
144

7. THE DOTNETSIM SIMULATION ENGINE

Chapter Overview 144

7.1. Objectives of the DotNetSim simulation engine 145

7.2 DotNetSim: the simulation engine component 148

7.2.1. Up-stream integration: Reading data from Visio
TM

 150

7.2.2. Event-based simulation: Top-down and algorithm 153

7.2.3. Down-stream integration: Writing data onto Excel
TM

 156

7.3. Comments on the implementation of the simulation engine component 157

7.3.1. Crossing lingual barriers within the Simulation engine 158

7.3.2. Crossing packages barriers between Microsoft .NET and Microsoft

Office 161

7.3.2.1. Solving shortages of computer resources 163

7.3.3. Comments on further issues 166

7.4 The chapter in context 169

CHAPTER OVERVIEW

DotNetSim’s simulation engine prototypes an event-based simulation executive that

runs, through simulated time, the models devised within the DotNetSim modelling

environment. Written within the .NET Framework, it reads the modelling data whose

collection is described in chapter 6, runs the event-based simulation and stores the

results of each replication into an Excel workbook. This chapter stresses the

integration of the DotNetSim simulation engine with other components which are

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

145

based on other Microsoft applications and executed by instantiating the corresponding

classes. Upstream from the DotNetSim simulation engine is the Visio
TM

 Event Graph

modelling environment described in chapters 5 and 6. Downstream is an Excel
TM

application for analysing and reporting the simulation results (see chapter 8). These

three coarse-grained components are integrated by proper class instantiation and not

merely linked through common files.

The simulation model is run by a purpose-designed, event-based simulation

engine. Like the rest of DotNetSim, this has enough functionality to show the main

principles of such integration, but should be enhanced for proper use. The experience

of developing this application by customising and integrating the components is used

to reflect on the value of such .NET integration for discrete event simulation.

7.1. OBJECTIVES OF THE DOTNETSIM SIMULATION ENGINE

The DotNetSim simulation engine consists of a number of .NET components that

prototype an event-based simulation executive, which is callable from within the

DotNetSim modelling environment. The simulation engine takes the model logic

captured within the Microsoft Visio
TM

 Event Graph emulator, though not by simple

file transfer. Instead, it instantiates Visio classes and invokes the appropriate methods.

The model is then run over simulated time using an event-based simulation algorithm.

The number of simulation replications and the length of each run are determined by

the parameters stored while defining the model in Visio
TM

.

The simulation results are placed directly in an Excel workbook by instantiating

this application’s classes – that is, once again, not by using text files readable by

Excel
TM

. The results can then be analysed within Excel
TM

 by resorting to its built-in

tools for data analysis or to specific tools that could be developed in VBA.

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

146

Eventually, the modelling environment becomes active again and the model may

be refined if this is appropriate. Fig 7.1 depicts the DotNetSim prototype’s

architecture, zooming in the simulation engine.

Fig. 7.1: Zooming the simulation engine in the DotNetSim’s architecture. The

execution of the DotNetSim starts and ends within the Visio-based modelling

environment, passing through the stages ‘Modelling – Simulation – Output analysis’

The DotNetSim simulation engine gets a reference to the Visio-based DE model

and reads its logic and dynamics by invoking the appropriate methods on the

diagram’s shapes. It runs the model a number of times as determined by simulation

parameters, also read from Visio
TM

. In each replication, the attempt is made to execute

events scheduled for the current simulation time, i.e. for each event due to occur at

this time, if the test-head conditions hold, the system state transits accordingly and the

subsequent events are scheduled [107, 17]. A calendar of the time-stamped events is

maintained and the next event time flow mechanism is applied to the simulation time

(see chapter 2). Eventually, the simulation results are placed in Excel
TM

 by

instantiating an Excel-template and invoking the appropriate methods on new

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

147

workbook objects. The execution then passes to Excel
TM

. On saving the Excel

workbook, the execution returns to the simulation engine and finally back to the

Visio-based modelling environment.

This description of the DotNetSim simulation engine aims to highlight the

integration of object-oriented components, achieved by the instantiation of the classes

of one component from within another component. The inter-packages borders are

sufficiently blurred to allow a component developed within one package to manipulate

the objects of other components developed within other packages. Fig. 7.2 shows the

DotNetSim simulation engine crossing the borders of the .NET Framework to

manipulate the objects of Visio
TM

 and the objects of Excel
TM

.

Fig. 7.2: The DotNetSim simulation engine instantiates Visio’s classes to read the

model’s logic and instantiates Excel’s classes to write the simulation results

Upstream from the DotNetSim simulation engine is the Visio-based DE model

developed within the DotNetSim modelling environment. The DotNetSim simulation

engine crosses the upstream border to read directly from the custom properties of the

events and the edges diagrammatical data such as the sequence of the events, the

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

148

characteristics of the variability of the time that passes through the edges and the test-

head conditions. It also reads directly from the Visio-based DE model the modelling

data and simulation parameters stored as custom properties of the first page of the

Visio drawing document. The modelling data in which the DotNetSim simulation

engine is principally interested is the state transition triggered by each event, i.e. the

changes that each event causes on the state variables.

The simulation parameters are, for example, the number of replications, the run

length and the seed for generating random numbers; other data could also be read by

applying the same OOP principles. As soon as the DotNetSim simulation engine gets

a reference to the Visio drawing document which stores the DE model, it can

manipulate the Visio classes by invoking the appropriate methods.

Downstream from the DotNetSim simulation engine is Excel
TM

. The simulation

engine crosses the downstream border to write the simulation results directly on the

Excel ranges. It instantiates a workbook based on the SimOutAna Excel template (see

chapter 8) and writes directly on the appropriate sheets and ranges of cells the

sequence of time-stamped events executed in each replication and the state of the

system reached by the end of each replication. It also writes the state transition matrix

in this Excel workbook, where each element aij represents the change triggered by the

event i on the state variable j. Other data could also be written by applying OOP

principles to the Excel object model.

7.2 DOTNETSIM: THE SIMULATION ENGINE COMPONENT

To run the model captured within Visio
TM

 and, later, to display the simulation results

in Excel
TM

, the DotNetSim simulation engine handles the Visio
TM

 and Excel objects

as if they were its own, i.e. instantiations of classes defined within the .NET

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

149

Framework. To do this, the Visio
TM

 and the Excel PIAS (see chapter 4), the

Microsoft.Office. Interop.Visio.dll and the Microsoft.Office. Interop.Excel.dll, have to

be installed in the global assembly cache [33]. The .NET applications are then enabled

to interoperate with those Microsoft applications just by adding references [51] to the

corresponding object libraries.

Thus, references to these libraries were added to those components of the

simulation engine (see Fig. 7.3) which read data from Visio
TM

 or write data into

Excel
TM

.

Fig. 7.3: Adding to the DotNetSim simulation engine references to the Microsoft

Excel
TM

 11.0 and Microsoft Visio
TM

 11.0 libraries

Fig. 7.4: Directives which instruct the compiler about the namespaces of Visio
TM

 and

Excel object models

Also, to shorten the names of the classes, the directives listed in Fig. 7.4 were

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

150

included to inform the compiler of their fully qualified names and chosen alias names.

7.2.1. UP-STREAM INTEGRATION: READING DATA FROM VISIO
TM

The simulation engine is executed by a direct command from within the DotNetSim

modelling environment that invokes the corresponding .NET assembly. The

simulation engine gets access to the Visio object model by marshalling the object (i.e.

preparing the object to cross applications) that points to the active instance of the

Visio
TM

 application (see Fig. 7.5).

Fig. 7.5: C# statements that get a reference to the active Visio drawing document

This gives access to the root of the Visio object model, which thus enables the

simulation engine components to read the custom properties of the events, the edges

of the Event Graph and the associated modelling data, as described in chapter 6.

Fig.7.6 lists a C# program that illustrates how a custom property of a Visio shape is

Fig. 7.6: C# program that reads the number of times a DES is to run. This simulation

parameter is stored as a custom property of the active Page of the current Visio

drawing document

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

151

read from within the .NET Framework. First, it gets a reference to the active Visio

drawing document as shown in Fig. 7.5, then it invokes the method

get_ResultInt("",2) on the custom property of its active page. As an example, it reads

the number of times the DE model captured on the active Visio Document is to be run.

In order to take advantage of the object-orientation of C# and so facilitate the

implementation of the simulation algorithm, these properties are mostly read into

arrays of objects. Thus, classes are created to encapsulate the properties and the

methods that mould the behaviour of entities such as the state variables or the

scheduling edges. Statevariables, for example, is a class with properties such as name,

type, maximum value and current value. It also contains the methods for setting and

getting the current values of these properties. Finally, the different kinds of edges are

defined as classes that, by inheritance, derive from a generic class Edge and therefore

share the common properties and methods (see section 3.1.3.). Fig. 7.7 and Fig. 7.8

show respectively the edges inheritance graph and the C# definition of the classes

Edges and Scheduling.

Fig. 7.7: Edges inheritance graph

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

152

Fig. 7.8: The C# Edges class and Scheduling class

The objects instantiated from these classes are organised in arrays. The following

arrays are defined to read the diagrammatical and modelling data from the properties

of the Visio shapes:

SV[] : One-dimensional array of statevariables objects. Statevariables is a class

that defines the properties of the state variables and the methods to set and get

their values.

ST[,] : Bi-dimensional array of Etransit objects. Etransit is a class that defines

the methods for setting and getting the state variables’ changes triggered by each

event.

SC[], PSC[], CA[] and PCA [] : One-dimensional arrays of Scheduling,

PScheduling, Cancelling and PCancelling classes that define the properties and

methods to set and to get the properties of the edges of the Event Graph.

Other modelling data, e.g. the run length of simulation, the number of replications

and the seed for generating random numbers are read into field variables of the class

simparameters.

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

153

7.2.2. EVENT-BASED SIMULATION: TOP-DOWN AND ALGORITHM

The DotNetSim simulation engine implements an event-based simulation executive

that, using a Top-Down approach, can be expressed as follows:

1. Read diagrammatical and modelling data from Visio
TM

 into C# data structures

2. Execute each of the replications specified by the modelling data

2.1. Initialise the simulation time, state variables and calendar of events

2.2. Run the replication for the time length specified by the modelling data

2.2.1. Make a TO DO list for the current simulation time

2.2.2. Execute the TO DO list

Evaluate the head-condition

Perform state transitions

Output data on the executed events

Schedule following events

2.2.3. Delete from the calendar the events executed at this simulation time

2.2.4. Update simulation time

2.3. Output state variables

In addition to the data structures described above, are the CALENDAR and the

TODO lists:

CALENDAR [n,4]: A bi-dimensional array which records the events that are

scheduled for the future. It records two types of events: the events scheduled to

occur in the future and the events that were scheduled for the past but did not

occur because the head-condition did not hold.

The structure of these records contains the following fields:

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

154

� time: time at which the event is to occur

� event-to-execute: the number of the event that is scheduled for this time

� precedent-event: the number of the event that has scheduled the event-to-

execute. This field allows the evaluation of the data that passes over the

edge, e.g. head-condition and parameters as shown in Fig. 7.9.

Fig. 7.9: The head condition of the event Start passes over the scheduling edge that

connects this event to its scheduler

� executed: indicates whether the event was executed at the current simulation

time

TODO [n,4]: A bi-dimensional array which records the events that should or

could occur at the current simulation time, either because this is their scheduling

time or because their execution was not possible in the past.

The structure of the record contains the fields:

� event-to-execute: the number of the event to be executed

� precedent-event: the number of the event that scheduled the event-to-

execute. This field allows the evaluation of the data that passes over the

edge, e.g. head-condition and parameters

� calendar-row: The row of the record of the event-to-execute

� time: indicates whether the event is scheduled for now or could not executed

in the past.

Detailing further this top-down operation, the simulation executive algorithm can be

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

155

expressed in a C#-based pseudo-code as follows:

Algorithm Event-based Simulation

{Declare and initialise the data structures as described in

previous section;

Read data from Visio’s custom properties into the C# data

structures;

foreach (replication)

{Initialise CALENDAR, state variables, clock;

while (clock < Runlength)

{Make TODO list;

foreach (TODO record)

{Truthvalue=Check the head-condition;

If (Truthvalue==true)

{Perform state transition;

Output data on executed event;

Schedule following events }}

Delete TODO records from Calendar

Update simulation time;}

Output the current values of the state variables}

This algorithm calls a number of sub-algorithms, each of which provides a part of

the functionality of the simulation executive. The algorithm was implemented as a C#

Windows application and the sub algorithms as C# and VB.NET class libraries. All of

the latter were developed as components that are added as references to the former.

Thus, the simulation engine consists of the following components:

� Simeng: The C# windows application which implements the main algorithm

and invokes all other components.

� ReadModel: A set of classes that gets access to the Visio
TM

 application object

model and reads into C# data structures the custom properties of the events and

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

156

the edges of the current Event Graph. Also, it reads the custom properties of the

diagram’s first page where other modelling data is stored.

� Calendarising: A class that contains methods to operate the CALENDAR and

TODO lists. Thus, it initialises, inserts and deletes records into and from the

CALENDAR; it extracts from the CALENDAR the events that are to execute

at the current simulation time; and it updates the simulation time to the nearest

time of the CALENDAR when there are events scheduled.

� Conditions: A class that contains methods to look for the head-condition of an

event; splits the conditional proposition into conditions; evaluates the truth

value of each condition and of the whole proposition.

� Transitions: A class that contains the methods to read the state changes of each

event and perform the state transition as soon as the events execute.

� FutureEvents: A class which contains the methods to schedule the events that

follow the one which has just executed. If the corresponding delay time is not

deterministic, it invokes the methods of a VB.NET class to generate the

occurrence time for the next events from the uniform distribution and the

negative exponential distribution.

� Outputting: A class that contains the methods to write the simulation results, as

they are produced, to cells of an Excel workbook.

7.2.3. DOWN-STREAM INTEGRATION: WRITING DATA ONTO EXCEL
TM

When running, the simulation engine gets access to the Excel object model by

instantiating the Excel
TM

 application. A workbook is created, based on the

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

157

SimOutAna template described in detail in chapter 8. Fig. 7.10 lists the C# statements

to instantiate Excel
TM

 and create a new workbook based on that template.

Fig. 7.10: C# statements to instantiate Excel
TM

 and create a new workbook based on

the SimOutAna template

During each simulation replication and as the events are executed, a record of the

executed event and corresponding execution time is written in this workbook. At the

end of each replication, the values of the state variables are also written in the

workbook. Fig. 7.11 lists the C# statements that write into, an Excel range, the time, in

milliseconds, that a replication took to run.

Fig. 7.11: C# statements which writes in A1 of the worksheet Replications the time

that a replication took to run

Eventually, the simulation engine ends by quitting the Excel
TM

 application. The

user can then carry on refining the model within the DotNetSim modelling

environment.

7.3. COMMENTS ON THE IMPLEMENTATION OF THE SIMULATION

ENGINE COMPONENT

The implementation of DotNetSim’s simulation engine prototype provides useful

insights into the interoperability between components written within distinct packages

and in different programming languages. Thus, there are two major areas of interest:

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

158

(i) The first is the simulation engine itself, which consists of components

written in C# and VB.NET;

(ii) The second splits into two sub-areas:

(ii.1) The input area where the simulation engine reads the modelling data

captured within the Microsoft Visio
TM

;

(ii.2) The output area where the simulation engine displays the simulation

results within the Microsoft Excel
TM

.

The first area refers to the multilingual interoperability within the .NET

Framework and the latter to the interoperability across packages based on different

technologies.

7.3.1. CROSSING LINGUAL BARRIERS WITHIN THE SIMULATION ENGINE

The simulation engine consists of C# and VB.NET components that interoperate as if

they were written in the same programming language. As explained in chapter 4,

.NET components may instantiate and invoke methods of types implemented in other

.NET languages as if they are their own, regardless of the language in which they are

written in. Thus, for example, the class randoms which generates random numbers

from the Uniform and Negative Exponential distributions is written in VB.NET,

instantiated by the C# Simeng and its methods invoked by the C# FutureEvent to

generate the occurrence times of the next events. Fig. 7.12 shows the class VBrand.Vb

with a field variable rnum of type Random, a constructor, and the functions

getRandunif and getRandneg which return random numbers.

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

159

Fig. 7.12: randoms is a class written in VB.NET that defines the generation of random

numbers given two distribution functions

By including a reference to this class (see Fig. 7.13), the using directive tells the

C# Simeng where to find the randoms class, releasing it from requiring a reference to

its fully qualified name.

Fig. 7.13: A reference to the VBrand.VB class was added to the simeng.cs

The C# Simeng can now instantiate the randoms class and pass the instance as an

argument to the corresponding parameter of the FutureEvents method as shown in Fig.

7.14.

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

160

Fig. 7.14: The randoms class is instantiated in C# as if it were also written in C#

The FutureEvents method, in its turn, invokes the randoms class methods on this

instance to generate the occurrence time of the next event, as Fig. 7.15 illustrates.

Fig. 7.15: The method getRandneg is invoked on the instance r of the randoms class

This demonstrates that the language barriers among .NET programming languages

were, in fact, pulled down at the logical level. Within the .NET Framework, the

selection of components to assemble into a single application depends more on the

functionalities they provide and less on the programming language. The

implementation language is only important because of the programming expertise of

the developer. This widens the spectrum of prefabricated simulation components that

can be selected, modified and assembled to produce simulation tools or solutions.

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

161

7.3.2. CROSSING PACKAGES BARRIERS BETWEEN MICROSOFT .NET AND

MICROSOFT OFFICE

The simulation engine crosses the .NET Framework to read from and write data to

Microsoft Office applications. It needs only an object that points to the active or a new

instance of these applications in order to be able to manipulate the objects they

expose. This is straightforward but the simulation engine uses the C# language to

handle the objects that we are used to manipulating in VBA. As the two languages are

syntactically and semantically different, they invoke the properties and the methods on

the same objects differently with the same results. The major difference is that the C#

subset which deals with those objects is restricted. For example, it only provides

constructors and methods for the whole set of parameters while the corresponding

VBA primitives allow optional parameters.

Fig. 7.16 illustrates how we have initially dealt with this by assigning to each

optional parameter the Missing.Value which is provided by the System.Reflection

library to replace at runtime the missing parameter by its default value.

Fig. 7.16: The method SaveAs requires the enumeration of all its 11 parameters

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

162

As this is difficult to write and to debug, a C# class library, named WSWRAP,

was written to wrap this method and other similar methods into others whose

invocation only requires the known parameters. For example, the SaveAs method was

wrapped into the savebook method as listed in Fig. 7.17.

using System;

using Excel = Microsoft.Office.Interop.Excel;

using System.Runtime.InteropServices;

using Missing = System.Reflection.Missing;

namespace WSWRAP

{ public class WExcel

{ public static void savebook(string excelname, Excel.Workbook workbook)

{object[] o=new object[12];

o[0]=(object) excelname;

for (int i=1; i<=11; i++)

{o[i] = Missing.Value;}

 workbook.SaveAs(o[0],o[1],o[2],o[3],o[4],o[5],Microsoft.Office.Interop.

 Excel.XlSaveAsAccessMode.xlExclusive,o[7],o[8],o[9],o[10],o[11]);}}

Fig. 7.17: The Savebook method wraps the SaveAs so as to require only two

parameters

As WSWRAP also contains a wrapper for the VBA’s InputBox statement, saving

the active workbook within the simulation engine becomes as simple as Fig. 7.18

shows:

Fig. 7.18: Saving the active workbook from within a C# application which references

the WSWRAP

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

163

The invocation of these methods on Excel
TM

 or Visio
TM

 objects can be improved

by resorting to tools such as the ExcelXmlWriter [1], which is a lightweight wrapper

of the Excel’s object model based on the Xml workbook schema.

Once the syntactic and semantic differences between the two languages were

overcome, reading data from Visio
TM

 or writing data to Excel
TM

from within the

DotNetSim simulation engine became as straightforward as it would be if we were

addressing object models in the same packages.

7.3.2.1. SOLVING SHORTAGES OF COMPUTER RESOURCES

Due to reasons that were not investigated, the manipulation of Excel objects from

within C# programs generates shortages of computer resources, namely the main

memory. Thus, for example, writing data on a number of Excel cells from within a C#

program throws an exception due to a lack of runtime computer resources. The

maximum number of cells which a single object reference can handle depends

obviously on the computer system. To extend this upper limit, we have experimented

with two implementations:

I. The object variables are regularly reset, e.g. after writing 250 rows.

The C# code shown in Fig. 7.19 illustrates this implementation, resetting the

worksheet and the range variables after every group of 250 rows has been

written. The worksheet variable is always reset to the first sheet and the range

variable is successively offset 250 rows below. This example writes data into

5000x20 cells of the first worksheet.

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

164

Fig. 7.19: Resetting the Worksheet and Range variables after writing each group of

250x20 cells

II. The data is written on a number of worksheets

The C# code in Fig. 7.20 illustrates this implementation, setting the

worksheet variable to a new sheet after every group of 250 rows has been

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

165

written. The range variable is set to the same range in each sheet.

Fig. 7.20: Each group of 250x20 cells is written in a separate worksheet

These experiments indicated that, using the same computer resources, the second

implementation allows more data to be written in Excel
TM

 from within a C# program.

However, the former was implemented in the DotNetSim simulation engine as this

prototype does not aim to deal with long simulation runs, thus large numbers of Excel

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

166

cells are not to be written from within C#. Were the DotNetSim approach to be

implemented in software to be used by others, it would clearly be important to take a

proper approach to this problem rather than resorting to the workarounds described

here.

Additionally, in simulations with long run lengths, the time which is taken to write

a huge number of Excel
TM

 cells from within C# may also be a relevant constraint.

Other options to output the records of the executed events could be implemented

instead. For example, volatile data structures could be used to store these records

which could be partially output into Excel cells.

7.3.3. COMMENTS ON FURTHER ISSUES

The implementation of the DotNetSim simulation engine shows that the integration of

components written within the Microsoft Office applications, with components of the

Microsoft applications with the .NET Framework, is generally effective and

straightforward. The C#-based simulation engine instantiates the object models of

Visio
TM

 and Excel
TM

 and reads and writes their properties and invokes methods on

them as if they were its own.

This prototype implements an event-based simulation executive but other

simulation worldviews can be substituted. .NET components can run other simulation

executives and integrate them upstream and downstream with modelling and output

analysis components developed within Microsoft Office applications.

However, this implementation has also highlighted that the integration is only

straightforward when dealing with the built-in object models of the Microsoft

applications. By contrast, the intra-packages borders are especially problematic when

we deal with the user-defined classes or other dynamic data structures. For example,

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

167

passing an array from Excel
TM

 to Visio
TM

 is possible, as shown in Fig. 7.21, but

reading the same data from an Excel range is simpler because this is accessed from

within Visio
TM

.

Fig. 7.21: Passing an array from Excel
TM

 to Visio
TM

 and reading the same data from

an Excel range

Also, setting the properties of an Excel user-defined class from within Visio
TM

 is

possible but far from the object-oriented paradigm, as illustrated in Fig. 7.22.

Fig. 7.22: Setting the description of an instance of the class S_Events class defined

within Excel
TM

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

168

This difficulty increases when a .NET application, such as the simulation engine,

needs to manipulate a dynamic data structure defined within an application of the

Microsoft Office. Fig. 7.23 illustrates how a C# component reads a variable defined in

Excel
TM

. Reading an Excel range by a C# program is simpler because it consists of

applying a method on a built-in object.

These are some examples of the difficulties that may arise while integrating

components written in .NET languages with others written in Visual Basic for

Applications. The integration primitives provided do not entirely bridge the gap

between the former, which are fully object-oriented, and the latter, which is a

procedural language that implements a powerful object model. Thus, wrappers have to

be developed to interface the manipulation of some data structures. These are not

required between .NET languages.

Fig. 7.23: Reading a Range from within the simulation engine

CHAPTER 7 - THE DOTNETSIM SIMULATION ENGINE

169

The DotNetSim prototype suggests that extensions to its implementation would

benefit from the creation of libraries of wrappers which assign object-oriented

behaviour to the fine-grained components that support procedural intra-packages

interoperability. Simulation software developers would therefore start at a higher level

of abstraction, and the solution builders and the users could swap entirely to the

object-oriented paradigm in order to select, modify and assemble the components.

7.4 THE CHAPTER IN CONTEXT

This chapter describes and comments on the simulation engine of DotNetSim, which

prototypes the implementation of an event-based simulation executive that runs, over

time, the models devised within the DotNetSim modelling environment. This .NET-

based component OO integrates with the other coarse-grained components of the

DotNetSim prototype to read the application logic of the DE model captured within

the Visio-based modelling environment and to place the simulation results on the

Excel-based output analysis environment.

The next chapter discusses the implementation of the DotNetSim output analysis

environment, which prototypes an Excel-based component for analysing and reporting

the results of running multiple replications of a DE model over time.

