

97

5. THE DOTNETSIM MODELLING ENVIRONMENT:

THE STENCIL COMPONENT

Chapter overview 97

5.1. Objectives of the DotNetSim modelling environment 99

5.2. The DotNetSim conceptual framework: Event Graphs 101

5.2.1. Basic concepts 102

5.2.2. Basic and extended modelling notation 103

5.3. DotNetSim modelling environment: The stencil component 107

5.3.1. The stencil menu 107

5.3.2. Masters and shapes 109

5.3.3. Custom properties and methods of the masters 113

5.4. Comments on the implementation of the stencil component 116

5.4.1. The reusability of the Event Graph stencil 117

5.5 The chapter in context 118

CHAPTER OVERVIEW

DotNetSim’s modelling environment prototypes a software application for modelling

DES systems. It uses the Event Graph paradigm [107, 108] and widely-used Microsoft

packages as the basis for a diagrammatical modelling environment, within which DES

systems are modelled for an event-based simulation. The prototype shows how

different components can be linked to produce a modelling system.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

98

DotNetSim links different Microsoft applications to draw Event Graphs and to

collect the necessary modelling data so that the model can be executed over time by a

simulation engine. It captures the application logic of the models in a diagrammatic

form and stores the data that describe their dynamic behaviour. Event Graphs were

chosen because they offer a minimalist notation to represent a DES system as a set of

interrelated events which trigger state changes upon the system. The composition of

the interrelated events represents the logical structure of the system whilst the state

transition represents its dynamic or temporal behaviour. This conceptual framework is

well suited to event-scheduling simulations.

The implementation of the DotNetSim modelling environment consists of

specially-written VBA components that create an Event Graph stencil of shapes which

provides the notation for capturing the logic and the dynamics of DE models in

diagrams and relational databases.

This chapter introduces the DotNetSim modelling environment and sets its

objectives and conceptual framework. Then, it goes on to describe and comment on

the implementation of the DotNetSim prototype by focusing on the stencil component.

The stencil component of the DotNetSim modelling environment implements the

Event Graph extended modelling notation in Microsoft Visio
TM

, defining the

properties and the behaviour of abstract shapes which represent the events and the

edges of that diagrammatical notation. It also guides the user through a menu of

commands that perform the main operations on a stencil file.

Finally, some comments are put forward on the implementation and reusability of

the stencil component.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

99

5.1. OBJECTIVES OF THE DOTNETSIM MODELLING

ENVIRONMENT

The DotNetSim modelling environment is used to explore how widely-used Microsoft

development tools may be integrated to support the development of software for

discrete event modelling. Our interests focus on the derivation of a modelling

environment by the integration of generic software functionality in a ‘generalise-

specialise’ development strategy (see section 4.2). Thus, this modelling environment

is prototyped to investigate the customisation and integration of a diversity of

applications for the purpose of developing tools for DES modelling. It is also used to

study the possibilities for increasing the transparency of black boxed commercial

simulation software by resorting to general purpose programming languages.

The DotNetSim modelling environment is a prototype customisable software

component for building diagrammatical representations of DE models. The prototype

uses the Automation provided by the Microsoft interface to exchange data across

different applications, so as to allow simulation models to be built from data managed

by different packages and, then, to display the modelling data in different packages. A

set of VBA programs were written to exchange data among Microsoft packages by

applying the principles of OOP, i.e. one application instantiates the classes of other

applications and manipulates these objects simply by invoking the appropriate

methods.

Fig. 5.1 is an overview of the DotNetSim modelling environment functional

structure. The system to be simulated is modelled into an Event Graph by resorting to

the modelling notation provided by the stencil component. Diagrams are drawn

directly onscreen by the user who drags and drops the events and edges from the

stencil onto the Visio drawing page. Alternatively, they may be drawn automatically

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

100

by Visio
TM

 which reads the model’s descriptive list from a file based in Excel
TM

 or

other application that supports Automation. Additional modelling data are collected

and attached to the diagram so that a ready-to-run description of the model is placed

into a relational database. The model description can be displayed in Excel
TM

 or other

applications. Once complete, a simulation engine written in a more powerful

programming language reads the model by instantiating the Visio object model and

invoking the appropriate methods. An event-based simulation engine written in C#,

with some VB.NET components, is described in detail in chapter 7.

Fig. 5.1: Overview of the functionality of the DotNetSim modelling environment

Though DotNetSim prototypes an Event Graph modelling environment and an

event-based simulation engine, other schemas can be substituted, i.e. other graphical

modelling techniques can be implemented and run by simulation engines based on

other worldviews.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

101

5.2. THE DOTNETSIM CONCEPTUAL FRAMEWORK: EVENT

GRAPHS

The DotNetSim modelling environment uses the Event Graph paradigm [107, 108, 17]

introduced by Lee Schruben (1983) to model the dynamics of discrete event

simulation systems. Event Graphs represent the logical structure of a DES system and

its temporal behaviour by abstracting the events which trigger the state transition.

Events are networked in scheduling relationships, i.e. causal relationships that are

temporised, so that events occur in the future, some time after the occurrence of their

logic precedents. Many of the scheduling relationships are conditional and might be

cancelled depending on the state of the system, e.g. on the availability of resources.

Event Graphs are a minimalist representation of these event relationships, which

have been shown to have enough generality to correctly emulate any discrete event

system [103]. Despite the high level of abstraction required by the relationships

between events, when compared to the movements along successive processes, Event

Graphs are easy to use and generally facilitate the comprehension and representation

of discrete event systems [17, 18].

E1 E2 E3

E4

E5

Delay time (condition) Delay time (condition)

Delay time (condition) parameter

(condition)

Fig. 5.2: Scheduling and cancelling relationships between events in an Event Graph

Fig. 5.2. illustrates how pair-wise relationships are represented in Event Graphs. A

set of events (vertices) and their causal relationships (arcs or edges) are networked to

represent a simulation model. Arcs represent scheduling or cancelling relationships

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

102

between events and are a means to transport data such as head conditions, delay times

and parameters between pairs of events.

5.2.1. BASIC CONCEPTS

The basic modelling concepts of DotNetSim derive from the definition of a DES

system (see section 2.1.3.) as a set of states which transit dynamically in response to

the occurrence of time-stamped events. States are described by a set of variables

which represent those attributes of the system that best serve the objectives of the

simulation study. The system state changes in response to events, hence events

functionally map onto state variables. An event changes at least one of the state

variables. As an example, Table 5.1 lists the events and the corresponding state

transitions in a discrete event simulation of a multiple server queue. The run event

corresponds to the initialisation, in which the number of customers who arrive at the

system (N) and the number of customers queuing (Q) are set to 0 and the number of

idle servers (S) is set to the number of existing servers.

 State variables

Event
N- Number of

arrivals

Q- Length of the

single queue

S- Number of idle

servers

Run 0 0 4

Arrival N=N+1 Q=Q+1

Start the service Q=Q-1 S=S-1

End the service S=S+1

Table 5.1: Changes of state in a four-server queue

When an arrival occurs, one more customer joins the queue so that N and Q are

incremented by one; when a service starts there is one less customer queuing and the

server becomes busy whilst the end of a service increments the number of idle servers.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

103

Other variables may be derived from those state variables to collect statistics on the

performance of the system as time-varying statistics.

Not only do the events change the state variables, but they also schedule their

logical successors: the start of a service, for example, schedules its end. Consequently,

given a basic modelling notation [107, 108, 17], a system can be mapped onto a

network of events, each of which maps onto a particular state of the system. Events

and inter-event relationships are, respectively, the vertices and the edges of the

network. Events and state transitions are instantaneous and atomic, i.e. they consume

no time and their execution is performed in one indivisible operation. On the other

hand, one edge represents the time that elapses between the occurrence of two

adjacent events.

5.2.2. BASIC AND EXTENDED MODELLING NOTATION

DotNetSim adopts the minimal modelling notation of Event Graphs. Fig. 5.3 displays

the basic modelling constructs, the event and the scheduling edge:

I) Event A

II) Unconditional scheduling edge: event B is due to occur after t units of time

upon the occurrence of event A

III) Conditional scheduling edge: event A schedules event B to occur t units of

time later if condition (i) holds.

Fig.5.3: DotNetSim basic modelling notation

A DotNetSim diagram of a multiple server system with a single queue and many

servers of three types is diagrammatically represented in Fig. 5.4. The state variables

are the queue length (Q) and the counters of idle servers of type A (Sa), type B (Sb)

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

104

and type C (Sc). The servers are allocated in the order ABC, i.e. first, all servers of

type A are allocated, then all servers of type B are allocated and finally all servers of

type C are allocated. No delay times were considered and arrivals are generated at a

rate ta.

Fig. 5.4: DotNetSim representation of a multiple server system with three types of

servers (partly derived from Schruben, 1995 [107])

Since events map onto state changes [107, 108], Fig 5.4 corresponds to the state

transition shown in Fig. 5.5.

Fig. 5.5: The state transitions associated with the multiple server system represented

in Fig.5.4

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

105

Each event changes one or more state variables. The run event sets Q to 0 and the

counters Sa, Sb and Sc to 4, i.e. the number of servers of each type; the arrival event

increments Q by 1; the start events decrement Q and the corresponding counter; the

finish events increment the corresponding counters.

Event Graphs and DotNetSim both include extended modelling constructs to

support the cancellation of already scheduled events and to allow parameters to be

passed between events. The former materialise as cancelling edges, which are the

inverse of the scheduled edges and may be due, for instance, to a machine failure.

They may also occur dependent on a condition, but they have no delay times [107,

108, 17]. Their graphical representation is displayed in Fig. 5.6, in which:

I) Unconditional cancelling edge: event A cancels the first scheduled

occurrence of B

II) Conditional cancelling edge: event A cancels the first scheduled occurrence

of B if condition (i) holds

Fig. 5.6: Extended modelling notation (cancelling edges)

The second extension, the parameterisation of events, allows an event-vertex to

represent a collection of identical events. It works as if the identical events are

elements of an array of events, each one being identified by an index. At a particular

point, the event-vertex represents the event whose index is equal to the actual

parameter passed by the originating event. For example, Start(n) is the Start event that

engages a server of type n. Whenever Start is scheduled, the originating event passes

the actual value to n.

Fig. 5.7 shows the constructs for conditional parameterised scheduling and

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

106

cancelling edges. Unconditional parameterised edges are also defined.

I) Parameterised scheduling edge: if condition (i) holds, event A schedules

event B for t units of time later and passes j to k.

II) Parameterised cancelling edge: if condition (i) holds, event A cancels the

event B whose parameter k is equal to j.

Fig. 5.7: Extended modelling notation (parameterised edges)

Parameterised events can be used to model multiple server systems of many types.

Fig. 5.8 represents the arrival of spectators at a football match at the security checking

system with an inter-arrival time ta. They move sequentially from security barrier 1 to

n. There are many servers at each barrier. The state variables are Q(i), representing the

number of spectators queuing for barrier i and S(i) which represents the number of

idle servers at barrier i. The run event initialises the number of idle servers per barrier,

which is an input parameter of the model.

Fig. 5.8: A security checking system consisting of a series of n different barriers. Each

barrier is served by many servers and has its own queue

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

107

5.3. DOTNETSIM MODELLING ENVIRONMENT: THE STENCIL

COMPONENT

The stencil component of the DotNetSim modelling environment defines a stencil

with a collection of abstract shapes which implement the Event Graph extended

modelling notation. This stencil is saved as a Visio stencil file, the Event-Graph.vss,

and it is the only one which is automatically loaded into the DotNetSim’s modelling

component, hence it contains the only notation that can be used to represent the DE

models diagrammatically.

The Event Graph stencil is the abstract definition of the properties and methods of

the shapes required by the Event Graphs. It is, therefore, a collection of classes of

shapes, or Masters in Visio
TM

 terminology, which are reusable by object instantiation

whenever the shapes are dropped into diagrams.

The stencil component is a set of programs written for DotNetSim in VBA for

Visio
TM

 and saved in a Visio drawing file. It performs the main operations on a stencil

file, namely the creation of a new stencil, its customisation by adding and removing

masters, and opening and closing operations. It also allows the user to set the folder

path, where this stencil can be located by other Visio files.

5.3.1. THE STENCIL MENU

A stencil menu lists the commands that perform the basic operations on a stencil file.

It is generated and appended to the Visio menu bar at runtime. It is worthwhile

referring to the implementation of this menu as it is our first step towards the

customisation of Visio solutions by exchanging data between Visio
TM

 and Excel
TM

.

Fig. 5.9 lists the VBA statements for getting a reference to the cell A1 of sheet 1 of the

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

108

active Excel workbook from within the Visio
TM

. This assumes that a reference to

Microsoft Excel
TM

 11.0 Object Library has been set to the Visio project.

Fig. 5.9: VBA statements to get references to the active Excel instance, the active

workbook and range A1 of sheet 1 from within Visio
TM

The implementation of the stencil menu also tests the implementation of event

handlers triggered by actions performed on Visio shapes. Fig. 5.10 shows a VBA

handler for double clicking a Visio shape. Double clicking the first shape of the active

page of the current active Visio drawing document invokes the procedure

ThisDocument.MenuiteminExcel.

Fig. 5.10: VBA handler for double clicking the first shape of the active page of the

current active Visio drawing document

On opening the EGstencil.vsd, an event handler displays two possible sources for

the list of commands that will be converted into the Visio Stencil menu. On double

clicking the Visio box, the Stencil menu is automatically generated from a list of

commands stored in a Visio array; on double clicking the Excel box, the list of

commands stored in a range of an Excel worksheet is converted into the Stencil menu,

as illustrated in Fig. 5.11. Hence, editing the appropriate Excel worksheet leads to a

different menu list.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

109

 A B C

1 Level User command Procedure

2 1 Set path to stencil SetpathtoStencil

3 1 New Stencil

4 2 Create stencil CreateStencil

5 2 Add masters

6 3 Event Eve

7 3 Schedule Sch

8 3 Cancel Can

9 3 Parameterised schedule Parsch

10 3 Parametrised Cancel Parcan

11 2 Remove masters RemShapes

12 1 Open stencil OpenStencil

13 1 Close stencil CloseStencil

Fig. 5.11: A list of commands placed in Excel
TM

 is converted into a Visio menu of

commands

While generating the menu, the list of procedures stored in Excel
TM

 is checked

against the VBA procedures of EGstencil.vsd. Those which are missing are listed to

remind the user that the corresponding functionality is not available. Thus, the user

may adapt the menu to match the needs of each solution by selecting the commands

and the corresponding procedures. As they are stored as text in an Excel file, the list of

commands can, for example, be re-written so that they are expressed in the user’s

native language.

5.3.2. MASTERS AND SHAPES

The Event Graph stencil consists of five master shapes, the Event Graph masters,

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

110

which correspond to the event, the two scheduling and the two cancelling edges of the

extended notation of the Event Graphs as described above. Fig. 5.12 shows the

masters that comprise the Event Graph stencil.

Fig. 5.12: Snapshot of the Event Graph stencil

A master is a class that defines the properties and the methods of a shape. The

event master, for example, defines properties such as the circular shape, the diameter

of the circle, the fill pattern and the name of the master. Its definition also includes the

methods that can be invoked on it, such as those which define the attributes of the

events shaped out of this master. For example, some attributes of the event ‘Arrival of

customers’ are defined by the corresponding master and set when the event is placed

in a diagram. The Event Graph masters derive from the definitions of the Circle and

the Dynamic Connector in the Basic Shapes stencil (Basic_M.vss), built-in in Visio
TM

.

From the base masters they inherit two groups of properties and methods: those of the

master, which characterise each master within the stencil and those of the shape,

which characterise the shape that the master takes.

VBA modules were coded to drop the base masters onto a Visio drawing page, to

set the values of the relevant inherited properties and to add the definition of the

properties which characterise the events and the edges of the Event Graphs.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

111

Master properties such as the master’s name or icon identify each master within

the stencil. The Event Graph masters inherit these properties from the base master.

The names, indices and prompts of the masters were set to suit the Event Graph

modelling notation. Table 5.2 lists the values assigned to those properties.

MASTER NAME INDEX PROMPT

Event Event 1 State transition

Scheduling Schedule 2 Scheduling the connected event

to occur after a delay time if

condition holds

Cancelling Cancel 3 Cancelling the first occurrence of

the connected event if condition

holds

Parameterised

scheduling

Parameterised

Schedule

4 Passing an argument while

scheduling the connected event

Parameterised

cancelling

Parameterised

Cancel

5 Cancelling the occurrence of

connected event whose parameter

matches the passed argument if

the condition holds.

Table 5.2: Names, indices and prompts of each Event Graph master

Accessor and mutator methods, implemented as Let and Get properties, are

provided for reading and setting the values of these properties. Other properties, such

Fig. 5.13: Removal of the Event Graph masters

as the icon size and shape and searching keywords can be overridden. Drop and

Remove methods can be invoked on each master to add or remove them from the

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

112

stencil. Fig. 5.13 shows the form that allows the selection of a master to be removed.

Shape properties, such as the height and the width of a shape, the fill pattern, x and

y coordinates and connection points, among many others, characterise the shape that a

master takes. The Event Graph masters inherit these properties from the Circle and the

Dynamic Connector of the base stencil. The properties of a shape are listed in the

shape sheet, which is a set of two-dimensional tables displaying the predefined

properties and default values of the selected shape. The Event Graph masters override

the default values of some of them, namely the diameter and fill pattern of the event

master, the connector’s ending arrow and the line’s attributes of the edges masters.

Fig. 5.14 shows part of the shape sheet of the event master.

Fig. 5.14: The width and the height properties in the Shape Transform section set the

diameter of the circle node and FillPatern in Fill Format section was set to a grey

shade

Although the built-in properties that apply to the event and to the edges masters

are different, Visio
TM

 does not allow the structure of the shape sheet to be changed

significantly. Few sections are removable and the columns per section remain the

same, irrespective of the property or the shape. Thus, all the Event Graph masters

inherit a large number of predefined properties that are superfluous and should be

removed, were this permitted in Visio
TM

. A few, however, can be made invisible in

the shape sheet, even though they cannot actually be removed.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

113

5.3.3. CUSTOM PROPERTIES AND METHODS OF THE MASTERS

Custom properties can be attached to a shape, alongside its built-in properties. The

custom properties of the Event Graph masters are the attributes of the events and the

edges which are relevant for the description of the model. For example, as a

scheduling edge links the event that originates the scheduling to the event to be

scheduled, data on these two events are of interest to the scheduling edge and may be

constituted as custom properties.

The user is prompted for some custom properties whenever a master is dropped

onto a drawing, e.g. the name of an event or the test condition of a scheduling edge,

others are generated automatically from the model diagram, e.g. the origin and

destination events of a cancelling edge are automatically filled according to the

diagram’s structure. Fig. 5.15 illustrates the set of custom properties used in

DotNetSim for the event master. Number is a sequential integer automatically

assigned to the event as the diagram is read; the name and the succinct description of

the event are prompted to the user when the master is dropped onto the drawing page;

the parameter name is also prompted to the user on dropping the master.

Fig. 5.15: Custom properties of the event master

DotNetSim edge masters display custom properties associated with the causal

relationships between events and the time that passes through the edge. Some are

common to all edge masters, others only to scheduling edges and others to

parameterised edges.

The following custom properties are shared by all the edges:

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

114

� Number: The sequential integer assigned to each edge while reading the

model diagram

� Origin event: The number of the event that is connected to the beginning of

the edge

� Destination event: The number of the event that is connected to the end of

the edge

� Condition: The condition that determines the scheduling or the cancelling of

the destination event

� Priority: The priority assigned to each edge to serialise the execution of

simultaneous events.

The edge number, the origin and destination events are assigned automatically

when the diagram sequence is determined; the condition and the priority are prompted

to the user when the edge is dropped onto the drawing page.

The delay time and its distribution are custom properties shared by the scheduling

and parameterised scheduling edges:

� Delay time: The name of the variable representing the time that elapses

between the occurrence of two successive events

� Delay time distribution: The delay time may be deterministic or randomly

distributed. The DotNetSim prototype limits the distributions to Uniform and

Negative Exponential, but others can easily be added if substituted.

Both are prompted to the user on dropping the master onto the drawing page. Fig.

5.16 shows the custom properties that are prompted to the user on dropping a

scheduling master onto the drawing page.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

115

Fig. 5.16: Custom properties prompted on dropping a scheduling master onto the

drawing page

Parameter and maximum parameter are custom properties shared by the

parameterised scheduling and parameterised cancelling edges:

� Parameter: The name of the parameter that passes through the edge to be

assigned to the formal parameter of the event to be scheduled.

� Maximum parameter: The maximum value which the parameter can take.

These are prompted to the user on dropping the parameterised edges. Fig. 5.17

lists the custom properties prompted to the user on dropping a parameterised

scheduling edge.

Fig. 5.17: List of the custom properties of a parameterised scheduling edge

The custom properties of the edges suggest that the corresponding masters could

be implemented as a hierarchical structure of classes and subclasses. An edge class

could define the common properties and pass them over, by inheritance, to two

derivative classes, the scheduling and cancelling edges. These, in turn, would define

more properties and pass them over to the parameterised scheduling and the

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

116

parameterised cancelling. Fig. 5.18 shows a possible tree-shaped structure of edge

masters.

Fig. 5.18: Tree-shaped organisation of the edges masters

However, since VBA for Visio
TM

 does not support class inheritance, the class

hierarchy could not propagate beyond the inheritance of the master properties and

built-in properties. This led to redundant definitions of the common properties of the

Event Graph masters.

The Event Graph masters encapsulate the methods that set and get the current

values of the shapes’ built-in and custom properties. Also, methods were coded to add

new custom properties. Event handlers, such as those that respond to the double

clicking of the events or the scheduling edges, are registered in the masters but the

developer of the DotNetSim modelling component must implement them in the

drawing template.

5.4. COMMENTS ON THE IMPLEMENTATION OF THE STENCIL

COMPONENT

The ability to specialise a stencil, by derivation of built-in stencils and from

attachment of code to capture specific properties and event handlers of masters’

shapes, is of great value for customising Visio
TM

 and promoting code reusability. For

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

117

example, the masters of the newly created stencil were endowed with the attributes

which fit the Event Graph modelling notation. Also, part of their behaviour was

moulded by attaching to the masters’ shapes the signatures of the event handlers. The

Event Graph stencil is therefore used as a collection of classes that may be instantiated

by any DE model.

5.4.1. THE REUSABILITY OF THE EVENT GRAPH STENCIL

Any Visio drawing file that loads the Event Graph stencil grants access to the

functionality of the event and the edges masters. The masters’ functionality passes to

the drawing by instantiation into shapes. Thus, dragging an event master, for example,

and dropping it onto an Event Graph corresponds to the creation of an event which

inherits all the properties and methods coded in the master. The custom properties are

prompted to the user, the corresponding values are stored in the shape sheet and the

event handlers respond to actions such as double clicking the shape.

Hence, the functionality of the Event Graph stencil is black-box reusable by all the

drawings that load the stencil. They acquire functionality when the stencil is loaded

and, by instantiating the masters and providing the input parameters (values of the

prompted properties), they acquire shapes with specific functions. On the other hand,

the functionality of the stencil is white-box customisable, i.e. new masters can be

added and the existing masters can be altered or removed. New properties and new

methods may also be added to the existing masters. Altering the stencil functionality

has no impact on diagrams previously drawn, since a document stencil is kept for each

drawing. The document stencil stores a copy of each master when it is dropped onto

the drawing, which means that each drawing deals with a particular instance of the

stencil. This stresses the drawing’s portability and extends the level of customisation

that can be achieved per DE model.

CHAPTER 5 - THE DOTSIMNET MODELLING ENVIRONMENT: STENCIL COMPONENT

118

5.5 THE CHAPTER IN CONTEXT

This chapter introduces the graphical modelling environment of the DotNetSim

prototype, setting out its objectives and explaining the Event Graphs paradigm which

was chosen, as an example, to provide its conceptual framework. The Event Graph’s

extended modelling notation led to the Event Graph stencil which was implemented

by the DotNetSim stencil component. The DotNetSim stencil component is an

extension of Visio
TM

 which creates a stencil from abstract shapes specifically defined

to represent the events and the edges of that diagrammatical notation. It also

implements the main operations on the stencil file.

The next chapter discusses the modelling component of the DotNetSim prototype

which uses the Event Graph stencil to implement the functionality required to capture

the logic of DE models diagrammatically as Event Graphs.

