
170

8. THE DOTNETSIM OUTPUT ANALYSIS

Chapter Overview 170

8.1. Objectives of the DotNetSim output analysis 172

8.2. The DotNetSim: Output analysis component 173

8.2.1. Customising Excel
TM

 174

8.2.2. Analysing the system’s changes of state 177

8.2.2.1. Tracing state changes 177

8.2.2.2. Plotting system’s states 178

8.2.2.3. Statistical add-ins 179

8.2.3. Reporting the simulation analysis 180

8.3. Comments on the implementation of the DotNetSim output analysis 181

8.4 The chapter in context 183

CHAPTER OVERVIEW

DotNetSim’s output analysis prototypes an Excel-based environment for analysing

and reporting the results of running multiple replications of a DE model over time. It

customises Excel’s built-in data analysis and reporting tools and allows for the

possibilities of further specialisation to serve the purposes of additional requirements

for an event-based simulation of a DE model. Worksheets are appropriately formatted

to receive the results produced by the DotNetSim simulation engine and some built-in

Excel tools are customised as examples to serve simulation output analysis. The

DotNetSim output analysis mainly stresses that the tools demanded by many

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

171

simulations are likely to be among the huge number of data analysis Excel add-ins

which are currently available. These can be temporarily plugged to the output analysis

component if and when needed.

Thus, the DotNetSim output analysis component consists of a number of VBA

components, gathered in a template, to format a set of worksheets and to customise

and specialise Excel data analysis and reporting tools in order to suit the needs of the

event-based simulation of DE models. Also, it automates user-commands for plugging

and unplugging new and existing add-ins. The simulation tools are displayed on a

menu of commands, the Simulation Output Analysis menu, which is automatically

generated and appended to the Excel menu bar on instantiating this Excel template.

Like the other two coarse-grained components of the DotNetSim prototype, the

development of this component stresses its integration with other applications and the

customisation of the generic application within which it was developed. Upstream,

the output analysis component integrates with the simulation engine that instantiates

this template and manipulates the Excel object model to place the simulation results.

Downstream, it integrates with other Microsoft applications, by object-oriented

manipulation of their object models, to report the analysis of the simulation results. It

also integrates with a wide range of prefabricated analytical and graphical tools

constituted as add-ins and pluggable to Excel
TM

 when needed.

This chapter describes the functionality built on top of Excel
TM

 to illustrate the use

of generic software capabilities to derive a simulation’s layer of software tools which

integrates with other modelling and simulation components of the DotNetSim

prototype.

Finally, some comments are made on the implementation and extension of these

Excel-based simulation output analysis software tools. These comments lead to further

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

172

discussion on the value of the integration of different Microsoft applications for

modelling DE systems.

8.1. OBJECTIVES OF THE DOTNETSIM OUTPUT ANALYSIS

The DotNetSim’s output analysis prototypes an Excel-based data analysis and

reporting tool for DE systems. It illustrates the customisation of the Excel’s built-in

data analysis and reporting capabilities to trace, analyse and report the state changes

that a DE system passes through during the simulated runs. From upstream, it

integrates with the DotNetSim simulation engine, from which it receives the

simulation results and, from downstream, it integrates with other applications to report

the analysis of the outputs.

A number of VBA components are gathered in an Excel template to format the

worksheets of a workbook and to offer a menu-driven set of tools which exemplifies

the customisation and the extension of Excel
TM

 to serve a discrete event simulation.

Specific VBA components and pluggable add-ins are developed to derive simulation

tools from the generic analytical and graphical Excel
TM

 capabilities and to facilitate

the exchange of data between the Excel
TM

 and other applications.

Fig 8.1 depicts the DotNetSim prototype’s architecture, zooming in the output

analysis component. The DotNetSim simulation engine instantiates the output analysis

template and places the results of the simulation runs in the new workbook. That is, it

saves the stage which the system reaches at the end of each replication along with the

corresponding sequence of the time-stamped events which were executed. In this

workbook it also places the state transition matrix, i.e. the changes triggered on each

state variable by each event. This data is then available for analysis and reporting.

Beyond the Excel
TM

 built-in generic and data analysis tools, DotNetSim output

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

173

analysis offers, as examples, specific simulation tools, namely those for customising

Excel
TM

 so that the user may trace analytically and graphically the state variables for

each simulation run and may report tables and charts via Word documents and

PowerPoint

presentations.

On exiting the Excel workbook, the execution returns to the simulation engine and

finally back to the Visio-based modelling environment.

Fig. 8.1: Zooming the output analysis component in the DotNetSim’s architecture. The

execution of the DotNetSim starts and ends within the Visio-based modelling

environment, passing through the stages ‘Modelling – Simulation – Output analysis’

8.2. THE DOTNETSIM: OUTPUT ANALYSIS COMPONENT

The DotNetSim output analysis environment is implemented in an Excel template, the

SimOutAna.xlt, which contains a number of VBA modules to format the worksheets

and offer simulation tools for the following categories of functionality:

� Customising Excel
TM

 to display only the functionality required for analysing

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

174

and reporting the simulation results

� Analysing the state changes of the DE system analytically and graphically,

including tracing the chronological sequence of executed events in each

simulation run

� Reporting the simulation analysis to Word documents and PowerPoint sets

of slides.

These categories are displayed in the Simulation Output Analysis menu shown in

Fig. 8.2. This menu is generated and appended to the Excel’s menu bar at runtime.

Fig. 8.2: Simulation Output Analysis menu

8.2.1. CUSTOMISING EXCEL
TM

On instantiating the SimOutAna template, a workbook is automatically created with

six worksheets named Events, Replications, Transition, Analytical, Graphical, and

Customisation. The first three sheets are used by the simulation engine to place the

simulation results:

� The Replications worksheet records the state of the DE system at the end of

each replication. Each record is a set of fields that identify the replication,

specify its duration in terms of system time and simulation time and store the

values of the state variables at the end of the replication

� The Events worksheet records, as the simulation replications run, the

executed events and their corresponding execution times. Each executed

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

175

event is recorded in two fields - the simulation time and the event number -

hence, the events executed during each replication are listed in two adjacent

columns of the Events Worksheet.

� The Transition worksheet is used to place the event’s state transition, i.e. the

state changes triggered by the events as described within the DotNetSim’s

modelling environment.

The last three worksheets are used to output the results of the analytical and

graphical analysis and to customise Excel
TM

to serve the purposes of the simulation

output analysis component.

Also, and like the customisation of Visio
TM

 described in chapter 6, to increase the

simplicity of the graphical user interface, the generic tools of Excel
TM

 can be limited

to those needed by the simulation output analysis. Thus, the SimOutAna template

starts by automatically unloading or hiding the menus, toolbars and add-ins that might

not be necessary for the analysis and reporting of the simulation results. However, at

any time, these tools can be activated as shown in Fig.8.3.

Fig. 8.3: The boxes list the menus, tool bars and add-ins available at the current

Excel
TM

 installation

Also, the Simulation Output Analysis menu that is generated and appended to the

Excel menu bar on instantiating the SimOutAna template is customisable in order to

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

176

display only the functionality required by the current DE simulation. Thus, the

Simulation Output Analysis menu can be generated from the list of commands stored

in the Customisation worksheet as shown in Fig. 8.4.

Fig. 8.4: The list of commands typed in the Customisation worksheet is converted into

the Simulation Output Analysis menu

While generating the menu, the list of procedures stored in the Customisation

worksheet is checked against the VBA procedures of SimOutAna.xlt. Missing

procedures are signalled in the cell to the right of their names and replaced by a

general Missing procedure which serves to remind the user that the functionalities are

not available. Thus, the user may adapt the menu to match the needs of each

simulation by adding or removing commands and the corresponding procedures.

The Customising Simulation Menu toolbar, shown in Fig 8.5, is activated

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

177

automatically from the Customising Excel

command of the Simulation Output

Analysis menu. It allows a new menu to be generated or the original one to be

restored.

Fig. 8.5: The Customising Simulation Menu toolbar allows the customisation of the

Simulation Output Analysis menu

8.2.2. ANALYSING THE SYSTEM’S CHANGES OF STATE

The simulation results written by the DotNetSim simulation engine into a workbook

instantiated from the SimOutAna template (see section 7.2.3.) may now be analysed

by resorting to the analytical and the graphical Excel
TM

 tools. This prototype

component stresses that specific data analysis tools can be constituted as add-ins and

plugged to the SimOutAna-based workbook when and if they are needed. Some VBA

modules were developed to extend Excel
TM

with examples of tools for event-based

simulation.

8.2.2.1. TRACING STATE CHANGES

Based on the list of executed events output by the simulation engine while running a

replication and the matrix of the event’s state transition, state variables can be traced

to observe their performance during a simulation run. Each executed event and chosen

state variables are looked up in the state transition’s matrix and updated accordingly.

If, as shown in Fig. 8.6, all state variables are selected to be traced, a list of the state

changes which the DE system passed through during a replication is displayed.

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

178

Fig. 8.6: Input form to list the state changes which the DE system passed through

during the first replication

The final values assigned to the state variables can then be cross-checked with the

state the DES system reached at the ending of the corresponding replication output by

the simulation engine to the Replications worksheet.

8.2.2.2. PLOTTING SYSTEM’S STATES

The state changes which the DES system passes through during each replication and

the corresponding final states may be graphically analysed in order to evaluate the

system performance and improve the knowledge of the system.

Discrete state changes

0

1

2

3

4

5

6

7

0 13 13 15 17 20 20 20 21 21 23 26 26 26 27 27

Time

U
n
it
s
. N

Q

S

Fig. 8.7: DE system’s states at certain points of time

Charts of the state variables may be generated automatically by looking up the

ranges that contain the traced variables in the Transition worksheet. The charts may be

placed in a separate sheet, the Graphical worksheet, in order to facilitate the

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

179

comparison of several charts. Fig. 8.7 depicts graphically the state transition of a

single server queue system, which was modelled within the DotNetSim modelling

environment and then simulated by the DotNetSim simulation engine. The successive

values of the state variables N, Q and S (respectively the number of customers that

arrive at the system, the number of customers queuing, and the status of the server

{busy=0, idle=1}) were traced for a simulation run and placed in the Transition

worksheet and then automatically plotted in a bar chart.

This example could be improved by users who resort to the built-in Charts

functionality of Excel
TM

. Other VBA programs can be written to draw additional

charts on the DES system’s state changes.

8.2.2.3. STATISTICAL ADD-INS

There are many Excel-based tools available to support statistical analysis, hence, the

DotNetSim prototype in this concern is limited to load and unload appropriate add-ins

and to automatically generate charts of the state variables previously traced.

The Excel-pluggable add-ins can be chosen from the list box displayed in Fig. 8.8

and loaded or unloaded for each simulation solution. New add-ins, which are not

listed, have to be identified by their full names in order to be loaded.

Fig. 8.8: Loading and unloading add-ins to analyse the simulation results

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

180

8.2.3. REPORTING THE SIMULATION ANALYSIS

The simulation results and the subsequent data analysis may be inserted in textual

reports and slide presentations by manipulating the objects of other Microsoft

applications from within Excel
TM

. The SimOutAna template contains VBA procedures

that automatically insert Excel tables and charts in Word documents and PowerPoint

presentations.

� Copying Excel tables to Word documents and PowerPoint presentations

Ranges of Excel worksheets are copied and pasted either into new or existing

Word files and PowerPoint files. The user’s selection of ranges to be copied

is input to the form shown in Fig. 8.9.

Fig. 8.9: User interface to input the range to be copied into a Word document

The tables which the user selects are placed in subsequent paragraphs or

slides.

� Copying Excel charts to Word documents and PowerPoint presentations

The Reporting Graphs toolbar is shown in Fig. 8.10. It is activated automatically

from the Reporting simulation analysis - Charts sequence of commands of the

Simulation Output Analysis menu. It allows the selected chart to be copied and pasted

to Word documents. Similarly (with the appropriate VBA statements), the charts can

be pasted to PowerPoint presentations.

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

181

Fig. 8.10: The Reporting Graphs toolbar allows charts to be pasted to Word

documents and PowerPoint presentations

Whilst reporting tables and charts, Excel
TM

 instantiates Word
TM

 or PowerPoint
TM

applications or gets references to active applications (see Fig. 8.11 and Fig. 8.12).

Methods are invoked on these objects to instantiate new documents or get references

to the active documents.

Fig. 8:11: Statements of VBA for Excel
TM

 to get a reference to the active Word

document

Fig. 8:12: Statements of VBA for Excel
TM

 to instantiate the PowerPoint application

and open a new presentation

Finally the selected tables or charts are pasted into them. This applies to other

Microsoft applications.

8.3. COMMENTS ON THE IMPLEMENTATION OF THE DOTNETSIM

OUTPUT ANALYSIS

The implementation of the output analysis component of the DotNetSim prototype

shows that Microsoft Excel
TM

 can be integrated with other applications to analyse and

report the simulation results. The integration is based on the object-oriented paradigm

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

182

and, hence, Excel
TM

 is instantiated by other applications and its objects are

manipulated by components developed within different packages. Also, Excel
TM

instantiates other applications and manipulates their objects invoking the methods they

expose. Thus, the output analysis Excel template is instantiated from within the

DotNetSim simulation engine in order to create and manipulate a new workbook in

which worksheets’ ranges it places the simulation results. The DotNetSim simulation

engine also instantiates and manipulates Microsoft Word
TM

 and Microsoft

PowerPoint
TM

 to insert the tables and charts created for analysing the simulation

results. Similarly, other applications, which support Microsoft Automation, can be

integrated by applying the underlying object-oriented programming paradigm.

This integration extends to the huge number of available Excel-based adds-ins

which provide modules for data analysis. Additional add-ins can be written

specifically for DotNetSim output analysis. VBA components can then be anchored in

Excel
TM

Workbooks, constituted as add-ins and plugged to the output analysis

component as needed.

This object-oriented integration shows that Excel
TM

 can be customised for a DES

software solution and it also demonstrates the DotNetSim idea of specialising and

integrating widely-used packages into simulation packages.

However, the object-oriented limitations of the VBA programming language and

the incoherence of the different varieties of VBA referred to in chapter 6 are, as in the

DotNetSim modelling environment, an obstacle to the implementation of the output

analysis component. All that was said about VBA for Visio
TM

 applies to VBA for

Excel
TM

. It allows the integration of different packages, but its procedural nature with

shallow incursions into OOP imposes huge limitations on the creation and

manipulation of user types which could simplify the development of simulation

CHAPTER 8 - THE DOTNETSIM OUTPUT ANALYSIS

183

specific data analysis tools. Also, the syntax incoherence of VBA is time consuming,

mainly while invoking identical methods on objects of different applications.

Nonetheless, programming in VBA for Excel
TM

 requires less effort than in VBA

for Visio
TM

 above all because of the huge number of users and developers who have

been writing and documenting well programs and add-ins for Excel
TM

 since the first

versions.

8.4 THE CHAPTER IN CONTEXT

This chapter describes and comments on the implementation of the DotNetSim output

analysis environment, built on top of Excel
TM

 to illustrate the use of generic software

to derive simulation-specific data analysis and reporting tools. These are integrated

with the DotNetSim simulation engine component following OO principles. The

results of the simulations are placed on an instance of the output analysis template

which is created and manipulated from within the DotNetSim simulation engine. The

data is then analysed within the DotNetSim output analysis environment and reported

to other Microsoft applications which are also OO manipulated from within this

DotNetSim component.

The next chapter demonstrates the use of the DotNetSim prototype.

