
224

EPILOGUE

E.1. Customisation of DES simulation software 224

E.2 A stepping-stone to the ideal on-demand scenario 225

E.3. Assessing the success of this research so far 226

E.4. Further prototyping towards on-demand simulation software 233

E.5. Broadening the scope of this research 234

E.1. CUSTOMISATION OF DES SIMULATION SOFTWARE

As in many other application software domains, DES software needs development

strategies which promote the ease and speed of customisation in order to respond

effectively and efficiently to the expansion of the mass customisation economy. This

thesis and the underlying research employed object, component and layered-oriented

development paradigms to enable and support this customisation. This approach was

selected because it supports the development of software solutions in successive

‘generalise-specialise’ cycles. That is, the software is vertically architectured by

successive derivation of frameworks and libraries of functionalities from base classes

to meet the specific needs of each model. Hence, this research attempts to link these

three paradigms to allow this successive derivation.

It seems wise to ground speculative ideas by attempting their implementation

within at least one domain and the application domain within which this has been

attempted is the provision of DES software. However, the lessons learned from this

EPILOGUE

225

research can be extrapolated to other application domains and, in subsequent research,

might be one element in the creation of new development paradigms.

That is, in this thesis, discrete event modelling, integration technologies and

discrete simulation and their interrelationships are addressed in order to explore a fully

object-oriented component and layered-based development strategy. This differs from

a conventional component-based simulation as it targets, eventually, full object-

orientation and web-orientation. That is, components are objects which are

manageable from within other components and may be spread across the

heterogeneous Internet. Thus components may be remotely selected, negotiated,

delivered, specialised and bound at compile and runtime. As it is clear from the earlier

chapters, the DotNetSim prototype system does not permit composition over the

Internet, though with adaptation this should be possible. Its main feature is the

integration of heterogeneous components to allow the customisation of discrete event

simulation software. Moreover, the components used in DotNetSim are composed into

layers of functionality and these, in turn, can be composed into software solutions.

E.2. A STEPPING-STONE TO THE IDEAL ON-DEMAND SCENARIO

The long term objective for this research is captured in the vision for the development

of simulation software described in chapter four. This is for on-demand software but,

as yet, this cannot be fully realised despite the intense on-going computing research

referred to in chapter one. Hence, this thesis looks at the nearer future and focuses on

the object-oriented composition of components written in different programming

languages, within different applications and from different technological generations

into a single DES application. Hence, one view of this thesis is that it presents a

stepping stone to the ideal on-demand simulation software; a short-term objective

EPILOGUE

226

within a longer term vision. It focuses on a disarmingly simple question: how can

discrete event simulation (DES) software be composed from object-oriented

components that are built on top of generic applications? Further how can this be

achieved regardless of the programming languages, packages and technological

generations within which the components are developed? To examine these questions,

the thesis describes the development of a prototype DES application.

The Event Graph modelling paradigm, the event-based simulation worldview and

.NET Framework provided a convenient means to experiment with the composition of

simulation applications from components developed within different environments

which invoke each others objects as if they were their own. This led to the DotNetSim

prototype which uses wholly object-oriented principles to integrate three coarse-

grained components. The idea was to demonstrate how a simulation application can be

composed from prefabricated components that cross programming languages,

packages and technological generations to form a single application.

Were this research to be extended, it would be worthwhile investigating the

substitution of other modelling methods and simulation worldviews, provided as

components, with DotNetSim. They could also be integrated on top of other fully

object-oriented frameworks. That is, components may be substituted and, there seems

no reason why frameworks other than .NET should not be used, and these would be

worthy subjects for further investigation.

E.3. ASSESSING THE SUCCESS OF THIS RESEARCH SO FAR

Chapter four described a vision for the development of simulation software and, in

this section, we consider the issues raised in that chapter, with a view to assessing the

EPILOGUE

227

contribution made by the research discussed in this thesis. Figure E.1 summarises

those issues and indicates their layered relationships.

Fig. E.1: From monolithic simulation software applications towards on-demand

simulation software solutions.

Each of these issues is discussed below, which illustrates that component

integration is multi-dimensional, depending on what needs to be integrated with what.

This research project successfully showed how issues I to V could be resolved. It

seems likely that the same principles, given more time, would allow resolution of

issues VI and VII. The remaining three would require much more extensive work.

EPILOGUE

228

I. SPECIALISATION OF WIDELY-USED GENERIC SOFTWARE APPLICATIONS TO ACT AS

MODELLING AND SIMULATION TOOLS

That generic software applications can be used as the basis of modelling and

simulation tools is no new insight. In the work described in this thesis, the simulation

tools were not just Visio and Excel applications, they were extensions of these

applications to provide a basis for DE modelling and simulation. That is, they

exemplify the object-oriented approaches that are needed if the vision underlying this

thesis is to be realised.

Specially-written VBA components were developed to derive modelling and

simulation features that exploit the built-in object models of Visio and Excel, i.e. the

generic object models of these applications were instantiated to produce modelling

and simulation functionality. In particular, Microsoft Visio
 TM

 and Microsoft Excel
TM

were specialised to form the basis for an Event Graph modelling environment and the

simulation output analysis template. The graphical user interfaces of Microsoft

Visio
TM

 and Microsoft Excel
TM

were also customised in order to automatically unload

or hide any features which are not directly used by the event graphs and the simulation

output analysis.

In a like manner, other widely-used applications of the Microsoft Office suite, e.g.

Access
TM

and Project
TM

, could be appropriately specialised to provide user input and

output interfaces for DES modelling and simulation, though this has not been

attempted in the work described in this thesis.

II. INTEGRATION OF COMPONENTS DEVELOPED WITHIN DIFFERENT PACKAGES OF

THE SAME TECHNOLOGICAL GENERATION

As well as creating simulation support tools by the object-oriented extension of

commonly used application packages, once created these must be integrated if they

EPILOGUE

229

are to be of use. In this thesis, this is exemplified by the bi-directional exchange of

data between components sourced in Microsoft Visio
TM

, Microsoft Excel
TM

,

Microsoft Word
TM

 and Microsoft PowerPoint
TM

 in order to model discrete event

systems as event graphs and report the modelling data and simulation results. These

data exchanges operate through the instantiation of objects and the application of an

object-oriented programming paradigm.

As long as other packages allow access to their underlying object models then any

components sourced in other packages which support automation could be similarly

integrated by manipulating other packages’ object models as if they were their own.

This has not been attempted in this research, but could be a project for future research.

III. INTEGRATION OF COMPONENTS WRITTEN IN DIFFERENT PROGRAMMING

LANGUAGES

Within the .Net framework it should be possible to link components, written in

different programming languages, into a single application – providing, of course, that

the languages are .Net compliant. This cross-lingual integration was illustrated by the

composition of the simulation engine from C# and VB.NET components that inter-

operate as if they were written in the same programming language. Thus, for example,

the class randoms which generates random numbers from the Uniform and Negative

Exponential distributions, is written in VB.NET and is instantiated by the C#

component which schedules the following events. This illustrates that other

applications could be created from such cross-lingual composition.

However, it is important to consider when this would be worthwhile and there

seems to be at least one obvious instance. This is when existing components need to

inter-operate with other newly created components that may, for one reason or

another, be written in a different source code.

EPILOGUE

230

IV. INTEGRATION OF COMPONENTS DEVELOPED WITHIN PACKAGES OF DIFFERENT

TECHNOLOGICAL GENERATIONS

As with issues II and III above, this relates mainly to component re-use, but also to

issues of convenience. That is, though it would be possible to recode components so

that they are all of the same technological generation, this is not necessary, though

some work is still required to support their inter-operation. This is illustrated in the

integration of the Microsoft Office-based components, i.e., the modelling environment

and the output analysis template with the .NET-based simulation engine. This was

achieved by resorting to the PIAs (see chapter four) which allow .NET applications to

bind Office components at compile and runtime so that the CLR can marshal them

across contexts, processes or machines.

It is important to note that this integration required some considerable work, even

when the principles of the PIA and CLR were well-understood. In particular, wrappers

were developed to overcome the semantic and syntactic differences between .NET

languages and the Visual Basic for Applications used to extend the Microsoft Office

applications. However, this is hardly surprising. Though in earlier generations some

applications were developed with the intention of linking them by hard coding to

some specific applications, they did not aimed object-oriented integration to

applications.

V. COMPOSITION OF SIMULATION SOLUTIONS FROM PREFABRICATED COMPONENTS

WRITTEN IN DIFFERENT PROGRAMMING LANGUAGES WITHIN DIFFERENT PACKAGES.

Finally, the DotNetSim prototype is composed by the integration of three coarse-

grained components developed within Microsoft Office applications and .NET

framework. This demonstrates the cross-lingual and cross-package integration of

object-oriented components into a single DES simulation software application. Each

EPILOGUE

231

component crosses the upstream and downstream borders to manipulate the objects of

other components as if they were their own regardless of the programming languages

in which they were written and packages within which they were developed.

The components used in DotNetSim could be substituted by others that provide

the same functionality but are based on other modelling and simulation paradigms.

However, due to time constraints, this has not been done in this research since further

prototyping is necessary to demonstrate the replacement of components.

In addition, as the DotNetSim prototype integrates coarse-grained components,

further investigation into the granularity of the components and the usability of the

composition is required. These issues link to the reusability of components and their

integration in the creation of specific simulation solutions. The gains in reusability and

flexibility from finer grained components should be contrasted with the increasing

complexity of integrating a larger number of inter-related components. Though it is

unclear at present where this balance lies, it seems important to investigate it.

Similarly, it is important to consider different levels of usage for the composition

of simulation software solutions. That is, the levels of usage could vary from the

black-box composition of appropriate components to the white-box selection,

customisation and composition of simulation software solutions. With further work,

different levels of usage might be supported in the DotNetSim prototype by

integrating a graphical component that profiles the user and sets the appropriate usage.

Thus, the first component of DotNetSim could be, for example, a graphical user

interface which implements a questionnaire that leads to the customisation and

transference of the required functionality in order to assemble specific simulation

software solutions.

The two issues

EPILOGUE

232

VI. CONSTITUTION OF MULTI-LAYERED LIBRARIES OF GENERIC AND SIMULATION

COMPONENTS

VII. CONSTITUTION OF GENERIC AND SIMULATION COMPONENTS INTO WEB

SERVICES

were not attempted during this research. They require further prototyping to explore

the integration of the .NET Framework with widely-used applications to develop

multi-layered libraries of components written in different programming languages and

within different applications. Some of these libraries, e.g. the simulation engine and

the modelling environment, may be deployed as web services. If this were done, the

composition of simulation solutions from resident prefabricated components and web

services could be investigated through the prototyping.

The next three issues

VIII. INVESTIGATION OF FRAMEWORKS FOR DEPENDENCIES, ASSUMPTIONS AND

STANDARDS FOR THE DELIVERY OF FUNCTIONALITY

IX. CONSTITUTION OF FRAMEWORKS FOR VERTICAL PYRAMIDING OF LAYERS

OF FUNCTIONALITY

X. INTEGRATION OF COMPONENTS DEVELOPED WITHIN DIFFERENT HARDWARE

AND SOFTWARE PLATFORMS

were also not attempted during this research and must be deferred to the medium and

long terms as they probably will benefit from ongoing computing research. If

successful, these could finally lead to the on-demand assembly of DES simulation

software solutions which is the ideal stage considered in this thesis.

EPILOGUE

233

E.4. FURTHER PROTOTYPING TOWARDS ON-DEMAND

SIMULATION SOFTWARE

Further prototyping is required to pull the DotNetSim project along the time line

towards the ideal of on-demand simulation software. This is a long term objective

which may even be achieved within a newer technological framework which will

eventually provide specific support for the on-demand programming paradigm. Fig.

E.2 places the DotNetSim project on the time line drawn towards the ideal future and

summarises the issues that ought to be prototyped.

Fig. E.2: DotNetSim on the time line towards the on-demand simulation software.

As briefly discussed above, a new core component should also be prototyped

EPILOGUE

234

within the .NET framework in order to investigate how different categories of users –

developers, solution builders and end-users - may inter-relate with different grades of

customisation. This component could be based on a server of functionality or a server

of source-code and a code generator. That is, depending on the requirements of each

simulation model and the skilfulness of the user, this component:

� integrates into the user's solution the functionality the user specifies. If the

user, for example, requires a random number generator to sample from a

Poisson distribution, the server will add to the user's solution a reference to

the corresponding class of a library of components

� transfers to the user's solution the source code of the functionality the user

specifies. If the user requires a variety of the Poisson distribution, the server

will transfer to the user's solution the source code of the corresponding base

class of the library of components. The user may then customise the

distribution to meet his/her specific needs.

� generates the source code of the functionality which the user graphical or

textually describes. If the user requires a specific functionality, the server

generates the source code for a base class that provides the described

functionality.

In this way, the user could be given the capability to select, modify and assemble

the functionality required in each simulation model. However, achieving this is still a

long way off.

E.5. BROADENING THE SCOPE OF THIS RESEARCH

The intense ongoing computing research on integration and interoperability is likely to

affect a wide range of applications, other than discrete event simulation. This is

EPILOGUE

235

because the increased demand for mass customisation is wide-spread. There may well

be an increased demand for customised solutions and new integration technologies to

support these. The research discussed here investigates the discrete event simulation

domain and the Microsoft .NET Framework, but other domains and other frameworks

may also be of interest. Such component-based composition has long been of interest

in software engineering.

The exploration of this alternative approach to the development of DES software

lays the foundation for the investigation of a paradigm oriented for the vertical

architecturing of other software solutions. Rules, principles, assumptions and

standards are needed for framing the vertical composition of software solutions from

prefabricated functionality that the users select, negotiate the delivery, modify and

assemble just in time. These must cover the development of components, their

composition into layers of functionality and, in turn, the constitution of layers of

functionality into pyramidal structures of functionality (see chapter three).

Software components, layers and pyramidal layered structures are simultaneously

systems and sub-systems (see chapter two) that inter-relate through interfaces (see

chapter three) to provide some emerging whole functionality under certain

preconditions. The DotNetSim project brought new insights to the 'classic' issues (see

chapter three) raised by this interrelationship between systems and sub-systems as it

extended the OOP principles to the derivation of components and sub-components and

their integration. The lessons learned from this experimentation with object-oriented

specialisation of generic object models of various applications into modelling and

simulation components and their integration (see chapter ten) could lead to further

investigation of the encapsulation of functionalities within components and their

delivery as services by means of object-oriented interfaces. That is, the main concepts

EPILOGUE

236

- granularity, location, interfaces, reusability and integration - revisited within the

OOP principles by the DotNetSim project, lay the foundation for inferring general

rules, principles, assumptions and standards for service-oriented programming

paradigms. This, in turn, leads to on-demand programming paradigms.

