
64

4. SIMULATION SOFTWARE: CURRENT

EXPERIENCES AND THE DOTNETSIM PROJECT

Chapter overview 64

4.1. Current experiences in simulation software: 66

4.1.1. Process Simulator
TM

 67

4.1.2. Micro Saint Sharp
TM

 69

4.1.3. HighMast
TM

 71

4.2. An alternative vision for simulation software 73

4.3. The idea of DotNetSim 79

4.4. The DotNetSim computing technological background 81

4.4.1. The Microsoft Automation 81

4.4.2. The Microsoft .NET Framework 83

4.4.3. .NET Framework’s Architectural components 85

4.4.4. Multiplatform and multiple lingual integration 88

4.4.5. Integration of Microsoft Office with the .NET Framework 90

4.5. The DotNetSim prototype 91

4.5.1. DotNetSim and other developments 93

4.6. The Chapter in context 96

CHAPTER OVERVIEW

The successive advances in computer science have constantly increased the

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

65

expectations of the users and developers of application software, simulation software

applications in our case. The early expectations and concerns with the proper

processing of the input data were replaced by concerns over the portability, usability,

extension and integration of software. Nowadays, correct functioning, portability and

ease of use are taken for granted. It is also taken for granted that simulation packages

are extensible to meet specific needs and that data can flow in and out of different

packages. Current expectations and concerns are diverse, but focus mainly on the ease

and speed of customisation. However, it is likely that, some time in the future,

developers, builders or end users may want tools that let them select, modify and

assemble only the functionality that each simulation solution requires. They may also

aim to have the capability to develop the tools for implementing the functionality that

they need. Thus, users may expect to be able to select components, customise the

functionality which they provide and assemble them, regardless of the environments

within they were developed.

To meet these possible expectations, simulation software has, on the one hand, to

be fully object, component or layered-oriented so as to allow functionality to be added

or removed, according to the specific simulation model. On the other hand,

integration-friendly frameworks have to be used in order to enable interoperability

across platforms, packages and programming languages.

This chapter discusses some examples of simulation software developers who

have already changed their development strategy in order to meet current

expectations. The chosen examples are among a small number of software

applications which integrate simulation and generic software tools to provide quasi-

standard user interfaces or facilitate customisation. The chapter also devises an

alternative vision for simulation software which relies on a vertical integration of

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

66

prefabricated, self-contained, self-healing components to implement a ‘generalise-

specialise’ development strategy.

The DotNetSim project is then introduced to investigate how the latest Microsoft

integration technologies can contribute to the development of simulation software

which fits in with the sketched vision for the future. This is done by prototyping

software for simulation which links, into a single application, software components

written in different programming languages and developed within distinct packages.

The technological background is briefly described and the DotNetSim prototype is

outlined by presenting its functional structure and its coarse-grained components.

4.1. CURRENT EXPERIENCES IN SIMULATION SOFTWARE:

In the early days of computer simulation there was little concern with ease-of-use or

with how simulation software might be integrated with other applications. In many

ways, this was no different from other software applications – users were just pleased

to have something that worked. However, the increasing portability of applications to

run on various computing systems has stimulated the inter-operation and integration

of applications. At the simplest level, this might involve the straightforward transfer of

data from a simulation program to, say, Excel
TM

, for analysis of output data. At a

more complex level, direct exchange of data may be possible between applications as

they execute. That is, various approaches to inter-operation have been developed to

meet the increasing expectations of the users of simulation software. This has enabled

simulation software vendors to extend their products as ‘workbench tools’ [15], i.e.

sets of built-in generic and simulation tools which encapsulate functionality for

graphical modelling, model execution, output analysis and the import and export of

data to common applications such as Excel
TM

, Access
TM

, SAS
TM

and SAP
TM

. At the

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

67

core of these workbench tools, however, are monolithic simulation applications that

can function on a standalone basis and were probably designed for that purpose. These

function well in well-defined application domains and enjoy significant sales.

There is no doubt that these existing tools have met a market need – as exhibited

by continued sales. However, as demands for increasing integration are joined by a

wish to see increasing customisation, the approach may be reaching its limit. Though

existing packages do allow some degree of customisation, they were, in general, not

designed with that idea in mind. Hence, even if customisation is possible, it can be

difficult. Nevertheless, there are exceptions which attempt to break this mould and the

next section discusses the Promodel Process Simulator
TM

, Micro Saint Sharp
TM

 and

the HighMast
TM

 Modeling and Simulation Toolkit as examples of a small number of

software applications that currently integrate simulation and generic software tools to

provide quasi-standard user interfaces and/or to facilitate customisation.

4.1.1. PROCESS SIMULATOR
TM

The Process Simulator
TM

 (2002-2005) [96] is a plug-in to Microsoft Visio
TM

 which

enables this generic diagram tool to act as a graphical interface to Promodel’s discrete

event simulation tools. It reuses Visio
TM

’s standard capabilities to derive modelling

tools that comply with the specifications of the Promodel
TM

 simulation tools. These

Visio modelling tools allow a process flowchart to be drawn and data to be collected

on its entities, activities and resources in order to capture the logic and the dynamics

of the process. Other modelling data, such as the simulation specifications, are also

input within the Visio
TM

 interface. A logic builder provides a programming interface

that enables the definition of more complex or detailed processing behaviour. This is

done in the user-friendly, but specific, Promodel logic language which resembles C

and offers a small set of flow control statements. Also, processes and sub-processes

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

68

can be linked hierarchically through Visio’s standard hyperlinks, i.e. a compound

operation has a hyperlink to the file that models its sub-operations.

These Visio-derived models are then compiled into an appropriate format and run

by the Promodel
TM

 simulation engine. Whilst running a model, the Promodel
TM

runtime environment and its animation capabilities replace the Visio modelling

environment. The simulation results are displayed in the Promodel’s Output Viewer

3DR in a variety of graphical and tabular formats. These can be saved as text files and

opened in generic applications such as Microsoft Excel
TM

. As usual, what-if analysis

is then available and different scenarios can be saved.

Fig. 4.1 sketches how a process modelled within Visio
TM

 executes in the

Promodel
TM

 simulation engine and returns the results to the Promodel
TM

 Output

Viewer 3DR. The Process Simulator
TM

 adds to Visio
TM

 the modelling functionality

required by the Promodel
TM

 simulation engine and automates the conversion of the

data formats at the input stage.

Fig. 4.1: Visio
TM

 acting as an input interface to the Promodel
TM

 simulation

application

Diagrams drawn outside the Process Simulator
TM

 can be automatically converted

into Process flowcharts. A converter adds to these diagrams the properties required by

the Process Simulator
TM

 and assigns them suitable default values. For example, when

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

69

converting a network into a Process flowchart, the converter adds activity properties

to the nodes and routing properties to the arcs.

This Visio-based graphical interface highlights the trend for Promodel
TM

developments to integrate its simulation engine with generic software in order to

leverage its usability by compliance with human computer interaction “standards”. It

goes somewhat further than the provision of, say, links to Excel for output analysis

that is provided in all commonly used simulation packages.

4.1.2. MICRO SAINT SHARP
TM

Micro Saint Sharp
TM

, now on version 2.2., is a discrete event simulation application

with a large number of tools for modelling and running processes represented by

flowcharts. The first release of Micro Saint Sharp
TM

 (2004) was, conceptually, a

development of the Micro Saint Windows-based Simulation application. Apart from a

new animation mode, Micro Saint Sharp
TM

 uses C# as the basis of its simulation

language, which is required for non-trivial applications. Being based on .NET, Micro

Saint Sharp
TM

 offers interoperable capabilities with widely-used applications which

facilitates its customisation, strengthens its modelling capabilities and its

interoperability with other applications [68, 69]. To achieve this, Micro Saint’s core

application was redesigned and rebuilt by using component-based paradigms and the

.NET integration technologies. Additional features, such as the OptQuest
TM

 and

animation, constitute components that are plug-able if necessary.

The C#-based logic builder enables users to define the process logic and dynamics

using a subset of this generic programming language. User defined functions can then

be written within the package to extend its capabilities. Perhaps because C# is so

powerful, Micro Saint Sharp
TM

 handles only a restricted subset of the C#

programming language with limited OOP features. However, built-in classes, such as

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

70

Model and Task, are provided which have their own built-in functions. The user may

code methods for responding to events, i.e. beginning and ending effects. New objects

with properties, i.e. containers of field variables, may be created by resorting to an

object designer. However, proper inheritance is unavailable and polymorphism is

limited to variant variables. Fig. 4.2 shows a C# function written within Micro Saint

Sharp
TM

 to route customers to a number of different servers.

Fig. 4.2: User defined function written in C# for Micro Saint Sharp
TM

Micro Saint Sharp
TM

 offers communication modules that simplify access to

external data by providing built-in connectors for Excel
TM

, Sockets, ADO, Text Files,

ConsoleApplications, and Web Sites. Connectors to specific applications can be

created in C# by resorting to .NET’s networking classes and interfaces. A “Plugin

Framework” is also provided to support the installation of user defined add-ins. This

framework contains the signatures of the interfaces which the user must implement in

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

71

order to attach a DLL file written within the .NET Framework. Data exchange with

other applications is also supported through TXT and XLS file formats for input and

output. Fig. 4.3 shows how the value of cell “A2” of an Excel Workbook can be

assigned to an Entity’s attribute.

Fig. 4.3: On starting task Routing, the value of cell A2 of the file MSI.XLS is assigned

to the attribute route of modelled entity

4.1.3. HIGHMAST
TM

HighMast
TM

, Highpoint’s Modeling And Simulation Toolkit, is a .NET–based

modelling and simulation framework [14] which supports the gradual development of

software applications for running discrete event and continuous simulation systems. It

sits on top of the .NET Framework using a layer-oriented programming paradigm as

shown in Fig. 4.4.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

72

Fig 4.4: HighMast
TM

 infrastructure and composition.

HighMast
TM

 is a source-code based platform that uses the .NET environment’s

underlying conceptual principles and relies on its integration and interoperability

capabilities to provide a platform for the development of tailored standalone and

distributed simulation applications. Thus, it relies on object-oriented and component-

based paradigms and dynamic binding mechanisms to allow simulation applications to

be built in layers of software. Users may build specific simulation software solutions

by integrating appropriate software packages, multi-lingual components and web

services with a simulation engine and pre-built frameworks. Users can alter

prefabricated components, write new ones and assemble the whole package by using

general-purpose programming languages. The user’s tailored simulation application

can, in its turn, be constituted as a web service available for other applications.

HighMast
TM

 itself is coded in C#

and consists of a foundation simulation library

and a base simulation engine. The foundation simulation library includes classes that

implement simulation related features such as distribution functions, event generators,

resource management and graph traversing. The base simulation engine consists of a

model class and an executive class implemented separately (see Fig. 4.5). The

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

73

executive class runs the model by handling synchronous events (event-based

simulation) and detachable or batched events (process-based simulation).

Fig. 4.5: Base Engine

HighMast
TM

 also provides tools and data structures to facilitate the integration of

third-party components. Tools such as those for database manipulation, graphics

generation and reporting allow the retrieval and display of externally sourced data.

Additional tools and micro-frameworks are becoming available as add-ins that can be

installed according to the user’s needs. Statistics logs, multi-rooted dictionaries of

user-specified data structures and modelling expressions, instant snap-shot of the

current running state, tree or tabular representations of object hierarchies and handlers

of compiled queries at runtime are already available.

HighMast
TM

’s source-code and layered based approach enable the development of

frameworks for particular application areas. Such pre-built frameworks are being

developed for modular supply chain models, bank teller models and product or service

transformation models.

4.2. AN ALTERNATIVE VISION FOR SIMULATION SOFTWARE

These three examples highlight an emerging understanding that the mode of

development for much of the current simulation software on the market may not be

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

74

well-suited to meeting demands for extensible simulation solutions. Hence the use of

Visio
TM

 as a customisable input tool (Promodel
TM

), the .NET Framework (Micro Saint

Sharp
TM

 and HighMast
TM

) and an encouragement of a plug and play approach

(HighMast
TM

). That is, emerging technologies such as .NET may offer a way out of

the impasse presented by monolithic applications.

Furthermore, solutions to specific problems are increasingly demanded in ever

shorter time [83]. The current response to demands for customised solutions often

implies the development of new features or tools that provide the specific

functionality needed at any specific moment. The new features are added to the

simulation core applications following the interminable ‘generalising-customising-

generalising’ development cycle (see chapter 3). This has led to huge monolithic

applications, shown in Fig. 4.6, that are difficult to maintain, complicated to use and

slow to customise. They also still have to be extended by addition of functionalities to

respond to the needs of new solutions.

Fig. 4.6: Extension of simulation software to suit customisation of solutions

A different route may pursue the development of generic simulation software tools

within frameworks that enable the derivation of progressively specific tools. In this

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

75

way, the development of simulation software would be vertically architectured, by

deriving frameworks and libraries of simulation functionalities from the base classes

following a ‘generalise-specialise’ development cycle. The different simulation

worldviews’ executives could, for example, derive from a base class that defines the

properties and methods of a general simulation engine. Modelling would also consist

of derivation of super models [83] until ‘reasonably’ detailed behaviour is captured in

a sub-model. Simulation solutions would consequently be able to reference the tools

needed at the required level of specialisation and would use them by instantiation or

by deriving new tools and ultimately new solutions. Solutions and tools would

therefore offer different modes of usage from black to white boxes.

The ‘generalise-specialise’ approach would also apply to the software tools used

to develop simulation functionalities. The generic development environments used to

produce the base simulation tools would give way to more specialised development

tools in order to produce more specific simulation tools.

This vertical development approach would support the composition of simulation

software solutions from prefabricated, self-contained, self-healing and light

components [118, 82] that could be invoked remotely by users to select, modify and

assemble into applications. It might create a route that leads, eventually, to an open

market in simulation components, based on the Internet. This, in turn, might support

the on-demand simulation software paradigm to build software solutions for each

specific DES system. These components could be presented as web simulation

services and software solutions would be assembled just-in-time with only the

required functionality and could be paid for on a per use basis [118, 39]. That is, the

customisation and assembly of components would replace package customisation and

the developers and users of software would become mainly solution builders.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

76

This possibility is supported by recent technological achievements and on-going

Computer Science research into the development of integration frameworks and

programming paradigms, which enable dynamic interoperability across computers,

development frameworks, applications, programming languages and technological

generations. This, linked to current investigations of dynamic ascertainment of the

deployment environments [118], lays the foundations for on-demand software.

Fig. 4.7 is a time line representation of the past and future desirable approaches to

develop simulation software solutions. In the interim, many alternative paths, among

which may be included the above examples, are being explored to reform or

revolutionise the development of simulation software.

Fig. 4.7: Time line of the past, current and ideal approaches to the development of

simulation software

The three examples of the ProModel
TM

 Process Simulator, Micro Saint Sharp
TM

and HighMast
TM

 illustrate different strategies to raise the usability, capability and

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

77

applicability of current simulation applications. All combine generic software tools

with specific simulation applications, but at different stages of development. The

Promodel Process Simulator
TM

 is the nearest to the development approach pursued to

date in most simulation packages. Promodel
TM

 did not re-design its simulation

package but added to it a very sensible and friendly user-interface for modelling DES

systems. By designing a new user-interface using Microsoft Visio
TM

, which is

 generic

and widely used, it certainly accelerated the users’ learning process, eased its use and

probably expanded the applicability of the Promodel simulation. Also, the interface

can be customised quickly if its implementation reuses the built-in capabilities of

Visio
TM

. However, it only currently captures models intended for process-based

simulations.

The Process Simulator
TM

 illustrates a very interesting use of Visio
TM

, which

constitutes an innovative input interface to an existing simulation package.

Nevertheless, the conventional approach to simulation software resumes as soon as the

simulator is invoked, requiring the data to be converted and saved in a different format

ready for Promodel
TM

. The integration of the Visio modelling environment and the

simulation engine consists of a black-boxed compilation into a file, which is later

automatically input into the simulation engine. The simulation engine and the output

interface are still specific and, therefore, not changeable by the builder or the user of

the simulation solutions. The user can, however, open the results files in other

applications for further analysis.

Micro Saint Sharp
TM

 moves further towards the ideal scenario, as its core

application was re-designed within the .NET Framework so as to take advantage of

object-oriented and component-based programming paradigms. Micro Saint Sharp
TM

bases its approach on these programming paradigms and their implementation in the

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

78

powerful C# language, which enables easier customisation and interoperability with

other applications. Additional features are loaded only if required and new features

can be written in C# and attached to Micro Saint Sharp
TM

 as DLLs. Also, the built-in

tools to interoperate with other applications can be extended by resorting to a “Plugin

Framework” based on the. NET’s networking classes and interfaces. This greatly

increases its capability to connect several packages, including those for simulation, as

well as its ability to model and run distributed systems. In addition, it provides a C#-

based logic builder which allows the user to add more complex logic to the models.

This is a very restricted subset of C#, but logic that requires more powerful

programming primitives can be externally implemented in C# and invoked as DLLs.

Micro Saint Sharp
TM

 illustrates an interesting use of C# to customise simulation

tools and to promote interoperability among applications. Nevertheless, Micro Saint

Sharp’s user interfaces require refinement, especially the editors for defining more

complex logic. Moreover, its applicability is confined to task-based simulation and its

extension to other simulation worldviews depends on the unpublished architecture of

the core application.

HighMast
TM

 moves even closer towards the ideal scenario. It is itself a

development framework that derives from the Microsoft .NET Framework and lies

above it; i.e. its vertical architecture promotes the ‘generalise-specialise’ development

cycle. Theoretically, further specialisation can be built on to the underlying

framework. Its object and component orientation allow simulation tools to be derived

from foundation libraries of tools to provide the functionality which a simulation

model requires. This transfers to the user the capability of producing the functionality

required by each simulation model requires, by combining and altering the existing

source-coded tools.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

79

HighMast
TM

 offers event and process-based simulation executives, but all varieties

of simulation worldviews can be implemented. Interoperability across computers,

packages and programming languages is available through the Microsoft .NET

Framework. In fact, HighMast
TM

 proposes an entirely new approach to the

development of simulation software applications. Theoretically, HighMast
TM

 is very

close to the ideal scenario, although it does not support the dynamic selection and

assembly of components needed for on-demand simulation.

4.3. THE IDEA OF DOTNETSIM

The DotNetSim project aims to investigate the value of the new Microsoft integration

philosophy for the progressive development of simulation software along the time line

toward the ideal scenario discussed in section 4.2. The idea is to explore how far the

integration of the .NET Framework with Microsoft Office applications can encourage

DE modelling and simulation software towards fully object-oriented components that

cross programming languages, packages and platforms to be linked in a single

application and, if appropriate, deployed as web services. This approach is

investigated across the entire requirements of a simulation application package

including user interfaces, simulation executives and output analysis. This focuses on

two main development issues:

(i) Data exchange between distinct software development environments through

the instantiation of objects in order to apply the object-oriented programming

paradigm, so as to replace the current creation of intermediate files and

associated format conversions.

(ii) The integration of powerful simulation engines with widely-used packages in

an architecture that supports the straightforward modification of modelling

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

80

and output analyses environments.

The DotNetSim project addresses three major fields and their interrelationships:

Discrete Event Modelling, Integration Technologies and Discrete Simulation, as

shown in Fig. 4.8.

Fig. 4.8: Research aspects of DotNetSim

In DotNetSim, approaches to discrete event modelling and discrete simulation as

described in chapter 2 give way to software components which integrate to provide

the appropriate functionalities through Microsoft Integration Technologies. The

remainder of this thesis discusses the development of the DotNetSim prototype. This

integrates a graphical modelling environment developed within Microsoft Visio
TM

with a simulation engine developed within the Microsoft .NET Framework and an

Excel-based output analysis environment. Our study employs an event-based

simulation worldview and resorts to the Event Graph methodology [108] to capture

the application logic and dynamics of the DE models. The basic concepts of Event

Graphs are described in detail in chapter 5. It would obviously be possible to use or to

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

81

substitute other worldviews.

4.4. THE DOTNETSIM COMPUTING TECHNOLOGICAL

BACKGROUND

The implementation of the DotNetSim prototype is technologically framed by the

Microsoft integration paradigms. These materialise in the Microsoft Automation, the

Microsoft .NET Framework and their integration which enable cross-application

interoperability, among the Microsoft Office applications and the .NET Framework.

This enables cross-lingual, cross-application and cross generation interoperability.

4.4.1. THE MICROSOFT AUTOMATION

Microsoft Automation [113], formerly called OLE Automation, is a COM-based

integration technology which enables one application to expose its objects to be

programmatically manipulated from within other applications. Thus, programs written

in a programming language, such as Visual Basic for Applications, can enable the

application to acquire the functionalities provided by another, provided that both

support Automation. Most Microsoft applications, especially those included in the

Office suite, support Automation. This allows, for example, Visio
TM

 to get a reference

to the Excel
TM

 application, manipulate a range of cells, calculate some functions and

return the results to a shape. Fig. 4.9 shows a VBA program of Microsoft Visio
TM

 for

instantiating Excel, computing the average of a range of cells and displaying the result

in a Visio shape. After setting a reference to the Microsoft Excel 11.0 Object Library

within the Visual Basic Editor for Visio
TM

, this program instantiates a new Excel

application object and browses the Excel object model to open the C:\Product.xls

workbook and set the range variable R to the range A1:A10 of the Sheet1. Then, it

computes the average of this range and assigns its value to the property Text of the

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

82

shape represented by the shape variable S.

Fig. 4.9: Microsoft VisioTM commanding the calculation of the average of an Excel

range. The reference to Excel
TM

 is resolved at design time (early binding)

Automation blurs the boundaries between applications, so that one application can run

the functionality provided by another application as if it were its own. The integration

of the functionality of other applications may be completely hidden from the end-user.

For example, the users of the above Visio drawing need not know that the value

displayed in the square is computed within Excel
TM

.

Thus, a native application, Visio
TM

 in the above example, may integrate via

Automation the functionality of a remote application, Excel
TM

 in the same example.

The remote application exposes its object model in order to enable the native

application to programmatically instantiate its objects, get and set the properties and

invoke the corresponding methods. This exposure may grant access to the object

model at the design (early binding) time which requires reference to a file, for

example a type library or object library, which describes the remote application’s

object model. The VBA program shown above assumes that a reference to the

Microsoft Excel
TM

 11.0 Object Library was previously set [126].

Alternatively or complementarily, the binding to the remote application’s object

model may be delayed until runtime (late binding). In such cases, an interface

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

83

(IDispatch) provides the methods for identifying and locating the exact objects at

runtime. Fig. 4.10 redesigns the VBA program shown in Fig. 4.9 to illustrate the

reference of the Excel object model for late binding. The types of the generic object

variables (xlapp, Wb and R) are resolved at runtime. For example, the CreateObject

function looks for the latest version installed on the user’s computer at runtime and

instantiates the Excel application from it [126].

Fig. 4.10: Microsoft Visio
TM

commanding the calculation of the average of an Excel

range. The object reference is resolved at runtime (late binding)

4.4.2. THE MICROSOFT .NET FRAMEWORK

The .NET Framework is the Microsoft response to the increasing web-orientation of

the business sector [98] and the steady commercial trend towards on-demand business

[39]. These trends lead inevitably to the need for software solutions built by the

composition of prefabricated components, which may reside in the Internet. In this

model, software solutions must, therefore, combine functionalities or services sourced

in heterogeneous hardware architectures, operating systems, programming languages

and packages. The high complexity of this process derives in part from the non-

existence of standards for exposing, communicating and integrating the required

functionality. Yet the integration programming is itself complex, due to the successive

levels of abstraction required by the communication of conceptually different objects.

This complexity increases when the dynamic integration of components is required

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

84

[118] as in the late binding example above.

The following brief description of the .NET Framework is based on the

information published by Microsoft (2004, 2005) [73, 75], Platt (2004) [94] and

Richter (2002) [98, 99, 100].

.NET Framework is a development platform that is intended to be integration-

friendly, i.e. a platform which abstracts from the developer the mechanisms that wire

software artefacts across machines, programming languages and technological

generations [94, 98]. The integration should be achieved at higher levels than the

binary communication of COM and DCOM (Component Object Model and its

distributed version) components, so that reusability increases by loose coupling and

coarse granularity. Additionally, .NET promotes XML structuring language and

SOAP protocol over HTTP connections as standard technologies for exposing and

accessing software functionality over the Internet [94, 98, 75].

The .NET Framework is, therefore, a development and runtime platform that

constitutes the infrastructure for building distributed and standalone applications

which invoke components sourced in heterogeneous contexts. It also allows the

development and the deployment of web services, web forms and other software

components that can be grouped into libraries and referenced by standalone or

distributed applications.

Fig. 4.11 shows the .NET Framework as a software layer that lies above each

machine’s operating system to achieve a homogeneous runtime platform, allowing the

integration and interoperability of components written in a variety of languages for a

wide range of electronic devices that may interconnect over the Internet. It primarily

targets Windows-based software, although appropriate versions could, in principle, be

written for any operating system.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

85

Fig. 4.11 .NET Framework makes the systems and the programming languages

“homogeneous”, thus allowing cross-boundaries integration and interoperability

The .NET Framework relies on object and component orientation, integration and

Internet technologies to promote the development of Internet-friendly, secure,

distributed and extensible components which integrate with other components in

single applications. The integration is independent of the components’ technological

family and time generations and operates both at compile and runtime [94, 98]

4.4.3. .NET FRAMEWORK’S ARCHITECTURAL COMPONENTS

.NET applications are sets of components written in a wide range of programming

languages, developed on top of a multi-layered library of classes and integrated under

the umbrella of the .NET Runtime system. Thus, the .NET Framework basically

comprises a development and a runtime platform. The former consists of an IDE, the

Visual Studio.NET, and a foundation library of classes, the Framework Class Library,

while the latter materialises in the Common Language Runtime.

Visual Studio.NET offers a common development environment to all the .NET

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

86

programming languages. It bundles together a set of tools such as editors, project

managers, wizards, debuggers, compilers, linkers, etc. that are customised for each

programming language and category of applications.

The Framework Class Library (FCL) is a set of built-in classes that are shared by

.NET applications irrespective of their programming languages and categories. The

FCL is arranged in successive layers, each layer extending the functionality provided

by its predecessor. The FCL supports three tiers of functionalities as shown in Fig.

4.12.

Fig. 4.12: Three foundation tiers of classes to implement Windows and Web

applications and web services

The Common Language Runtime (CLR) is the runtime system which executes the

managed code of the .NET applications, i.e. it runs the pieces of code that were

written and compiled within the .NET Framework. Managed code comprises safe and

unsafe code, as both may comply with .NET specifications. Safe code is memory type

safe and conforms to the security polices laid out for it, i.e. any access to memory is

controlled by the CLR and its execution is restricted to what it can do and where it can

run [78]. Unmanaged code, such as legacy code, does not comply with the .NET

standards but can also run. Managed and unmanaged code may interoperate in the

same .NET application, but the former is compiled and executed on the fly by the

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

87

CLR while the latter, already compiled into machine code, runs directly on the

operating system as shown in Fig. 4.13.

Fig. 4.13: Managed code, safe and unsafe, run on CLR while unmanaged code runs

on the operating system

The CLR offers, among others, the following runtime services:

(i) Class loading: The CLR loads the pieces of code when they are needed.

(ii) Version integrity checking: The CLR refuses to run files that have been

altered after distribution and it therefore avoids the ‘DLL Hell’ conflicts [61]

that derive from updating shared DLLs.

(iii) Security checking: The CLR checks the compliance with the security

policies laid out for the application itself (code-based security) or for the host

user (role-based security).

(iv) Type-safe checking: The CLR checks the operations against the data types

for safe code.

(v) JIT compilation: The CLR compiles the methods on demand by applying

Just in Time compilation mechanisms [78].

(vi) Memory management: The CLR periodically removes unreferenced objects

(acting as a garbage collector) and frees the corresponding memory

addresses.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

88

4.4.4. MULTIPLATFORM AND MULTIPLE LINGUAL INTEGRATION

The .NET Framework’s integration philosophy is based on a two-stage compilation

process that pre-compiles the diverse source codes into an intermediate object

program, which is compiled at runtime to the machine’s native language. Firstly, the

source codes are translated into Microsoft Intermediate Language (IL) by language-

specific compilers. This is a pre-compilation that checks and analyses the source code

and also produces metadata which describe the runtime environment that the code

requires for execution. Metadata and the IL code form a .NET assembly. The various

.NET assemblies are combined and more metadata is added to allow, amongst other

things, integrity and security checking.

The second stage consists of running the .NET assembly within the .NET runtime

platform by using a Jitter to compile chunks of the .NET assembly as needed. Fig.

4.14 describes the compilation process of a .NET application.

Fig. 4.14: Two-staged compilation of a .NET application which compounds a C#-

component and a VB.NET component

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

89

Several programming languages, those of Microsoft or a third-party, are compliant

with the .NET Framework, i.e. they display a minimum set of features and follow a

minimum set of rules that allow their compilation into IL code and subsequent

integration. .NET languages must adhere to the Common Language Specifications

(CLS) and must ensure that they expose only the compliant features. Non-compliant

features, such as case sensitivity and pointers, must be abandoned or camouflaged by

mapping processes [78].

The Venn diagram in Fig. 4.15 represents the CLS as the intersection feature set of

all .NET Languages. The size of this set is balanced between the enrichment that

comes from a large range of programming primitives and the impoverishment that

results from excluding languages that are unable to provide all of them [78, 61]

Fig. 4.15: Venn representation of .NET Common Language Specification

Beyond the .NET CLS, .NET languages must conform to the .NET Common Type

System (CTS), i.e. the set of admissible types, their declaration, reference and

invocation during runtime. Compliance with CLS and CTS grants true language

integration by permitting abstraction, inheritance and polymorphism across .NET

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

90

languages. .NET languages may, therefore, instantiate and invoke methods of types

implemented in a different .NET language as if they are their own. Thus, for example:

(i) a .NET application may instantiate objects from classes written in different

.NET languages classes

(ii) a class may be derived from a super class implemented in a different .NET

language

(iii) methods written in one language may be invoked and overridden by those

written in other .NET languages.

4.4.5. INTEGRATION OF MICROSOFT OFFICE WITH THE .NET FRAMEWORK

The bi-directional integration of Microsoft Office and .NET applications is achieved

by wrapping COM and .NET components into each other’s formats, so that one can

call any other as if both were technologically equal. Microsoft Office is largely built

on the COM technology [95, 47], which sets a binary standard for application

integration. Applications acquire functionality and integrate by implementing the

interfaces exposed by the COM components. Objects, interfaces and types included

are described in standalone files or embedded in DLL and Exe files [38, 71]. On the

other hand, .NET components are self-described within assemblies and integrate at

language-level so as to run on CLR.

Integrating an Office COM within .NET applications is achieved by generating an

assembly which stores the type library as .NET metadata and resorts to a proxy to call

the component [45, 46, 47]. Fig. 4.16 shows how a COM component is pulled up to be

called as if it were managed code.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

91

Fig. 4.16: The .NET application calls the COM component as if it were managed

code. A proxy, the Runtime Callable Wrapper (RCW), intercedes as a bridge between

the two technologies

Microsoft has generated several of these assemblies to describe the commonest

Office types. These PIAs (Primary Interop Assemblies) [73] allow .NET applications

to bind Office components at compile time and the CLR to marshal them across

contexts, processes or machines. A PIA, such as Microsoft.Office.Interop.Visio.dll

allows Visio classes to be instantiated from a C# program as if they were its .NET

types.

The inverse process that calls a .NET component from a COM consists essentially

of registering the corresponding assembly in the Windows registry, so that the COM

client can locate it and provide the implementation of standard COM interfaces. The

CLR creates a COM Callable Wrapper (CCW) for each .NET object that mediates, as

a proxy, the invocation of a .NET component by unmanaged code [46].

Visual Studio.NET provides a wide range of tools to abstract the “plumbing work”

behind the bi-directional integration of COM and .NET components.

4.5. THE DOTNETSIM PROTOTYPE

With this technological background, DotNetSim prototypes software for discrete event

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

92

modelling and simulation. Its functional structure, depicted at the highest general level

by Fig. 4.17, highlights how different packages interoperate to build and report a

model which is input into a simulation engine that, with further work, may be

deployed as a web service.

Fig. 4.17: Overview of the DotNetSim functional structure

The prototype graphical modelling environment emulates Schruben’s Event Graph

methodology for simulation modelling, whose basic concepts are described in chapter

5. However, other methodologies such as activity cycle diagrams, Petri nets or control

flow graphs could be substituted. If required, the same approach could be used to

develop a graphical modelling environment which suits particular application domains

such as manufacturing.

The prototype graphical modelling environment is based on Microsoft Visio
TM

2003. Event Graphs are drawn by the user or generated automatically from Excel-

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

93

based lists of attributes given the stencil modelling notation. Modelling data is stored

in relational tables associated with the events and their interrelationships. The model’s

data is reported in Word
TM

, Excel and PowerPoint
TM

 documents. This can be extended

so that the logic and dynamics of the models and the data reporting can be generated

or displayed within a wider range of Microsoft applications.

Specially developed VBA components link together different Microsoft

applications to bi-directionally exchange data in order to create the stencil’s modelling

notation and to capture the models’ application logic and the model’s dynamics.

The simulation engine consists of a number of C# and Visual Basic.NET

components that implement an event-based simulation executive. It reads the model’s

logic by instantiating the Visio modelling environment, runs the event-based

simulation and returns the simulation results to Excel
TM

 for analysis. With further

work, it can eventually be deployed as a web service to which the model’s logic is

remotely input.

The output analysis component is an Excel template which is instantiated by the

simulation engine to place the simulation results as they are produced. It implements a

set of VBA components to analyse and report the simulation results.

The components of the DotNetSim prototype are described in detail in the next

chapters.

4.5.1. DOTNETSIM AND OTHER DEVELOPMENTS

Alternative approaches to the current monolithic DES applications, which tend to

grow immeasurably to meet the demand for new features, are being explored by some

major developers. The DotNetSim prototype follows this exploratory search and is

among those which look into the use of generic software tools to develop modelling

and simulation components that can integrate in a single application.

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

94

In a similar manner as the examples described earlier in this chapter - the

Promodel Process Simulator
TM

, the Micro Saint Sharp
TM

 and the HighMast
TM

Toolkit

- DotNetSim continues the stepped path toward the suggested ideal scenario for the

simulation software. It does not go beyond the integration of widely-used software to

prototype software for discrete event modelling and simulation based on the event-

based simulation worldview. However, this is expected to constitute merely the

launching pad for developing libraries of modelling and simulation components within

generic software environments and for following the ‘generalise-specialise’

development cycle. Software solutions can then be assembled to suit specific DE

simulations.

Thus, like the Promodel Process Simulator
TM

, DotNetSim develops a DE

modelling component on the top of Microsoft Visio
TM

 generic programming features.

Both take advantage of the almost ‘standard’ framework for usability which underlies

widely-used Microsoft packages to develop easy-to-learn, easy-to-use and easy-to-

customise graphical user interfaces. However, while the Process Simulator
TM

 is a

front-end that integrates from downstream with the Promodel’s core application, the

DotNetSim modelling environment is a self-contained component that can be

integrated with any .NET-based simulation engine. The DotNetSim modelling

environment can be integrated with components, developed within any Microsoft

application that supports Automation, so as to provide the data to capture the DE

model.

Like the Micro Saint Sharp core application, the DotNetSim simulation engine is

written within the .NET Framework. Both resort to .NET programming languages,

mainly C#, to ease customisation and interoperability between components developed

within different programming environments by adopting fully object and component

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

95

orientation. The difference is that the DotNetSim simulation engine is just a software

component that integrates from upstream with the modelling environment and from

downstream with the output analysis components. It can be replaced by other

simulation engines even if based on a different simulation worldview. On the other

hand, the Micro Saint Sharp core application is confined to task-based simulation and

its extension or replacement by other worldviews depends on its unpublished

architecture.

Furthermore, the DotNetSim simulation engine relies on the .NET capabilities to

load and develop new components, including those that involve interoperability with

other packages. Hence, data exchange between components developed within

different packages is based on the object-oriented programming paradigm which

enables the objects of one application to be fully manipulated by another. Micro Saint

Sharp
TM

, instead, offers built-in tools and frameworks, to plug and unplug

components, which limits the C# capabilities that can be accessed from within it.

DLLs that implement additional features can be attached in Micro Saint Sharp
TM

 and,

naturally, in DotNetSim simulation engine.

DotNetSim, like HighMast
TM

, aims for a vertical architecture in which the

simulation specific components lie on top of generic components. However, the scope

of DotNetSim is limited to the development of the three coarse-grained simulation

components (described above), on top of widely-used Microsoft packages. These

source-code based components are derived from the built-in capabilities of generic

Microsoft packages and integrate by instantiating the object models of one component

from within another component. However, Microsoft’s built-in features are not open

source.

New features can be loaded or developed for both HighMast
TM

 and DotNetSim

CHAPTER 4 - SIMULATION SOFTWARE: CURRENT EXPERIENCES AND THE DOTNETSIM

96

from within the .NET Framework. Thus, the development of libraries of simulation

components can sustain the assembling of simulation solutions.

4.6. THE CHAPTER IN CONTEXT

This chapter describes the idea of the DotNetSim project to explore an alternative

approach to the development of DES software. The need to change the development

strategy stems from the current expectations and concerns of software users and is

supported by some examples of simulation software developers who have already

initiated new strategies. A vision for the future of the DES software development is

devised, using the latest computing advances and ongoing research towards on-

demand software. The DotNetSim project was conceived to indicate a way leading to

this vision by using the Microsoft .NET integration Framework.

Chapter 5 introduces the DotNetSim prototype and its graphical modelling

environment, which emulates the Event Graph paradigm [108].

