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Neurosteroids (NS) are steroids that are newly synthesized from cholesterol 

and are present in the nervous system even after removal of peripheral 

steroidogenic gland. Neuroactive steroids are active on neural tissue while 

neuroinactive steroids are synthesized in brain but are inactive on neural 

tissue 1-3.  Occurring as unconjugated steroids, sulfated esters and fatty acid 

esters of steroids, they are involved in the control of metabolic, behavioral, 

and psychical processes including cognition, stress, anxiety, sleep etc.4,5,1.  

Examples of known neurosteroids include progesterone (PROG), 

pregnenolone (PREG), pregnenolone sulfate (PREG-S), 

dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), 

allopregnanolone (AP), tetrahydrodeoxycorticosterone (THDOC) etc 6,7. 4’ 

chlorodiazepam (4CD) not a NS in its own right, increases the production of 

NS by acting through mitochondrial diazepam binding inhibitor receptor 

complex (MDRC)8. 

In the last few decades a lot of emphasis has been laid on the role of NS in 

the functioning of the nervous system. They have been implicated in various 

functions in the brain; notable among which are their role in 

neuroprotection, reinforcement of long term memory, in active avoidance 

behavior and learning. Previous workers have noticed a general trend toward 

decreased levels of PREG-S, DHEA-S, PROG, and AP in Alzheimer’s disease 

patients’ brain3,9. DHEA, DHEA-S, androstenedione, testosterone, 

dihydrotestosterone and aldosterone have been correlated with improvement 

of memory retention in foot-shock active avoidance training. PREG-S and 

DHEA-S were reported to facilitate memory and AP was shown to possess 

rewarding properties. As little as 150 molecules of PREG-S significantly 

enhance post-training memory processes when injected into the amygdale of 

rats1,10-14. The effects of NS though, are not explained solely on the basis of 

intracellular steroid receptors, it is now well recognized that NS can mediate 

their effects through genomic mechanisms, through the agency of steroid 

receptors and through nongenomic mechanisms through GABAA and several 

other receptors. NS bind to a specific site on GABAA receptor complex- 

distinct from benzodiazepine, barbiturate or convulsant recognition site. 
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Besides GABAA the target receptors of NS include nicotinic and muscarinic 

acetylcholine, σ, NMDA, serotonergic, kainate, glycine, neuropeptide 

receptors, voltage gated Ca2+ channel, Microtubule-associated protein 2 
3,6,15-25

NS are now being proven to have a definite role in the antioxidant defenses 

of the brain. PROG has been indicated to have an inhibitory action on lipid 

peroxidation.  

DHEA and β estradiol pretreatment reduce DNA damage induced by 

oxidative insult. Neuroactive steroids protect retinal cells from oxidative 

stress, and this effect is mediated by σ1 receptors. Probably an in-brain 

oxidative stress-related pathway exists, which is closely related to NS 

biosynthesis 26,27. 

Lindane, a gamma isomer of 1,2,3,4,5,6-hexchlorocyclohexane (γ-HCH) is an 

organochlorine pesticide used extensively in agriculture. In acute poisoning 

neurobehavioural effects like memory impairment, irritability, and 

aggression have already been noted for lindane. Lindane has effects on long-

term potentiation (LTP) in the hippocampus. It also interferes with the ability 

of avoidance response with a single dose in rats 28-30. 

Lindane also reportedly influences the metabolism of pregnenolone (PREG) 

and progesterone (PROG) in mice ovaries. It inhibits the conversion of 

cholesterol to PREG by inhibiting the enzyme cytochrome P450 side chain 

cleavage (P450scc), the rate limiting step in NS biosynthesis. It has also 

been claimed that lindane inhibits the activity of steroidogenic acute 

regulatory (StAR) protein, which mediates an important step in hormone-

regulated steroidogenesis, the intramitochondrial transfer of cholesterol to 

the P450scc enzyme31,32. Lindane has also been shown to be a strong 

oxidant causing free radical generation in tissues including brain through 

lipid peroxidation 33,34. 
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Thus, the anti-amnestic, neuroprotective and antioxidant properties of the 

several NS make them a strong contender to reverse the neurobehavioural 

effects of lindane. It is also a possibility that oxidative stress may have a 

significant role to play in the same. With these lacunae in the literature 

covering this aspect of effect of NS the present research was designed to 

estimate the effect of PROG, PREG-S and 4CD on lindane induced changes 

in cognition.  
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Neurosteroids  
Neurosteroids (NS) are defined as steroids that are newly synthesized from 

cholesterol or another early precursor in the nervous system. They are 

present in nervous system even after removal of peripheral steroidogenic 

glands1,2. NS can be active or inactive depending upon their action on the 

nervous system6. Neuroactive steroids are active on neural tissue and may 

be synthesized in brain or in endocrine glands. Neuroinactive steroids are 

synthesized in brain and are inactive on neural tissue3.  The term NS should 

not include all the steroid metabolites formed from circulating hormones 

within the nervous system. Androgens, estrogens and glucocorticoids are 

classically excluded from the definition as they disappear from the brain 

after gonadectomy and adrenalectomy35. NS occur in the nervous system as 

unconjugated steroids, sulfated esters of steroids or fatty acid esters of 

steroids4. These various forms of steroids are involved in the control of 

metabolic, behavioral and psychical processes including cognition, stress, 

anxiety, sleep etc5,1.  Various examples of known NS include progesterone 

(PROG), pregnenolone (PREG), pregnenolone sulfate (PREG-S), 

dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), 

allopregnanolone (AP), tetrahydrodeoxycorticosterone (THDOC) etc. These 

NS have been described to have varying effects on the nervous system and 

these are mediated through several mechanisms. Besides their effect at 

transcriptional level, NS may act through membrane receptors like gamma-

aminobutyric acid (GABAA), nicotininc, muscarinic, N-methyl-D-aspartate 

(NMDA), sigma (σ), kainate, glycine, serotonergic and neuropeptide 

receptors. They also afford neuroprotection and induce neurite outgrowth, 

dendritic spines and synaptogenesis36,3.  
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Biosynthesis of neurosteroids 

The first step in the biosynthesis of NS involves the conversion of cholesterol 

to PREG. This step is the rate limiting step and is catalysed by the enzyme 

cytochrome P450 side-chain-cleavage (P450scc). The enzyme P450scc is 

found in steroidogenic organs, placenta, primitive gut and the brain. In the 

brain it is involved in the regulation of NS biosynthesis. P450scc has been 

identified throughout the brain and especially in the white matter37. More 

specifically the enzyme has been located to the mitochondria of 

oligodendrocytes and the myelinating glial cells of the central nervous 

system38. It has also been located in type I astrocytes, Purkinje cells39,40. 

Besides the cells of central nervous system, P450scc has also been isolated 

in rat retina41 and sensory neurons of mouse embryo42. Similar expression 

of the P450scc enzyme has been reported for the human nervous system as 

well3. NS biosynthesis has also been identified in human sciatic nerves, 

possibly in Schwann cells43. Steps involved in the biosynthesis of steroid 

hormones are summarized in Fig. 1 

The conversion of ∆5-3β-hydroxysteroids (PREG, 17OH-PREG) into ∆4-3-

ketosteroids (PROG, 17OH-PROG) is catalysed by the enzyme 3β-hydroxy 

steroid dehydrogenase (3β HSD). The enzyme has been isolated from rat 

amygdale and septum. At cellular level 3β HSD has been identified in 

Schwann cells, astrocytes and oligodendrocytes. Endozepine 

trikontatetraneuropeptide (TTN) stimulates the 3β HSD activity and this 

effect is mimicked by 4’-chlorodiazepam36. 
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Fig. 1 Biosynthesis of steroid hormones in endocrine glands. P-450scc, P450c17, 3β-HSD, 17β-HSD, 11βOHase, 11β-

hydroxylase; 18bOHase, 18-hydroxylase; 18-HSOR, 18-hydroxysteroid oxidoreductase; 21OHase, 21-hydroxylase. 
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The conversion of C21 steroids (PREG, PROG) into C19 steroids (DHEA, 

androstenedione respectively) is mediated by the enzyme system 17α-

hydroxylase/17, 20 lyase (cytochrome P-450c17, P-450c17). Although this 

enzyme is well identified in the peripheral steroidogenic tissues but its 

presence in adult human or rat brain is still uncertain. The enzyme has 

been identified in embryonic rat brain, and the high concentration of DHEA 

suggests its presence in  adult brain, but conclusive evidence is still 

lacking3,36.  TTN has been shown to stimulate the conversion of PREG into 

17α-hydroxy-PROG in frog brain, hinting that endozepines can increase P-

450c17 activity in brain44.  

The enzyme 5α-reductase (5α-R) is a microsomal NADPH-dependent protein 

which acts specifically on steroids possessing a C4-C5 double bond and a 

ketone group at the C3 position. This enzyme catalyzes the transfer of two 

hydrogens from NADPH causing the reduction of the C4-C5 double bond and 

the formation of 5α-reduced metabolites. In particular, 5α-R catalyzes the 

conversion of testosterone, the main circulating androgen, into 

dihydrotestosterone (5α-DHT) and the transformation of progesterone into 

dihydroprogesterone (5α-DHP). Evidence for the conversion of PROG to 

deoxycorticosterone (DOC) is lacking in brain, but the DOC formed in zona 

fasiculata of the adrenal cortex is reported to be reduced to 21-hydroxy-5α-

pregnan-3, 20-dione by 5α-R in brain and then converted to allotetrahydro-

DOC by 3α- hydroxysteroid oxidoreductase (HSOR) enzyme6.  In vitro 

studies have shown the existence of 5α-R bioactivity in brain tissue and 

especially in primary cultures of nerve cells45-49. In the CNS of mammals, the 

5α-R gene is primarily expressed in glial cells.  The presence of 5α-R-like 

immunoreactivity has been found in astrocytes, ependymocytes and 

tanycytes within various brain regions including the hypothalamus, 

thalamus, hippocampus, cerebral cortex, and circumventricular organs50. In 

humans the enzyme activity has been localized to the frontal lobe, temporal 

neo-cortex, hippocampus and subcortical white matter51-54. 

13  



Modulation of the effects of lindane on cognitive function and oxidative stress by neurosteroids in rats 

Aromatase is responsible for the conversion of androgens into estrogens. The 

enzyme has been located in the neurons and not glial cells. In humans, the 

enzyme is distributed to the frontal and temporal neocortex36,3.  

Sulfotransferases mediate the sulfate conjugation of the NS. Together with 

sulfatases responsible for removal of the sulfate moiety, these enzymes are 

important regulator of NS functions. Addition/removal of the sulfate moiety 

can have significant changes in the effect of NS on several receptors36.  

Being lipid soluble, systemically administered NS can enter the CNS. 

Chronic PROG treatment has been shown to cause elevated levels of AP, and 

chronic AP administration mimics the effects of chronic PROG 

administration. Inhibition of the enzyme 3α-hydroxy steroid dehydrogenase 

or 5α-R, responsible for the conversion of PROG to AP, inhibits the effects of 

chronic PROG administration55. 

Neurosteroid metabolism and mitochondrial diazepam binding 
inhibitor receptor complex 

Benzodiazepines (BZD) bind to two kinds of receptors, the central BZD 

receptors (CBR), that are a macromolecular complex  contain a GABA 

receptor site, and a chloride ion channel and peripheral BZD receptors 

(PBR). The PBRs differ from the CBRs by their lack of coupling to GABAA 

receptors and their ligand specificity35,56. Although named PBRs they bind 

not only to non-BZD moiety but they are also located in the central nervous 

system, especially in the glial cells. As a result of these observations the 

terminology of the receptors was changed to mitochondrial diazepam 

binding inhibitor receptor complex (MDRC). Diazepam binding inhibitor 

(DBI) is an endogenous 9kDa polypeptide which has the ability to displace 

diazepam from the BZD recognition site of GABAA and mitochondrial BZD 

receptors6. The MDRCs are important regulator of steroidogenesis. Ro-5-

4864 (4’- chlorodiazepam, 4CD) and alpidem are agonists for these receptors 

and PK 11195 is a partial agonist. The agonists have been shown to increase 

the brain PREG synthesis without any effect on the blood PREG 
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concentration. The ligands of these receptors facilitate the 

intramitochondrial flux of cholesterol thereby increasing the availability of 

cytochrome P450scc8. They may form a pore through which cholesterol 

molecules could be transported into the mitochondria57. 2-Arylindone-3-

acetamides (FGIN-1), another class of ligands, bind with high affinity and 

specificity to MDRC and demonstrate stimulation of pregnenolone synthesis 

co-relating with their binding affinities.  PK 11195 binds with a still higher 

affinity but fails to inhibit any rise in pregnenolone biosynthesis6.  
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Neurosteroid effector mechanisms 

The sedative-anesthetic effect of PROG over CNS was first described by 

Selye58. Over the last six decades understanding of effects of NS has 

increased tremendously. The endocrine effects of steroids like PROG have 

been known to be mediated through intracellular steroid receptors. These 

receptors exist predominantly in the cytoplasm and are classified as Type 1 

receptors. They are bound to heat shock proteins (hsp) and on binding to 

PROG the hsp complex is released and the receptor forms a dimer with 

another identical receptor. The homodimer translocates to the nucleus 

where it binds to a specific base sequence (AGAACA) on the DNA59. Many 

effects of NS are exerted rapidly, and thus some of their effects could not be 

explained solely on the basis of such intracellular steroid receptors6. 

Subsequently, the influence of NS over the GABAA receptors was 

demonstrated15. It is now well recognized that NS can mediate their effects 

through genomic mechanisms through the agency of steroid receptors and 

through nongenomic mechanisms through GABAA and several other 

receptors. NS bind to a specific site on GABAA receptor complex, distinct 

from BZD, barbiturate or convulsant recognition site. 5α-3α-pregnenolone 

can enhance GABAA,  receptor mediated chloride currents even in the 

presence of maximal effective concentrations of pentobarbital6. Besides 

GABAA the target receptors of NS include nicotinic and muscarinic 

acetylcholine receptor, σ receptors, NMDA receptors, , serotonergic, kainate, 

glycine, neuropeptide receptors, voltage gated Ca2+ channel and 

Microtubule-associated protein 2 (MAP2)3,16-25. 

Neurosteroid and GABAA receptors 

The GABA system is the major inhibitory system in the mammalian CNS. 

There are two distinct GABA receptors, GABAA and GABAB. The inhibitory 

action of GABA is mediated via the activation of specific receptors the GABAA 

receptor which belongs to the ligand gated ion channel family, together with 

nicotinic acetylcholine, glycine and 5HT3 receptors. Each GABAA receptor 
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consists of five subunits forming a chloride channel (Fig 2a, 2b) and at least 

18 different subunits have been described (6 α, 3 β, 3 γ, δ, ε, π, and 3 ρ)60. 

An α, β, γ subunit each is necessary to form receptor molecules that exhibit 

properties of native GABAA receptor6. Different combinations of subunits 

contribute to distinct pharmacological properties of GABAA receptor and the 

expression of subunits is heterogeneous in the brain. The function of each 

subunit is not perfectly clear, but several studies point to special importance 

of some subunits18.  

The sedative effect of benzodiazepines is mediated via α1 subunit containing 

GABAA receptors61. The α2 subunit is considered to mediate benzodiazepine 

induced anxiolytic effects62. The GABAA receptor α4 subunit is also 

implicated in the regulation of anxiety63. A concentration dependent 

decrease of the α4 subunit is seen after 4 days application of AP to 

developing neuronal cells64, whereas in the hippocampus and cerebellum an 

increase in this subunit can be detected after withdrawal from chronic 

PROG (or AP) exposure and after short term treatment63,65,66. The GABAA 

receptor β2 subunit has been shown to be involved in mediating the effect of 

anesthetic drugs like etomidate, alphaxalone, pentobarbital and 

propofol67,68.  
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Fig 2a Structure of  a GABAA receptor 

 

 

Fig 2b GABAA receptor and sites for binding of different agents 
(The fig does not reflect the subunit structure of the receptor.) 
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The γ subunit unlike for BZD is not essential for the modulation of response 

to NS, nonetheless they do exert some influence. The γ1 units are highly 

expressed in the glial cells, which as mentioned above are the chief site of 

NS biosynthesis. It is a possibility that the locally produced steroids may act 

as a modulator of the GABAA receptors present on these cells69. The γ2 

subunit is involved in synaptic targeting and clustering, in anxiety 

regulation, and is changed during hormone manipulation and 

pregnancy65,70,71. The δ subunit is important for NS effects on the GABAA 

receptor72 and receptor knockout studies revealed that absence of the δ 

subunit decreases the sensitivity to neuroactive steroids like pregnanolone 

and alphaxalone, influencing the duration of anesthesia and anxiolytic effect 

of those steroids73. Some GABAA receptors identified in arthropods, are 

insensitive to the action of steroids. This insensitivity could be due to the 

presence of ρ subunit. An interesting advantage is seen in some species of 

water beetle (Coleoptera). On being attacked the beetle releases secretions 

rich in steroids. It is a possibility that these steroids can cause sedation in 

the vertebrate predator helping in the escape of beetle. Linking the final 

piece of the puzzle is the hypothesis that probably steroid binding sites in 

GABAA receptors appeared after the evolution of chordates69. 

Initial studies hinted at the action of NS at the level of GABA receptors. The 

evidence that intracellular steroid application failed to activate GABA 

receptor mediated current, as against extracellular application proved that 

NS act at the level of receptors and not the membrane directly17. Interaction 

of steroids with GABAA receptor is stereoselective and can be agonistic (AP, 

PROG) (positive modulators), or antagonistic (PREG-S, DHEAS) (negative 

modulators). A third type of interaction is seen with 3β-hydroxypregnane 

steroids. They do not have an antagonistic action with GABA but in rat 

cortical vesicles they act as antagonists against potentiation of GABAA 

receptor function by 3α- hydroxypregnane steroids74. 

The influence of steroids on channel is both in terms of opening time and 

frequency. 5β-pregnan-3α-ol-20-one has been shown to increase the average 

19  



Modulation of the effects of lindane on cognitive function and oxidative stress by neurosteroids in rats 

channel open duration. This effect is mediated by increasing the probability 

that the channel will enter naturally occurring open states of relatively 

longer duration. The steroid also increases the frequency of single-channel 

opening69. PROG needs relatively high concentration to produce a modest 

enhancement of GABA evoked current, but inhibits glycine-evoked responses 

at site distinct from strychnine. DOC also potentiates the GABA response 

and inhibits the glycine responses. High concentration of PREG-S inhibits 

the responses of both receptors16,69. PREG-S was proposed as an 

endogenous antagonist of the GABAA receptor after it was demonstrated that 

it competitively inhibited the binding of the convulsant [35S]t-butyl-

bicyclophosphorothionate (TBPS), antagonized pentobarbital-stimulated 

[3H]flunitrazepam binding to synaptosomes and inhibited muscimol-

stimulated 36Cl- uptake in brain synaptosomes75. 

AP and Allo-THDOC have also been shown to have GABA enhancing activity. 

Submicromolar concentration of these steroids was shown to facilitate 

GABA-activated Cl- conductance whereas micromolar concentrations 

directly stimulated Cl- conductance. These NS unlike BZD do not antagonize 

glutamate receptor-mediated inward currents17. Recent evidence has now 

demonstrated that AP-stimulated GABA-mediated chloride ion flux is 

inhibited by 3β-hydroxy-5α-pregnan-20-one (iso-AP)74. 

NS also seem to be involved in the regulation of GABA receptors. A single 

administration of progesterone (150 mg/kg, i.p.) significantly decreased the 

specific binding of [3H] muscimol to the nucleus caudatus and nucleus 

accumbens as early as 1h after injection. A similar tendency was also 

present in the dentate gyrus of the hippocampus. These changes in GABA 

receptors in basal ganglia and hippocampus may be important for the 

behavioral manifestation of an interaction between the GABA receptor 

complex and NS. AP was hypothesized to be the most probable regulator 

produced by metabolism of PROG. The authors hypothesized that the higher 

dose of progesterone used caused excessive stimulation of GABA receptors 

by its metabolites and brought about rapid changes in the GABA receptor 
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number and/or affinity23. Although previous workers have reported an 

increase in GABA receptor binding after administration of PROG, the dose 

used was comparatively very low (10 mg/kg)76. Another regulatory factor is 

3α,5α THP, local production of this NS can regulate GABAA receptor 

functioning. Withdrawal of 3α,5α THP causes relative insensitivity of GABAA 

neurosteroid neuromodulation3. 

Stell et al demonstrated that δ subunit-containing GABAA receptors are 

activated by ambient GABA, giving rise to a tonic conductance in cerebellar 

neurons. Physiological concentrations of NS selectively enhance this 

conductance and thereby modulate the excitability of specific neuronal 

populations72. 

Several effects of NS are maybe due to actions on tonic inhibition generated 

by δ subunit-containing GABAA receptors of cerebellum, hippocampus, 

thalamus, striatum, and all layers of the cortex.  

Prolonged neurosteroid administration has been shown to alter the 

expression of GABAA receptors77. On subacute exposure (2 days), PROG 

caused increased levels of α4 and δ proteins and modest reduction in 

expression of a1 and g2 proteins. On exposure to high dose PROG, 

hippocampal neurons show increased expression of δ subunits and this has 

been co-related with the seizure resistance and antianxiety effects in such a 

scenario55,78,79. 
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N-methyl-D-aspartate (NMDA) receptors 

NMDA receptor is involved in long-term potentiation, memory and epilepsy. 

NMDA receptor requires co-assembly of the NR1 subunit with at least one 

NR2 subunit. Eight splice variants of the single NR1 gene have been 

identified, whereas four different genes encode the NR2A, NR2B, NR2C and 

NR2D subunits. 

 

Fig 3: NMDA receptor and its binding sites. PCP: phencyclidine 

The NR1 subunit is broadly expressed throughout the CNS, whereas NR2 

subunits display distinct, although overlapping, expression patterns80. 

PREG-S is a positive allosteric modulator at NMDA receptor and selectively 

augments glutamate-induced depolarisations in spinal cord neurons. 

Responses elicited by kainate or AMPA receptors are inhibited by PREG-S. 

PREG-S augments NMDA receptor-mediated elevations in the intracellular 

Ca2+ concentration. The positive allosteric effect is achieved by increasing 

the open time of NMDA activated channels, by increasing the frequency of 

channel opening. The site of action could be a unique steroid recognition 

site distinct from glycine co-agonist and polyamine site6,20. Another recent 

research has indicated that the molecular mechanism of PREG-S 
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potentiation of NMDA receptor responses is attributable to an increase in 

peak channel open probability (Po), acting through the NR1B/NR2B subunit 

of NMDA receptors. Responses to glutamate recorded in the continuous 

presence of PREG-S exhibit marked time-dependent decline and the decline 

is induced by a change of the NMDA receptor affinity for PS after receptor 

activation81.  

3α-ol-5β-pregnan-20-one sulfate (3α5βS) is a negative modulator of NMDA-

induced currents and inhibits NMDA-stimulated increases in intracellular 

calcium. 3α-ol-5β-pregnan-20-one hemisuccinate (3α5βHS) is a synthetic 

analog of the 3α5βS and an inhibitor of NMDA-induced currents. 3α5βHS 

inhibits NMDA induced currents, protects cultured neurons against 

exposure to NMDA, inhibits NMDA-induced seizures, and at a nonsedating 

dose reduces cortical and subcortical infarct size in the middle cerebral 

artery occlusion model for stroke. 3α5βHS is still neuroprotective when 

administered 30 min after the onset of focal cerebral ischemia in rodents 

and represents a potentially useful compound for the treatment of stroke82.  

NR2 subunits are key determinants of modulation by PREG-S and 3α5βS. 

The modulatory effects of PREG-S, but not 3α5βS, on dose-response curves 

for NMDA, glutamate and glycine are consistent with a two-state model in 

which PREG-S either stabilizes or destabilizes the active state of the receptor 

depending upon which NR2 subunit is present. The modulatory effect of 

PREG-S is contingent upon the NR2 subunit composition of the NMDA 

receptor, and that PREG-S inhibits, rather than enhances, the function of 

NR1/NR2C and NR1/NR2D receptors. 

PREG-S increases the efficacy of NMDA at NR1/NR2B receptors. It enhances 

only the potency of glutamate with no effect on the maximum glutamate 

response in much the same way as benzodiazepines enhance the potency of 

GABA at the GABAA receptor without affecting the maximum GABA 

response.  Thus, the effect of PREG-S on the agonist concentration response 

curve depends upon both the subunit combination and the particular 
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agonist used. The PREG-S binding site responsible for potentiation may be 

partially or entirely located on the NR2 subunit. Probably, PREG-S enhances 

NMDA receptor activation at synapses containing predominantly NR2A or 

NR2B subunits, and decreases NMDA receptor activation at synapses 

containing predominantly NR2C or NR2D subunits. The NR2A subunit 

appears after birth and becomes highly expressed in hippocampus and 

cortex, with moderate expression in other fore-, mid-, and hindbrain regions. 

The NR2B subunit appears during embryonic development, and is expressed 

at high levels in the cortex, hippocampus, striatum, thalamus and olfactory 

bulb, and to a lesser extent in midbrain regions. NR2B subunit plays an 

important role in cognition .The NR2C subunit appears after birth, and is 

expressed primarily in the cerebellum. The NR2D subunit is strongly 

expressed in embryonic and neonatal stages but is present at lower levels in 

the adult. Thus, the inhibitory effects of PREG-S are likely to be particularly 

prominent in cerebellum and in the developing nervous system80. NMDA 

receptors also regulate neurosteroidogenesis through a transneuronal 

mechanism, which implies GABAA receptor activation. The early NMDA-

mediated stimulation of neurosteroid synthesis seems to play a critical role 

in acute excitotoxicity; consequently, its inhibition is likely to delay neuronal 

cell death83. 

Other receptors/mechanisms 

Low micromolar concentrations of Allo-THDOC, DHEA, and PREG block the 

voltage gated calcium channels in hippocampal neurons. The blockade is 

reversible and rapid. Similar property has been show for PREG-S as well, 

but lacking in PROG6. The peripheral analgesic activity of THDOC has also 

been attributed to the influence of NS over voltage-gated calcium channels84. 

The potent peripheral analgesia induced by 5α-reduced neurosteroid 

Alphaxalone (5α-pregnan-3α-ol-11, 20-dion, ALPX), AP, (3α, 5α, 17β)-3-

hydroxyandrostane-17-carbonitrile (ACN)  is mediated in part by effects on 

T-type Ca2+ channels. Also, GABAA channels do not contribute to baseline 
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pain transmission, but they can enhance anti-nociception mediated by 

blockade of T-type Ca2+channels85. 

Selective serotonin reuptake inhibitors through poorly understood 

mechanisms are shown to increase brain NS concentration, particularly AP. 

Besides their antianxiety and antidepressant effects, this could be 

responsible for their anticonvulsant activity24. 

Shiraishi et al demonstrated that ALPX (0.1-100 micro M) inhibited nicotine-

induced Ca2+ increases in a concentration-dependent manner. ALPX 

inhibited high K+-induced Ca2+ increases, but the inhibition was observed 

only at 100 µM concentration. ALPX also inhibited nicotine-induced inward 

currents, and the inhibition was unaffected by picrotoxin. At anesthetic 

concentrations, ALPX inhibits nicotinic acetylcholine receptors (nAchRs) in 

adrenal chromaffin cells. The authors proposed that ALPX may affect the 

sympathetic and other nervous systems via inhibition of nAChRs86.  

Studies demonstrate that in concentrations similar to those endogenous in 

the hippocampus, PREG-S inhibit GABAergic synaptic transmission by a 

presynaptic effect. PREG-S causes specific activation of G protein-coupled σ1 

receptors, resulting in modulation of both action potential-dependent and 

independent IPSCs, and enhancement of short-term presynaptic 

facilitation87,88. 

PROG has already been shown to potentiate myelination of peripheral 

nerves. It has also been shown to stimulate neurite growth. PREG and its 

chemically synthesized analog 3-methoxypregnenolone (MePREG) also 

stimulated the polymerization of microtubules and significantly enhanced 

neurite outgrowth of nerve growth factor-pretreated PC12 cells. Probably, 

MAP2 is a specific receptor for PREG and MePREG towards this effect25,35. 
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Neurosteroids- behaviour and memory 

In the last few decades, a lot of emphasis has been laid on  the role of NS in 

functioning of the nervous system. They have been implicated in various 

functions in the brain; notable among which are their role in 

neuroprotection and reinforcement of long term memory in active avoidance 

behavior and learning1,13,14. Steroids derived from PROG during menstrual 

cycle have been proposed to explain some differences between men and 

women in the incidence of anxiety and mood disorders89. It seems that 

fatigue during pregnancy may be a consequence of higher concentrations of 

PROG and GABA agonistic 3α-reduced neuroactive steroids like 3α,5α- TH 

PROG, whereas a rapid decline in these substances may lead to post partum 

depression90. 

A general trend toward decreased levels of PREG-S, DHEA-S, PROG and AP 

in Alzheimer’s disease patients’ brain is seen, suggesting a possible 

neuroprotective role of these NS in Alzheimer’s disease9. In mice, immediate 

post-training intracerebroventricular administration of PREG, PREG-S, 

DHEA, DHEA-S, androstenedione, testosterone, dihydrotestosterone, or 

aldosterone has been correlated with improvement of memory retention in 

foot-shock active avoidance training. PREG-S and DHEA-S were reported to 

facilitate memory and AP was shown to possess rewarding properties10-12. 

Influence on memory by NS probably occurs by modulation of GABAA 

transmission. NS have a role in the development of embryonic nervous 

system and a decrease in their levels has been suggested to contribute to the 

process of aging35. 

The role of NS in anxiety has also been shown by different workers 

demonstrating anxiolytic and anxiogenic activity of different or even same 

NS in different studies22,91,92. Anticonvulsive, anesthetic and anxiolytic 

effects of neuroactive steroids are mediated by their capacity to positively 

modulate GABAA receptor function, i.e. these substances act to increase 

GABA-ergic effects by increasing the frequency and duration of chloride 
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channel openings. On the other hand, inhibition of GABAA receptor function 

which is mostly documented for the NS PREG-S and DHEA-S produces 

effects ranging from anxiety and excitability to seizure susceptibility3. 

PROG has been shown to have a neuroprotective role on learning and 

memory impairment and hippocampus damage in rats13. AP, PREG-S, 

PROG, and MDR ligand 4’-CD possess neuroprotective activity in hypoxic 

stress models in rats. Further, neuroprotection after injury has been 

demonstrated in contusion of prefrontal cortex and spinal trauma with 

PROG, AP and PROG respectively NS also play a role in neuroregeneration. 

PROG inhibits reactive astrocyte proliferation after brain injury thus 

facilitating axonal growth and in high doses, promotes re-myelination in 

mouse sciatic nerve7,93, 94. 

Cognition and neuroprotection 

NS have a complex effect on memory and cognitive processes, while some NS 

facilitate it, others inhibit it. PREG-S, PREG, DHEA, DHEA-S have been 

shown to facilitate memory on intracerebroventricular injection, whereas AP 

disrupts memory on injection into magnocellular nucleus6. Although role of 

GABAergic transmission has been implicated in the influence over memory, 

but it definitely is not the sole factor as both positive and negative 

modulators can have stimulatory influence over memory35. 

An age-related decrease in circulating concentrations of estradiol (in 

menopause) and testosterone (in andropause) and a significant fall in 

plasma concentration in both women and men of PREG, PREG-S, DHEA, 

DHEA-S and 3α, 5α-THP has been observed95. Weil-Engerer et al 

demonstrated a general trend toward lower levels of NS (PREG, DHEA, 

PROG, PREG-S, DHEAS, 3α,5α-THP) in six brain regions (hypothalamus, 

striatum, frontal cortex, cerebellum, amygdale, hippocampus) of Alzheimer 

Disease patients compared with controls9. Also β-amyloid peptides (Aβ) and 

pathologic tau proteins (PHF-tau), the  two biochemical hallmarks of AD 
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were correlated with the levels of the NS PREG-S and DHEA-S in distinct 

brain regions. PHF-tau levels were significantly and negatively correlated 

with DHEA-S concentration in hypothalamus. Levels of cortical Aβ were 

significantly and negatively correlated with PREGS levels and to some extent 

with DHEAS in the striatum and cerebellum. A significant reduction has 

also been noticed in the levels of AP in AD patients96. 

In another recent study, Malik et al demonstrated improvement of cognitive 

function in post-somatosensory traumatic model in rats by Fluasterone 

(DHEF), a DHEA analog. Cognition was assessed on the basis of beam walk 

performance, Morris water maze and neurological reflexes. The authors 

postulated that the effect of DHEF could be related to its antioxidant, anti-

inflammatory, protection against NMDA induced neurotoxicity and GABAA 

antagonistic activity97. 

Johansson et al demonstrated that AP (2mg/kg) after intravenous injection 

inhibits memory in the Morris water maze model. This inhibition was found 

to be short lived and correlated with a higher dose of the drug. At a lower 

dose (1mg/kg) AP facilitated memory. The timing of inhibition of memory 

was co-related to the high concentration of AP in hippocampus14. 

The influence of PROG over memory and cognition is complex. At one end, 

authors have argued that all the effects of PROG are due to their conversion 

to AP in the brain55. AP has been proven to disrupt memory, albeit in a 

concentration dependent manner14 hence PROG should also disrupt 

memory. The literature however suggests a confusing picture. Djebaili et al 

have demonstrated a decrease in cell death and cognitive deficits after 

experimental contusion to rat pre-frontal cortex by AP and PROG when used 

one day after injury. Although the effects of the two drugs were similar, 

there were subtle differences to indicate that the effect of PROG is not 

merely due to conversion to AP7. 
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Compounding to the complexity is the role of neuroactive steroids (e.g. 

estrogen) which also have strong influences over memory. Estrogens exert 

neurotropic, neuroprotective effects and influence long term potentiation. 

Estrogen treatment has proved beneficial on verbal memory tests in 

surgically post-menopausal women. Higher incidence of Alzheimer’s disease 

in women is also linked with estrogen deficiency in post-menopausal state, 

as in men testosterone can be converted to estradiol through aromatase 

throughout life whereas females develop a greater deficiency in the post-

menopausal state3. Some workers have demonstrated a beneficial effect of 

hormone replacement therapy over episodic memory and verbal learning in 

post-menopausal women97,98. In a recent study, PROG failed to demonstrate 

any effect on NMDA receptor modulation and memory enhancement in 

ovarectomized rats unlike estrogen, which proved to be more efficacious in 

lower doses99. Grirorova and Sherwin failed to demonstrate any 

improvement in working memory and executive functioning between healthy 

elderly post-menopausal women using or not using hormone therapy100. In 

another study, in ovarectomized rats, tonic low-dose and cyclic estradiol 

treatments improved spatial performance, while the addition of progesterone 

reversed these beneficial cognitive effects of estradiol. PROG was able to 

reduce the death rate in tonic low-dose estradiol group101. It has been hinted 

that adequate dietary Ca2+  is required for estradiol to show a memory 

enhancing effect. Even for a inhibitory effect of PROG, which unmasked only 

in concomitant estradiol administration and not alone, adequate Ca2+ was 

deemed necessary102. In a study by  Tanabe et al, unlike estrogen alone or in 

combination with PROG, PROG alone failed to demonstrate the improvement 

in spatial memory after experimental ovariectomy, but PROG led to the 

improvement of scopolamine induced spatial memory defects in the rats 

independent of estrogenic influences103.  

PREG-S has been described as one of the most potent memory enhancers. 

Immediate post-training, stereotactically guided, intrahippocampal 

administration of PREG-S resulted in memory enhancement at a lower dose 

than with DHEA-S.  Fewer than 150 molecules of PREG-S significantly 
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enhanced post-training memory processes when injected into the amygdale. 

Intra-amygdally administered PREG-S was approximately 104 times more 

potent on a molar basis in producing ME than when PREG-S was injected 

into the hippocampus. This memory enhancement did not occur on injection 

of PREG-S into caudate nucleus over the range of doses tested in other brain 

structures. Memory enhancing activity was also noted for PREG and 

testosterone. The effects of these compounds occurred at a range far wider 

than what has been seen earlier for other excitatory substances10,104. The 

influence of PREG-S on memory through hippocampus, amygdala and basal 

nuclei of forebrain is believed to be through trophic effects on neurons and 

glial cells and to modulate the activity of a variety of neurotransmitter 

receptors and ion channels, including type A gamma-aminobutyric acid, N-

methyl-D-aspartate, sigma receptors, N- and L-type Ca2+ channels105.  

In a study using anti-sense sigma receptor cDNA, anti-amnesic effects of 

PRE-084 (selective σ1 agonist) and DHEA-S were blocked by cDNA treatment 

in the short- and long-term memory tests. However, anti-amnesic effects of 

PREG-S remained unchanged. Thus, for PREG-S the role of σ1 receptors 

seems to be different than other NS106. The septo-hippocampal pathway has 

also been implicated as the region of influence of PREG-S infusion of PREG-

S into the medial septum enhanced acetylcholine release by more than 50% 

of baseline and improved recognition memory of a familiar environment107. 

PREG-S enhances LTP in CA1 pyramidal neurons at nanomolar 

concentrations. The maximal effect of PREG-S on both induction and 

maintenance phases of LTP is observed at 300 nM and requires 10 min of 

superfusion. PREG-S enhances the response induced by NMDA 

application108. Also, PREG-S, DHEA-S steroids can regulate gene expression 

via the PROG receptor after intracellular oxidation. This too is postulated to 

be one mechanism of their control over memory109.  

4’-chlorodiazepam as mentioned above increases the synthesis of NS by 

increasing the delivery of cholesterol. The role of BZD ligand in the memory 

has also been explored. Endogenous benzodiazepine/GABA-A mechanisms 
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that down-regulate memory in amygdala, septum and hippocampus are 

activated in response to the anxiety and/or stress associated with each task. 

Immediate post-training microinjection of the benzodiazepine antagonist, 

flumazenil into the hippocampus enhances retention of habituation. The 

post-training administration of flumazenil into amygdala, septum and 

hippocampus enhances retention of avoidance learning. Post-training intra-

amygdala administration of picrotoxin or Ro5-4864 (4CD) enhances 

retention110. Post-training i.p. (2.0 or 5.0 mg/kg), i.c.v. (2.5 micrograms/rat), 

or intra-amygdala (1.6-40 ng/amygdala) administration of Ro 5-4864 causes 

memory facilitation of step-down inhibitory avoidance in rats111.  

Another major mechanism of NS influence over memory is their 

neuroprotective property. They are considered important for growth and 

survival of neurons and provide a neurotrophic support. PROG increases the 

survival of motor neurons after axonotomy112. PROG inhibits the 

proliferation of astrocytes in vitro and this could have physiological 

implications in limiting the post traumatic gliosis in brain113. PROG has 

been proven to facilitate sciatic nerve regeneration, an effect blocked by 

PROG antagonist as well as inhibitor of the conversion of PROG to 

PREG114,115. Through its genomic action, PROG is purported to promote 

myelination by stimulation of Schwann cells116. PROG also improved the 

histological and clinical recovery after experimental spinal cord injury in 

rats. The authors hypothesized that several properties of PROG could be 

responsible for the effect. These included prevention of excitotoxic cell death 

by inhibiting NMDA receptors, potentiation of GABAA receptors, reduction of 

permeability of blood-brain-barrier, limiting lipid peroxidation, formation of 

new myelin sheaths and limiting gliosis94. Djebaili et al have recently 

demonstrated the reduction in apoptosis, cell death, and cognitive 

dysfunctions in rats with experimental contusion of pre-frontal cortex, 

following treatment with AP and PROG7.   

β-Estradiol, DHEA, DHEA-S have also been proven to protect neurons 

against NMDA induced neurotoxicity. This protection was only partially 
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reversed by rimcazole, σ1 receptor antagonist. This hints at the involvement 

of non σ mechanisms in protection of neurons by NS117. DHEA and DHEA-S 

have also demonstrated neuroprotection for hippocampal structures in 

vivo118. AP, PREG-S , PROG and MDR ligand 4CD possess neuroprotective 

activity in hypoxic stress models in rats93. 

Many reports have suggested that a decrease in NS levels may contribute to 

the process of aging and decrease in NS levels with age have now been well 

documented35. 

Other neurobehavioural effects of neurosteroids 

Extensive research has been carried out on the role of NS in epileptogenesis. 

In humans, the most striking example is that of increased seizure 

susceptibility and menstruation. This has been correlated to the altered 

levels of 5α, pregnan-3α, 2α-diol in this phase of the menstrual cycle89,119. 

The effectiveness of adrenocorticotrophic hormone (ACTH) in infantile 

spasms is speculated to be related to its capacity to increase P450scc. In 

brain, this may in effect lead to increased AP levels, which have been shown 

to possess anticonvulsant and anesthetic properties6. PROG has been 

proven to be an effective anticonvulsant against the secondarily generalized 

component of amygdala-kindled seizures in male rats.. AP is an effective 

anticonvulsant against the secondarily generalized component of the 

seizure, but not against the amygdala focal discharge120. Synthetic 

neuroactive steroid ganaxolone (3α-hydroxy-3β-methyl-5α-pregnane-20-one) 

is an orally active analog of AP. It was found to be an effective 

anticonvulsant in neurosteroid withdrawal in pseudopregnancy model of rat, 

and this supports the use of ganaxolone as a specific treatment for 

perimenstrual catamenial epilepsy77. Negative modulators of GABAA 

receptors like PREG-S have been demonstrated to be proconvulsant with 

their activity mediated through GABAA receptors, and also possibly by 

effects on NMDA receptors121. 
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Many NS, especially the 3α−hydroxyl ring A-reduced steroids are potent 

anticonvulsants. NS, like AP and 5α−3α−THDOC have been proven to have 

strong anxiolytic effects92. The anxiogenic-anxiolytic response is a complex 

one as PREG and PREG-S both can be anxiogenic themselves but attenuate 

the anxiogenic effect of ethanol in mice. This effect could be mediated 

through the NMDA receptors91. Inhibition of the hippocampus, mediated by 

the pregnanolone's action at the GABAA receptor, produces a general 

anxiolytic effect. However, similar inhibition in the lateral septum attenuates 

active avoidance of anxiogenic stimuli, but not passive avoidance of aversive 

stimuli122.  
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Neurosteroids and oxidative stress 

NS are now being proven to have a definite role in the antioxidant defenses 

of brain. PROG has been indicated to have an inhibitory action on lipid 

peroxidation. On comparison of repeated brain levels of 8-isoprostaglandin 

F2 alpha (8-isoPGF2 α), a marker of lipid peroxidation, after cortical 

contusion in male rats treated with either progesterone or the oil vehicle; the 

brains of progesterone treated rats contained approximately one-third of the 

8-isoPGF2 alpha found in oil-treated rats123. In another study, DHEA and β 

estradiol pretreatment reduced DNA damage induced by oxidative insult. 

This effect was antagonized by pretreatment with a σ1 receptor antagonist 

suggesting that neuroactive steroids protect retinal cells from oxidative 

stress and that this effect is mediated by σ1 receptors26. 

Tunez et alshowed that DHEA reduces oxidative stress in synaptosomes 

isolated from the brain of 3-nitropropionic acid (3PA) induced oxidative 

stress in striatal and brain cortex synaptosomes. The authors have 

suggested that DHEA may protect mitochondrial and maintain synaptic 

integrity against damage induced by 3PA124. In a study exploring the control 

of DHEA secretion in the brain it was found that DHEA levels increased in 

response to Fe2+, β amyloid induced oxidative damage, and this increase was 

attenuated by the use of an antioxidant like vitamin E125. In another study, 

a significant increase in brain DHEA level 24h after castration was observed, 

which was totally blocked by AD4 N-acetylcysteine amide (AD4) (a newly 

developed brain penetrating antioxidant). These data suggest that DHEA 

synthesis may be affected by free radicals, indicating the possible existence 

of an in-brain oxidative stress-related pathway leading to brain DHEA 

production27. The role of NS in antioxidant defense mechanism still needs to 

be explored further. Very limited data is available for other NS, including 

PREG-S and NS synthesis enhancer, 4CD. 4CD has been proven to have a 

role in mitochondrial respiration and mitochondrial membrane 

stabilization126,127. Since 4CD increases the production of NS and PREG-S 

can act through σ1 receptor, indicated to have a role in antioxidant 
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mechanism, it is a strong possibility that the two agents can have influence 

over oxidative stress in vivo. 
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Pesticides, lindane, cognition and oxidative 
stress 

Pesticides 

After the green revolution, the presence of pesticides in various forms has 

become more or less ubiquitous in the environment surrounding us and 

exposure to the same is more or less inevitable. By definition, pesticide is 

any substance or mixture of substances intended for preventing, repelling, 

destroying or mitigating any pest. Depending on their use, they have been 

classified as insecticides, rodenticides, herbicides (weedicides), fungicides 

and fumigants. The important properties determining the potential of 

pesticide to contaminate the human environment are degradability of agent, 

its mobility through air, water and soil, and its capacity for bioaccumulation 

and bio-magnification via food chain128. 

Based on their degree of persistence, pesticides can also be classified as 

highly persistent, moderately persistent, and non-persistent129. The 

chlorinated hydrocarbon insecticides need a special mention in this regard 

as environmental pollutants because of their slow degradability by biotic 

pathways in animals and men (due to high lipid solubility and storage in 

lipid tissues) and abiotic pathways in soil and water (mainly by 

microorganisms and photochemical reactions). 

Among insecticides there are four major groups, organophosphorus 

insecticides which are esters of phosphoric acid or thiophosphoric acid e.g. 

dichlorvos, parathion etc, Carbamate insecticides, which are esters of N-

methylcarbamic acid like carbaryl, aldicarb, carbofuran, methomyl, and 

propoxur (Baygon). Organochlorine insecticides including the chlorinated 

ethane derivates, the cyclodienes, and the hexachlorocyclohexanes. E.g. 

DDT, methoxylchlor, endrin, aldrin and deildrin. Botanical insecticides 

including nicotine from tobacco, Pyrethrum from the flowers of 
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Chrysanthemum cinerariaefolium and Rotenone from roots of the plant Derris 

elliptica. 

Lindane is an organochlorine and the gamma isomer of 

hexachlorocyclohexane (HCH).  

Pesticide induced toxicity on nervous system 

Over the years, extensive research has been carried out on the effects of 

pesticides and more and more information regarding their adverse effects is 

coming to the forefront. In children, pesticide exposure has been seen to be 

associated with decreases in stamina, gross and fine eye-hand coordination, 

30 minute memory and  in the ability to draw a person130. 

The organochlorine (OC) insecticides stimulate the nervous system and 

induce paresthesia, susceptibility to stimulation, irritability, disturbed 

equilibrium, tremor, and convulsions. Some, like aldrin, dieldrin and 

lindane induce facilitation and hyperexcitation at synaptic and 

neuromuscular junctions, resulting in repetitive discharge in central, 

sensory and motor neurons. DDT exerts its toxic effect in the nervous 

system by adversely affecting the axons membrane. 

The organophosphate (OP) and carbamate insecticides inhibit 

acetylcholinesterase (AChE), resulting in an accumulation of acetylcholine 

(Ach). The accumulated ACh in CNS will induce tremor, incoordination, 

convulsion, etc. In the autonomic nervous system it will cause diarrhea and 

involuntary urination. At neuromuscular junction it will lead to contraction 

of the muscles, followed by weakness, loss of reflexes, and paralysis. The 

inhibition of AChE induced by carbamate is readily reversible, whereas that 

following exposure to OP compounds is generally less readily so.  

Lindane has been found to increase the incidence of convulsions due to the 

induction of brain CYP450 by increasing the expression of P450 1A1/1A2; 

2B1/2B2 and 2E1 isoenzymes131. Anticholinestrase pesticide dichlorvos 
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(DDVP) or methomyl (MET) show dose dependent seizure and lethality due 

to its action on muscuranic, nicotinic and NMDA receptors132. 

Pesticide-induced oxidative stress 

Pesticides cause tissue injury, tumor promotion, apoptosis, 

immunosuppression, etc. by way of free radical generation and derangement 

of antioxidant mechanism133. Biological effects of pesticide are initiated 

through physiological interactions between a toxin and such specific 

necromolecules as enzymes, membranes, immunoglobulins, nucleic acid, 

cytokines and so on. Enzyme systems in the body can convert pesticides to 

highly reactive intermediates, metabolites or secondary active products. 

Metabolism of certain classes of pesticide also results in the generation of 

oxygen free radical (OFRs) such as superoxide anion, hydrogen peroxide and 

the hydroxyl radical. The reaction of OFRs with polyunsaturated lipids is a 

particularly toxic event because it initiates the membrane damaging chain 

reaction process of lipid peroxidation. Many pesticides induce cytochrome 

P450 (CYP450) and also elicit an increase in the rate of oxygen free radical 

production by liver microsomes134. Mechanism of CYP450 induction is either 

at the transcriptional or at post-transcriptional level. 

Several pesticides groups such as organochlorine, organophosphate, 

carbamates and herbicides stimulate lipid peroxidation of cellular 

membrane134. Such pesticides can contribute to the process of membrane 

peroxidation through several mechanisms: 

 Direct initiation of a chain reaction by free radical formation during 

pesticide metabolism; for example, abstracting hydrogen from other 

molecule. 

 Indirect initiation by the production of OFRs during pesticide 

metabolism; for example, paraquat metabolism can lead to O2-• 

formation. 
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 Inhibition of enzyme system that are involved in the control of reactive 

oxidizing entities; for example, dithiocarbamate is an inhibitor of 

superoxide dismutase. 

 Decreasing natural antioxidant that regulate the adverse reaction of 

peroxidation; for example, the reduction of GSH level in blood after 

malathione exposure. 

Lipid peroxidation has been postulated as the primary event mediating the 

toxicity of a broad spectrum of pesticides. Dowla et al observed that in vitro 

activities of delta-amino levulinic acid dehydratase and Cu-Zn SOD in 

human red blood cells were inhibited after methamidophos exposure136. 

Gromov et al found that delta-methrine and dichlorovos (DDVP) exposure 

results in decreased catalase (CAT) activity in brain of rats137. In pesticide 

poisoning cases, tissue glutathione reductase (GR), glutathione peroxidase, 

SOD and CAT activities, as well as malondialdehyde production are 

increased but GSH levels are decreased suggesting adaptive measure to 

tackle any insecticide accumulation138. These enzymes efficiently scavenge 

toxic free radicals and partly protect against lipid peroxidation from acute / 

chronic pesticide exposure. 
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Lindane 

 

Fig 4 Lindane 

Physico-chemical properties and toxicological profile 139 

Lindane is the gamma isomer of 1,2,3,4,5,6-hexchlorocyclohexane (γ-HCH) 

(Fig 4). It is a colourless crystalline solid, having a melting point of 112.9°C. 

It is very slightly soluble in water at 20°C, 10 ppm; moderately soluble in 

absolute alcohol, 6.7%; slightly soluble in petroleum oils; soluble in  

acetone, aromatic and chlorinated solvents. Lindane is  stable to air, light, 

heat and carbon dioxide, not attacked by strong acids but in the presence of 

alkali it is dehydrochlorinated to   trichlorobenzene. It is corrosive to 

aluminum at 20°C. 

Single toxic dose of lindane are as follows: 

Oral: LD50  rat  88-225  mg/kg 

Dermal: LD50 rat (M) 1000 mg/kg 

                      rat (F) 900 mg/kg 

Dermal: LD50 rabbit 900-1000 mg/kg 

Most susceptible species: Cattle, minimum toxic dose 25 mg/kg; for calf 5 

mg/kg.  Young animals are more sensitive than adults. Lindane is an 

organochlorine pesticide used extensively in agriculture. Wooldridge 

successfully treated human scabies (skin disease caused by mites) with 1% 

lindane cream, and this treatment continues to be widely used140. Lindane 

shampoo is also used for pediculosis. Lindane is also used as a general 
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insecticide. There have been numerous reports through the years of major 

toxicity and death associated with accidental or deliberate exposure to 

lindane141. In one incident, lindane intended for preservation of seed grains 

was instead mixed with food grains and was consumed. The onset of signs of 

poisoning was sudden with seizures of the mixed type, i.e., grand mal, petit 

mal, and myoclonus, predominating. Other effects included intention 

tremors, memory impairment, irritability, and aggression28.  

The data for lindane, specifically on cognitive dysfunction is limited142. 

Tilson et al  demonstrated interference with the ability of avoidance response 

with a single dose of lindane in rats30. Desi found that repeated exposure to 

lindane increased the number of errors made in a food-reinforced maze143. 

Lindane has effects on long-term potentiation in the hippocampus, and it is 

possible that this effect may compete or interfere with the utilization of new 

information. The post-training administration of lindane did not affect 

retention. This suggests that the process of memory consolidation is not 

altered29. Alteration of motor and grooming activities in rats occurs on 

chronic administration of lindane, which has been correlated with inhibition 

of activities of cerebral Na+, K+- ATPase, Mg2+- ATPase and AchE34. It has 

also been postulated that lindane achieves its behavioral effects by 

interfering with gamma aminobutyric acid (GABA)30. Lindane has also been 

shown to interact with PBR. In a study by Griffith and Woolley, the authors 

when using hypothermia and anorexia as indices of lindane toxicity, 

demonstrated that toxicity of lindane was ameliorated by diazepam, 

phenytoin and exacerbated by Ro-5-4864 (4CD). The authors hypothesized 

that lindane acts at the picrotoxin binding site of GABAA receptor144.  

Lindane also reportedly influences the metabolism of PREG and PROG in 

mice ovaries. It inhibits the conversion of cholesterol to PREG by inhibiting 

the enzyme P450scc145. Contrary to this, other workers have found no effect 

of lindane on P450scc activity with conflicting reports regarding inhibition of 

3β HSD activity. It has been further claimed that lindane inhibits the activity 

of steroidogenic acute regulatory (StAR) protein, which mediates an 
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important step in steroidogenesis, the intramitochondrial transfer of 

cholesterol to the P450scc enzyme31,32. 

Lindane has been shown to be a strong oxidant, causing free radical 

generation in tissues including brain through lipid peroxidation33,34. This 

oxidative stress seems to be reversible by itself in acute exposure or by other 

known antioxidants like ascorbic146. 
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Oxidative stress and cognition 
Extensive research has been carried out in the role of oxidative stress and 

cognitive impairment. In a study by Head et al , increasing oxidative damage 

with increasing  age was found in a canine model of human brain aging147. 

Increased malondialdehyde (MDA), which indicates increased lipid 

peroxidation, was observed in the prefrontal cortex and serum but not in 

cerebrospinal fluid (CSF). Oxidative damage to proteins (carbonyl formation) 

also increased in brain. An age-dependent decline in GS activity, an enzyme 

vulnerable to oxidative damage, and in the level of reduced glutathione 

(GSH) was observed in the prefrontal cortex. In the pathogenesis of AD 

oxidative damage appears to play an important role in the slowly progressive 

neuronal death. In addition to the presence of senile plaques and 

neurofibrillary tangles, postmortem analysis of AD brain has also identified 

markers of oxidative stress including protein nitrotyrosine, carbonyls in 

proteins, lipid oxidation products and oxidized DNA bases148. In another 

model, workers have also suggested that Amyloid beta protein 42 (Abeta42)  

is not sufficient alone to induce an Alzheimer's disease-like symptomatology 

and a decrease in the brain's antioxidant defense system leads to the 

Abeta42-independent oxidative stress necessary for the peptide to induce 

histopathological changes and memory loss149. In view of the putative role of 

oxidative stress in cognitive impairment, role of various antioxidants has 

been explored in reversal of experimental and clinical memory loss. In  

apolipoprotein E-deficient mice, mice treated with vitamin E display a 

significantly improved behavioural performance in the Morris water maze 

compared to the group on a regular diet. This improved performance has 

been found to be associated with preservation of the dendritic structure. In 

addition, whilst untreated apolipoprotein E-deficient mice display increased 

levels of lipid peroxidation and glutathione, vitamin E-treated mice showed 

near normal levels of both lipid peroxidation and glutathione150. Another 

antioxidant, trans resveratrol, a polyphenolic compound, on chronic 

administration has been demonstrated to prevent cognitive impairment by 

intracerebrovntricular injection of streptozocin (STZ) in rats. This benefit 
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was also associated with a decrease in the oxidative stress level induced by 

STZ in brain151. Similarly ascorbic acid, another proven antioxidant, 

improved learning and memory of aged mice as indicated by decreased 

transfer-latency and increased step-down latency. Ascorbic acid also 

provided protection to young animals from scopolamine- and diazepam-

induced impairment of memory and was found to be more potent than 

piracetam152. Thus, oxidative stress plays a strong role in cognitive 

impairment, and probably factors which can effect a reversal of oxidative 

stress can mediate a reversal in cognitive dysfunction as well. 

With the above presented review, it can be safely hypothesized that the 

varied mechanisms of cognitive dysfunction caused by lindane ensure that a 

partial reversal at the least can be effected through NS. Also, the converging 

influence of the two agents over oxidative stress and that of oxidative stress 

over cognition means that attenuation of oxidative stress by NS can be a 

potent mechanism of their efficacy in this case.  
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 To study the modulation of cognitive dysfunction 
due to lindane, by neurosteroids 

 

 To study the modulation of oxidative stress due to 
lindane, by neurosteroids. 

 

 To correlate the effects of lindane and neurosteroids 
on oxidative stress and cognitive dysfunction. 
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Animals  
Male wistar rats, weighing between 150 to 220 g were used. The animals 

were procured from the Central Animal House, University College of Medical 

Sciences. The animals were housed in standard laboratory conditions 

(natural hours light and dark cycle; 23±1°C temp. and 50 ± 2% humidity) 

with pellet diet and water available ad libitum. Appropriate permissions were 

taken from Institutional Animal Ethics Committee and care of the animals 

was as per “CPCSEA Guidelines for laboratory animal facilities”. 

 

Chemicals 
 Lindane (Sigma chemicals Inc). 

 Progesterone (Sigma chemicals Inc). 

 Pregnenolone Sulfate (Sigma chemicals Inc). 

 4’-chlordiazepam (Fluka). 

 Tween 80. 

 Groundnut oil. 

 Laboratory chemicals required for estimation of various biochemical 

parameters. 

Groundnut oil was used as a vehicle for lindane. To limit the weight gain 

due to oil consumption, the concentration of lindane was maintained so that 

no animal received more than 0.5 ml of oil per day, anytime during the 

study period. 
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The vehicle for NS was distilled water with two drops of tween 80 added per 

10 ml of suspension of i.p. injections, the concentration was maintained so 

that animals received 0.5ml/100g of suspension per animal per day. 
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Groups  
Animals were randomly divided into eight groups having 10 rats /group.  

Group 1:  Control/vehicle group for lindane. Groundnut oil orally for 6 

weeks followed by vehicle for NS (tween 80 in distilled water) i.p. for one 

week. 

Group 2:  Lindane 15mg/kg/d in groundnut oil orally for 6 weeks followed 

by   vehicle for NS i.p. for 1 week 

Group 3: Vehicle for lindane (groundnut oil) orally for 6 weeks followed by 

progesterone 15mg/kg/day i.p for one week 

Group 4:  Vehicle for lindane orally for 6 weeks followed by pregnenolone   

sulfate 2 mg/kg/day i.p for one week. 

Group 5: Vehicle for lindane orally for 6 weeks followed by 4’ 

chlorodiazepam 0.5 mg/kg/day i.p for one week  

Group 6:  Lindane 15mg/kg/d in groundnut oil orally for 6 weeks followed 

by progesterone 15mg/kg/day i.p for one week  

Group 7:  Lindane 15mg/kg/d in groundnut oil orally for 6 weeks followed 

by pregnenolone sulfate 2 mg/kg/day i.p for one week 

Group 8:   Lindane 15mg/kg/d in groundnut oil orally for 6 weeks followed 

by 4’ chlordiazepam 0.5 mg/kg/day i.p for one week 

These groups were evaluated for cognitive function one day before the start 

of treatment and once weekly on the same day from the start of treatment 

till the end of treatment. Animals were trained on each day prior to 

assessment of cognition. Finally, the animals were sacrificed and brain 

taken out to assess the oxidative stress. 
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Assessment of cognition 
Cognition was assessed on the basis of two separate experiments:- 

Step down latency (SDL) in continuous avoidance 
apparatus 

This apparatus consisted of a wooden block placed in the center of a grid 

floor of a continuous avoidance apparatus. The block served as a shock free 

zone (SFZ). The rat was placed on the SFZ and on stepping down was given 

electric shock (20V) through the grid floor. The experiment was repeated 

after 24 hrs without shock and the time taken for the rat to step down was 

measured. This is known as the step down latency. Prolongation of the step 

down latency is a parameter of learning. 

A cutoff of 180 seconds was chosen and for the animal which did not step 

down in this period, the time to step down was taken as 180 seconds153-155. 

Transfer latency (TL) on elevated plus maze 

The elevated plus maze consists of two open arms (50 by 10 cm) and two 

closed arms (50 by 10 by 40 cm) with an open roof. The maze is elevated to a 

height of 50cm from the floor. The animals were placed individually at either 

ends of the open arms and allowed to enter either of the closed arms. During 

the first time screening if the animal did not enter an enclosed arm within 

180 sec, it was not included in the experiment. During training, if the 

animal did not enter an enclosed arm within 180 sec it was gently pushed in 

the closed arm. To become acquainted with the maze, the animals were 

allowed to explore the maze for 20 sec after reaching the closed arm and 

then returned to their home cage. The animals were retested 24h after the 

first day training and the time taken to enter the closed arm was taken as 

transfer latency (TL). A time of 180 seconds was taken as cut-off and 
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animals not entering the closed arm in this period were assigned the 

transfer latency of 180 seconds 156-158. 

All tests were conducted in the Neuropharmacology laboratory, Department 

of Pharmacology between 0900 and 1600 Hrs. 
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Assessment of oxidative stress 
At the end of  study period, the animals were sacrificed by ether anesthesia, 

the brain was quickly dissected out in toto, washed with ice-cold sodium 

phosphate buffer, weighed and stored over ice. The brains were further 

processed within half hour of dissection, and the estimation of oxidative 

stress done in the same working day. Brain tissue was homogenized with 10 

times (w/v) sodium phosphate buffer (7.4 pH, ice cold, mixture of KH2PO4 

and Na2HPO4). The homogenate was centrifuged at 3000 rpm for 15 min. 

The parameters of oxidative stress used were malondialdehyde (MDA) and 

reduced glutathione (GSH). 

Measurement of lipid peroxidation 

Malondialdehyde (indicator of lipid peroxidation) was estimated as described 

by Okhawa et al159. 

Principle 

Acetic acid detaches the lipid and protein of the tissue. The protein in the 

reaction mixture is dissolved by the addition of lauryl sulfate. MDA reacts 

with the lipid peroxides, hydroperoxides and oxygen double bonds to form 

the color adducts with absorption maxima at 532 nm. 

Reagents 

 Sodium lauryl sulfate (8.1%) 

 Acetic acid (20%) (pH 3.5) 

 Thiobarbituric acid (0.8% w/v) 

 Butanol: pyridine (15:1 v/v) 
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Procedure 

Acetic acid (20%, pH 3.5) 1.5 ml, thiobarbituricacid (0.8%), sodium lauryl 

sulfate (8.1%) 0.2 ml were added to 0.5 ml of supernatant obtained above. 

The mixture was heated at 1000C for 1h. the mixture was cooled with tap 

water and 5 ml of butanol: pyridine (15:1 % v/v) and 1 ml of distilled water 

were added. The mixture was vortexed vigorously and was centrifuged at 

4000 rpm for 10 min. Thereafter the organic layer was withdrawn and 

absorbance measured at 532 nm using a spectrophotometer.  

Standard curve 

Various samples of external standard tetraethoxypropane (1-10 nmol) were 

subjected to the steps mentioned in the above procedure. The readings of 

absorbance were plotted against the concentration of MDA to produce a 

standard curve. 

The concentration of MDA was determined by the linear standard curve and 

expressed as nmol/ g wet brain tissue. 

Estimation of reduced glutathione 

Reduced glutathione was estimated by the method described by Ellman160. 

Principle 

Bis (p-nitrophenyl) disulphide reacts with aliphatic thiol compound at pH 

8.0 to produce 1mol of p-nitrophenol anion per mol thiol. Since the anion is 

highly colored, it can be used to measure the thiol concentration. 

Reagents 

 Phosphate buffer (K2HPO4) 0.3M (pH 8.4) 

 5,5 Dithiobis 2-nitrobenzoic acid (DTNB) 0.4% w/v (in 1% trisodium 

citrate) 

 5% tricarboxylic acid (TCA). 

54 



Modulation of the effects of lindane on cognitive function and oxidative stress by neurosteroids in rats 

Procedure 

To 0.5 ml of the supernatant obtained above 1 ml TCA (5%) was added and 

the mixture centrifuged to remove the proteins. To 0.1 ml of this 

homogenate, 4 ml of phosphate buffer (pH 8.4), 0.5 ml of DTNB and 0.4 ml 

double distilled water were added.  The mixture was vortexed and 

absorbance read at 412 nm within 15 min. 

Standard curve 

Various concentrations of standard glutathione (5-50 µg) were subjected to 

the steps mentioned above. The readings of absorbance were plotted against 

the concentration of GSH to produce standard curve. 

The concentration of GSH was determined by linear standard graph and 

expressed as µg/g wet brain tissue. 
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Results 
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Memory parameters 

Step down latency (SDL) 

At day 0 no significant differences were found among the SDLs of all the 

groups. A significant reduction in SDL was found for the lindane treated 

group at week 6 and 7 as compared to both control (p<0.001) and day 0 of 

lindane treated group (p<0.05) (Table 1; Fig 5,6). A significant reduction in 

SDL was also noted for lindane+ PREG-S and lindane + 4CD group at week 

5 (p<0.05) and week 6 (p< 0.001). At 7 week PREG-S and 4CD antagonized 

the effect of lindane on SDL (Table1,3; Fig 7,8,13). The difference between 

lindane alone treated groups and lindane+ PREG-S and lindane+4CD was 

67.47% and 68.13% respectively. Although this difference was not 

statistically significant when ANOVA was applied but was found to be 

statistically significant (p<0.02) when t-test was used.  PROG failed to 

modulate the effect of lindane on SDL.  



 

Table 1: Effect of various treatments on SDL (Mean(s) ± SE) 
 

Groups/ 
Weeks 

Treatment 
(6 week+1 week) 

0         1 2 3 4 5 6 7 Within-group
variation  
(p, F, dF) 

Control  Vehicle 97.66 ± 
25.49 

104.54 ± 
20.38 

135.1 ± 
16.06 

98.71 ± 
20.86 

110.57 ± 
19.77 

142.88 ± 
19.51 

134.38 ± 
19.09 

144.5 ± 
15.81 

0.152, 1.598, 7 

Lindane Lindane 15mg/kg/d
p.o 

 99.65 ± 
14.24 

104.53 ± 
13.84 

101.33 ± 
16.36 

116.45 
± 13.4 

92.49 ± 
21.91 

85.42 ± 
20.92 

32.98 ± 
6.44 b,f

31.07 ± 
5.78 b,f

<0.001, 6.32, 7 

Only PROG PROG 15mg/kg/d 
i.p 

106.95 ± 
23.54 

97.48 ± 
21.43 

133.89 ± 
18.52 

117 ± 
24.84 

140.7 ± 
13.89 

148.38 ± 
11.74 

136.26 ± 
13.91b

151.23 ± 
17.75 

0.199, 1.458, 7 

Only PREG-S PREG-S 2mg/kg/d 
i.p 

106.44 ± 
15.9 

124.32 ± 
13.92 

133.62 ± 
12.8 

144.18 
± 12.94 

91.76 ± 
19.02 

92.96 ± 
15.87 

136.88 ± 
15.13 

124.88 ± 
16.49 

0.06, 1.774, 7 

Only 4CD 4CD 0.5mg/kg/d 
i.p. 

101.02 ± 
21.76 

112.32 ± 
16.26 

118.08 ± 
17.5 

65.38 ± 
21.3 

107.54 ± 
21.49 

121.39 ± 
20.35 

124.26 ± 
15.28 

123.26 ± 
14.44 

0.108, 2.06, 7 

Lindane+ 
PROG 

Lindane 15mg/kg/d 
p.o+ PROG 
15mg/kg/d i.p 

115.54 ± 
21.23 

116.87 ± 
19.72 

113.64 ± 
20.57 

92.05 ± 
20.22 

86.44 ± 
17.89 

77.53 ± 
19.42 

35.14 ± 
16.7 b,c,f

38.3 ± 
16.62 b,c,f

<0.01, 3.987, 7 

Lindane + 
PREG-S 

Lindane 15mg/kg/d 
p.o+ PREG-S 
2mg/kg/d i.p 

100.24 ± 
14.22 

108.66 ± 
11.91 

96 ± 
11.13 

99.9 ± 
20.37 

79.16 ± 
14.43 

64.88 ± 
12.43a

28.58 ± 
7.1 b,d,f

95.52 ± 
23.04 g

<0.01, 3.836, 7 

Lindane +4CD Lindane 15mg/kg/d 
p.o+ 4CD 
0.5mg/kg/d i.p. 

124 ± 
18.32 

117.96 ± 
17.55 

108.26 ± 
13.67 

107.9 ± 
18.94 

74.88 ± 
17.51 

60.06 ± 
15.14 a

31.88 ± 
5.54 b,e,f

97.5 ± 
18.12 g

<0.001, 4.815, 7 

Between-
groups 
comparison (p, 
F, dF) 

 0.9813,0.
2133,7 

0.9679,0.
2581,7 

0.4986, 
0.2581,7 

0.2340,
1.363,7 

0.2495, 
1.328,7 

0.0011, 
3.946, 7 

<0.001, 
16.432, 7 

<0.001, 
7.406,7 

 

a  p<0.05 as compared to control group  d p< 0.001 as compared to PREG-S only group 
b p<0.001 as compared to control group  e p< 0.001 as compared to 4CD only group 
c p< 0.001 as compared to PROG only group f p<0.05 as compared to the day 0 of the corresponding group 
g p< 0.02 compared to lindane alone treated group (t-test)  g NS compared to lindane alone treated group (ANOVA) 
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Fig 5: Effect of various treatments on SDL over seven weeks
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Fig 6: Effect of lindane over SDL
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Fig 7: Effect of various treatments on SDL
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Fig 8: SDL in various drug treated groups
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Transfer latency (TL) 

At day 0 no significant difference was found among the TLs of all the groups. 

In the lindane treated group a significant prolongation as compared to 

control (p<0.001) was noticed from 2nd week onwards (table 2, Fig 9, 10). A 

similar trend was also noted in the lindane+PROG, lindane+PREG-S and 

lindane+4CD groups, between week 2 to 6 as compared to control and PROG 

only, PREG-S only and 4CD only respectively(p<0.001). Significant 

prolongation was also noted at 7th week for the lindane +PROG 

group(p<0.001) and the lindane+PREG-S, lindane+4CD groups (p<0.05). 

PROG, PREG-S and 4CD failed to modulate the effect of lindane on TL (Table 

2,3; Fig 11,12,13) . 
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Table 2: Effect of various treatments on TL (Mean(s) ± SE) 
 

Groups/ Weeks Treatment (6 week+1 
week) 

0 1 2 3 4 5 6 7 Within group
variation  
(p, F, dF) 

Control  Vehicle 5.3 ± 
1.05 

5.07 ± 
1.35 

4.35 ± 
0.94 

4.93 ± 
0.95 

4.62 ± 
1.05 

4.67 ± 
0.96 

3.95 ± 
0.63 

3.25 ± 
0.46 

0.651,  
0.725, 7 

Lindane Lindane 15mg/kg/d
p.o 

 10.73 ± 
1.05 

10.99 ± 
0.96 

19.66 ± 
1.11a

33.44 ± 
4.14 a

36.17 ± 
3.99 a

41.38 ± 
4.60 a

51.63 ± 
14.52 a

51.53 ± 
14.79 a

<0.001, 
6.025, 7 

Only PROG PROG 15mg/kg/d i.p 10.53 ± 
5.29 

9.23 ± 
4.30 

5.14 ± 
0.98 

3.84 ± 
0.72 

5.49 ± 
0.84 

4.93 ± 
0.60 

4.96 ± 
0.84 

6.11 ± 
1.47 

0.406,  
1.05, 7 

Only PREG-S PREG-S 2mg/kg/d i.p 7.18 ± 
1.17 

5.82 ± 
1.02 

5.2 ± 
0.45 

4.48 ± 
0.87 

5.52 ± 
0.90 

4.98 ± 
0.31 

5.22 ± 
0.59 

6.22 ± 
0.99 

0.316,  
1.199, 7 

Only 4CD 4CD 0.5mg/kg/d i.p. 5.24 ± 
0.6 

6.16 ± 
1.15 

3.94 ± 
0.66 

4.58 ± 
0.83 

6.4 ± 
0.79 

5.28 ± 
0.51 

5.68 ± 
0.76 

5.62 ± 
0.53 

0.186,  
1.494, 7 

Lindane+ PROG Lindane 15mg/kg/d 
p.o+ PROG 
15mg/kg/d i.p 

10.66 ± 
1.94 

11.15 ± 
1.78 

18.51 ± 
3.68 a,b

28.14 ± 
3.27 a,b

30.93 ± 
2.92 a,b

38.89 ± 
5.45 a,b

50.78 ± 
9.72 a,b

46.42 ± 
7.88 a

<0.001, 
11.025, 7 

Lindane + PREG-S Lindane 15mg/kg/d 
p.o+ PREG-S 
2mg/kg/d i.p 

11.02 ± 
1.49 

11.88 ± 
1.07 

16.96 ± 
0.94 a,c

25.12 ± 
2.47 a,c

26.36 ± 
3.72 a,c

38.02 ± 
5.91 a,c

47.84 ± 
6.39 a,c

33.26 ± 
6.92e

<0.001, 
15.048, 7 

Lindane +4CD Lindane 15mg/kg/d 
p.o+ 4CD 0.5mg/kg/d 
i.p. 

10.86 ± 
0.89 

14.28 ± 
1.00 

17.36 ± 
1.83 a,d

25 ± 3.74 

a,d
24.38 ± 
3.03 a,d

36.24 ± 
4.59 a,d

47.17 ± 
3.99 a,d

39.9 ± 
4.12 e

<0.001, 
25.804, 7 

Between-groups 
comparison (p, F, dF) 

 0.2275,
1.379, 7 

 0.0350, 
2.438,7 

<0.001, 
19.53,7 

<0.001, 
25.775,7 

<0.001, 
27.648,7 

<0.001, 
24.001, 7

<0.001, 
12.419,7 

<0.001, 
9.833, 7 

 

a p<0.001 as compared to control  

b p<0.001 as compared to PROG only  

c p<0.001 as compared to PREG-S only 
 

 

d p<0.001 as compare to 4CD only  

  e p< 0.05 as compared  to control
 



 

Fig 9: Effect of various treatments on transfer latency
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Fig 10: Effect of lindane on transfer latency
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a p<0.001 as compared to control 
b p<0.05 as compared to day 0 of treatment 
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Fig 11: Effect of various treatments on TL
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a p<0.001 as compared to control 
b p<0.05 as compared to control 
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Fig 12: Effect of various treatments on TL
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a p<0.001 as compared to control d p< 0.05 as compared  to control 
b p<0.001 as compared to PROG only e p<0.001 as compare to 4CD only 
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Table 3: Effect of NS on lindane induced cognitive impairment 
 

Groups/Weeks Treatment 
(6week+ 1week) 

SDL (7th week, 
mean(s) ± SE) 

TL (7th week, 
mean(s) ± SE) 

Control  Vehicle 144.5 ± 15.81 3.25 ± 0.46 

Lindane Lindane 15mg/kg/d p.o 31.07 ± 5.78 a 51.53 ± 14.79 a 

Only PROG PROG 15mg/kg/d i.p 151.23 ± 17.75 6.11 ± 1.47 

Only PREG-S PREG-S 2mg/kg/d i.p 124.88 ± 16.49 6.22 ± 0.99 

Only 4CD 4CD 0.5mg/kg/d i.p. 123.26 ± 14.44 5.62 ± 0.53 

Lindane+ PROG Lindane 15mg/kg/d p.o+ 
PROG 15mg/kg/d i.p 

38.3 ± 16.62a,b,c 46.42 ± 7.88 a,c 

Lindane + PREG-S Lindane 15mg/kg/d p.o+ 
PREG-S 2mg/kg/d i.p 

95.52 ± 23.04 e 33.26 ± 6.92d 

Lindane +4CD Lindane 15mg/kg/d p.o+ 
4CD 0.5mg/kg/d i.p. 

97.5 ± 18.12 e 39.9 ± 4.12 c,d 

a p<0.001 as compared to control 
b p< 0.001 as compared to PROG only group 

c p<0.05 as compared to the day 0 of the 
corresponding group 

e p< 0.02 compared to lindane alone treated group  
(t-test) 

d p< 0.05 as compared  to control 
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Fig 13: Effect of various treatments on SDL and TL
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b p< 0.05 as compared  to control 
c p<0.05 as compared to the day 0 of the corresponding group 

e p< 0.02 compared to lindane alone treated group 
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Oxidative stress parameters 

Malondialdehyde (MDA) 

Effect of lindane and neurosteroids on brain MDA level 

There was a marked and statistically significant increase in the brain MDA 

levels of group treated with only lindane (p< 0.001). Treatment with PREG-S 

and 4CD attenuated the effect of lindane on MDA level, the difference 

between lindane alone and lindane + PREG-S or lindane+4CD was found to 

be significant (p<0.001). In contrast to PREG-S and 4CD PROG failed to 

modulate the effect of lindane on MDA levels. No difference was in the brain 

MDA levels of only PROG, only PREG-S and only 4CD and control (Table 4; 

Fig 14). 

 Table 4: Effect of lindane and NS on brain MDA levels 
 

Group Treatment 
(6week+1week) 

MDA (nmol/g wet 
brain tissue) ± SE 

Control  Vehicle for lindane+ vehicle for NS 178.57±19.43 

Lindane Lindane 15mg/kg/d p.o+ vehicle for NS 519.11±35.41a 
Only PROG Vehicle for lindane +PROG 15mg/kg/d i.p 181.3±23.72 
Only PREG-S Vehicle for lindane +PREG-S 2mg/kg/d i.p 116.23±5.3 
Only 4CD Vehicle for lindane +4CD 0.5mg/kg/d i.p. 125.66±13.95 
Lindane+ PROG Lindane 15mg/kg/d p.o+ PROG 15mg/kg/d i.p 428.7±37.82a,b 

Lindane + PREG-S Lindane 15mg/kg/d p.o+ PREG-S 2mg/kg/d i.p 185.48±11.49 c 
Lindane +4CD Lindane 15mg/kg/d p.o+ 4CD 0.5mg/kg/d i.p. 172.21±12.51 c 

 
Intergroup variaton found statistically significant, p< 0.001, df=7, F=43.280 
a   p<0.001 as compared to control group for lindane ( ANOVA followed by Tukey’s test) 
b   p<0.001 as compared to only PROG group (ANOVA followed by Tukey’s test) 
c   p<0.001 as compared to lindane alone treated group. 
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Fig 14 : Effect of lindane and NS on brain MDA levels 
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Intergroup variation found statistically significant, p< 0.001, df=7, F=43.280 

a   p<0.001 as compared to control group for lindane (repeated ANOVA followed by Tukey’s test) 
b   p<0.001 as compared to only PROG group (repeated ANOVA followed by Tukey’s test) 

c   p<0.001 as compared to lindane alone treated group (repeated ANOVA followed by Tukey’s test) 
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Reduced glutathione (GSH) 

Effect of lindane and neurosteroids on brain GSH level 

A significant decrease was found in the brain GSH levels of lindane treated 

group as compared to control ( p< 0.001). A significant increase was noted 

for PREG-S(p<0.001), 4CD(p<0.001), lindane+ PREG-S(p<0.01) and lindane 

+ 4CD(p<0.001) treated groups vs. the control group for lindane as well. 

PREG-S and 4CD antagonized the effect of lindane on GSH. The difference 

between lindane alone treated group and lindane+ PREG-S and 

lindane+4CD group was found to be significant (p<0.001).No significant 

change was noted for only PROG treated group vs. the control for lindane as 

well as PROG+lindane vs. lindane alone treated group (Table 5; Fig 15).  

Table 5: Effect of lindane and NS on brain GSH levels 
 

Group Treatment 
(6week+1week) 

GSH (µg/g wet brain 
tissue) ± SE 

Control  Vehicle for lindane+ vehicle for NS 413.6±27.75 
Lindane Lindane 15mg/kg/d p.o+ vehicle for NS 202.96±25.52a 
Only PROG Vehicle for lindane +PROG 15mg/kg/d i.p 457.13±35.37 
Only PREG-S Vehicle for lindane +PREG-S 2mg/kg/d i.p 648.42±31.87a 
Only 4CD Vehicle for lindane +4CD 0.5mg/kg/d i.p. 662.08±33.7a 
Lindane+ PROG Lindane 15mg/kg/d p.o+ PROG 15mg/kg/d i.p 264.41±29.2a 

Lindane + PREG-S Lindane 15mg/kg/d p.o+ PREG-S 2mg/kg/d i.p 610.55±29.04b,c 

Lindane +4CD Lindane 15mg/kg/d p.o+ 4CD 0.5mg/kg/d i.p. 627.55±33.94a,c 

 
Intergroup variation found statistically significant p< 0.001, df=7, F=33.991 
a   p<0.001 as compared to control group for lindane (ANOVA followed by Tukey’s test) 
b   p<0.01 as compared to control group for lindane (ANOVA followed by Tukey’s test) 
c   p<0.001 as compared to lindane alone treated group 
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Fig 15 : Effect of lindane and NS on brain GSH levels
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Intergroup variation found statistically significant p< 0.001, df=7, F=33.991 

a   p<0.001 as compared to control group for lindane (ANOVA followed by Tukey’s test) 
b   p<0.01 as compared to control group for lindane (ANOVA followed by Tukey’s test) 

c   p<0.001 as compared to lindane alone treated group(ANOVA followed by Tukey’s test) 



 

Discussion 
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Neurosteroids (NS) over the last few decades have been recognized as 

important modulators of neurological functioning. The influence of NS has 

been observed on several aspects of the functioning of the nervous system 

ranging from cognition to epileptogenesis and neuroprotection to 

embryogenesis3,36. NS such as PROG and AP have been shown to have a 

neuroprotective role on learning and memory impairment and promote 

neuroregeneration7,13,93,94. PREG-S has been described as one of the most 

potent memory enhancers.  Fewer than 150 molecules of PREG-S have been 

shown to significantly enhance post-training memory processes when 

injected into the amygdale of rats10,104.  

The influence of NS over cognitive processes is mediated through several 

mechanisms. Dominant among the putative mechanisms are influence of NS 

over membrane receptors like NMDA, GABAA, sigma (σ), kainate, glycine, 

serotonergic and neuropeptide receptors. Agonist of mitochondrial diazepam 

binding inhibitor receptor complex, Ro-5-4864 (4’-chlorodiazepam, 4CD) has 

been shown to increase the brain PREG synthesis without any effect on the 

blood PREG concentration. The ligands of this receptor facilitate the 

intramitochondrial flux of cholesterol thereby increasing the availability of 

cholesterol to cytochrome P450scc leading to an increased NS biosynthesis8. 

Lindane has been implicated to adversely affect memory and cognition. It 

has been demonstrated that it interferes with the ability of avoidance 

response with a single dose and increases the number of errors made in a 

food-reinforced maze on repeated exposure 30,143. Lindane has effect on long-

term potentiation (LTP) in the hippocampus, and it is possible that this 

effect may compete or interfere with the utilization of new information. It 

also inhibits activities of cerebral Na+, K+- ATPase, Mg2+- ATPase and 

AchE142 and has been postulated to achieve its behavioral effects by acting 

on GABAA receptors. Lindane reportedly inhibits the conversion of 

cholesterol to PREG by inhibiting the enzyme P450scc145. It has been further 

claimed that lindane inhibits the activity of steroidogenic acute regulatory 

(StAR) protein, which mediates the rate-limiting and acutely regulated step 

77  



Modulation of the effects of lindane on cognitive function and oxidative stress by neurosteroids in rats 

in hormone-regulated steroidogenesis, the intramitochondrial transfer of 

cholesterol to the P450scc enzyme31,32. 

The present study was therefore, designed to explore the influence of NS on 

cognitive dysfunction caused by lindane by measuring the step-down 

latency (SDL) in continuous avoidance paradigm and transfer latency (TL) in 

the plus-maze apparatus, a model of measuring the long-term memory. In 

view of the influence of oxidative stress over memory and the modulatory 

effects of both NS and lindane on the oxidative stress status in vivo, 

malondialdehyde (MDA) and reduced glutathione (GSH), parameters of 

oxidative stress were also assessed in the animals’ brain at the end of the 

study period.  

The results of this study demonstrate that SDL was reduced and TL 

prolonged on long-term (6 week) administration of lindane. This is in 

accordance with the data reported by previous workers demonstrating 

interference with memory and LTP on acute and chronic exposure to 

lindane29,30,143. Although a decrease in SDL was noted from week 4 onwards 

of lindane administration but it assumed statistical significance only in the 

week 6. This significant decrease was maintained in the 7th week i.e., 1 week 

after the discontinuation of lindane and administration of  vehicle for NS. 

PREG-S and 4CD were able to reverse the impairment in memory caused by 

lindane when administered for 1 week following pretreatment with lindane 

for 6 weeks. However, PROG failed to reverse the memory dysfunction 

caused by lindane.  

A decrease in brain PREG-S levels has been noted in AD patients and PREG-

S has been described to be the most potent memory enhancer with capacity 

to enhance LTP. The putative mechanisms operating  have been described to 

be trophic effects of PREG-S on neurons, glial cells and modulation of 

activity of a variety of neurotransmitter receptors and ion channels, 

including GABAA, NMDA, σ receptors, N- and L-type Ca2+ channels and 

regulation of gene expression 9,10,95,104-106,108,109. Enhancer of 

78  



Modulation of the effects of lindane on cognitive function and oxidative stress by neurosteroids in rats 

steroidogenesis, 4CD, has also been shown to improve memory in various 

animal models. In one study it has been shown to facilitate the step down 

inhibitory avoidance on post-training administration. Although the dosage 

used was higher in their study (2mg/kg i.p) as compared to the doses in the 

present study (0.5mg/kg). However, it was given as a single dose in contrast 

to one week’s administration in our study110,111.  

Influence of PROG over memory presents a confounding picture. Djebaili et 

al have demonstrated a decrease in cell death and cognitive deficits after 

experimental contusion to rat pre-frontal cortex by AP and PROG when used 

one day after injury7. Other workers have demonstrated a beneficial effect of 

hormone replacement therapy with estrogen and progesterone over episodic 

memory and verbal learning in post-menopausal women 98,161. PROG 

inhibits the proliferation of astrocytes in vitro and this could have 

physiological implications in limiting the post traumatic gliosis in brain 113. 

In contrast to the above observation in a recent study by El-Bakri et al, 

PROG failed to demonstrate any effect on NMDA receptor modulation and 

memory enhancement in ovarectomized rats99. Further, Grigorova and 

Sherwin failed to demonstrate any improvement in working memory and 

executive functioning of healthy elderly post-menopausal women taking 

hormone replacement therapy100. In ovarectomized rats, PROG reversed the 

beneficial cognitive effects of estradiol over spatial performance 101. Lagrange 

has suggested that all the effects of PROG are due to its conversion to AP in 

the brain55 and AP has been shown to disrupt memory, albeit in a 

concentration dependent manner 14. In the present study, absence of any 

effect of PROG over memory could be due to several factors such as the dose 

used, duration for which it was administered, opposing effects on memory in 

different paradigms and also possibly failure to influence cognitive 

dysfunction caused by lindane due to pharmacodynamic influences. 

A significant decrease in TL by lindane was evident from week 2 onwards, 

with a gradual progressive deterioration peaking at 6 weeks of 

administration. PROG, PREG-S and 4CD led to an improvement in the 
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scores for TL after 1 week of administration but it was not statistically 

significant. The probable reason for lack of effect of any test drug over TL 

could be the early onset of cognitive dysfunction detected by the test, which 

could not be reversed on 1 week of test drug administration. Possibly, a 

longer duration of administration and/or higher doses of these drugs may 

achieve an improvement in TL.  

Lindane demonstrated induction of oxidative stress in brain, witnessed as 

reduction in brain GSH and increase in brain MDA levels. This result is in 

strong agreement with the findings of previous researchers exploring 

oxidative potential of lindane 33,34,146. PREG-S and 4CD were able to reverse 

the effects of lindane over these two parameters while PROG failed to 

demonstrate any effect over the same. Neuroactive steroids protect retinal 

cells from oxidative stress and this effect is mediated by σ1 receptors26 

PREG-S has been reported to influence σ1 receptors, hence it is a possibility 

that anti-oxidant effects of PREG-S demonstrated in this study could, at 

least in part, be mediated through these receptors. Data on 4CD’s role in 

antioxidant-oxidative stress specifically, is lacking but since 4CD can 

increase the production of several NS, many of which like DHEA have 

proven antioxidant capacities, the decrease in MDA and increase in GSH 

observed with 4CD administration in this study could be because of 

production of these NS. Griifith and Woolley demonstrated the exacerbation 

of toxicity of lindane and proconvulsant effect on combination of 4CD and 

lindane in rats144 but in their study the dose of both lindane and 4CD used 

were several fold (2.6 and 20 times respectively) higher as compared to this 

study. Although PROG has been shown to inhibit lipid peroxidation, the lack 

of effect of PROG on MDA and GSH changes induced by lindane in this 

study could be due to the inadequacy of dosage used in this study to 

modulate lindane toxicity.  

Oxidative stress has been closely related to cognitive dysfunction. Possible 

role of oxidative stress in pathogenesis of AD in humans as well as several 

animal models of AD and cognitive impairment has also been recognized 
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148,150-152. In the present study, lindane affected both the parameters of 

memory and oxidative stress adversely. Both PREG-S and 4CD 

demonstrated favorable effects on the two parameters of oxidative stress and 

SDL, a parameter of cognitive functioning. Hence, a co-relation between 

oxidative stress and memory impairment could be a possibility. 
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Summary 
Neurosteroids are recognized as important modulators of functioning of the 

nervous system. They have been recognized to influence several 

neurobehavioral processes including memory and cognition. Lindane, an 

organochlorine pesticide has been shown to adversely affect memory and 

induce oxidative stress on both acute and chronic exposure. The present 

study was thus designed to explore the modulation of effects of lindane over 

cognitive function by progesterone (PROG), pregnenolone sulfate (PREG-S) 

and 4’-chlorodiazepam (4CD). 

Male Wistar rats were used for the study. The control groups were 

administered a) the vehicle in which the drugs were dissolved b) lindane and 

c) PROG, PREG-S or 4CD alone. The other three groups received PROG, 

PREG-S or 4CD following pre treatment with lindane for a period of 6 weeks. 

Cognitive function was assessed using step-down latency (SDL) on a passive 

avoidance apparatus and transfer latency (TL) on a plus maze weekly 

starting from one day before beginning of any treatment till the end of study 

period. Oxidative stress was assessed at the end of the study period by 

examining brain malondialdehyde (MDA) and reduced glutathione (GSH) 

levels. 

1. Control group showed no change in cognitive function during the study 

period. 

2. The group treated with lindane showed a decline in cognitive function as 

measured by increased TL and decreased SDL. This group also showed 

significant a increase in oxidative stress as witnessed by an increase in 

brain MDA and decrease in brain GSH levels. 

3. PROG), PREG-S and 4CD treatment without lindane did not demonstrate 

any change in cognitive function over the study period. No change in 

MDA levels were observed as compared to the control group. However, 
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PREG-S and 4CD treatment group demonstrated a significant increase in 

brain GSH levels while PROG alone treated group did not show any 

significant change in the brain GSH levels. 

4. PROG failed to alter the lindane induced changes in TL, SDL, MDA, GSH.  

5. PREG-S or 4CD treatment following lindane administration for 6 weeks 

was able to reverse the cognitive impairment induced by lindane as 

shown by improvement in SDL. The two drugs also reversed lindane 

induced oxidative stress as demonstrated by the decreased MDA and 

increased GSH levels in these groups compared to lindane only treated 

groups. 

6. Lindane induced impairment of TL was not modified PREG-S or 4CD 

treatment. 

Conclusion 
PREG-S and 4CD were able to reverse the lindane induced cognitive 

impairment at least in the Step down latency paradigm. The two drugs also 

reversed the derangement in oxidative stress parameters of MDA and GSH 

produced by lindane. PROG failed to influence memory impairment and 

oxidative stress induced by lindane. None of the drugs were able to 

modulate the changes induced by Lindane in the transfer latency paradigm. 

Our study reveals a possible correlation between memory impairment and 

oxidative stress in brain signifying yet another potential role of 

neurosteroids in the functioning of nervous system and possible use of this 

group of chemicals in reversing the damage induced by toxicants like 

lindane in the brain.  
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