
34

3. COMPUTING AND SIMULATION

Chapter overview 35

3.1. Programming paradigms 36

3.1.1. Structured programming 37

3.1.2. Functional and logic programming 38

3.1.3. Object-oriented programming 39

3.1.3.1. Classes, abstraction and encapsulation 39

3.1.3.2. Classes, inheritance and polymorphism 40

3.1.4. Component-Oriented programming 41

3.1.4.1. Granularity and abstraction 42

3.1.5. Layered-oriented programming 42

3.2. Class, object and component composition 43

3.2.1. Class composition 44

3.2.2. Object composition 45

3.2.3. Component composition 45

3.2.3.1. Interfaces 46

3.2.3.2. Cohesion and coupling 46

3.2.3.3. Location 47

3.2.3.4. Binding time 48

3.2.4. Reusability 48

3.2.5. Integration and interoperability 49

3.3. Simulation software follows the technological advances 50

3.3.1. A brief historical review of simulation software 52

CHAPTER 3 - COMPUTING AND SIMULATION

35

3.3.1.1. From manual simulation towards portable simulation

 software 53

3.3.1.2. Towards simulation programming languages 54

3.3.1.3. Towards packages 56

3.3.1.4. Towards visual interactive modelling systems 57

3.3.2. The current development strategy of simulation software 58

3.3.3. Future development strategy of simulation software 60

3.4. The Chapter in context 63

CHAPTER OVERVIEW

The historical background of simulation software shows that it has rapidly exploited

computing advances, reflecting the co-evolution of simulation and computer science.

Alongside computing, simulation software has traversed the long journey from

machine-oriented to component-oriented programming and now looks forward

comprehensive software solutions which are tailored and assembled on demand to

meet the requirements of each specific problem or customer at the appropriate time.

The increasing commercial demand for customised solutions has led simulation

software to the current huge, monolithic applications with functionalities which are

constantly extended by addition of wizards, templates and add-ons in a ‘generalising-

customising-generalising’ development cycle. Current simulation packages have

enough functionality to meet the requirements of a large number of problems. This

approach, however, may be reaching its limits and other development alternatives

could be devised in order to allow easy-to-use, quick-to-develop, quick-to-change and

quick-to-run robust software solutions. These alternative approaches could resort to

CHAPTER 3 - COMPUTING AND SIMULATION

36

the latest advances in component-based and layered-based paradigms and associated

integration mechanisms to promote the composition of simulation software solutions

from existing or newly-developed prefabricated components.

Meanwhile, much computing research has already identified routes towards on-

demand software, i.e. the ‘just in time’ assembly of software solutions for specific

problems. The idea is for users to receive no more than the required functionality for

each specific problem, at the appropriate time, during the required length of time and

for them to pay per use. In the long term, it is therefore expected that if simulation

software continues to follow computer science advances, it too will move towards the

developing idea of on-demand software.

In order to understand current trends and to suggest future developments in

simulation software, this chapter reviews some concepts of relevant computing fields,

namely programming paradigms, composition of classes, objects and components and

integration and interoperability. It also briefly reviews the evolution of simulation

software to beat a path towards the future development of simulation software.

3.1. PROGRAMMING PARADIGMS

Since the software development crisis in the early 1970’s, several programming

paradigms have been introduced to facilitate and standardise the development and the

maintenance of programs. Theoretical frameworks or paradigms were successively

designed to provide programmers with a set of laws, rules and generalisations that

enable programs to display desirable properties. Naturally, there are different

paradigms for different programming domains as these also target different sets of

desirable properties. Our scope is, however, confined to specific application software,

namely simulation software. Table 3.1 lists some of the desirable properties for the

CHAPTER 3 - COMPUTING AND SIMULATION

37

simulation software.

Property Brief description A program should be:

Dependability

Ability to deliver the intended

functionality when it is requested

without causing danger or damages,

resisting external attacks [116] and

handling error conditions.

reliable, available, safe,

secure and robust.

Usability

Ability to provide friendly user

interfaces which permit different

levels of utilisation, detection and

recovery from input errors.

easy to learn and

operate, adaptable to

specific models of work

and recoverable from

user errors.

Modularity

Ability to be incrementally built by

composition of self-contained units

– functions, procedures, modules,

components, etc.

Modularly-composed

and extendible.

Reusability

Ability to run on different

configurations, be composed with

other programs and to communicate

with packages of different vendors

portable, capable of

integration, and inter-

operable

Table 3.1 List of some properties which a program should display

Successive programming languages were conceived to suit specific paradigms.

3.1.1. STRUCTURED PROGRAMMING

Structured programming [35] was the first formal programming paradigm on which

others where built. Modularity and the underlying principle of “divide and conquer”

were its most important contributions to programming. Indeed, the techniques for

structuring the program’s flow control are still recommended in order to make

CHAPTER 3 - COMPUTING AND SIMULATION

38

programs easier to read and to maintain. Structured programs are sets of modules,

which are, in turn, sets of procedures. Procedures may invoke themselves or other

procedures and functions to manipulate local and global variables. The program is put

together by passing data through parameters among procedures. Thus, structured

programs are monolithic pieces of code developed from scratch or, at most, from code

scavenging.

3.1.2. FUNCTIONAL AND LOGIC PROGRAMMING

Functional and logic programming paradigms [118, 95, 49, 11] and their combination

were pushed forward by artificial intelligence in the early 1990s. They are declarative

programming paradigms, i.e. they focus on the description of data relationships, either

mathematically or logically, as a means to approach the human cognitive processes.

Functional programming derives from Church’s -Calculus [49, 31, 10, 11], and

hence, a functional program is a set of functions which, once applied to their

arguments, produce values or other functions. Its execution deals with the evaluation

of expressions and their replacement by the corresponding values. This implies

referential transparency, i.e. functions cannot produce side effects, so as to guarantee

that the application of a function to the same argument always returns the same result.

Functional programming originated heavily recursive languages such as Lisp, Miranda

and Haskell, which are intuitive but lead to programs that are memory-demanding and

slow to run. Logic programming derives from first-order predicate calculus, hence the

outputs of a logic program are inferred from the known facts and the relationships

between a set of objects. Prolog is the commonest logic programming language and is

used mainly for expert systems.

Functional logic programming paradigms combine these two paradigms so that the

programming primitives get the power of the logical inference; for example non-

CHAPTER 3 - COMPUTING AND SIMULATION

39

deterministic search and the efficiency of functional evaluation strategies such as lazy

evaluation. ALF, Babel and Curry are examples of functional logic programming

languages.

3.1.3. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming (OOP) [12, 67, 95] originated with Simula, an ALGOL-

based language developed for discrete simulation. It is based on the notion of objects,

their attributes and the functionalities they provide. An object is therefore a data

structure composed of data (attributes) and code (methods) which implement the

object’s functionalities. For example, a queue is an object with attributes such as

queue name, location and discipline and methods which enqueue and dequeue

elements, determine the length of the queue at each state, reverse the queue, etc. The

objects interact by invoking methods of other objects, i.e. by requesting others to

execute the functionalities they provide. An enquirer service, for example, might be

another object that interacts with the queue by invoking its methods to enqueue and

dequeue clients and compute performance indicators.

3.1.3.1. CLASSES, ABSTRACTION AND ENCAPSULATION

OO programs are erroneously considered to be sets of objects. Actually, they are sets

of classes of objects. A class is an abstraction of an object which defines the attributes

and methods of a family of objects. An object is therefore a class’s concretisation. For

example, the class Queue is a generalisation of all queues and the object “Queue for

Teller A” is an instance of that class. The class’s code is reused by each instance.

A class gathers together, in a self-contained unit of code, attribute declarations

(properties or field variables) and methods which allow the creation, at runtime, of

objects having all that functionality. The class encapsulates all its contents within

CHAPTER 3 - COMPUTING AND SIMULATION

40

itself and only exposes the information required for the invocation of its methods.

3.1.3.2. CLASSES, INHERITANCE AND POLYMORPHISM

Classes are hierarchically structured into superclasses and subclasses by resorting to

inheritance. Subclasses inherit the attributes and methods of the superclasses from

which they are derived, add more attributes and methods and pass all to the

subclasses. For example, B’s and C’s in the Three-Phase simulation worldview are

both activities and they thus share attributes such as name and description and

methods such as those to set and get the common attributes. Thus, B activity and C

activity may be subclasses of the superclass Activity. They also have their own

attributes and methods. For example, a C activity has attributes and methods

associated with the condition that determines its execution. Inheritance graphs, as

shown in Fig. 3.1, are drawn to represent the classes’ structure and display the

different levels of generalisation.

Fig. 3.1: Inheritance graph of a set of classes and subclasses

Some OO languages, C# amongst them, do not allow multiple class inheritance,

i.e. a class can only derive from a single superclass. Yet, different classes may, for

instance, share sets of methods by implementing interfaces. An interface declares sets

of abstract methods by defining their signatures (the method name, the type of the

CHAPTER 3 - COMPUTING AND SIMULATION

41

input parameters and the return type). The classes willing to provide these

functionalities must implement all those methods with exactly the same signatures.

Interfaces also allow for the implementation of common properties, events and

indexers and they may extend or combine others and a class may implement multiple

interfaces.

Inheritance allows a method of a superclass (or an interface) to be implemented

differently in any of its subclasses. At runtime, the implementation of this method in a

subclass overrides its implementation in the superclass. Thus, this method appears in

many forms depending on the context of its implementation. For example, if the

superclass event of an event-based simulation defines a method for updating the state

variables, it is likely that this method has different implementations in each event

routine. Also, methods may need to refer to collections of different objects whose

types are only known at runtime. Polymorphism allows the definition of generic

objects that suit different types and at runtime they will assume the type of the given

object.

Several programming languages implement OO concepts. Some are fully object-

oriented, such as C# [61, 38] and VB.NET [6, 80]. Others, such as earlier versions of

Visual Basic and corresponding subsets (VBA) are not fully OO languages as they do

not implement inheritance [57] and offer only limited abstraction and polymorphism.

3.1.4. COMPONENT-ORIENTED PROGRAMMING

Component-oriented programming (COP) is the natural successor of OOP as it

extends its concepts to provide a framework for constructing programs from

prefabricated OO pieces of code (components). A component may be simply defined

as a software artefact which is independently deployable, capable of composition by

third-parties and with no observable external state [118]. This implicitly assumes that

CHAPTER 3 - COMPUTING AND SIMULATION

42

components are self-contained and encapsulated units which, by exposing the

functionalities they offer and the needs for their delivery, can be to be plugged into

(and unplugged from) other components. Also, they are immutable in the sense that

they are abstract definitions and, consequently, two copies provide exactly the same

functionality under the same conditions.

3.1.4.1. GRANULARITY AND ABSTRACTION

Components may range from add-ons and plug-ins to applications. The former are

said to be fine-grained components as they provide limited functionality and the latter

are coarse-grained components that offer extensive functionality. Fine-grained

components deal with detailed data structures [95], hence they tend to be specific and

dependent on the deployment environment (they may even include OS basic

functionality). On the other hand, coarse-grained components deal with large-scale

data structures [95] whose high degree of abstraction make them generic and

adaptable to several deployment environments.

For example, a component which implements a simulation engine is coarse-

grained as it deals with classes of entities, activities and events to offer generic

functionality that can be specialised while plugging into a simulation system. An add-

on that generates random numbers to be plugged into a spreadsheet is fine-grained as

it deals with the objects themselves.

3.1.5. LAYERED-ORIENTED PROGRAMMING

Layered-oriented programming (LOP) is a paradigm that applies mainly to the design

of systems architectures, as it concerns the interconnections of software components.

It inspired the OSI reference model [120] and was first used to develop onion-

structured operating systems [37]. A layered system is incrementally built, layer upon

CHAPTER 3 - COMPUTING AND SIMULATION

43

layer [118]. Each layer receives from the layer immediately below well-defined

functionality which it increments and passes to the layer immediately above. Each

layer may be composed of several components.

Simulation systems might then be layered structured, e.g. by adding layers as

shown in Fig. 3.2. This is a pyramid-layered structure [79] in which each layer

receives from the layer immediately below the necessary functionality to provide

more specific and finer-grained functionality.

Fig.3.2: Pyramid composition of a simulation system

Extensibility is possible by the addition of components and layers. However, this

requires a corresponding functional foundation from the next lower layer.

Layered-oriented programming is associated with meta-programs which provide

the functionality to interpret, inspect, adapt and extend the structure and behaviour of

the underlying software. The metadata (attributes) and computational reflection will

allow for the dynamic composition of layers of components. This may lead to on-

demand software programming [39, 40] that will promote the dynamic assembly of

software solutions by selecting, negotiating and invoking suitable components, such as

web services, at runtime.

3.2. CLASS, OBJECT AND COMPONENT COMPOSITION

The composition of classes, objects and components [118] is partly motivated by the

CHAPTER 3 - COMPUTING AND SIMULATION

44

reuse of existing functionality, but its principal aim is to promote the extensibility of

OO and CO programs by addition of independently-developed functionality. The

composition of classes, objects and components must be within an architectural

structure, i.e. an abstract view over the system elements and their interrelationships

[82] which defines the rules, the standards and the constraints for their composition.

This raises several issues that require the clarification of a few basic concepts.

3.2.1. CLASS COMPOSITION

The OOP principle of inheritance enables the composition of classes. Classes and

subclasses are linked in a hierarchical structure that allows subclasses to incorporate

the functionality implemented further up the inheritance graph, to use and to override

it according to the needs detected at compile time [118]. Implementation inheritance,

i.e. inheritance of the properties and methods implemented by the superclasses, can,

however, generate relationships among classes that do not comply with OOP

principles and, hence, unbalance the state and the behaviour of the compound classes.

Take the case of multiple inheritance when the inheritance graphs are not disjoint.

When, for example, a class (model A) is derived into two subclasses (models B and C)

and those two are the parents of a subclass further down (model D), we do not know

which functionality is inherited by the model D. Either encapsulation is broken by

allowing two submodels, B and C, to see the changes operated by each one on A or, if

they act independently, we do not know which state of model reaches model D. This

can be aggravated if the intermediate models override the functionality of model A.

For this reason, most OO programming languages do not allow multiple

implementation inheritance. Some, however, try to solve the inconsistencies by

disciplining inheritance setting, for example, an order of inheritance, i.e. defining a

precedence list which determines the superclasses that are dominant. Multiple

CHAPTER 3 - COMPUTING AND SIMULATION

45

interface inheritance threatens OOP principles, hence, it is not generally offered by the

programming languages.

The composition of classes may also result in complex dynamics that threaten its

robustness. This raises issues such as the impact of the changes of the base classes

over time (e.g. new versions) on their subclasses.

3.2.2. OBJECT COMPOSITION

Message forwarding is the most frequently used technique for compounding objects

[118]. Objects – instances of classes – are compoundable at runtime with other objects

in such a way that when an object lacks some functionality it sends to other objects a

message to run the required functionality. This composition is ruled by a structure of

outer and inner objects. Outer objects may forward messages to the inner ones. The

outer object runs the missing functionality from within the inner object. Thus, any

changes on the inner’s object implementation of the functionality reaches the outer

object immediately.

The outer and inner objects have independent identities, however. This makes

message forwarding different from implementation inheritance among classes. Object

composition is dynamic, hence, for example, inner and outer objects can be replaced

while the outer is functioning [118]. This can be programmatically added to class

inheritance.

3.2.3. COMPONENT COMPOSITION

Components are composed and partitioned so as to add, alter and remove functionality

from component-based programs [118]. The composition of components raises several

issues regarding the interfaces which they expose, the cohesion and coupling of

components, the time they are to be bound to other components and the location

CHAPTER 3 - COMPUTING AND SIMULATION

46

where they reside.

3.2.3.1. INTERFACES

Interfaces are the mediating means for two components to connect as they serve the

functionality provider (component-server) and its potential clients (component-

clients). Generally, there exists an interface for each functionality provided, i.e. an

interface defines directly or indirectly [118] the operations that implement the

functionality and the conditions the client has to fulfil to invoke those operations

(preconditions). The latter are the context dependencies, which comprise the rules of

deployment, installation and activation of the component and also the rules of

composition. Fig. 3.3 illustrates how a component provides some functionality to a

client program. Component C4 provides an interface that specifies the offered

functionality and the context dependencies.

Fig. 3.3: Plugging component C4 into a component–based program

3.2.3.2. COHESION AND COUPLING

The cohesion of a component indicates the closeness of the relationships within it

whereas coupling measures the closeness of the relationships between components

[116]. Thus, cohesion measures the contribution of each part to the functionality

CHAPTER 3 - COMPUTING AND SIMULATION

47

offered by the component. A highly cohesive component is self-contained as it

includes all the operations needed to understand and manipulate its functionality. For

example, an entity class which provides the necessary methods to understand and

operate the entity’s attributes is highly cohesive.

Coupling measures the degree of independence among components. Two

components are tightly coupled if changes to one component cause changes to the

other - the two components depend on each other to implement their functionalities;

they are loosely coupled if they are independent – each component functionality is

understandable within itself and the impact of changing one component on the other is

limited [44] or even zero. Thus, highly cohesive components may be loosely coupled

with others. For example, a random number generator which encapsulates all the

methods to manipulate the random numbers is loosely coupled with components that

implement random sampling algorithms.

3.2.3.3. LOCATION

Component-servers and component-clients may reside in the same machine or be

spread across different machines. However, the clients invoke the remote component-

servers as if they are residing locally. Further, the servers provide their functionality to

remote clients as if they were local. Thus, remote procedure calls (RPC) hide the inter-

machine communication that basically consists of marshalling and de-serialising the

call parameters [61]. This local-transparent invocation (an extension of the concept of

a virtual machine) allows for intercommunication across different platforms, different

processes, different application domains and different contexts.

Ideally, a component-oriented program consists of a set of remote or local

components, of different degrees of granularity that are highly choesive and loosely

coupled at runtime.

CHAPTER 3 - COMPUTING AND SIMULATION

48

3.2.3.4. BINDING TIME

Plugging a component (component-server) into another component (component-

client) consists mainly of referencing the component and associating this reference

with a particular component. The latter is the binding and it occurs either at design or

compile time, as the source code is converted into an executable form (early or static

binding), or at runtime, during the program execution (late binding or dynamic

binding).

Early binding speeds up the execution, but assumes that the component-client

knows, in advance, the particular component it needs and the interfaces whose

preconditions it has to fulfil. On the other hand, late binding increases flexibility by

deferring as long as possible the decision on the required component. The component-

client, during its execution, selects an available component-server and implements the

methods of the newly discovered interfaces [95,118].

3.2.4. REUSABILITY

The composition of classes, objects and components enables the reuse of code or

prefabricated functionalities in different grades that range from black-box to white-

box reusability, passing through several grey tones. All of them encapsulate their

implementations but some, the black-box components, let the builder (user or

developer) know nothing beyond the interfaces while other, white-box components,

allow the builder to change the implementation. Class composition enables white-box

reusability while object composition just enables black-box reusability. The grey-box

components offer different permissions that let the builder read and change parts of

the implementation.

Many different reusability benefits are claimed [82, 102]. The most common are

CHAPTER 3 - COMPUTING AND SIMULATION

49

reduction in software development time and cost, an increase in reliability and more

flexibility in the solution composition.

However, reuse can generate complexity [102] and, without commercial and

financial incentives to upgrade specific components to reusable components, may lead

the builder to less acceptable solutions. Plugging black-box components which do not

entirely fit a specific problem may be acceptable, however. For example, force-fitting

an existing component that alters the structure of a simulation model by not allowing

the representation of all the entities’ interrelationships is doubtless unacceptable, but

using a graphical interface without animation may be acceptable, depending on the

purpose of the study.

Reusability is encouraged by the open source business model, which promotes the

free distribution of the software source code so that users may improve and extend the

delivered functionality.

3.2.5. INTEGRATION AND INTEROPERABILITY

OOP, COP and LOP support the construction of software by the composition of

reusable components. This, allied to the promotion of interoperability across space

and time, integration architectures and the open source business model, is gradually

leading software engineering from traditional generic packages and in-house software

towards the customised construction of software solutions for specific problems.

Standards definition [116] is a key factor for the interoperation and integration of

reusable components.

Both interoperability and integration refer to the ability of pieces of software to

communicate with one another. The former generally means software and hardware

communication across different machines and the latter means the communication

CHAPTER 3 - COMPUTING AND SIMULATION

50

between different pieces of code separately developed and put together to work as a

whole [95]. The distinction between the two terms is fading as programs tend to be

sets of components which reside in different machines and were developed for

different software platforms. Thus, integration is melding into interoperability, as its

scope tends to include the communication of components across hardware platforms,

computer networks, applications and programming languages. Also, software

components of different technological generations (legacy code) must work together.

There are several technologies which support integration and interoperability,

including Microsoft automation and Microsoft .NET Framework. Interoperability and

integration are also promoted by communication standards, such as XML, a meta-

language for structuring documents, and SOAP, a protocol for invoking remote code

by using XML over HTTP connections. Further details on Microsoft automation and

Microsoft .NET Framework are presented in chapter 4.

Nowadays, components are developed within integrated development

environments (IDE), such as Visual Studio .NET, which offer graphical and menu

driven-tools to hide from the user the details of the wiring, the deployment and

installation of component-based applications across networks of various electronic

devices.

3.3. SIMULATION SOFTWARE FOLLOWS THE TECHNOLOGICAL

ADVANCES

The chronological evolution of simulation software shows that it has followed

computer science since the advent of computers, reacting promptly to technological

innovation. It traversed the long journey from machine-oriented to component-

oriented programming, looking forward to the development of platform-independent

CHAPTER 3 - COMPUTING AND SIMULATION

51

and comprehensive software. Simulation-oriented programming languages were

derived from general-purpose languages to facilitate the implementation of specific

data structures, stochastic and time-dependent processes; simulation programs were

successively re-written in high-level languages and simulation-oriented languages and

specific software applications were generalised by parameterisation and functionality

extension.

Currently, the strategy of simulation software developers seems to stress a

different approach to customisation. Specific applications developed to solve

particular problems are converted into generic simulation packages and these are now

tailored to fulfil the needs of specific problems or customers. Numerous add-ons are

being plugged into these simulation applications so that generic simulation packages

are ready to be customised to a larger number of specific problems. Access to external

packages is also added to simulation packages in order to allow data exchange

between simulation packages and widely-used generic software, such as database

management systems and spreadsheets. Fig. 3.4 lists the major computer advances that

Fig. 3.4: Computer advances that have propelled the development of simulation

technology

CHAPTER 3 - COMPUTING AND SIMULATION

52

have contributed and continue to contribute to the development of simulation

technology.

It seems reasonable to expect that simulation software will continue to follow the

advances of computer science in order to benefit from the latest technology. The idea

is to widen its functionality to an increasing range of target problems and to promote

easy-to-use, quick-to-develop, quick-to-deploy, quick-to-change and quick-to-run

robust software solutions [7]. Also, it is expected that computing technology will

progress into integrated environments and programming paradigms that will facilitate

the achievement of simulation software goals. This thesis explores some of the

implications of simulation software exploiting these developments.

3.3.1. A BRIEF HISTORICAL REVIEW OF SIMULATION SOFTWARE

The size and complexity of the data processing required for discrete event simulation

has propelled the development of simulation software tools since the late 1950s. Large

data structures subject to iterative or recursive algorithms which trace the state

changes of complex systems have always defied full automation [4]. In addition,

discrete event systems are frequently stochastic which increases the need for

automatic tools to support the study of variability. Fig. 3.5 lists the different categories

of software tools that support all the stages of discrete event simulation. These tools

are often bundled together and marketed as decision-support packages or as Visual

Interactive Modelling Systems [110, 85]. Additional tools are frequently added to the

existing simulation packages to increase their functionality by implementing features

for specific problems, by creating built-in tools such as templates and wizards [7].

CHAPTER 3 - COMPUTING AND SIMULATION

53

Fig. 3.5: Software tools for the simulation’s main stages (partly derived from Pidd,

2004)

3.3.1.1. FROM MANUAL SIMULATION TOWARDS PORTABLE SIMULATION SOFTWARE

The initial informal procedures which supported manual simulation were soon

replaced by formal methods, such as Hocus, which were less prone to errors [48]. The

new models, described by formal languages, simplified the whole process of

modelling and simulating but the execution of the simulation continued to be manual

and time-consuming. Thus, mechanical devices were developed to quicken the

computation of repetitive and stochastic operations [117].

Shortly after the advent of computers, the mechanical devices were replaced by

software routines written in machine code which performed simple computations,

namely pseudo-random numbers generators and random sampling. Coding, debugging

and portability difficulties [48, 55] were partly overcome by the emergence of the first

high-level languages, namely FORTRAN (1954) and ALGOL (1960) into which

simulation routines were translated. Simulation programs written in these languages

were portable to different machines as soon as FORTRAN and ALGOL compilers

CHAPTER 3 - COMPUTING AND SIMULATION

54

were developed for several computers [48]. Their resemblance to human language and

powerful primitives accelerated the development of simulation programs. However,

FORTRAN and ALGOL were science-oriented languages, with primitives that were

well suited for scientific problems, such as the representation of equations, but less

efficient for simulation-oriented tasks [48]. This was the driving-force for the creation

of simulation programming languages.

3.3.1.2. TOWARDS SIMULATION PROGRAMMING LANGUAGES

Simulation programming languages were gradually derived from existing general-

purpose programming languages by extending their functionalities to simulation

concepts. New data structures and macro-instructions were added to the base

languages to allow the implementation of simulation techniques and time-dependent

stochastic processes [48, 55]. Fig. 3.6 shows simulation-related features that were

appended to Assembly, FORTRAN and ALGOL.

S
im
u
la
ti
o
n
-o
ri
e
n
te
d

 f
e
a
tu
re
s

Fig. 3.6: The first simulation languages were extensions of Assembly, FORTRAN or

ALGOL

The first simulation programming languages were pre-processed into the

programming language they derived from, i.e. programs were translated into a target

language prior to their compilation and execution, as illustrated in Fig. 3.7.

CHAPTER 3 - COMPUTING AND SIMULATION

55

Fig. 3.7: Simscript was originally implemented as a pre-processor for Fortran

Numerous simulation specific languages were developed or revised in the 1960s

[85]. All were procedural languages that supported the structured programming

paradigm. One of them, Simula, is claimed to be the precursor of the object-oriented

programming languages since its basic data structure – the process – contains data and

methods for handling the activities [16, 48, 55].

As simulation languages became more powerful by the addition of new primitives,

specific compilers were developed and their dependency on general-purpose

languages gradually vanished. Simulation-specific languages and general-purpose

languages became disjoint alternatives for developing simulation software [48, 55]. As

the former were tailored for simulation problems, their data structures, libraries of

functions and even syntax were well-suited for implementing the simulation engine

and application logic. This approximated modellers to software developers and

facilitated the construction, implementation, validation and experimentation of

simulation models [55]. Yet, the latter were supported by a wide range of

development tools, namely editors and debuggers, and by a larger number of

experienced developers.

As simulation languages continued to be updated with new features, they became

more specific-problem oriented and vendor or product dependent; they were,

therefore, more accessible to less skilled developers.

CHAPTER 3 - COMPUTING AND SIMULATION

56

3.3.1.3. TOWARDS PACKAGES

As software applications became increasingly portable, due to advances in operating

systems and compilers, attempts were made to produce simulation software suited to a

wider range of problems. Applications, built for solving specific problems, were

generalised by parameterisation and extension of functionalities [62], as shown in Fig.

3.8.

Fig. 3.8: Generalising a specific problem solution

Simulation tools were bundled together with the corresponding programming

language and marketed as packages. At first, they were mere sets of subroutines to

automate parts of a simulation system but soon they were structured into single

applications [48].

Meanwhile, programming techniques evolved to modular paradigms which suited

the attempts to extend the functionalities of the existing packages. This, allied with the

spread of graphical displays, led simulation software to the development of packages

which aimed to cover all the phases of modelling and simulation. At that point,

simulation software progressed into visual interactive modelling systems (VIMS) by

adding interactivity and capabilities for graphical model creation and animation.

CHAPTER 3 - COMPUTING AND SIMULATION

57

3.3.1.4. TOWARDS VISUAL INTERACTIVE MODELLING SYSTEMS

Models began to be defined by resorting to menu-driven graphical interfaces and tool

bars of prefabricated icons. Graphical user interfaces (GUI) were incorporated in

simulation packages to support the emerging Visual Interactive Modelling approach

that offered visual and interactive tools as a communication language between the

simulation stakeholders. Various simulation packages were extended with visual

facilities and interactivity (e.g. FORSS became FORSSIGHT, which later evolved

into WITNESS) and became VIMS [85].

VIMS basically create user-friendly modelling and running environments by

linking input GUIs, from where the modelling data is collected, to simulation engines,

where the model runs, and to output GUIs that display the simulation outcomes. This

is done either by specific built-in components or by linkage to appropriate software

packages such as graphic generators. Also, VIMS provide the modelling environment

with interactivity features so that the simulation run could halt at any point and resume

afterwards to allow the user to input data, alter the set of parameters, collect

intermediate results, put traces on individual elements of the model or view outputs to

evaluate model behaviour [85, 101].

There are currently various VIMS - commercial off-the-shelf VIMS and non-

commercial specific applications - that greatly differ in their visual and animation

features. Although all of them provide the basic built-in tools for VIM, a few also

differ by letting the user extend the suite of prefabricated tools. The users can

therefore broaden the VIMS’ application scope by resorting to a programming

language, though this is often too hermetic.

Other differences derive from the simulation displays they favour. Some VIMS

focus on the iconic representation of the system’s physical appearance, others stress

CHAPTER 3 - COMPUTING AND SIMULATION

58

the graphical display of the system’s logical structure and others opt for displaying in

charts the performance of the system. VIMS also vary in the output displays that range

from the immediate display of the results of single runs to the storage of the results of

a series of simulations runs.

The simulation engines of the VIMS, as of any simulation software, differ mainly

in the worldview they implement. However, the interactivity which they allow also

introduces some variety.

3.3.2. THE CURRENT DEVELOPMENT STRATEGY OF SIMULATION SOFTWARE

The current trend of simulation software is to tailor generic packages to specific

problems or needs [5]. A large number of wizards, templates and add-ons have been

added to commercial simulation packages to ease their customisation [3, 13, 42, 96].

Fig. 3.9: Tailoring generic simulation software to a specific problem solution

Generic pre-prepared structures are therefore available for tailoring specific

CHAPTER 3 - COMPUTING AND SIMULATION

59

applications. These may later be generalised and constituted into new templates and

add-ons. The trend appears to follow the circular path illustrated in Fig. 3.9. A specific

problem leads to a specific application that later is generalised into a package which,

in its turn, is tailored to fulfil the requirements of a specific problem or customer.

Thus, some simulation packages have become huge applications with

functionalities that are constantly being extended by the addition of new modules

which sustain the generalising-customising-generalising development cycle. Current

packages aim to cover a broad spectrum of techniques ranging from visual 3D

modelling to optimisation, data mining, input and output data analysis and statistical

experimentation techniques. Also, graphic and report generators are being improved to

enhance the comprehensiveness of the applications [48].

Other important extensions address the linkage with external packages with which

the simulation software exchange data, namely importing and exporting data from and

to existing databases, technical drawing software, spreadsheets or statistical packages.

In 2004, four major vendors of simulation software (Simul8 [114], Lanner [59], Arena

[3] and Promodel [96]) started marketing modules that link Microsoft Visio
TM

, a

technical diagram tool, to their core simulation applications. Thus, simulation

packages are becoming large suites of tools which provide the means for linking

modelling and simulation features to external packages where data are based. (See

Fig. 3.10). With such packages, users can easily build new models based on the

prefabricated templates by resorting to the built-in tools. However, models whose

logic demands special tools are difficult to build as they require expertise in the

package’s programming interface and the underlying simulation programming

language.

CHAPTER 3 - COMPUTING AND SIMULATION

60

Fig. 3.10: A typical simulation package currently consists of a core application and a

wide range of add-ons

Current commercial simulation software has steadily achieved its long-term goals

as it is user-friendly, visual-oriented, interactive and robust. The next immediate goals

to fulfil are undoubtedly customisation and interconnection of different systems. Both

goals imply component reusability, integration of widely-used generic software, web-

based interoperability among different systems, source-code based components and

web-based software deployment.

3.3.3. FUTURE DEVELOPMENT STRATEGY OF SIMULATION SOFTWARE

The past and the current evolution of simulation software lead us to expect that

simulation software will continue to rely on the latest advances in computer science to

face up to the increasing size and complexity of computer simulations. Progress

achieved in areas such as programming paradigms, integration of hardware and

software platforms, networks and communications, along with the continuous advance

CHAPTER 3 - COMPUTING AND SIMULATION

61

of Internet technologies is crucial to the future of simulation software [8, 13, 52, 54,

83].

Fig. 3.11 summarises the parallel evolution of computing and simulation software.

Computing is now evolving towards the on-demand software or instant assembly of

software, in which software builders ‘rent and pay per use’ the only required

functionality at runtime [118, 39, 40]. Simulation software might similarly evolve in

this direction towards just-in-time assembly of simulation solutions.

Fig. 3.11: Simulation software has rapidly reacted to technological innovation

The likely irreversible commercial demand of customised solutions will shortly

force the current simulation packages to be restructured, so that each user acquires

exactly the functionality a solution needs - gets only the required functionality - or,

even better, the user acquires the capability to produce the functionality a solution

needs. Hence it is likely that these packages will have to be redesigned to fully comply

with object-oriented, component-oriented and layered-oriented programming

paradigms [7] in order to respond promptly to customisation demand; or their market

will disappear.

CHAPTER 3 - COMPUTING AND SIMULATION

62

In the longer term, simulation software might evolve towards on-demand

simulation software in an open market of components. Fig. 3.12 sketches the assembly

of a specific simulation application in which those who develop and publish

simulation software functionalities negotiate with those who select and assemble the

functionalities per simulation solution. Ongoing computing research focuses on

investigating how the selection of the functionality, its negotiation, delivery and

binding can be done at runtime [39].

Fig. 3.12: Assembly of a specific simulation application by negotiating each of its

features. The development cycle ‘develop–publish-delivery’ of components meets the

assembly cycle ‘select-customise–binding-running’ through negotiation

The desirable scenario would be a development framework that not only allowed

users to build their own solutions but also extended the capabilities for interconnecting

different interdependent simulation packages. A simulation application could be a

system of tailored systems. Every system could, if necessary, be based on different

software applications and might run under different hardware/Operating System

configurations. Simulation software would, therefore, provide multi-platformed and

multi-packaged interoperability through “standard” data exchange protocols and

CHAPTER 3 - COMPUTING AND SIMULATION

63

formats (E.g. XML, HTTP, SOAP). Ideally, such simulation software systems would

consist of open source components deployed as services to be consumed on demand.

Users would be able to assemble their own solutions by selecting and adjusting the

most appropriate components.

The alternative vision for simulation software described in chapter 4 derives from

this overview of the future development strategy of simulation software.

3.4. THE CHAPTER IN CONTEXT

Chapter 2 and chapter 3 explain the conceptual knowledge base of modelling,

simulation and computer science on which the current trends and possible future

developments of simulation software is based. Simulation software has benefited from

the co-evolution of these three disciplines and is expected to exploit their new

advances to devise development strategies to respond to the on-demand paradigm

imposed by the present mass customisation economy.

Chapter 4 introduces the DotNetSim project to explore an alternative approach to

the development of simulation software solutions, which is based on the Microsoft

integration philosophy and component-based paradigms embodied in the .NET

Framework.

