
184

9. USING DOTNETSIM

Chapter overview 185

9.1. Use cases 185

9.2. Creating the event-graph stencil 187

9.3. Running and customising the DotNetSim modelling component 188

9.4. Modelling a DES system in DotNetSim 188

9.4.1. Drawing, listing and redrawing Event Graphs 189

9.4.1.1. Drawing the single server Event Graph 191

9.4.1.2. Drawing other Event Graphs 192

9.4.2. Describing the models 194

9.4.2.1. Describing the single server 194

9.4.3. Reviewing the model 196

9.4.4. Reporting the model 197

9.4.4.1. Reporting the Event Graph 197

9.4.4.2. Summing up the model 198

9.4.5. General operations on the model 198

9.5. Simulating DE models 200

9.6. Analysing simulation results 201

9.6.1. Simulation output analysis menu 202

9.6.2. Analysing the system’s state transition 203

9.6.3. Further analytical and graphical analysis 205

9.6.4. Reporting the simulation analysis 206

9.7 The chapter in context 207

CHAPTER 9 - USING DOTNETSIM

185

CHAPTER OVERVIEW

In this chapter, the use of the DotNetSim prototype is demonstrated by modelling and

simulating a single server system, which is a fine-grained component that occurs in a

large number of DES systems. Parts, cars or customers arrive at the system and wait in

a FIFO disciplined queue to be served by a single server. This is modelled into an

Event Graph within the DotNetSim modelling environment by using its menu driven

modelling commands. Prior to this, a demonstration is provided of how to create the

Event Graph stencil with the modelling notation. Hence, the use of the DotNetSim

modelling component is demonstrated in 5 major steps, namely (i) drawing, listing

and redrawing the Event Graph (ii) describing the model (iii) reviewing the model

(iv) reporting the model and (v) general operations on the model.

Simulations of the single server model are then run by the DotNetSim simulation

engine which places the results in an Excel workbook. These are displayed and

analysed within the DotNetSim output analysis environment. Additionally, other use

cases are presented to illustrate the utilisation of features such as the parameterised

and cancelling edges implemented by DotNetSim but not required by the single server

model.

9.1. USE CASES

Given that Event Graphs are able to model the important features of DES systems by

composing fine-grained and loosely coupled sub-models [107], we demonstrate the

DotNetSim prototype by modelling a single server system which occurs in a large

number of DES. Real life examples include a toll system, a call centre or a machine

centre. These systems comprise an arrival process and a service process:

CHAPTER 9 - USING DOTNETSIM

186

� Arrivals of cars, phone calls or parts occur one at a time; they are not

affected by the current length of the queue; they queue on a FIFO basis and

their inter-arrival time can be described by a probability distribution [127,

85] such as the negative exponential distribution. Arrivals are independent

and occur one after the other, i.e. one arrival schedules the next one within

the simulation.

� Service, for example, collecting the payment, answering a phone enquiry or

processing a part, also occurs individually; the service time is unaffected by

the length of the queue and it follows a probability distribution [127, 85]

such as the uniform distribution. One service starts when the last finishes or

when a customer arrives, hence services are delimited by a start event and a

finish event. The start event schedules its finish and the latter schedules a

new start if the queue is not empty.

This single server system can be modelled as a set of events e={run, arrival, start-

service and finish-service} which transit the system throughout the states s={s1, s2,

s3, s4}. The state of such a system is basically characterised by variables which

represent the number of cars, customers or parts that arrive at the system (N), the

number of arrivals queuing (Q) while waiting to be served and the status of the server

(S) that follows the convention{0-busy, 1-idle}.

Each event transits the system from one state to the next and schedules future

events. The run event schedules the first arrival; when an arrival occurs, the customer

joins the queue so that N and Q are incremented by one. A service starts when the

server is idle and there is at least one customer queuing. Starting the service

decrements the queue and turns the server to busy. The end of a service toggles the

status of the server and, when the service ends, if the queue is not empty, the next

CHAPTER 9 - USING DOTNETSIM

187

customer is served. Fig. 9.1 depicts the Event Graph and state transition of such a

single server component.

Fig. 9.1: Event Graph of a single server queue with the associated state transitions

This is the basic model for single server systems. However, additional variables

may be derived from the state variables in Fig. 9.1 to collect time varying statistics on

the performance of the system. Other events can be considered if the level of detail

requires this.

This model component can easily be extended to a multiple server system in

which the number of idle servers (S) is set to the number of existing servers. Also, it

can be plugged into other multiple server systems to simulate, for example, a system

in which a part is processed sequentially by a number of machines, creating a

sequential set of queues.

9.2. CREATING THE EVENT-GRAPH STENCIL

Before using DotNetSim for modelling the Event-Graph stencil must be created by

running the EGstencil.vsd (see Fig. 9.2). This starts by requiring the user to choose the

data source from which the Stencil menu is generated. By double clicking Visio, the

menu is generated from within Visio
TM

, otherwise it is generated from the Excel file

CHAPTER 9 - USING DOTNETSIM

188

C:\DotNetSim\Stencils\MenuStencil. The Event-Graph stencil can then be created and

master shapes can be added to it by selecting the appropriate commands on the Stencil

menu.

1> Run Visio

2> Select File – Open

3> C:\ DotNetSim\Stencils\EGstencil

Fig. 9.2: Commands to create the Event-Graph stencil

9.3. RUNNING AND CUSTOMISING THE DOTNETSIM

MODELLING COMPONENT

By instantiating the EGmodelling template (see Fig. 9.3), we gain access to the

functionality implemented by the DotNetSim modelling component described in

chapter 6. Visio
TM

 starts up with only its File and the Event Graphs menus, which are

the only tools a DES system requires for modelling. However, the user can activate

other menus, toolbars and stencils by selecting Customising Visio on the Event

Graphs menu at any time.

Fig. 9.3: Commands to instantiate the EGmodelling template

9.4. MODELLING A DES SYSTEM IN DOTNETSIM

Modelling a DES system within DotNetSim may be summarised into the following

four broad stages described in detail in this section:

CHAPTER 9 - USING DOTNETSIM

189

(i) The system is modelled into an Event Graph, which is drawn and redrawn

until we get a reasonable representation of the system. Meanwhile, data on

the events and the edges is added. Each sketch should be labelled to

facilitate a clear understanding of the system logic. To proceed to the next

stage, the version of the Event Graph accepted for use has to be read

automatically so that the structure of the scheduling and the cancelling

relationships between events is captured. Also, it may be automatically

labelled according to the Event Graph modelling notation.

(ii) Data is collected on the dynamic behaviour of the system. General

attributes, state variables, state transitions and simulation parameters have

to be defined at this point.

(iii) Diagrammatical and modelling data are automatically placed into a

relational database so that we can review the model’s properties either in

Visio
TM

 or Excel
TM

.

(iv) Finally, the model is ready to be reported either within Visio
TM

 or in other

Microsoft applications.

The Event Graphs menu unfolds these steps into a set of commands which are to

be run in sequence so as to facilitate the modelling of a DES system.

9.4.1. DRAWING, LISTING AND REDRAWING EVENT GRAPHS

To illustrate the use of the DotNetSim modelling component, we will develop the

Event Graph shown in Fig. 9.4. This will be done in two stages to illustrate different

ways in which DotNetSim can be used to develop Event Graphs. First, we started with

the user to draw the Event Graph in Fig. 9.5, which is Fig. 9.4 without event C.

CHAPTER 9 - USING DOTNETSIM

190

Fig. 9.4: Network of events as drawn automatically from an Excel descriptive list

(C:\DotNetSim\WorkingFiles\Netw2.vsd)

Start A

B

Finish

Fig. 9.5: Network of events as drawn, read and labelled in the DotNetSim modelling

componen (C:\DotNetSim\WorkingFiles\Netw1.vsd)

Intuitively, we started drawing Event Graphs directly by dragging and dropping

the events and edges from the stencil onto the drawing page. Then, the Event Graph

was read and labelled (see section 6.2.3.) by selecting Reading the diagram – Reading

the diagram sequence and Reading the diagram - Labelling the diagram on the Event

Graphs menu.

Next, the diagram was converted into the table 9.1 by selecting Reporting the

model - Listing diagram to Excel on the same menu. The C:\DotNetSim\Netw1.xls

Number Level Node/Edge Name Description Origin Destination

1 2 Event Start Starting

2 2 Event A Op A

3 1 Event B Op B

4 2 Event Finish Finishing

1 Schedule 1 2

2 Schedule 1 3

3 Schedule 2 4

4 Schedule 3 4

Table 9.1: Diagram’s descriptive list saved in C:\DotNetSim\Netw1.xls

was previously created by selecting Utilities on the Event Graphs menu.

To illustrate the inter-changeability of graphical and Excel modelling, we will add

CHAPTER 9 - USING DOTNETSIM

191

Event C to the Excel list of table 9.1. This leads to table 9.2 which, when re-drawn

within the DotNetSim modelling component by selecting Drawing the diagram -

Descriptive List in Excel on the Event Graphs menu, displays the Event Graph of Fig.

9.4.

Number Level Node/Edge Name Description Origin Destination

1 2 Event Start Starting

2 2 Event A Op A

3 1 Event B Op B

4 3 Event C Op C

5 2 Event Finish Finishing

1 Schedule 1 2

2 Schedule 1 3

3 Schedule 2 5

4 Schedule 3 5

5 Schedule 2 4

6 Schedule 4 5

Table 9.2: The new descriptive list of the network (C:\DotNetSim\WorkingFiles

\Netw2.xls)

9.4.1.1. DRAWING THE SINGLE SERVER EVENT GRAPH

The Event Graph of the single server system was drawn directly by dragging and

dropping onto the drawing page the four events of the single server component and

interconnecting them with scheduling edges. Lists of events and edges are displayed

in Table 9.3 and Table 9.4.

Event Name Description Parameter

Run Scheduling the first Arrival ---

Arrival New arrival ---

Start Start the service ---

Finish Finish the service ---

Table 9.3: List of events and prompted properties

CHAPTER 9 - USING DOTNETSIM

192

Edge Delay time Delay time Distribution Condition Priority

Run – Arrival --- ---- --- 1

Arrival-Arrival Ta Negative Exponential --- 1

Arrival - Start --- --- Q>0 and S>0 2

Start – Finish Ts Uniform --- 1

Finish – Start --- --- Q>0 1

Table 9.4: List of edges and prompted properties. Ta and Ts are random variables

that represent the arrival rate and service time

The single server Event Graph was then read and labelled as shown in Fig. 9.6.

Fig. 9.6: Event Graph into which the single server system was modelled

(C:\DotNetSim\WorkingFiles\SingSerSys.vsd)

Data on the probability distributions has now to be entered. By double clicking the

edges labelled with the names of the random variables, the distribution parameters are

prompted. Let us assume that the arrival rate is 8 arrivals per unit of time, the first

arrival occurring after 3 units of time and a service time between 5 and 15 units of

time.

9.4.1.2. DRAWING OTHER EVENT GRAPHS

To illustrate the use of the cancelling edges, we consider a single server system

with failures [17], i.e. the server fails following a certain probability distribution. For

example, the server is a computerised system that fails, causing critical errors

following a probability distribution and has to be rebooted. Te and Tb are random

variables representing the error times and the reboot times. The first failure is

CHAPTER 9 - USING DOTNETSIM

193

scheduled during the initialisation of the Event Graph. Fig. 9.7 shows the Event Graph

devised within the DotNetSim modelling environment which models such a system.

Fig. 9.7: Event Graph which models a single server system with failures

(C:\DotNetSim\WorkingFiles\SingSerFailures.vsd)

Also, to illustrate the use of parameterised scheduling, a multiple server system

[107] with N distinct servers is modelled. A service is allocated to the first server that

is idle. The servers are numbered from 1 to N and their status is represented by one-

dimensional array S[i] with i ∈ {0, 1, 2, 3, … , N-1}. The service time is represented

by the one-dimensional Ts[i] with i ∈ {0, 1, 2, 3, … , N-1} and may differ from server

to server.

Fig. 9.8 depicts an Event Graph that models this system. The newly introduced

event, Search, linearly looks for an idle server while an idle server (S[i]=1) has not

been found and it is still possible to find one (i<N). Thus, the first idle server is

allocated to the service. The parameter i represents the first idle server and passes

through the parameterised scheduling edges.

CHAPTER 9 - USING DOTNETSIM

194

Fig. 9.8: Event Graph which models a server system with N distinct servers

(C:\DotNetSim\WorkingFiles\MultSer.vsd)

9.4.2. DESCRIBING THE MODELS

General data on the DES systems and their dynamic behaviour is now to be entered

(see section 6.2.4.) The command Describing the model splits this data into four

groups, namely the general attributes, the state variables, the state transition and the

simulation parameters. These are entered into user forms especially designed for this

purpose.

9.4.2.1. DESCRIBING THE SINGLE SERVER

By executing the four sub commands listed above, we enter the following data

(C:\DotNetSim\WorkingFiles\SingSerSys.vsd) :

(i) Model name: Single server system

Model description: Component of a DES system in which a single server

provides a service on a FIFO basis.

(ii) State variables as in Table 9.5.

Variable Description Type Max value

N Number of arrivals Int 500

Q Length of the single queue Int 500

S Status of the server Bool 1

Table 9.5: State variables for the single server system

(iii) State transition as in Table 9.6. The key for the state transitions is shown in

Fig. 9.9 as it appears in the state transition’s user form.

CHAPTER 9 - USING DOTNETSIM

195

Event N Q S Interpretation

Run 0 0 True
Run initialises the number of arrivals and the

queue length to 0, and sets the server as idle.

Arrival +1 +1 True

A new arrival is enqueued, hence, it

increments N and Q by one and keeps the

server status unchanged.

Start 0 -1 False
Starting the service dequeues one element and

toggles the server status. N is unchanged.

Finish 0 0 False
Finishing the service toggles the server status

and does not affect N and Q.

Table 9.6: State transition triggered by each event of the single server system

Fig. 9.9: Key for entering the changes which the events trigger on the state variables.

IV. Simulation parameters as in Table 9.7

Parameter Value Interpretation

Run length 100
Each simulation will emulate 100 units of physical

time (e.g. 100 minutes)

Unit of time Unit The physical time is measured in units (e.g. Min).

Seed

The random number seed, i.e. the initial value for

generating the streams of pseudo-random numbers. If

the seed is omitted, the computer system’s time, in

milliseconds, is used to generate different stream

numbers for each replication.

Replications 6 6 simulations will run in sequence.

Table 9.7: Parameters for simulating the single server system over time

CHAPTER 9 - USING DOTNETSIM

196

9.4.3. REVIEWING THE MODEL

The single server Event Graph is now organised and automatically placed into a set of

tables (see section 6.2.5.) which can be listed to review the model. By selecting

Reviewing the model – Converting the model into a database - Visio tables Event

Graphs menu we can, for example, list the scheduling edges through which passes a

uniformly distributed delay time(as shown in Fig. 9.10). Given the objectives of the

DotNetSim prototype’s modelling component, the design of these outputs is not

essential; hence, the legends are displayed in separate message boxes.

Fig. 9.10: An uniformly distributed delay time passes through the edge that links event

3 to event 4. The parameters are the minimum and maximum time

To facilitate the review of the model, these tables can be permanently displayed in

an Excel workbook. This can be done in a three-stage process:

(i) Create an Excel workbook based on the EGmodel template (see

C:\DotNetSim\Exceltemplates). This can be done by selecting Utilities –

Excel files – Creating an Excel file on the Event Graphs menu.

(ii) Select Reviewing the model - Converting the model into a database –

Excel tables on the Event Graphs menu.

(iii) Save the Excel workbook (see C:\DotNetSim\Workingfiles\SingSerMod).

A quick shortcut shows the state transition that each event triggers, i.e. by double

clicking an event on the diagram, for example, the arrival, a message box pops up with

the event number, description and the state transition it triggers (see Fig. 9.11)

CHAPTER 9 - USING DOTNETSIM

197

Fig. 9.11: State transition triggered by the arrival event

Reviewing the model – Highlighting variables changes is another reviewing

feature that allows the user to trace a state variable along the Event Graph, i.e. the

events throughout the diagram are coloured to show the changes they trigger on a state

variable.

For example, Fig. 9.12 shows that the variable N, which represents the number of

arrivals, is initialised by the Run event, incremented when an Arrival occurs and

maintained unchanged by the other events.

Fig. 9:12: Changes triggered on the number of arrivals in a single server system

9.4.4. REPORTING THE MODEL

The single server model is now to be reported (see section 6.2.6). The diagram can be

converted into an Excel list, pasted into Word documents and PowerPoint

presentations. The model can be summarised into an Excel workbook or a Word

document.

9.4.4.1. REPORTING THE EVENT GRAPH

Listing the single server Event Graph in Excel
TM

 is a three stage process:

(i) Create an Excel workbook based on the EGdiagram template (see

CHAPTER 9 - USING DOTNETSIM

198

C:\DotNetSim\ Exceltemplates). This can be done by selecting Utilities –

Excel files – Creating an Excel file on the Event Graphs menu.

(ii) Select Reporting the model - Listing the diagram to Excel on the Event

Graphs menu.

(iii) Save the Excel workbook (see C:\DotNetSim\Workingfiles\ SingSerDiag).

Pasting the Event Graph to Word documents is possible by selecting the Reporting

the model - Pasting the diagram – To Word. For example, the subsequent New Word

Document option pastes the single server Event Graph, to a new Word document.

Similar usage pastes the single server Event Graph to PowerPoint presentations (see

C:\DotNetSim\WorkingFiles\SingSerDiag)

9.4.4.2. SUMMING UP THE MODEL

Summarising the single server model into, for example, the active Word Document

just requires the selection of Reporting the model - Summing up the model - To Word

(see C:\DotNetSim\WorkingFiles\SingSerMod). Fig. 9.13 shows part of Word

summary of the single server model.

Fig. 9.13: Part of the summary of the single server model inserted into the active

Word document (C:\DotNetSim\WorkingFiles\SingSerMod.Doc)

9.4.5. GENERAL OPERATIONS ON THE MODEL

Resizing or zooming the single server Event Graph and deleting the whole model (see

CHAPTER 9 - USING DOTNETSIM

199

section 6.2.7) is available through the General operations on the model command of

the Event Graphs menu. Its subcommand Resizing diagram allows the user, for

example, to define the length of edges and re-sizes the page width automatically. It

also allows zooming out and in the diagram. For example, the edges of the single

server event shown in Fig 9.14 were shortened to 1cm long.

Fig. 9.14: The single server Event Graph with 1cm long edges

The commands General operations on the model - Resizing diagram – Pan and

Zoom Window, allow, for example, the Arrival sub system to be selected in a Pan

Window and zoomed as shown in Fig. 9.15.

Fig. 9.15: Selecting and zooming in the Arrival subsystem

The commands General operations on the model - Resizing diagram – Zooming

allows reduction or broadening of the view of the drawing page.

Deleting the single server model in order to re-start its definition is available by

running commands General operations on the model – Deleting model. This is

preceded by a confirmation of the operation.

CHAPTER 9 - USING DOTNETSIM

200

9.5. SIMULATING DE MODELS

Given the data already specified, selecting Simulating the model on the Event Graphs

menu will cause 6 simulation replications of the single server model to run, each

simulating the model for 100 minutes. Control is transferred to the DotNetSim

simulation engine (see section 7.2.) and a message informs the user that the simulation

has started running. Eventually, the simulation results are placed on an instance of the

SimOutAna Excel template for analysis (see section 7.2.3.).

Table 9.8 shows the system state at the end of each replication, as placed in the

Replications worksheet (see singleserver.xls in appendix A) by the DotNetSim

simulation engine. Each row shows the physical time, in milliseconds, that the system

took to run the corresponding simulation, the last value assigned to the simulation

clock and the values of the state variables (N, Q and S) at the end of each replication.

 A B C D E F

1

Replication

Duration

(millisec) Current simulated time N Q S

2 1 310 100 11 1 FALSE

3 2 280 100 8 0 TRUE

4 3 351 100 15 4 FALSE

5 4 300 100 12 3 FALSE

6 5 451 100 20 8 FALSE

7 6 411 100 15 3 FALSE

Table 9.8: Snapshot of the Excel worksheet where the DotNetSim simulation engine

placed a summary of each replication (C:\DotNetSim\WorkingFiles\SingSerOut.xls)

Table 9.9 shows part of the sequence of events executed during the first 3

replications as placed in the Events worksheet by the DotNetSim simulation engine.

Each pair of columns < Clock, Event> shows the simulated time at which the event,

represented by its number, was executed. We are aware of the time that writing this

data can take especially, when the simulation run length is long (see section 7.3.2.).

CHAPTER 9 - USING DOTNETSIM

201

The state transition matrix, shown in Fig. 9.10, is also placed by the DotNetSim

simulation engine in the Transition worksheet.

 A B C D E F

1 Clock Event Clock Event Clock Event

2 6 2 24 2 6 2

3 6 3 24 3 6 3

4 11 2 27 2 9 2

5 12 4 30 2 12 4

6 12 3 37 4 12 3

7 22 4 37 3 14 2

8 24 2 43 4 17 4

9 24 3 43 3 17 3

10 27 2 47 2 23 4

11 29 2 50 2 29 2

12 29 2 51 4 29 3

13 34 4 51 3 31 2

14 34 3 57 4 32 2

15 36 2 57 3 36 4

Table 9.9: Snapshot of part of the Excel worksheet where the DotNetSim simulation

engine placed the sequence of the events executed in each replication

(C:\DotNetSim\WorkingFiles\SingSerOut.xls)

 A B C D E

1 N Q S

2 1 Run 0 0 TRUE

3 2 Arrival 1 1 TRUE

4 3 Start 0 -1 FALSE

5 4 Finish 0 0 FALSE

Table 9.10: Transitions triggered by each event on the server component’s state

(C:\DotNetSim\WorkingFiles\SingSerOut.xls)

9.6. ANALYSING SIMULATION RESULTS

The simulation results placed on the Replications and Events worksheets of the

SimOutAna’s instance are now ready for analysis and reporting (see chapter 8). The

states which the single server system passes through during the simulation runs can be

CHAPTER 9 - USING DOTNETSIM

202

reproduced and plotted into charts to check the correctness of the simulation results

and gain insights into the system’s dynamic behaviour. Statistical analysis can be

carried out for further evaluation of the performance of the system.

Eventually, the analysis results are reported into Word documents and PowerPoint

presentations.

9.6.1. SIMULATION OUTPUT ANALYSIS MENU

Prior to the analysis of the results, we may customise the Excel graphical user

interface (see section 8.2.1.) to display the capabilities required by the output analysis

of the single server system’s simulation. Excel
TM

 starts up with only the File and

Simulation Output Analysis menus, but the user can activate other menus, toolbars

and add-ins by selecting the appropriate commands on the Simulation Output Analysis

menu at any time (similar to section 9.3). For example, we may toggle the Excel tools

menu, the formatting toolbar and the Analysis ToolPack add-in by selecting the

commands Customising Excel – Menu, toolbars and add-ins on the Simulation Output

Analysis

In addition, if, for example, we want to display the Simulation Output Analysis

menu in Portuguese, we enter the new description of the user commands in the

Customisation worksheet, select Customising Excel - Simulation Output Analysis

menu on the Simulation Output Analysis menu and press the button New menu in the

Customising Toolbar. Fig. 9.16 shows the simulation menu in Portuguese. By pressing

the Restore built-in menu, the Simulation Output Analysis menu returns to its English

version.

CHAPTER 9 - USING DOTNETSIM

203

Fig. 9.16: Generating the Simulation Output Analysis menu in Portuguese

9.6.2. ANALYSING THE SYSTEM’S STATE TRANSITION

The states through which the single server system has passed during one simulation

may be reproduced by tracing the state variables after the execution of each event. For

example, tracing the state transition of the single server system during the second

replication is possible by selecting the commands Analytical and graphical analysis –

tracing state changes on the Simulation Output Analysis menu. By entering the

number of the replication and selecting the variables to be traced, the values taken by

these variables during that replication are automatically displayed on the Transition

CHAPTER 9 - USING DOTNETSIM

204

worksheet (see section 8.2.2.1.).

Table 9.11 traces all the state variables during the during the second simulation

run. The data is automatically offset three columns to the right of the state transition

matrix.

 H I J K L M

1 Replication Clock Event N Q S

2 2 24 2 1 1 TRUE

3 24 3 1 0 FALSE

4 27 2 2 1 FALSE

5 30 2 3 2 FALSE

6 37 4 3 2 TRUE

7 37 3 3 1 FALSE

8 43 4 3 1 TRUE

9 43 3 3 0 FALSE

10 47 2 4 1 FALSE

11 50 2 5 2 FALSE

12 51 4 5 2 TRUE

13 51 3 5 1 FALSE

14 57 4 5 1 TRUE

15 57 3 5 0 FALSE

16 70 4 5 0 TRUE

17 76 2 6 1 TRUE

18 76 3 6 0 FALSE

19 81 4 6 0 TRUE

20 82 2 7 1 TRUE

21 82 3 7 0 FALSE

22 88 4 7 0 TRUE

23 89 2 8 1 TRUE

24 89 3 8 0 FALSE

25 96 4 8 0 TRUE

Table 9.11: State transitions of the single server system during the second simulation

run (C:\DotNetSim\WorkingFiles\SingSerOut.xls)

The commands Analytical and graphical analysis – Plotting system’s states – state

variables on the Simulation Output Analysis menu plot these data in a Bar chart.

CHAPTER 9 - USING DOTNETSIM

205

Fig. 9.17 shows a Bar chart that depicts the state variables of the single server system

during the second simulation run.

Discrete state changes (replication:2)

0

1

2

3

4

5

6

7

8

9

24 24 27 30 37 37 43 43 47 50 51 51 57 57 70 76 76 81 82 82 88 89 89 96

Time

U
n
it

s
. N

Q

S

Fig. 9.17: Tracing the state variables of the single server system during the second

simulation run (C:\DotNetSim\WorkingFiles\SingSerOut.xls)

This automatic chart can then be enriched by resorting to the chart’s functionality

built into the Excel
TM

.

9.6.3. FURTHER ANALYTICAL AND GRAPHICAL ANALYSIS

Existing or newly developed user-defined functions and procedures can be gathered in

Excel add-ins to support the analytical and graphical analysis of the simulation results

(see section 8.2.2.2.). The add-ins may then be loaded when they are required. For

example, we may gather, in the Simulation.xla, functions and procedures which

calculate statistical measures such as the average system time required to run a

simulation, the average number of events executed per run, the average number of

arrivals, etc. This add-in can then be loaded and unloaded by selecting Analytical and

graphical analysis–statistical add-ins on the Simulation Output Analysis menu. If it is

the first time that this add-in is to be used, its full name C:\DotNetSim\WorkingFiles

CHAPTER 9 - USING DOTNETSIM

206

has to be typed on the prompted input box.

The simulation.xla functions and procedures can now execute. For example, to

compute the average number of arrivals, the user has to execute the user-defined

function Averages() and type the name of the state variable that represents the arrivals.

9.6.4. REPORTING THE SIMULATION ANALYSIS

The analysis of the outputs from the simulation of the single server system can be

reported by inserting Excel tables and charts into Word documents or PowerPoint

presentations. For example, subsets of the states which the single server system passed

through during the second replication (see table 9.11) can be pasted into a PowerPoint

slide, selecting the required elements and Reporting simulation analysis – Tables – To

PowerPoint on the Simulation Output Analysis menu.

Fig. 9.18: Snapshot of the PowerPoint slide created from within the Singleserver.xls

Also, the bar chart that plots the state variables along the second replication of the

single server system can be pasted into the active or a new Word document by

selecting Reporting simulation analysis – Charts on the Simulation Output Analysis

menu, selecting the chart and pressing the To Word button of the Reporting graphs

CHAPTER 9 - USING DOTNETSIM

207

toolbar. Similarly (with the appropriate VBA statements), this bar chart can be pasted

to PowerPoint slides.

9.7 THE CHAPTER IN CONTEXT

This chapter demonstrates the use of the DotNetSim prototype whose three coarse-

grained components were discussed on the previous 4 chapters. A single server system

is modelled and simulated within the DotNetSim prototype to demonstrate the

functionality each component implements. Thus, the single server system is modelled

in an Event Graph within the DotNetSim modelling component by following the menu

driven modelling commands. Simulations of the single server model are then run by

the DotNetSim simulation engine, which places the results in an instance of

DotNetSim output analysis environment. The illustrative tools of the DotNetSim

output analysis tools are then used to analyse and report the simulations results.

The next chapter summarises the thesis, reviews the major arguments and

underlying research to enumerate and comment on its contributions to an alternative

development strategy for DES software. This leads to a consideration of possible

further research.

