
xxii

ABSTRACT

Developers of simulation software have responded to the increasing commercial demand

for customised solutions by adding new features and tools to their existing simulation

packages. This has led to huge, monolithic applications with functionalities that are

constantly extended by addition of wizards, templates and add-ons in a ‘generalising-

customising-generalising’ development cycle. This approach has been successful so far,

but customising much of the contemporary simulation software is increasingly difficult.

An alternative approach is to compose, simulation packages from prefabricated

components that the users may select, modify and assemble so to acquire the functionality

that suits each simulation model. This strategy requires component-based paradigms and

integration mechanisms that support the straightforward composition of components

regardless of their development and deployment contexts.

This research exploits the Microsoft’s .NET integration philosophy to investigate how

discrete event simulation (DES) software could pursue a component-based approach that

integrates components sourced within distinct contexts. The thesis describes the

DotNetSim project that explores the composition of DES applications from components

developed within different Microsoft packages in different programming languages. This

is done by prototyping DES software across the entire requirements of a simulation

application package.

The DotNetSim prototype consists of a Visio-based DES modelling environment

which integrates with a .NET simulation engine which, in turn, integrates with an Excel-

based output analysis environment. The graphical modelling environment emulates

xxiii

Schruben’s Event Graph methodology for simulation modelling. Visio
TM

 is extended by a

number of VBA programs to link together different Microsoft applications in order to

capture the models’ application logic and dynamics. The simulation engine consists of a

number of C# and VB.Net components that implement an event-based simulation

executive. It reads the model’s logic and dynamics by instantiating the graphical

modelling environment, runs the event-based simulation and returns the simulation results

to Excel for analysis. The output analysis environment is a template that illustrates the

specialisation of the generic data analysis and reporting capabilities of Excel
TM

 to serve

the simulation analysis. The components interact directly by instantiating one another’s

objects.

These three coarse-grained components could be substituted by others that deliver the

same functionality, though with different internal operations. With further work, these

components could be deployed as web services to which the model’s logic is remotely

input.

