0ff(p1); addPkg(p1); distCenter(p1); truck(py);
delivery(pi); setDelivTime(p1))

P; = (drop0ff(p1); addPkg(p;); distCenter(p); pickup(p;); setDelivTime(p1))

In Py, the recipient shows up at the distribution center after the package is loaded on the
truck and the truck is on its way. In P, the package is successfully delivered before the
recipient comes to pick it up herself, whereas in Pj3, she picks up the package before it has
been loaded on the truck.

Running scenario: According to the message history in M., we see that plan P, is
infeasible, as well as P; since the package can not be handed over to Sue at the distribution
center. Thus, only P; remains for successful task completion. <

40In this particular application we might even want to ensure that exactly one action occurs per time
(since naturally M,,, is sequential and does not contain empty entries) which can be ensured by DLVXs
options -planminactions=1 and -planmaxactions=1.
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9.4 Agent Monitoring

The overall aim of adding a monitoring agent (monitor) is to aid debugging a given MAS.
We can distinguish between two principal types of errors: (1) design errors, and (2) im-
plementation (or coding) errors. While the first type means that the model of the system
is wrong (i.e., the MAS behaves correctly to the model of the designer of the MAS, but
this model is faulty and does not yield the desired result in the application), the second
type points to more mundane mistakes in the actual code of the agents: the code does not
implement the formal model of the system (i.e., the actions are not implemented correctly).

Note that often it is very difficult, if not impossible at all, to distinguish between design
and implementation errors. But even before the system is deployed, the planning problem
‘P can be given to a planner and thus the overall existence of a solution can be checked.
If there is no solution, this is clearly a design error and the monitoring agent can pinpoint
where exactly the planning fails (assuming the underlying planner has this ability). If there
are solutions, the agent designer can check them and thus critically examine the intended
model.

However, for most applications the bugs in the system become apparent only at runtime.
Our proposed monitoring agent has the following structure.

Definition 9.2 (Structure of the monitoring agent). The agent monitor loops through
the following steps:

1. Read and parse the message log Moy If Mioq =0, the set of plans for P may be
cached for later reuse.

2. Check whether an action timeout has occurred.

3. If this is not the case, compute the current intended plans (according to the planning
problem description and additional info from the designer) compatible with the actions
as executed by the MAS.

4. If no compatible plans survive, or the system is no more idle, then inform the agent
designer about this situation.

5. Sleep for some pre-specified time.

We now elaborate more deeply into these tasks.

Checking MAS behavior: monitor continually keeps track of the messages sent between
the agents. They are stored in the message-log, M4, which is accessible by monitor. Thus
for monitor, the behavior of the MAS is completely determined by M;,,. We think this
is a realistic abstraction from internal agent states. Rather than describing all the details
of each agent (which might be unknown, e.g. if legacy agents are involved), the kinds of
messages sent by an agent can be chosen so as to give a declarative high-level view of it. In
the simplified Gofish example, these messages for agents em, disp, pa are given by Cem,
Caisp, and Cpq (see Section 9.2).

Intended behavior and compatibility: The desired collaborative MAS behavior is for-
malized as a planning problem P (e.g., in language K, cf. Section 9.3). Thus, even before
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the MAS is in operation, problem P can be fed into a planner which computes potential
plans to reach a goal. Agent monitor is exactly doing that.

In general, not all P-Plans may be admissible, as constraints may apply (derived from
the intended collaborative behavior). %! E.g., some actions ought to be taken in fixed
order, or actions may be penalized with costs whose sum must stay within a limit. We thus
distinguish a set I-Plans(P) CP-Plans as intended plans (of the MAS designer).

It is perfectly possible that the original problem has successful plans, yet after some
actions executed by the MAS, these plans are no longer valid. This is the interesting case
for the agent designer since it clearly shows that something has gone wrong: monitor
can pinpoint to the precise place indicating which messages have when caused the plan to
collapse. Because these messages are related to actions executed by the agents, information
about them will help to debug the MAS. In general, it is difficult to decide whether the
faulty behavior is due to a coding or design error. However, the info given by monitor will
aid the agent designer to detect the real cause.

Messages from monitor: Agent monitor continually checks and compares the actions
taken so far for compatibility with all current plans. Once a situation has arisen in which no
successful plan exists (detected by the planner employed), monitor writes a message into
a separate file containing (1) the first action that caused the MAS to go into a state where
the goal is not reached, (2) the sequence of actions taken up to this action, and (3) all the
possible plans before the action in 1) was executed (these are all plans compatible with the
MAS behavior up to it).

In the above description, we made heavily use of the notion of a compatible plan. Before
giving a formal definition, we consider our running scenario. In Gofish, all three plans P,
P,, P; generated from the initial problem coincide on the first three steps: dropOff(py),
addPkg(py), and distCenter(py).

Running scenario (coding error): Suppose on a preliminary run of our scenario,
Miog shows mi=dropOff(p;). This is compatible with each plan P;, i € {1,2,3}. Next,
mo=distCenter(p;). This is incompatible with each plan; monitor detects this and gives a
warning. Inspection of the actual code may show that the command for adding the package
to the database is wrong. While this doesn’t result in a livelock (the MAS is still idle), the
database was not updated. Informed by monitor, this is detected at this stage already.

After correction of this coding error, the MAS may be started again and another error
shows up:

Running scenario (design error): Instead of waiting at home (as in the “standard” plan
P,), Sue shows up at the distribution center and made a pickup attempt. This “external”
event may have been unforeseen by the designer (problematic events could also arise from
MAS actions). We can expect this in many agent scenarios: we have no complete knowledge
about the world, unexpected events may happen, and action effects may not fully determine
the next state.

Only plan P; remains to reach the goal. However, there is no guarantee of success, if
Sue is not back home in time for delivery. This situation can be easily captured in the
framework of C by secure plans. As can be easily seen, P, is not secure. Thus, a design

41This might depend on the capabilities of the underlying planning formalism to model constraints such
as cost bounds or optimality wrt. resource consumption etc.
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error is detected, if delivering the package must be guaranteed under any circumstances.
Based on a generic planning problem P, we now define compatible plans as follows.

Definition 9.3 (Mo, compatible plans). Let the planning problem P model the intended
behavior of a MAS, which is given by a set I-Plans(P) C P-Plans. Then, for any message
log Miog =t1:my,. .., t,:my, we denote by C-Plans(P, Miog,n), n > 0, the set of plans from
I-Plans(P) which comply on the first n steps with the actions my,...,m,.

Respecting that DLVX, is capable of computing optimistic and secure plans, we denote
for any K planning problem P* by X-Plans®(PX, M;s4,n) (resp. X-Plans® (PX, M,, ,n) the
set of all optimistic (resp. secure) plans for PX with the above property, X € {I,C}.

Definition 9.4 (Culprit(Miog,P)). Let tn:my, be the first entry of Mo, such that either
(i) C-Plans(P, Mioq,n) = 0 or (ii) a timeout is detected. Then, Culprit(Msg,P) is the pair
(tn:my,, idle) if (i) applies and (t, :m,, timeout) otherwise.

Initially, Mo, is empty and thus C-Plans(P) = I-Plans(P). As more and more actions are
executed by the MAS, they are recorded in M;,, and the set C-Plans(P) shrinks. monitor
can thus compare at any point in time whether C-Plans(P, M,4,7) is empty or not. When-
ever this happens, Culprit(M,4, P) is computed and pinpoints to the problematic action.

Running scenario: Under guaranteed delivery (i.e., secure planning), monitor writes
Culprit(Mog, P)=(20:ms5, idle) (the pickup(p;) message) on a file, and thus clearly points to
a situation missed in the MAS design. Note that there are also situations where everything
is fine; if pickup would not occur, agent monitor would not detect a problem at this stage.

9.4.1 Properties

We can show that the agent monitoring approach has desirable properties. The first result
concerns its soundness.

Theorem 9.1 (Soundness). Let the planning problem P model the intended collaborative
MAS behavior, given by I-Plans(P) C P-Plans. Let M,,, be a message log. Then, the MAS
is tmplemented incorrectly if Culprit(Moq, P) exists.

Semantically, the intended collaborative MAS behavior (described in any formalism) may
manifest in a set of trajectories as described for K planning problems, where trajectories
correspond to possible runs of the MAS (sequences of states and executed actions). On the
other hand, optimistic plans for a I planning problem P are projected trajectories. We say
that a set OP of such plans covers the intended collaborative MAS behavior, if each run
of the MAS corresponds to some trajectory whose projection is in OP. For example, this
holds if OP is the set of all optimistic plans for a K planning problem P and the intended
collaborative MAS behavior is given by a secure plan in K.

We have:

Theorem 9.2 (Soundness of P Cover). Let P be a K planning problem, such that
I-Plans®(P) covers the intended collaborative MAS behavior. Let Mo, be a message log.
Then, MAS is implemented incorrectly if Culprit(M o4, P) exists.
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As for completeness, we need the assertion that plans can not grow arbitrarily long, i.e.,
have an upper bound on their length *? otherwise, an error may not be detected in finite
time.

Theorem 9.3 (Completeness). Let the planning problem P model the intended col-
laborative MAS behavior, given by I-Plans(P) C P-Plans where plans are bounded. If the
MAS is implemented incorrectly, then there is some message log M,,q such that either (i)
C-Plans(P, Mog,0) = 0, or () Culprit(M o4, P) exists.

In (i), we can conclude a design error, while in (ii) a design or coding error may be
present. There is no similar completeness result for P covers, i.e. completeness holds of
course only iff the planning formalism at hand provides exactly the intended plans and not
only covers them: note that in our running scenario, a design error is detected for secure
plans as MAS collaborative behavior formalism. However, the culprit vanishes if the cover
contains plan P;, which is compatible with M.

As for complexity, we mention that in expressive planning formalisms like X, deciding
whether C-Plans(P, Moqg, 1) # 0 or Culprit(M ,q, P) exists from P, M,y and n is at least
NP-hard in general, which is inherited from the expressiveness of the underlying planning
language.

In particular, if the intended behavior is expressed by optimistic/secure plans in K,
deciding C-Plans(P, M o4, n) # () tantamounts to optimistic/secure plan existence; the plan
prefix given by Mg, n can be easily encoded in the planning problem itself by adding
respective constraints.

Let {(m1,ma,...,m,) be a sequence of actions, and P =(PD,q) a K planning problem.
Let P’ be the problem obtained from P by extending PD as follows:

initially: f1.

always: caused false after not my, f1.
caused f2 after m;y.
caused false after not m»p, f2.
caused f3 after mo.

caused false after not m,, fn.

where f1,...,fn are new distinct propositional fluents. We obtain:

Proposition 9.4. Let I-Plans® (or I-Plans®, resp.) be the intended plans of P. Then,
C-Plans(P, Miog, 1) # 0 iff P’ has an optimistic (or secure, resp.) plan.

The corresponding complexity results for K can be found in Section 3.3. Similar consid-
erations apply for the existence of Culprit(Meq, P).

We remind that, NP-hardness (or even worse, if secure plans are required) is a theoreti-
cal worst-case measure, though, and still solutions for many instances can be found quickly,
especially if optimistic planning is required only. Moreover, there are instance classes which

“2for plans computed by DLVX this is trivially true due to the restriction to given plan length as part
of the input; all the possible plans up to an upper bound of plan length can be iteratively computed as
discussed in Section 7.1.2
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are polynomial time solvable and for which DLVX is guaranteed to compute plans in polyno-
mial time. This highly depends on which requirements for intended plans we have and how
complicated the corresponding planning problem is.

For small domains, where the number of plans is moderate, I-Plans (or C-Plans, resp.)
might simply be cached such that checking against M;,, becomes trivial.

9.5 Implementation

To demonstrate the proposed approach, a running example has been implemented. The
Gofish MAS and Agent monitor is developed within IMPACT (Interactive Maryland Plat-
form for Agents Collaborating Together). Note that in principle our approach is completely
independent of any specific agent system. We refer to [SBDT00] for the details of IMPACT.

Each agent consists of a set of data types, API functions, actions, and an agent program
that includes some rules prescribing its behaviors. Since we use DLV® [EFLt03a] as the
planner, a new connection module has been created within Agent monitor so that monitor
can access the DLVX planner. In this way, before the Gofish MAS operates, we feed PX ..,
into monitor, which then exploits DLV to compute all potential plans including both secure
and optimistic plans.

Running scenario: The Gofish post office guarantees the package delivery within 24
hours of dropOff (time 0). Consider the case that Sue wanted to pick up her package
(p1=0x00£fe6206¢.1) at the distribution center. Unfortunately, it has been loaded on the
truck. Sue did not come back home in time, therefore the package wasn’t delivered in time.
Thus after the ”pickup” action at time 20, the MAS was keeping idle till a timeout (24 in
this example) was detected by monitor. In the end, monitor generated a log file as follows
(see also the project web page 43):

Problematic action:
20:pickup(0200fe6206¢.1), timeout

Actions executed:
0:drop0££ (0200 fe6206¢.1); 5:addPkg(0200 fe6206¢.1);
13:distCenter(0x00fe6206¢c.1); 19:truck(0200fe6206c.1)

Possible plans before problematic action:
(drop0f£f(p1); addPkg(p1); distCenter(p1); truck(p1);
pickup(p1); delivery(pi); setDelivTime(p1))

(drop0ff(p1); addPkg(p1); distCenter(p1); truck(p1);
delivery(pi); setDelivTime(p1))

9.6 Related Work

In contrast to research on plan generation as such, there has been relatively little work on
the use of plans to monitor execution. Plans can be executed by one agent or by many
collaborative agents. In this section, we review previous work on monitoring problem in (1)
single-agent settings, and (2) multi-agent environments.

43<URL :http://www.cs.man.ac.uk/~zhangy/project/monitor/>
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Monitoring in Single-Agent Settings

Interleaving monitoring with plan execution has been addressed in the context of single agent
environment in [GRS98], where the authors presented a situation calculus-based account of
execution monitoring for robot programs written in Golog. A situation calculus specification
is given for the behavior of Golog programs. Combined with the interpretation of Golog
programs, an execution monitor detects the discrepancy after each execution of a primitive
action. Once a discrepancy is found, the execution monitor checks whether it is relevant
in the current state, that is, whether preconditions of next action still hold with the effect
of exogenous action. If this exogenous action does matter, a recover mechanism will be
invoked. The method of recovering is based on planning. A new plan (or program) is
computed whose execution will make things right by way of leading the current state to
the desired situation, had the exogenous action not occurred. In their work, declarative
representations have been proposed for the entire process of plan-execution, -monitoring
and -recovery. Similar to our method, their approach is completely formal and works for
monitoring arbitrary programs. They addressed the problem of recovering from failure,
which we haven’t included in our system for the moment. However, their approach must
know in advance all exogenous events in order to specify appropriate Relevant and Recover
mechanism. In addition, they don’t explore in-depth how to properly define Relevant and
Recover.

To enable generation of plans in dynamic environments, Veloso et al. [VPC98] introduced
Rationale-Based Monitoring based on the idea of planning as decision making. Rationale-
based monitors encode the features that are associated with each planning decision. The
method is used for sensing relevant (or potentially relevant) features of the world that likely
affect the plan. Moreover, it investigates the balance between sensitivity to changes in the
world and stability of the plans. Although their approach provides the planner opportunities
to optimize the plans in a dynamic environment during plan generation, in contract with
our approach, they haven’t studied the issue of execution monitoring.

As the methods mentioned above address the problem of a single agent acting in an
uncertain environment, the techniques focus on monitoring of environment and verifying
plans. While our approach could be directly applied to single agent domains, they need
extra work in order to handle monitoring the collaboration of multiple agents.

Monitoring of Multi-Agent Coordination

Teamwork monitoring has been recognized as a crucial problem in multi-agent coordination.
Jennings [Jen93] proposed two foundations of multi-agent coordination: commitments and
conventions. Agents make commitments. Conventions are a means of monitoring of the
commitments. The monitoring rules, i.e. what kind of information monitored and the way
to perform monitoring, are decided by conventions. Jennings illustrates the method by some
examples. However, he doesn’t investigate how to select such conventions. Different from
his idea, our approach avoids the problem of monitoring selectivity.

Myers [Mye99] introduced a continuous planning and execution framework (CPEF). The
system’s central component is a plan manager, directing the processes of plan-generation,
-execution, -monitoring, and -repair. Monitoring of the environment is carried out at all
time during plan generation and execution. Furthermore, execution is tracked by the plan



210 CHAPTER 9. PLANNING AS MONITORING

manager by comparing reports of individual actions’ outcomes with the temporal ordering
relationships of actions. Several types of event-response rule have been concerned: (1)failure
monitors encode suitable responses to potential failures during plan execution, (2)knowledge
monitors detect the availability of information required for decision making, and (3) assump-
tion monitors check whether assumptions that a given plan relies still hold. The idea of
assumption monitors helps early detection of potential problems before any failure occurs,
which can also be fulfilled in our system with a different approach. Based upon CPEF,
Wilkins et al. presented a system in [WLBO03]. The execution monitoring of agent teams is
performed based on communicating state information among team members that could be
any combination of humans and/or machines. Humans make the final decision, therefore,
even if unreliable communications exist, the monitoring performance may not be degraded
much with the help of humans experience.

Another interesting monitoring approach in multi-agent coordination is based on plan-
recognition, by Huber [HD95], Tambe [Tam96], Intille and Bobick [IB99], Devaney and
Ram [DR9§], Kaminka et al. [KPT01, KT00]. In this approach, an agent’s intentions (goals
and plans), beliefs or future actions are inferred through observations of another agent’s
ongoing behavior.

Devaney and Ram [DR98] described the plan recognition problem in a complex multi-
agent domain involving hundreds of agents acting over large space and time scales. They use
pattern matching to recognize team tactics in military operations. The team-plan library
stores several strategic patterns which the system needs to recognize during the military
operation. In order to make computation efficient, they utilize representations of agent-pair
relationships for team behaviors recognition.

Intille and Bobick [IB99] constructed a probabilistic framework that can represent and
recognize complex actions based on visual evidence. Complex multi-agent action is inferred
using a multi-agent belief network. The network integrates the likelihood values generated
by several visual goal networks at each time and returns a likelihood that a given action
has been observed. The network explicitly represents the logical and temporal relationships
between agents, and its structure is similar to a naive Bayesian classifier network structure,
reflecting the temporal structure of a particular complex action. Their approach relies on
all coordination constraints among the agents. Once an agent fails, it may not be able to
recognize the plans.

Another line of work has been pursued in ISI. Gal Kaminka et al. [KPTO01, KT00)
developed the OVERSEER monitoring system, which builds upon work on multi-agent
plan-recognition by [IB99] and [Tam96]. They address the problem of many geographically
distributed team members collaborating in a dynamic environment. The system employs
plan recognition to infer the current state of agents based on the observed messages ex-
changed between them. The basic component is a probabilistic plan-recognition algorithm
which underlies the monitoring of a single agent and runs separately for each agent. This
algorithm is built under a Markovian assumption and allows linear-time inference. To mon-
itor multiple agents, they utilize social knowledge, i.e. relationships and interactions among
agents, to better predict the behavior of team members and detect coordination failures.
OVERSEER supports reasoning about uncertainty and time, and allows to answer queries
related to the likelihood of current and future team plans.

While our objective is (1) to debug offline an implemented MAS, and (2) to monitor
online the collaboration of multiple agents, the plan-recognition approaches described above
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mainly aim to inferring (sub-)team plans and future actions of agents. They do not address
the MAS debugging issue. Furthermore, we point out that our method might be used in the
MAS design phase to support protocol generation, i.e., determine at design time the messages
needed and their order, for a (simple) agent collaboration. More precisely, possible plans
P = {my,...,my) for a goal encode sequences of messages my,. .., my that are exchanged
in this order in a successful cooperation achieving the goal. The agent developer may select
one of the possible plans, e.g. according to optimality criteria such as least cost, P*, and
program the individual agents to obey the corresponding protocol. In subsequent monitoring
and testing, P* is then the (single) intended plan.

Plan recognition is suitable for various situations: if communication is not possible,
agents exchanging messages are not reliable, or communications must be secure. It signifi-
cantly differs from our approach in the following points:

(1) If a multi-agent system has already been deployed, or it consists of legacy code, the
plan-recognition approach can do monitoring without modifications on the deployed system.
Our method entirely relies on an agent message log file.

(2) The algorithms developed in [KT00] and [DR98] have low computational complexity.
Especially the former is a linear-time plan recognition algorithm.

(3) Our model is not yet capable of reasoning about uncertainty, time and space.

(4) In some tasks, agents do not frequently communicate with others during task execu-
tion. In addition, communication is not always reliable and messages may be incorrect or
get lost.

We believe the first three points can be taken into account in our framework. (1) Adding
an agent actions log file explicitly for a given MAS should not be too difficult. (2) While
the developed algorithms are of linear complexity, the whole framework needs to deal with
uncertainty or probabilistic reasoning which can be very expensive. While our approach is
NP-hard in the worst case, we did not encounter any difficulties in the scenarios we have
dealt with. (3) Although IMPACT does not yet have implemented capabilities for dealing
with probabilistic, temporal and spatial reasoning, such extensions have been developed and
are currently being implemented.

Among the advantages of our method are the following:

e QOur method can be more easily extended to do plan repair than the methods above.
Merely Kaminka et al. mentioned the idea of dealing with failure actions.

e The approach we have chosen includes protocol generation in a very intuitive sense
relying on the underlying planner while the cited approaches model agent behavior at an
abstract level which can not be used to derive intended message protocols directly.

e Since ascertaining the intentions and beliefs of the other agents will result in uncertainty
with respect to that information, some powerful means of reasoning under uncertainty are
required for the plan recognition method.
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9.7 Conclusion

We have described a method to support testing of a multi-agent system, based on monitoring
the agents’ message exchange using planning methods. This can be seen as a very useful
debugging tool for detecting coding and design errors. We also presented some soundness
and completeness results for our approach, and touched its complexity.

Our approach works for arbitrary agent systems and can be tailored to any planning
formalism that is able to express the collaborative behavior of the MAS. We have briefly
discussed (and implemented) how to couple a specific planner, DLV®, which is based on the
language K, to a particular MAS platform, viz. IMPACT. A web page for further information
and detailed documentation has been set up (see footnote 43).

There are many extensions to our approach. We mention just some:

(1) Cost based planning: To keep the exposition simple, we have omitted that DLV*’s
capabilities of computing admissible plans and optimal plans over optimistic and secure
plans which could also be exploited in our monitoring approach. For instance, in the Gofish
example we might prefer plans where the customer picks up the package herself, which
is cheaper than sending a truck. Thus, in the realization of our approach, also economic
behavior of agents in a MAS under cost aspects can be easily monitored, such as obedience
to smallest number of message exchanges or least total communication cost.

(2) Dynamic planning: We assumed an a priori chosen collaboration plan for M,
compatibility. This implies C-Plans(P, Mg, n') C C-Plans(P, Moq, 1), for all n' > n > 0.
However, this no longer holds if the plan may be dynamically revised. Checking My,
compatibility then amounts to a new planning problem whose initial states are the states
reached after the actions in M.

(3) At the beginning of monitoring, all potentially interesting plans for the goal are
generated, and they can be cached for later reuse. We have shown the advantages of this
method. However, if a very large number of intended plans exists up front, the method may
become infeasible. In this case, we might just check, similar as above, whether from the
state reached and the actions in M,,,, the goal can be reached.

Investing the above issues is part of ongoing and planned future research.



Chapter 10

Comparison With Related
Works and Systems

In this chapter, we will on the one hand compare our language K¢ against other planning and
action languages and on the other hand compare the proposed logic programming method
for planning against previous logic-based approaches to planning. In more detail, in this
comparison we will only focus on directly related research concerning the following topics:

e action languages,
e related results on planning complexity,

e other logic-based approaches to planning using answer set programming and SAT-
based approaches,

e approaches to conformant planning and planning under incomplete knowledge in gen-
eral, and

e approaches to optimal planning.

10.1 Comparison with Other Action Languages

As stated above the language K proposed here builds on earlier work on action languages
(cf. Section 2.4). We will now give a detailed overview on how those languages are related
to K.

Most importantly, their underlying semantics is not based on knowledge states, so fluents
can not be undefined in any state. As a consequence, totality of fluents cannot be expressed
in any of the languages A, B, and C, as each fluent is implicitly total, and default negation
is not supported. As we have seen, an advantage of representation in K is the possibility
of representing only what we need to know, and of forgetting about superfluous knowledge.
The price for this flexibility is that one has to be aware of what knowledge is needed or
where to apply “totalization” when encoding a special problem.

213
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Furthermore, none of the languages mentioned explicitly supports action cost.**

10.1.0.1 Correspondence to Language A

It is easy to see that the language A [GL93] roughly corresponds to K with complete states
in which

e all rules r are of the form (3.2) of Section 3.1.1 with h(r) # false, post (r) =
pre=(r) = 0, pre(r) C L}, and |pre(r)| = 1, i.e. pre(r) consists of a single action.

e all executability conditions e are of the form (3.3) with pre™(r) = 0 and pre(r) C Ly

e all fluents are inertial and in order to ensure completeness, we add initial totality on
all fluents.

10.1.0.2 Correspondence to Language B

Language B [GL98a] can also be mapped to K by relaxing the restrictions on .4 in also
allowing rules r of the form (3.2) with pre(r) = () additionally, allowing for the formulation
of ramifications.

10.1.0.3 Correspondence to Language Ax

The action language Ax [SB01] is a variation of the language A, developed for incorporat-
ing sensing actions and to support reasoning about conditional plans. Ag provides value,
effect, and executability propositions, which correspond to restrictions of initial state con-
straints, causal rules, and executability conditions in K, respectively, where most noticeably
the post(-)-parts are empty and no default negation occurs. Furthermore, Ax provides
knowledge determining propositions of form a determines f, which intuitively means that
after executing action a, the value of fluent f is known; this corresponds to a conditionalized
form of totalization, which can be expressed easily in K. Using this language, particular
temporal projection problems to the state reached after executing a conditional plan are
considered, namely, whether a fluent (or formula) is known, or whether it is decided, i.e.,
either known to be true or known to be false. For that, a transition-based semantics for Ax
is developed, both in a 2-valued and 3-valued setting. In the latter, states are modeled as
3-valued interpretations in which fluents can be true, false, or unknown. State transitions
are defined in increasingly sophisticated refinements, by taking into account both fluent
values which can definitely be derived from effect propositions and which can possibly be
derived, by an effect proposition whose body is not contradicted by the current state. A
fluent literal is kept in or added to the current state only if there is no danger of a possible
contradiction; in the worst case, the state is emptied out, and all fluents become unknown.

The view of state transitions in Ag, which aims at handling reasoning by cases in
possible worlds, is different from the view in K, where a new knowledge state is determined
just by the sanctioned knowledge about the current state, without considering possible world
extensions. To model this in (an extension of) K, we might complete the knowledge states

44However, to some extent, action costs can be emulated by additive fluents in C+ [GLLTO01, GLL%03] or
functions in PDDL if supported.
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and consider a set of (evolving) knowledge states rather than a single one, and reason about
them. This is beyond the current scope of language K, which is conceived for planning in
terms of reaching goal states rather than for reasoning about actions in general.

10.1.0.4 Correspondence to Language C

The language C [GL98Db] is the action language which is closest to X among those discussed
in Section 2.4. In C not all fluents are automatically inertial — just as in K it must be
explicitly declared if a fluent has the property of being inertial. As in K, this is achieved
by a macro inertial F. which is defined in C as caused F if F after F. whereas in K it
is defined as caused F if not —F after F. Furthermore, C has (like ) a macro default F.
for declaring that a property holds by default. In C, it stands for caused F if F, while in
K, it is defined as caused F if not —F. The difference in macro expansion is due to the
slightly different semantic definition of causation (discussed in Subsection 10.1.0.4 below)
and also due to the lack of default negation in C. In particular, default F. means in C
that F is true without the need of further causal support. Finally, C also provides a way to
specify nondeterministic action effects.

Despite those differences, there is a principal fragment of C action descriptions which
correspond to similar K action descriptions, and allow to semantically embed this fragment
of C efficiently into . Namely, any propositional definite C action description AD¢, i.e, set
of causal rules having only fluent literals in the heads, where rule bodies are conjunctions of
fluent literals is semantically equivalent to the K action description ADy = tri(AD¢) which
contains:

(i) fluent and action declarations, for each fluent symbol f and action symbol a in AD¢,
respectively;

(ii) executable a, for every action symbol a in AD¢, i.e. all actions are executable;
(iii) initially total f, for each fluent symbol f in AD¢;

(iv) a causation rule causedl if not —.by,...,not —.by after H, for every rule
caused 1 if by,...,b, after H in AD¢; and,

(v) a constraint forbidden not f, not —f, for every fluent symbol f in ADc.

The fluent declarations in (i) and executability conditions in (i) are required by the
conventions of K. The statements in (iii) effect C’s exogenous assignment of values to the
fluents in the initial state, which are exempted from causation (but must comply with all
static rules); the legal initial states of ADx and AD¢ coincide. The rewriting of the causation
rules in (iv) serves to emulate C’s notion of causation, while the constraints in (v) enforce
completeness of a state. The mapping tri(-) amounts, apart from minor variations, via
the translation of K to answer set programming (see Chapter 4) to the translation of the
above fragment of language C to answer set programming given in [LT99]. From the results
in [LT99], we thus obtain the following correspondence:

Proposition 10.1. For any complete state s, the legal state transitions (s, A, s') in the plan-
ning domain {§, tric(AD¢)) correspond 1-1 to the causally explained (i.e. possible) transitions
from s to complete state s' in AD¢ executing the actions in A.
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The above translation can be easily generalized to arbitrary definite C action descrip-
tions AD¢, in which bodies of causal rules r : caused f if E after H may be arbi-
trary propositional expressions E. By using disjunctive normal forms £ = E; V ---V E,
and H = H; V---V Hy,, we can easily split up r into an equivalent set of rules r;; :
caused f if E; after H;, i € {1,...,n}, j € {1,...,m}. While this transformation is,
due to disjunctive normal form conversion, exponential in general, we remark that by the
use of auxiliary fluents for labeling subexpressions of E and H in a standard way, one can
polynomially translate any definite C action description into a K action description which is
equivalent modulo the auxiliary fluents. Thus, in summary, planning in C using definite ac-
tion descriptions is naturally and efficiently embeddable into K. We can view this syntactic
class of C as a semantic fragment of K, and any K planning system can be easily utilized
for planning in it as well.

On the other hand, X action descriptions seem not amenable to a simple translation into
C. The reason is a semantic difference between the notion of causation in C and in X, which
is a consequence of a stronger foundedness principle for causation that is implemented in
K, and is in analogy to minimal models versus supported models of a logic program. In ,
only transitions between states are legal which are “foundedly supported” by the respective
causation rules; in more detail, any causation of a fluent must, by starting from uncondi-
tional facts, be derivable by applying causation rules which are recursively founded. On the
other hand, C defines causally explained transitions where supportedness but no minimality
aspects play a role. This is exemplified by the encoding of a default caused f if f. con-
sidered above. In C, the state {f} is causally explained by this rule, while it is not in K: f
is concluded from the assumption of its truth “by default;” using negation as failure, this
is more familiarly expressed in C by not —f. Since C adheres in spirit to supported models
and K to minimal models, encoding K action descriptions in C is obviously more involved:
For instance, expressing transitive closure of a graph is simple in &, while is more involved
in C, which is shown by the example in Section 6.6.1: The two X rules in the example are
not sufficient for describing causally explained state transitions in C, as negative knowledge
has to be given explicitly for instance by adding a rule

default —above(X,Y).

in order to guarantee for causally explained transitions while we can just leave the negative
information open in K. Lee and Lifschitz describe the extension C+ of the action language C
which allows for an intuitive encoding of resources and costs by means of so called “additive
fluents” [LLO1]. By constraining the values of these fluents, admissible planning can be
realized to some extent, but optimization has not been considered in that framework so
far. For a more detailed discussion on new features of the enhanced language C+ [GLLTO1,
GLL%03] such as multi-valued and additive fluents we refer to the respective remarks in
Sections 6.5.1 and 7.1.3 above.

10.1.0.5 Correspondence to Languages STRIPS, ADL, and PDDL

With the above mentioned correspondence to language A in mind, STRIPS [FN71] can anal-
ogously be embedded into K by similar considerations. (Remember that A4 is in fact as
expressive as propositional ADL [Ped89], i.e. an extension of pure STRIPS.) Such an en-
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coding is shown in detail in the proof of Theorem 3.3 in Section 3.3. The extension by
conditional effects like in ADL is straightforward.

The last decade has witnessed a dramatic progress in the variety and performance of
techniques and tools for classical planning. The existence of a de-facto standard modeling
language for classical planning, ppDDL [GHK98], has played a relevant role here. PDDL
significantly differs from the above-mentioned languages in that PDDL stands for a modular
family of languages rather than a single clearly defined language, which is defined by so called
requirements, Any system accepting PDDL might or might not implement these requirements.

Clearly, as mentioned above K is capable of expressing the STRIPS and ADL fragments
of PDDL. Furthermore, K features typing of variables in a comparable way and many other
PDDL requirements of Version 1.2 such as domain axioms, disjunctive preconditions of ac-
tions, quantified preconditions, etc. [GHK 98] can be emulated in K. Arithmetic expression
evaluation in PDDL can to some extent also be emulated in X with the restrictions of DLVF
integer arithmetics. However, compound tasks as defined with the :action-expansions in
PDDL are beyond the scope of K. The techniques proposed by Dix et al. [DKN02a] to encode
Hierarchical Task Network (HTN) Planning in Answer Set Programming might serve as a
starting point here.

We remark that the :open-world and :true-negation requirements in PDDL version
1.2, which however have been removed in the current version (2.1), have a natural represen-
tation in X where the user can flexibly decide whether CWA should be applied or not for a
particular fluent.

Meanwhile, PDDL appears in version 2.1 [FL03] which adds additional levels introducing
for instance durative actions, continuous and/or conditional effects, etc. This is currently
not expressible in K¢ in a straightforward way, and needs to be further investigated.

Still, action languages like K¢ often offer a more flexible framework for modeling actions
and transitions than the strict framework of PDDL; we conceive the rule based, almost natural
language concept behind action languages in order to describe transitions more general and
flexible than the strict operator-based syntax of PDDL (and its predecessors). Furthermore,
incomplete knowledge and nondeterminism are not addressed in the current version of PDDL.
However, one has to bear in mind the different objectives of these languages. Based on ADL,
PDDL originally has been designed as a domain specification language for the International
Planning Competition (IPC). PDDL is conceived to serve as a generic language representing
the features of various special-purpose planners. The further development of the language
is driven by the IPC and extensions are made very cautiously in order to provide a widely
accepted standard. The strict corset of an operator-based STRIPS or PDDL like syntax has
without doubt the advantage of allowing for easier structural analysis of the domain at hand,
wrt. optimizations and planning specific heuristics as opposed to the more general concept
of action languages like I or C.

Remarkably, also steps in the directions of extensions for incomplete initial state specifi-
cations and nondeterminism have been recently made in the last “Workshop on PDDL” held
at the “International Conference on Automated Planning and Scheduling (ICAPS’03)”: For
instance, the language NPDDL [BCLPO03], the input language of the successful MBP [BCPTO01]
planner includes such extensions. Interestingly, NPDDL also includes an extended formalism
for expressing goals specified in a Computation Tree Logic (CTL) [CE82] like manner.
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10.2 Related Results on Planning Complexity

Our results on the complexity of planning in K are related to several results in the planning
literature. First and foremost, planning in STRIPS can be easily emulated in K planning
domains, and thus results for STRIPS planning carry over to respective planning problems in
K, in particular Optimistic Planning, which by the results in [Byl94, ENS95] is PSPACE-
complete.

As for finding secure plans (alias conformant or valid plans), there have been interesting
results in the recent literature. Turner [Tur02] has analyzed in a recent paper the effect
of various assumptions on different planning problems, including conformant planning and
conditional planning under domain representation based on classical propositional logic. In
particular, Turner reports that deciding the existence of a classical (i.e. optimistic) plan
of polynomial length is NP-complete, and NP-hard already for length 1 where actions are
always executable. Furthermore, he reports that deciding the existence of a conformant
(i.e. secure) plan of polynomial length is ¥£-complete, and $£-hard already for length
1. Furthermore, the problem is reported ¥¥-complete if, in our terminology, the planning
domain is proper, and Ef -hard for length 1 in deterministic planning domains. Turner’s
results match our complexity results, announced in [EFLT00a]; this is intuitively sound,
since answer set semantics and classical logic, which underlies ours and his framework,
respectively, have the same computational complexity.

Enrico Giunchiglia et al. [CGT02] considered conformant planning in the action language
C, where concurrent actions, constraints on the action effects, and nondeterminism on both
the initial state and effects of the actions are allowed — all these features are provided in
our language I as well. In their approach they use SAT solvers for computing, in our
terminology, optimistic and secure plans following a two step approach. For this purpose,
transformations of finding optimistic plans and security checking into SAT instances and
QBFs are provided. The same approach is studied in [FG00] for an extension of STRIPS in
which part of the action effects may be nondeterministic. While not explicitly analyzed,
the structures of the QBFs emerging in [FG00, CGT02] reflect our complexity results for
Optimistic Planning and Security Checking.

Haslum and Jonsson [HJ99] showed that conformant planning in a closely related for-
malism, where no plan length is given in the input, is in general EXPSPACE-complete,
which reflects the result of Theorem 3.8. Note that we obtain a proof by a generic reduction
from Turing machines to conformant planning, rather than by a reduction from the univer-
sality problem for regular expressions with exponentiation as in [HJ99]. Rintanen [Rin03]
describes a reduction similar to ours and derives, by further generalizations, complexity
results for planning with partial observability.

From our results on the complexity of planning in the language K, similar complexity re-
sults may be derived for other declarative planning languages, such as STRIPS-like formalisms
as in [Rin99a] and the language A [GL93], or the fragment of C restricted to causation of
literals (cf. [Giu00]), by adaptations of our complexity proofs. The intuitive reason is that
in all these formalisms, state transitions are similar in spirit and have similar complexity
characteristics. In particular, our results on Secure Planning should be easily transferred to
these formalisms by adapting our proofs for the appropriate problem setting.

As for optimal optimistic and secure planning, we are not aware of previous in-depth
complexity investigations in related formalisms, but our results for K¢ may analogously
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map to optimizations wrt. to particular fluents for instance in functional STRIPS [Gef00],
where numerical fluent values are allowed. Note that, however complexity results for finding
optimal plans in nondeterministic domains slightly change in case costs do not only depend
on actions but also on fluent values in the current state. For further details on this topic,
we refer to Section 7.1.4 below, where such extensions for K¢ are discussed.

10.3 Answer Set Planning — Previous Approaches

One of the main targets of this work was defining transformations to logic programming for
planning problems encoded in our action language K.

These transformations allowed for solving planning problems directly be use of existing
answer set solvers such as DLV, GNT, or SMODELS such that the answer sets of the generated
logic programs correspond to plans. This idea is not completely novel; logic programming
and answer set programming in particular has been widely accepted as a useful tool for
solving classical planning problems by means suitable transformations, cf. [Lif02, Bar03].
Some previous approaches for using answer set programming in the area of planning and
more general for reasoning about actions and change shall be shortly reviewed in this section
and compared against our contributions.

First approaches to formalize actions and planning in logic programming date back to
the early 90’s. Action language A has served as a basis for several previous approaches
of encoding reasoning about actions by means of logic programming techniques: Gelfond
and Lifschitz [GL93] expressed the semantics of their language A in terms of answer set
semantics by means of a translation to extended (normal) logic programs with function
symbols, where their translation resembles the Situation Calculus representation of states
by using function res(Action, Situation). This work employs a convenient non-monotonic
formulation of frame axioms using negation as failure, but their translation is rather meant
to justify the semantics of 4 than for solving planning problems as such. Due to the
use of function symbols, this approach is not directly applicable in current Answer Set
Programming systems which only allow for function-free (Datalog) programs, such as DLV.
Although sMODELS allows for limited use of function symbols (cf. [Syr02]), it does not
accept for full, unbound recursion, by imposing domain restriction on any used variable in
order to keep the ground program finite (cf. Section 2.1.5.2). Therefore, the translation
proposed in [GL93] is inapplicable for SMODELS, either. In this context, we remark that
Bonatti [Bon01b] recently proposed subclasses of programs with function symbols, so-called
finitary programs, where ground queries are decidable, even if the universe of the program
is infinite. In [BonOla] also a prototype implementation of this approach is described and
investigating the applicability of this method for particular translations of planning problems
might be worthwhile.

The seminal works by Subrahmanian and Zaniolo [SZ95] first related logic programs
under the answer set semantics to STRIPS-like planning problems, where plans exactly cor-
respond to the answer sets of their logic programming encodings. In these encodings, states
are not encoded by function symbols like in Situation Calculus based encodings, but asso-
ciated with time stamps, i.e. each fluent/action predicate is augmented with an additional
timestamp parameter over a finite time range like in our approach. This idea is borrowed
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from the planning as SAT approach [KS92] and fundamental for our translations. How-
ever, this restricts planning to fixed plan length. We remark that similar ideas for using
time-stamped predicates in Datalog to model states and change have also been proposed by
Lausen and Ludéscher [LL94] in the context of database updates.

Dimopoulos et al. [DNK97] discuss similar encodings and suggest several possible opti-
mizations. These encodings have been further refined and simplified by later works:

For instance, [Nie99] discusses similar encodings for blocks world problems tailored for
SMODELS.

The term “Answer Set Planning” has actually been introduced by Lifschitz et al. [LT99,
Lif99a, Lif99b, EL99, Lif02] who have extended these encodings to handle more complex
planning languages such as action language C.

Finally, Leone et al. [LRS01] have first shown some integrated ad hoc encodings for
conformant planning and simple forms of conditional planning. These encodings can be
considered as a starting point for the general method shown in Section 4.3.5.

We have built upon the above-mentioned work for our basic translation, particularly on
the translations proposed by Lifschitz et al. [LT99, Lif99a] and extended them with respect
to planning under uncertainty, incomplete information, and action costs, adopting useful
concepts of Answer Set Programming such as negation as failure and weak constraints.
In particular, optimal planning by exploiting advanced capabilities of solvers like DLV and
SMODELS has to our knowledge not been addressed in Answer Set Programming based
approaches before. Furthermore, we have discussed how to remedy the restrictions to fixed
plan length under certain circumstances in order to compute shortest plans.

Son and Pontelli [SP02] propose to translate action language B to prioritized default
theory and answer set programming. They allow to express preferences between actions and
rules at the object level in an interpreter, but not as a part of the input language. However,
these preferences are orthogonal to our approach as they model qualitative preferences as
opposed to our overall cost-based value function for plans/trajectories.

We remark here that also Hierarchical Task Network (HTN) planning has recently been
formulated in Answer Set Programming by Dix et al. [DKN02a] which, however, has not
been covered here.

10.4 Planning as Satisfiability

Closely related to our approach and preliminary to it is the method of Planning as Satis-
fiability introduced by Kautz and Selman [KS92]. There, (STRIPS-like) planning problems
are translated to SAT instances, where also models correspond to plans, similar to the An-
swer Set Programming approach. Improvements and comparison against classical planning
techniques have been suggested by Brafman [Bra0l].

The Blackbox planning system [KS99], or CPLAN [Giu00, FG00, CGT02] mark further
advances in the Planning as SAT paradigm. CPLAN even deals with conformant planning
in nondeterministic domains. While direct encodings of conformant planning problems to
SAT in polynomial time are infeasible (cf. Section 3.3), they use an interleaved approach
similar to DLVX, where guessing the plan and checking security are interleaved by separate
calls to a SAT-solver.
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Also CCALC [McC99al, the causal calculator, which allows for optimistic planning and
also more general reasoning about actions in the action language C+, relies on reductions to
SAT, via the “detour” of translations to causal theories [MT97, MT98]. As mentioned above,
by the features of the language C+ admissible planning can be performed and CCALC is
also capable of iteratively computing shortest plans. Optimization of arbitrary criteria is
not possible within CCALC. and conformant planning is not yet supported.

The general restriction to bounded plan length applies to Planning as Satisfiability ap-
proaches as well, in that underlying SAT solvers can also only deal with a finite structures.

10.5 Planning under Incomplete Knowledge

Planning under incomplete knowledge has been widely investigated in the AI literature.
Most works extend algorithms/systems for classical planning, rather than using deduc-
tion techniques for solving planning tasks as proposed in our work. The systems Buri-
dan [KHW95], UDTPOP [Peo98], SGP [WAS98], CNLP [PS92], GPT [BG00], CASSAN-
DRA [PC96], and Conformant-FF[BHO03] fall in this class. In particular, Buridan, UDTPOP,
GPT and SGP can solve secure planning (also called conformant planning), like DLY*. On
the other hand, the systems CNLP and CASSANDRA deal with conditional planning (where
the sequence of actions to be executed depends on dynamic conditions). While extension to
conditional planning are an interesting perspective also for our future work, in this compari-
son we want to focus on systems and approaches for conformant planning. Here, particularly
SGP, GPT and Conformant-FF, as the most recent of those systems should be mentioned:

SGP is an extension of the Graphplan algorithm [BF97]. Its input language is an ex-
tension of PDDL. Nondeterminism is allowed only in the initial state. By definition, the
Graphplan algorithm allows for parallel actions, in particular, parallelizes serializable ac-
tions automatically. Furthermore, SGP can also deal with sensing actions.

GPT on the other hand employs heuristic search techniques like A* to search the be-
lief space. Its input language is also an extension of PDDL. Nondeterminism is allowed in
the initial state as well as for action effects. GPT supports sequential planning and calcu-
lates plans of minimal length. The system offers apart from conformant planning several
notable features such as (conditional) planning under partial observability, or probabilistic
uncertainty.

A recent new conformant planner is conformant-FF [BH03] by Brafman and Hoffmann.
In the current version, it does not allow for nondeterminism apart from the initial state,
but the authors claim that the extension is straight-forward. They report that checking
security is co-NP in their formalism, which also reflects our complexity results wrt. their
less expressible ADL-based input language. This allows them to employ SAT methods for
security checking which they interleave with a classical planning algorithm. Here, they also
rely on heuristic search methods, building up on the successful FF planner [HNO1].

Recent works propose the use of automated reasoning techniques for planning under
incomplete knowledge. The above-mentioned CPLAN falls in this class. In [Rin99a] a tech-
nique for encoding conditional planning problems in terms of 2-QBF formulae is proposed.
The work in [FPROO0] proposes a technique based on regression for solving secure planning
problems in the framework of the Situation Calculus, and presents a Prolog implementation
of such a technique. In [MT98], sufficient syntactic conditions ensuring security of every
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(optimistic) plan are singled out. While sharing their logic-based nature, our work presented
differs considerably from such proposals, since it is based on a different formalism.

Over the last years, especially methods from the field of model-checking have success-
fully been applied to classical planning and also planning under incomplete knowledge.
The model checking paradigm exploits symbolic Boolean function representation techniques
such as Binary Decision Diagrams [Bry86] for compactly representing belief states and
transitions between them. Two successful planners in this area provide similar features:
MBP [BCPT01] and UMOP [JV00], which both accept nondeterministic extensions of PDDL
as input language. These planners allow for strong (conformant planning) planning, strong
cyclic planning (conditional planning with loop-constructs) and optimistic planning. MBP
is the successor of the CMBP planner mentioned in our experiments (cf. Chapter 8). It ex-
tends CMBP by allowing for conditional planning and furthermore offers a very expressive
goal description language based on Computation Tree Logic (CTL) [CE82]. UMOP also
implements strong cyclic adversarial planning and optimistic adversarial planning [JVBO01].
Adversarial Planning takes additional environmental actions into account, which can be
seen as exogenous, concurrent actions of other agents in a multi-agent environment,.

10.6 Planning with Action Costs

The PYRRHUS system [WH94] is an extension of UCPOP planning which allows for optimal
planning with resources and durations. Domain-dependent knowledge can be added to direct
the heuristic search. A “utility model” has to be defined for a planning problem which can be
used to express an optimization function. This system supports a language extension of ADL.
The algorithm is a synthesis of branch-and-bound optimization with a least-commitment,
plan-space planner.

Other approaches based on heuristic search include the use of an A* strategy together
with action costs in the heuristics [EPM96] and work by Refanidis and Vlahavas who use
multi-criteria heuristics to obtain near-optimal plans, considering multiple criteria apart
from plan length alone [RV01]. However, the described heuristics is not fully admissible,
and only guarantees optimal plans under certain restrictions [HGO0Q].

In fact, most heuristic state-space planners are not able to guarantee optimality. Whereas
strict cost and also resource bounds (admissible planning in our terminology) is expressible
in all planners which allow for numeric domain axioms in some form, systems which actually
compute optimal plans are rare since many planners only aim at finding “fairly good” solu-
tions. This applies to most planners capable of expressing numeric functions in PDDL, such
as LPG [GSS03], Sapa [DKO03], Metric-FF [Hof03], and MIPS [Ede03], which participated in
the numeric track of the 3rd International Planning Competition [ea02]. All these planners
are discussed in detail in an upcoming special issue of the “Journal of Artificial Intelligence
Research (JAIR)”.

A powerful approach has been suggested by Nareyek, who describes planning with re-
sources as a structural constraint satisfaction problem (SCSP), and then solves that problem
by local search combined with global control. However, this work promotes the inclusion of
domain-dependent knowledge; the general problem has an unlimited search space, and no
declarative high-level language is provided [Nar01].

Among other related approaches, Kautz and Walser generalize the “Planning as Satisfia-
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bility” approach to use integer optimization techniques for encoding optimal planning under
resource production/consumption [KW99]. First, they recall that integer logic programming
generalizes SAT, as a SAT formula can be translated to a system of inequalities. Second,
they extend effects and preconditions of actions similar to a STRIPS extension proposed by
Kohler for modeling resource consumption/production [Koe98]. Kautz and Walser allow
for arbitrary optimization functions but they use a non-declarative, low-level representation
based on the algebraic modeling language AMPL [FGK93]. They mention that Kohler’s
STRIPS-like formalization can be mapped to their approach. However, they can not express
nondeterminism or incomplete knowledge. There is an implementation of this approach
called ILPPLAN, which uses the AMPL package.*> Although this approach seems to be
flexible enough to express optimization problems like the ones we have shown, AMPL is not
freely available, so we could not compare the system with our approach experimentally.

45<URL:http://m.m.ampl.com/))






Chapter 11

Conclusions and Outlook

The main results of this thesis are twofold. On the one hand, we showed the feasibility of
building a planning system with advanced features based on Answer Set Programming,
an evolving paradigm in logic programming. On the other hand, when looking at existing
planning languages, we came to the conclusion that, especially for planning with incomplete
information and nondeterminism, logic programming features are valuable within action
languages.

To this end, we have come up with the novel action language K°. It includes features
borrowed from logic programming such as a distinction between “negation as failure” and
“classical” negation of state variables (i.e. fluents). The benefit of these additional language
features has been explored by means of illustrative examples from several well-known but
also novel planning domains, where our language allows for a concise declarative formulation
of such problems.

We have shown how to build a planning system based on existing Answer Set Pro-
gramming solvers by reasonable transformations of planning problems to logic programs.
Planning in general is PSPACE-hard, even for STRIPS-like domains. However, when as-
suming restrictions such as constant upper bounds for the plan length which may be safely
assumed in many domains, we showed that several planning problems can be decently solved
employing such translations.

In this context, our approach may be seen in close relation to “Planning as Satisfiability”
(coined by Kautz and Selman), where planning problems are transformed to propositional
satisfiability problems which can be solved by existing, efficient SAT checkers. SAT solvers
had been developed already for years before the first ASP solvers appeared and clearly have
the advantage of long-term fundamental research on algorithms and heuristics. Nevertheless,
ASP solvers such as DLV and SMODELS can already compete performance-wise on particular
problems, last but not least profiting from the heuristics developed by the SAT community
(cf. [Sim00, Fab02]). ASP solvers are steadily improving and often have the edge in terms
of knowledge representation and ease of prototyping: Action languages such as K¢ or C
describe state transitions by causation rules and our translations to ASP, which reflect this
rule-based structure per se, seem more intuitive than translations to SAT here.

In analogy to the term “Planning as Satisfiability” our approach may well be conceived
as “Planning as Answer Set Programming” or even “Answer Set Programming as Planning”,
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to some extent.

Whereas our translations of classical (optimistic) planning build up on previous ap-
proaches, the translations introduced for conformant (secure) planning problems and opti-
mal planning are completely novel and have — to our knowledge — not been tackled with
logic programming techniques so far. Furthermore, we have shown that such translations
are not feasible by reductions to SAT. Moreover, the general method we have deployed in
this context can be applied to a variety of other hard problems as well.

Besides, we have shown the applicability of our method for modeling a problem in the
area of design and monitoring of multi-agent-systems. We remark that the newly introduced
monitoring approach demonstrated on the basis of this application may be generalized to
other planning frameworks as well.

Outlook and Open Issues

The research in Action Languages, Planning and Answer Set Programming is steadily evolv-
ing and there is a number of interesting parallel research directions in these fields of which we
have only explored a few in this work. For instance, we have pinpointed to several possible
language extensions in Chapter 7. Particularly, we mention dynamic (i.e. state-dependent)
action costs. It seems that there is no agreement yet upon how to deal with the combination
of numeric costs of a plan and uncertainty in the planning community. An open question to
be answered is the following: Which plans are interesting in this context? On the one hand,
we can employ a cautious view of expecting worst-case scenarios, where everything goes
wrong. However, also different measures such as plans which have least average costs or any
other cost aggregation might be interesting in specific scenarios and application domains.

Concerning incomplete information and nondeterminism, we have only considered con-
formant planning in the course of this work, i.e., plans which reach the goal under any
contingencies. This is quasi computing a plan which may be executed “blindfold”, with
no observability. However, whereas such plans do not always exist, there may be con-
ditional solutions, where the agent branches on results of current observations. Apart
from that, exogenous, unforeseen events might change the environment during plan exe-
cution, invalidating pre-computed plans. In this context, we think that considering meth-
ods of diagnosis [EFLP99, EFLT00b], belief revision [EFST01b] and knowledge base up-
dates [EFST0la, EFST02], which have already been investigated in the context of Answer
Set Programming, might be worthwhile. Combined with our research in Answer Set Plan-
ning, we believe that these methods can be exploited in a general framework for monitoring,
reactive planning, and re-planning. Here, our monitoring approach discussed in Chapter 9
is just a starting point.

As we have seen, there may also be further potential in fundamental research on Answer
Set Programming itself. We conceive our proposed method for integrating separate programs
as an initial step for further research on automatic integration of “guess” and “check”
encodings which exploit the full potential of disjunctive logic programming: Integrated
encodings like those we have considered are infeasible in less expressive frameworks such as
propositional SAT solving or normal logic programming. However, while ad hoc encodings
for specific problems have already been available, general methods in this direction were still
missing. Several issues remain for further work. Our rewriting method currently applies to
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propositional programs. Thus, before transformation, the program should be instantiated.
A more efficient extension of the method to non-ground programs is needed, as well as further
improvements to the current transformations. Experimental results suggest that structural
analysis of the “guess” and “check” programs might be valuable for this purpose. A further
issue are alternative transformations, possibly tailored for certain classes of programs. We
strongly believe that there is room for further optimizations and improvements both on the
translation and for the underlying DLV engine.
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Appendix A

Encodings

A.1 Quantified Boolean Formulae

This appendix contains the full integrated encoding for solving a sample QBF with one
quantifier alternation as sketched in Section 4.2.5.1. Consider the following QBF:

Jzox1Vyoy1 (—zo A o) V (Yo A =0) V (y1 Azo A —yo) V (Yo A ~z1 A —yo)

This QBF evaluates to true; for the assignments zop = 0,21 = 0 and 29 = 0,z; = 1, the
subformula Vyoy; (- - - ) is a tautology.

The integrated program QBF . = QBF ..U QBF, , under use of the optimized
transformation trop() of tr as discussed is shown below with optimization (OPT,,0q4)
and (OPTg.p) applied. It has two answer sets, namely S; = {x0,-x1,...,} and Sy =
{x0,x1,...,}.

W4k’ GUESS PART
x0 v -x0. x1 v -x1.

%%%% REWRITTEN CHECK PART
%% 1. Create dynamically the facts for the program

=

yo v -y0.
1lit(h,"y0",1). 1lit(h,"-y0",1).
atom(nyoll s Ilyon) . atom("—yO" , l|y0l|) .

=

yl v -yl.
lit(h,"y1",2). lit(h,"-y1",2).
atom("y1","y1"). atom("-yi","y1").

% o:
%o
%ot
%ot

-y0, -x0.
-x0.
-y0, yi, x0.
-y0, yO, -x1.

{ I N A |
~
o

%% 2. Optimized Meta-interpreter
%% 2.1 —- program dependent part

notok :- ninS("y0"),ninS("-y0").

notok :- ninS("y1"),ninS("-y1").
notok :- inS("-y0"), -x0.

247
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notok :- inS("y0"),-x0.
notok :— inS("y1"),inS("-y0"),x0.
notok :- inS("y0"),inS("-yO0"),-x1.

%h 2.2 —- fixed rules

% Iterate only over rules which contain L in the head:
rule(L,R) :- 1lit(h,L,R), not 1lit(p,L,R), mnot lit(m,L,R).
ruleBefore(L,R) :- rule(L,R), rule(L,R1), R1 < R.
ruleAfter(L,R) :- rule(L,R), rule(L,R1), R < R1.
ruleBetween(L,R1,R2) :- rule(L,R1), rule(L,R2), rule(L,R3), R1 < R3, R3 < R2.
firstRule(L,R) :- rule(L,R), not ruleBefore(L,R).
lastRule(L,R) :- rule(L,R), mnot ruleAfter(L,R).
nextRule(L,R1,R2) :- rule(L,R1), rule(L,R2), R1 < R2, not ruleBetween(L,R1,R2).

==

hlits are only those from active rules:
hlit(L) :- rule(L,R).

inS(L) v ninS(L) :- hlit(L).

ninS(L) :- 1lit(HPN,L,R), not hlit(L).

Consistency check could be skipped for programs without class. negation:
notok :- inS(L), inS(NL), L != NL, atom(L,A), atom(NL,A).

=

dep(L,L1) :- rule(L,R),lit(p,L1,R),inS(L1), inS(L).

dep(L,L2) :- rule(L,R),lit(p,L1,R),dep(L1,L2),inS(L).

cyclic :- dep(L,L1), dep(L1,L).

phi(L,L1) v phi(L1,L) :- dep(L,L1), dep(L1,L), L < L1, cyclic.
phi(L,L2) :- phi(L,L1),phi(L1,L2), cyclic.

failsToProve(L,R) :- rule(L,R), 1lit(p,L1,R), ninS(L1).
failsToProve(L,R) :- rule(L,R), lit(n,L1,R), inS(L1).
failsToProve(L,R) :- rule(L,R), rule(L1,R), inS(L1), L1 != L.
failsToProve(L,R) :- 1lit(p,L1,R), rule(L,R), phi(L1,L), cyclic.
allFailUpto(L,R) :- failsToProve(L,R), firstRule(L,R).
allFailUpto(L,R1) :- failsToProve(L,R1), allFailUpto(L,R), nextRule(L,R,R1).

notok :- allFailUpto(L,R), lastRule(L,R), inS(L).
phi(L,L1) :- notok, hlit(L), hlit(L1), cyclic.
inS(L) := notok, hlit(L).

ninS(L) := notok, hlit(L).

%h% 3. constraint
:— not notok.

A.2 lp (PQBridge)

This Appendix contains the full translation 1Ip(PgBridge) from Section 3.2.3.

%

%%%%h Step 1 - Background Knowledge YYAAAYA
person(joe). person(jack). person(william). person(averell).
walk(joe,1). walk(jack,2). walk(william,5). walk(averell,10).
side(here). side(across).

otherSide(X,Y) :- side(X), side(Y), X != Y.

WhhhAhhA IS Step 2 - Auxiliary Predicates %%AA%ANA%AA

time(0). time(1). time(2). time(3).

time(4). time(5). time(6). time(7).

nexttime(0,1). nexttime(1,2). nexttime(2,3). nexttime(3,4).
nexttime(4,5). nexttime(5,6). nexttime(6,7).

%

L hhhhhhh%h Step 3 - Causation Rules %%%% YA

% nonexecutable takeLamp(X) if hasLamp(X).
:- hasLamp(X,TO), takeLamp(X,TO), nexttime(TO,T1).
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% caused at(X,S1) after crossTogether(X,Y), at(X,S), otherSide(S,S1)
at(X,S1,T1) :- person(X), side(S1), crossTogether(X,Y,TO),
at(X,S,T0), otherSide(S,S1), nexttime(T0,T1).

% caused at(Y,S1) after crossTogether(X,Y), at(Y,S), otherSide(S,S1)
at(Y,S1,T1) :- person(Y), side(S1), crossTogether(X,Y,TO),
at(Y,S,TO), otherSide(S,S1), nexttime(TO,T1).

% caused -at(X,S) after crossTogether(X,Y), at(X,S).
-at(X,S,T1) :- person(X), side(S), crossTogether(X,Y,T0), at(X,S,TO),
nexttime (TO,T1) .

% caused -at(Y,S) after crossTogether(X,Y), at(Y,S).
-at(Y,S,T1) :- person(Y), side(S), crossTogether(X,Y,T0), at(Y,S,TO),
nexttime (TO,T1).

% caused at(X,S1) after cross(X), at(X,S), otherSide(S,S1).
at(X,51,T1) :- person(X), side(S1), cross(X,T0), at(X,S,TO), otherSide(S,S1),
nexttime (TO,T1) .

% caused -at(X,S) after cross(X), at(X,S).
-at(X,S,T1) :- person(X), side(S), cross(X,T0), at(X,S,TO), nexttime(TO,T1).

% caused hasLamp(X) after takeLamp(X).
hasLamp(X,T1) :- person(X), takeLamp(X,TO), nexttime(TO,T1).

% caused -hasLamp(X) after takeLamp(Y), hasLamp(X), X != Y.
-hasLamp (X,T1) :- person(X), takeLamp(Y,TO), hasLamp(X,T0), X != Y,
nexttime (TO,T1).

% inertial at(X,S).

at(X,5,T1) :- not -at(X,S,T1), person(X), side(S), person(X), side(S), at(X,S,TO0),
nexttime(TO,T1).

% inertial hasLamp(X).

hasLamp(X,T1) :- not -hasLamp(X,T1), person(X), person(X), hasLamp(X,TO),
nexttime (TO,T1).

% noConcurrency.

:- cross(X2,T0), cross(X1,TO0), X2 != X1.

:= cross(X2,T0), crossTogether (X4, X3, TO).

:= cross(X2,T0), takeLamp(X3, TO).

:= crossTogether(X4,X2,T0), crossTogether(X3,X1,TO), X4 != X3.
:— crossTogether(X4,X2,T0), crossTogether(X3,X1,TO), X2 != X1.
:~ crossTogether(X4,X2,TO), takeLamp(X5,TO).

:~ takeLamp(X2,TO), takeLamp(X1,TO), X2 != X1.

%%%% Step 4 - Executability Conditions %%%A%%%%%

% executable crossTogether(X,Y) if hasLamp(X), at(X,S), at(Y,S).
crossTogether(X,Y,T0) v -crossTogether(X,Y,TO) :-
hasLamp(X,T0), at(X,S,T0), at(Y,S,TO),
walk(X,WX), walk(Y,WY), X =Y,
WX <= WY,next (TO,T1).
% executable crossTogether(X,Y) if hasLamp(Y), at(X,S), at(Y,S).
crossTogether(X,Y,T0) v -crossTogether(X,Y,T0) :-
hasLamp(Y,T0), at(X,S,T0), at(Y,S,T0),
walk(X,WX), walk(Y,WY), X !=Y,
WX <= WY,next(TO,T1).
3 executable cross(X) if hasLamp(X).
cross(X,T0) v —-cross(X,TO) :- hasLamp(X,TO), walk(X,WX), next(TO,T1).

% executable takeLamp(X) if hasLamp(Y), at(X,S), at(Y,S).
takeLamp (X,TO) v -takeLamp(X,TO) :- hasLamp(Y,TO), at(X,S,TO), at(Y,S,TO),
person(X), next(T0,T1).
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Whhhhhhhhhh Step 5 - Initial State Constraints %%%

% caused at(X,here).
at(X,here,0) :- person(X), side(here), time(0).

% caused hasLamp(joe).
hasLamp(joe,0) :- person(joe), time(0).

Wt YYYYAA

%%h Step 6 — Goal Query %%hh%%h

% goal: at(joe, across), at(jack, across),

% at(william, across), at(averell,across)? (7)

goal :- at(joe,across,7), at(jack,across,7),
at(william,across,7), at(averell,across,7).

:— not goal.

WhhAhLAAL%LYG Step 7 — Action Costs ALAAALALLAS
% cross(X) requires walk(X,WX) costs WX.

costs_cross(X,T,WX) :- cross(X,T), walk(X,WX).
:” costs_cross(X,T,WX), 0 < WX. [WX:1]

% crossTogether (X,Y) requires walk(X,WX), walk(Y,WY), X !=1Y,

YA WX <= WY costs WY.

costs_crossTogether (X,Y,T,WY) :- crossTogether(X,Y,T), walk(X,WX),
walk(Y,WY), X !'= Y, WX <= WY.

~ costs_crossTogether(X,Y,T,WY), 0 < WY. [WY:1]
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Appendix B

Error Messages in DLVA

In the following, we will explain the most important error messages and warnings when
calling DLV® which are partly undocumented on the DLV web-site [FP96]. Since DLV is a
front-end of the underlying DLV system, we refer to the DLV-manual [FP96] for other error
messages that are not directly related to the planning front-end.

B.1 Warnings:

In the following some warnings are described which do not cause DLVX to terminate but
should serve to issue possibly unexpected behavior of the system to the user:

Argument to -planlength=<n> must be an integer between ...

Argument to -plancache=<n> must be an integer between ...

Argument to -planminactions=<n> must be an integer between ...

Argument to -planmaxactions=<n> must be an integer between ...

0 and 999999999 - ignored.

One of these warnings is displayed if the user gives a wrong argument, e.g. a non-positive in-
teger, to one of the command-line options -planlength, -plancache, -planminactions,
or -planmaxactions. For -planlength either the plan length given in the input is taken
or the default 0. -planlength defaults to 10000 in the current version of DLVX.

-FPsoundcheck Ignored - Implemented checks are 1 and 2.

-FPcompletecheck Ignored - Implemented checks are 1 and 2.

-FPcheck Ignored - Implemented checks are 1 and 2.

One of these warnings is displayed if the user gives a wrong argument for command-line
options -FPcheck, -FPsoundcheck or -FPcompletecheck. -FPcheck takes default value 1
in case.

Warning: Background knowledge is either unstratified or includes

disjunction.
Despite our claim that background knowledge IT must have a unique answer set, in DLVX
arbitrary DLV programs bk, ..., bk, are allowed. However, DLVX throws a warning whenever

IT is not stratified or contains disjunctive rules.
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Warning: No plan length given. Plan length defaults to zero.

DLVX can only plan for given plan length. In case the user neither sets plan length with
option —-planlength nor specifies a goal query without concluding plan length in parentheses
in the input the plan length defaults to 0, but the above warning is displayed.

Warning: #maxint is smaller than plan length.

This warning is displayed in case the user uses command-line option -N=n to specify an
integer limit and n is smaller than the planlength specified by either command-line or in
the input. Such a situation might in some special cases cause unexpected due to the current
implementation of DLV’s integer arithmetic.

Warning: The domain is probably not mux-stratified, secure check

might not work correctly.

As mentioned above, whenever secure planning is chosen, DLV® performs a check, whether
the planning domain at hand is mux-stratified wrt. all mux-pairs of rules which contain
contradictory literals in the after-parts. This warning is displayed, whenever this check
fails. Since the domain might still be false-committed or serial, the implemented checks
might work as expected, but it can not be guaranteed (cf. Sections 4.3.4.1 and 4.3.4.2 for a
detailed discussion).

Warning: goal: <new goal> replaces: <old goal>

Multiple goals are not seen as a disjunction or conjunction of different goals: In case there
is more than one goal : section in the input, only the last goal query in the last input file
is taken. So, whenever more than one goal query is specified in the input, this warning is
displayed to inform the user which is the actual goal which DLVX tries to achieve.

B.2 Errors:

The following errors in either input or command-line are unrecoverable and cause the system
to terminate immediately. The following error messages might occur:

-planminactions: Minimum number of actions must be less than

or equal to maximum number of actions per time.

The user has specified command-line options -planminactions=n and -planmaxactions=m
with values n > m.

Background knowledge must not contain weak constraints.

Background knowledge must not contain aggregates.

In the current version we do not allow the user to use weak constraints or aggregates in the
background knowledge, since, in particular weak constraints might conflict with the rules
emerging from our translation.

Predicate names used in the background knowledge can not be used

as fluent/action names.

If you use a predicate name in a fluent/action declaration, the same predicate name must
not have been used in the background knowledge already, since this might cause conflict in
the translation to Answer Set Programming,.



B.2. ERRORS: 253

Error while translating declaration: <declaration>

Error while translating rule: <rule/ezecutability condition>

A general error while translating a planning input file, e.g. an unsafe rule. Since DLVF
translates the input rule by rule, some errors might not be detected until translation but
will be detected by the core DLV parser upon rule generation of the corresponding DLP
rule(s). This message usually goes with a more specific error description from the core DLV
parser.

Only variables allowed in action/fluent declaration.
In non-propositional action/fluent declarations all of arguments of p(Xi,...,X,) in the
declaration of the form (3.1) from Section 3.1.1 must be variables.

Costs not allowed for fluents.
The user has specified a costs-part in a fluent declaration.

Action costs should be ’time’, a number, or a variable.
The user has specified a non-integer constant as action costs in the costs-part in an action
declaration.

Action/Fluent name already in use.
The same fluent/action can not be defined twice.

No dynamic rules allowed in initial section.
In the initially-section neither executability conditions nor rules with a non-empty after-
part are allowed.

Actions must not be used in the if-part of causation rules.
There is an action literal occurring in the if-part of some rule.

Empty rules not allowed.

An empty rule like “caused.” or “caused false.”

is not allowed.

Only fluents can be caused.
A causation rule with a type literal or action in the head has been detected. This maybe
hints at a typo.

No after part allowed in nonexecutable statements.
The nonexecutable macro does not allow for an after-part.

No after part allowed in executable statements.
Executability conditions do not allow for an after-part.

Negation as failure not allowed for A in rule:
nonexecutable A if B.

Rules of the form “nonexecutable not ...”

are not allowed.

Only actions allowed for A in rule:
nonexecutable A if B.

A statement “nonexecutable X ...
detected. This maybe hints at a typo.

” where X is a type literal or fluent literal has been

Only actions allowed for A in rule:
executable A if B.
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A statement “executable X ...” where X is a type literal or fluent literal has been detected.
This maybe hints at a typo.

Negation as failure not allowed for A in rule:
inertial A if B after C.

Rules of the form “inertial not ...”

are not allowed.

Only fluents allowed for A in rule:

total A if B.

A total statement with a type literal or action in the head has been detected. This maybe
hints at a typo.

True negation not allowed for A in rule:
total A if B after C.
Rules of the form “total —f ...” are not allowed.

Negation as failure not allowed for A in rule:
default A.
Rules of the form “default not ...” are not allowed.

number outside of given integer range.
This error occurs, if command-line option -N=n to specify an integer limit has been used
and an integer constant greater than n occurs in the input.

Keyword ’time’ not allowed here.
time is a fixed keyword in K¢ and must not be used anywhere but in the costs or where-part
of action declarations.

No goal query has been specified.
There has to be at least one goal: statement in one of the input files.

Only fluent literals allowed in planning goal queries. A goal query may only
consist of a comma-separated list of (possibly default-negated) fluent literals. Actions or
type literals are not allowed. This maybe hints at a typo.

Goal query is not safe: <goal>
This error indicates that the last goal specified is not safe, i.e. the user has used variables
in a default negated goal literal which are not bound in a positive literal.
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