
208

10. CONCLUSIONS AND FURTHER RESEARCH

Chapter overview 208

10.1. Summary of the thesis 209

10.1.1. Major arguments in the thesis 210

10.1.2. Research that has led to the thesis 212

10.1.3. Contribution to the development of DES software 215

10.2. Lessons learned 217

10.2.1. Strengths and weaknesses revealed by the DotNetSim prototype 218

10.2.2. Opportunities and threats towards a commercial version 219

10.3. Future research 220

10.3.1. Libraries of components for DES software 221

10.3.2. Web services 222

10.4. Final conclusions 223

CHAPTER OVERVIEW

This thesis explores a component-based development strategy that aims to pull the

DE modelling and simulation software further towards object-oriented components

that cross programming languages and packages, linking them in a single application.

This is done by developing the DotNetSim project which prototypes DE simulation

software across the entire requirements of a simulation application package.

This chapter summarises this thesis by reviewing the arguments, the underlying

research and its major contributions to an alternative development strategy for DES

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

209

software. It presents some lessons for the development of commercial DES software,

inferred from the strengths and weaknesses that the implementation of the DotNetSim

prototype has revealed.

Some issues for future research are proposed. This includes research on

frameworks for dependencies, assumptions and standards within which libraries of

simulation components can be developed and deployed as web services. Finally, it

raises and leaves to future discussion the question on what value the new generation of

DE simulation software may have to narrow the gap between the theoretical

acceptance of simulation and its practical use as a tool for exploring complex systems.

10.1. SUMMARY OF THE THESIS

Set against the expansion of the mass customisation and the corresponding on-demand

paradigm to all sectors of the economy, this thesis explores an alternative approach for

the development of the DES software which may facilitate the customisation of

simulation solutions.

The on-demand consumption behaviour induced by mass customisation is also

extending to software products, namely to simulation software. In a similar way to

other consumers, simulation software users – developers, solution builders and end-

users – are increasingly demanding software products which are customisable to their

specific needs. It seems that packages that fit all problems at the expense of large

amounts of learning and use of resources are losing the interest of the users in favour

of software solutions.

Currently, simulation software users take for granted that software fulfils its

designated purposes, i.e. it is dependable, portable, friendly, recoverable, extensible,

etc. As with other products, it is plausible that they expect, to a certain extent, to

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

210

select the functionality the software provides to match the specific needs of the current

problem. Their expectations and desires may even look forward to instant

customisation of software solutions.

On-demand simulation, i.e. the instant selection, customisation and assembly of

only the functionality each simulation model requires, is not yet attainable. The

technological issues that the on-demand software raises are under ongoing

investigation in computing science, aiming to enable effective and efficient selection,

negotiation, delivery and binding of functionality at runtime. Meanwhile, simulation

software can benefit from the recent computing advances in developing paradigms

and integration frameworks to progress towards on-demand assembly of simulation

solutions in an open market of components, possibly based on the Internet.

Conventional developers of simulation software have responded to the demand for

customised solutions by adding new features and tools to their existing simulation

packages. This has led to huge, monolithic applications with functionalities that are

constantly extended in a ‘generalising-customising-generalising’ development cycle.

Existing packages allow some degree of customisation but, in general, they were not

designed to be customisable. Hence, if customisation is possible, it is difficult.

Nevertheless, there are already a few exceptions that attempt to break this mould

by integrating simulation and generic software tools to facilitate customisation. This

highlights an emerging understanding that the mode of development for much of the

contemporary simulation software may not be well-suited to meet the demand for

extensible simulation solutions.

10.1.1. MAJOR ARGUMENTS IN THE THESIS

This thesis investigates the composition of DES software from components developed

within different applications in order to lead the way eventually to the ideal on-

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

211

demand simulation. Thus, DES software solutions may be composed from

components that the users select, customise and assemble in order to suit each

simulation model. In addition, simulation components may be developed within

widely-used packages on top of their generic built-in features in a progressive object-

oriented specialisation of subcomponents and their component and layered-oriented

composition. Customisation is then eased by the use of familiar developments tools to

derive self-contained and self-healing components that integrate vertically in a

‘generalise-specialise’ development strategy.

Object, component and layered-oriented paradigms and integration mechanisms

are therefore crucial for this development strategy. Amid recent software integration

mechanisms is the Microsoft .NET Framework. It is a fully object-oriented

development platform which provides the wiring mechanisms to enable software

artefacts to integrate across different environments.

This thesis develops the DotNetSim project to explore how far the integration of

the .NET Framework with Microsoft Office applications can pull the DE modelling

and simulation software towards fully object-oriented components that cross

programming languages and packages, linking in a single application. A DES

software is prototyped across the entire requirements of a simulation application

package including graphical modelling environments, simulation executives and

output analyses.

The DotNetSim prototype focuses on two main development issues:

(i) Data exchange between distinct software development environments through

the instantiation of objects to apply the object-oriented programming

paradigm and replace the current creation of intermediate files and associated

format conversions.

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

212

(ii) The integration of powerful simulation engines with widely-used packages in

an architecture that supports the straightforward modification of modelling

and output analyses environments.

10.1.2. RESEARCH THAT HAS LED TO THE THESIS

Bearing in mind the contextual environment and the major arguments, the research

which has led to this thesis has proceeded as follows:

� Reviewing and defining relevant concepts of modelling, simulation and

computing fields to clarify the relationship between these three disciplines,

to understand the current trends of the DE simulation software and devise its

future developments. The co-evolution of modelling, simulation and

computing is reflected in the simulation software which keeps the pace with

the advances of these three disciplines.

� Reasoning on the development strategy of much contemporary simulation

software, which aims to ensure that the simulation packages have sufficient

functionality to suit a large number of problems. DES packages are

consequently bloated with constant additions of wizards, templates and add-

ons in a ‘generalising-customising-generalising’ development cycle. This

strategy has been successful until now, but the resulting huge monolithic

simulation packages are increasingly difficult to customise.

� Discussing the current experiences of a small number of simulation software

developers who have recently undertaken steps towards new development

approaches. This suggests that contemporary development strategy may not

be well suited to meet the demand for customised simulation solutions. The

Promodel Process Simulator
TM

, Micro Saint Sharp
TM

 and the HighMast
TM

Modeling and Simulation Toolkit are examples of those applications that

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

213

have resorted to the integration of simulation and generic software tools to

facilitate customisation.

� Devising an alternative vision for simulation software that centres the

development strategy in a series of ‘generalise-specialise’ cycles. DE

Simulation software should ideally be vertically architectured by successive

derivation of specific frameworks and libraries of simulation.

� Defining the DotNetSim project which addresses Discrete Event Modelling,

Integration Technologies and Discrete Simulation and their interrelationships

to investigate how far the Microsoft integration philosophy can propel DES

software towards the ideal scenario. This materialises in the development of

the DotNetSim prototype as an example of what Microsoft integration

philosophy can do for DES software.

� Developing the DotNetSim prototype for discrete event modelling and

simulation, linking in a single application, components developed within

various widely-used Microsoft applications in different programming

languages. Three coarse-grained components, which implement a modelling

environment, a simulation engine and an output analysis environment, were

composed into the DotNetSim prototype (see Fig. 10.1).

The modelling environment emulates Schruben’s Event Graph methodology

for simulation modelling. It consists of two Visio-based components:

(i) The stencil component implements the Event Graph’s extended

modelling notation. It defines the properties and the behaviour of

abstract shapes representing the events and the edges of that

diagrammatical notation.

(ii) The modelling component implements the functionality required to

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

214

capture the logic and the dynamics of DES systems modelled as

Event Graphs.

Fig. 10.1: DotNetSim’s composition of components. The execution of the DotNetSim

starts and ends within the Visio-based modelling environment, passing by the stages

‘Modelling – Simulation – Output analysis’

The simulation engine prototypes an event-based simulation executive in a

number of .NET-based components. It applies the OOP principles to read the

DE model’s logic and dynamics from the DotNetSim modelling

environment, runs the event-based simulation and to write the simulation

results into the Excel-based DotNetSim output analysis environment.

The output analysis environment prototypes a data analysis and reporting

tool for DES systems. It illustrates the specialisation of the Excel
TM

 generic

capabilities for data analysis and reporting to trace, analyse and report the

states that a DES system passes through during the simulated runs.

Next, this research reflects on the DotNetSim project, the lessons that were learned

from its development and its contributions to an alternative development strategy

leading to the next generation of DES software. Finally, we present some issues that

might be of interest to other researchers who may wish to move simulation software

further towards the ideal vision devised in this thesis.

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

215

10.1.3. CONTRIBUTION TO THE DEVELOPMENT OF DES SOFTWARE

Through its working prototype, the DotNetSim project shows that DES software may

be composed by object-oriented integration of components written in different

packages and programming languages. Integration frameworks such as Microsoft

.NET Framework encapsulate the software infrastructure that allows different

packages to be considered as objects of other packages. Hence, one application is

instantiable from within another, to which the former exposes its object models. The

Microsoft .NET Framework allows this interoperability also across different

technological generations, e.g. COM-based and .NET-based components.

The DotNetSim prototype illustrates the development of a component-based

simulation software application that integrates .NET components with COM-based

components developed within widely-used Microsoft applications. Its implementation

of an object-oriented component architecture built on top of generic software

applications highlights the following major contributions to the customisation of DES

software:

� Replacement of components

Each of the three coarse-grained components that the DotNetSim integrates

can be substituted by others which implement different modelling

paradigms, simulation worldviews and data analysis and reporting

techniques. Thus, the Visio-based modelling environment that emulates the

Event Graph paradigm can be replaced by other Visio-based graphic

modelling environments. Various Visio stencils can be added to support

different modelling notations.

The .NET-based simulation engine, which reads the simulation model by

invoking the appropriate methods on the Visio objects, can implement any

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

216

simulation worldview. The Excel-based output analysis environment can be

replaced by other data analysis components and its functionality can be

extended by plugging prefabricated add-ins to the existent component.

� Addition and removal of components

Likewise, other components can integrate the DotNetSim prototype to

provide specific functionality. For example, .NET or COM-based graphic

checkers, optimisers or animators can be instantiated by the DotNetSim

components which then may manipulate the respective functionality as if it

were their own. Components may also be removed without affecting the

remainder set of components and the corresponding inter-operation.

� Components sourced in widely-used generic software

The DotNetSim prototype shows the integration of components written

within widely-used generic Microsoft applications. COM-based components

written within Microsoft Office integrate with .NET-based components

written in fully object-oriented programming languages.

Thus, the large number of existing generic and simulation specific

components that were developed for Microsoft applications can object-

oriented integrate as black-boxes with the DotNetSim components. On the

other hand, most of these components are open source written within quasi-

standard development environments (Microsoft’s graphical user interfaces,

development tools and popular programming languages), hence white-box

modifiable to suit specific needs. Also, the development of simulation

components which extend these familiar applications does not require ‘rare

and expensive’ programming expertise.

At the core of DotNetSim’s research contribution is the reusability of

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

217

prefabricated functionalities, reinforced by the development of simulation components

on top of generic widely-used applications. This stimulates the supply of components

which target a wider market and a variety of modes of usage that range from black-

box to white-box reusability.

The DotNetSim prototype demonstrates that simulation software, like other

software domains, can keep up with computing advances and evolve from a

monolithic developing strategy, which is mainly procedural, towards a component-

based strategy which is framed by object programming paradigms. Object-oriented

simulation components and integration frameworks support the composition of

simulation solutions from prefabricated components. Components can be added,

replaced and removed from a core application in order to compose particular

simulation software solutions. This places simulation software within the mass

customisation economic context.

10.2. LESSONS LEARNED

The DotNetSim project and its working prototype illustrate how the integration-

friendly development frameworks, such as the Microsoft .NET Framework, can be

used to develop a component-based DES software. The full object-orientation of these

integration mechanisms eases the integration of components written within different

software applications and programming languages by handling components as objects

regardless of their development environments. Thus, .NET components written in

different programming languages can instantiate Microsoft Office-based components

(COM components) and handle their object models by invoking the appropriate

methods. The integration operates at a higher level than machine level, hiding from

application developers and solution builders the infrastructure on top of which

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

218

components sourced within different packages may handle others’ objects as if they

were their own. This was experimented with the DotNetSim prototype by integrating

components sourced in widely-used applications with a .NET-based simulation

engine.

10.2.1. STRENGTHS AND WEAKNESSES REVEALED BY THE DOTNETSIM PROTOTYPE

The strengths of the DotNetSim DES software prototype derive from the object-

oriented composition of three coarse-grained components developed within different

programming environments. These components integrate by application of the OOP

principles, which means that data flows among the components not by file transfer and

conversion of formats but by proper instantiation of the object models of each

component and invocation of the corresponding methods. The Microsoft Office

applications are objects to other applications. Hence, the functionality of each

application extends by setting references to other applications which allow data to

flow as if there were no borders between applications.

The DotNetSim prototype highlights the contribution of this object-oriented

integration of components to the development of component-based DES software. It

also shows how Microsoft Office applications can be extended to provide DE

modelling and simulation functionality from derivation of their built-in generic

features. DES software is then component compose-able and based on quasi-standard

Microsoft GUIs which increase its ease of learning, ease of use and ease of

customising.

However, the implementation of the DotNetSim prototype has also uncovered the

weaknesses and difficulties which derive from manipulating objects using Visual

Basic for Applications, a procedural programming language with some object-oriented

primitives. Also, the integration of the powerful .NET languages with VBA has

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

219

emphasised the syntactic and semantic differences which required the development of

wrappers to homogenise their use within a single component.

10.2.2. OPPORTUNITIES AND THREATS TOWARDS A COMMERCIAL VERSION

The DotNetSim prototype draws interest to the development libraries of modelling

and simulation components within generic software environments, in a variety of

programming languages and compliant with the ‘generalise-specialise’ development

paradigm. Software solutions can then be assembled by selecting the libraries and

components that better suit the specific DE simulations.

The DotNetSim prototype highlights the opportunity for developing generic and

simulation components on top of widely-used applications that object-oriented

integrate with other components regardless of the programming language and

development application. Specially developed components extend the built-in

capabilities of the applications and they may be written from outside in more powerful

programming languages. Components, for example, which extend the modelling

capabilities of Visio
TM

 may be written within the Microsoft .NET Framework in a

combination of .NET languages. It also highlights the opportunity of composing

different combinations of components, which increases the flexibility of the

simulation software applications. A modelling component that emulates Petri nets or

activity cycle diagrams, for example, can be composed with the C#-based DotNetSim

simulation engine. Also, a component that traverses an Access database can be

composed with the Event Graph modelling component of DotNetSim. Components

are to be reused within different compositions by different categories of simulation

users. This calls for distinct level of usage, hence, distinct levels of exposition of the

components’ cohesion, coupling and context dependencies.

In short, it would be worth considering the disintegration of three coarse-grained

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

220

components of the DotNetSim prototype into a number of fine-grained components in

order to increase the flexibility of the composition of solutions. The DotNetSim

modelling component, for example, should be de-composed in finer-grained

functionality, so as to allow a solution builder to add a diagram checker or to allow

end-users to alter the toolbars, menus or the diagram notation. The composition of a

DES software solution should start with the GUI-based selection of components and

the transference of the respective source code in order to facilitate its customisation.

In addition, to facilitate the integration of COM components (e.g. Microsoft

Office-based components) with .NET components, a layer of wrappers may be

required to bridge the gap between the .NET programming languages, which are fully

object-oriented, and the Visual Basic for Applications, which is a procedural language

that implements powerful object models. Also, the PIAS (Primary Interop

Assemblies) that enable this integration may have to give way to DotNetSim Interop

Assemblies, through which a wider range of objects and methods of the Microsoft

Office applications are exposed to .NET components.

The threats to the evolution of the DotNetSim prototype towards a commercial

application for DES software are generally associated with the usage of computer

resources and the performance indicators.

10.3. FUTURE RESEARCH

The achievements of the DotNetSim prototype place the DotNetSim project into the

broad area of the component and layered-based composition of software. The recent

technological advances in integration and interoperability of software have expanded

this often-revisited research area to the composition of application software from

prefabricated components regardless of the development and deployment contexts.

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

221

The ‘classic’ issues raised by the component-based paradigms which are related to the

topography of architectural composition, the interfaces exposed by the components

and the standards that apply to the development of components, interfaces and their

composition, have gained new dimensions which derive from the spread of

components over the Internet. In addition, issues associated with the granularity, the

cohesion and coupling of components and their binding time are also to be revisited

due to the transposition of the OOP principles to the derivation of sub-components

and their constitution into layered-libraries of functionality.

In all, the achievements of the DotNetSim project are to be continued in setting the

frameworks for the constitution of libraries of components for DES software that may

be delivered as web services.

10.3.1. LIBRARIES OF COMPONENTS FOR DES SOFTWARE

In order to better explore the customisation of the DES software, the extensive

functionality provided by the three DotNetSim coarse-grained components have to

disintegrate into finer-grained components and grouped into layers of functionality.

Then these layers of functionality can be constituted as libraries of components that

are plug-able to simulation solutions by setting a reference to the respective

containers. Libraries and components may be extended, shrunk or may constitute the

base for further specialisations. Hence, software solutions can be incrementally built

by selecting and customising the appropriate components. However, this calls for

frameworks of assumptions, rules, specifications and standards which have to be

investigated so as to convey the functionality of each component, its cohesion,

coupling and context dependencies. Frameworks for the development and deployment

of layers of functionality that bridge different context environments have also to be

investigated. Moreover, it is important to investigate how these frameworks can lead

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

222

to metadata that, by reflection, allows the transference of the selected the components,

their negotiation, delivery and binding at runtime. This will lead to on demand

simulation software.

Other technical issues arise from the logic and computational complexity

associated with the granularity of the components and the optimisation of their

composition. Finer granularity may increase reusability but it also may diminish the

efficiency and the robustness of the composition of the components [118]

10.3.2. WEB SERVICES

The libraries of components for DES software may go further into customisation by

delivering the functionality across the Internet. Components may be constituted as

web services [45] and, thus, expose their functionality across the Internet. Software

components are then instantiable and their methods are invoke-able from within DES

applications through web browsers.

Components that range from add-ins to Microsoft applications to modelling

environments and simulation engines can be constituted into web services and

invoked remotely through the Internet. A simulation engine, for example, can be

invoked remotely through its URL (Uniform Resource Locator), run the model which

is read by parameters passing and place the simulation results where (application or

web service) the DES software solution specifies. DES software will eventually be

composed of a set of web services [50, 113].

Microsoft .NET Framework implements ORPC (object-oriented remote procedure

calls) which hides the transport protocols and the specific formats from the software

developer or builder, enabling the integration of web services by references setting

(URLs) and methods’ invocation. This asks for simulation software to follow the

research computing advances on the web services description languages (e.g. WSDL),

CHAPTER10 - CONCLUSIONS AND FURTHER RESEARCH

223

discovery of web Services (e.g. UDDI and DISCO) and the underlying techniques for

enabling components to cross development, deployment and execution environments.

10.4. FINAL CONCLUSIONS

A new generation of DES software that promotes the ease and speed of selection,

customisation and assembly of the functionalities required by each simulation model

may be needed to meet the expectations and concerns generated by the mass

customisation market. The underlying development strategies have to co-evolve with

computing advances to support quick-to-develop, quick-to-change, quick-to-assemble

and quick-to-run robust software solutions.

However, will the new generation of DES software contribute to boost the

application of simulation as a tool for decision making? What is the value of the new

generation DES software for narrowing the gap between the theoretical acceptance of

simulation and its practical use [83] as a tool for exploring complex systems?

Answering these questions would be the subject of at least one more PhD thesis.

