
119

6. THE DOTNETSIM MODELLING ENVIRONMENT:

THE MODELLING COMPONENT

Chapter overview 120

6.1. Objectives of the DotNetSim modelling component 121

6.2. DotNetSim modelling environment: the modelling component 123

6.2.1. Customising Visio
TM

 125

6.2.2. Drawing the diagram 126

6.2.3. Reading the diagram 128

6.2.4. Describing the model 130

6.2.5. Reviewing the model 133

6.2.6. Reporting the model 135

6.2.7. General operations on the model 137

6.2.8. Simulating the model 137

6.2.9. Utilities 138

6.2.10. Help 138

6.3. Comments on the implementation of the modelling component 138

6.3.1. Packages as objects of other packages 139

6.3.2. Applications object models 141

6.3.3. Visual Basic for Applications 142

6.4. The chapter in context 143

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

120

CHAPTER OVERVIEW

The DotNetSim modelling component, together with the DotNetSim stencil

component, prototypes a software environment within which DES systems are

modelled as sets of states which transit in response to the occurrence of time-stamped

events. As explained in chapter 5, the Event Graphs paradigm was chosen to describe

such systems, hence, the DotNetSim modelling component implements the

functionality required to capture the logic of DE models diagrammatically as Event

Graphs and to place the modelling data in relational databases. It automatically loads

the Event Graph stencil and uses the functionality of this modelling notation to draw

DES as Event Graphs. Upstream from the DotNetSim modelling component there

might be descriptive lists of the DE model, written within a Microsoft application

which supports Automation. The lists are readable and automatically convertible into

Event Graphs by the DotNetSim modelling component. This modelling component

deals with Excel-based descriptive lists, which it reads by getting a reference to the

corresponding range of cells. Downstream from the modelling component is the

DotNetSim simulation engine (see chapter 7), which runs the simulation of the DE

model by getting references to the appropriate objects of the corresponding Visio

document. Also downstream are other Microsoft applications, namely Word
TM

,

PowerPoint
TM

 and, once again, Excel
TM

, to which the model may be reported if

required.

The DotNetSim modelling component provides the tools to draw an Event Graph

directly on a Visio drawing documents or to convert automatically a descriptive list of

a model, produced in Excel, into Event Graphs. It also provides the tools to traverse

the Event Graph and store it in a relational database together with other modelling

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

121

data read directly from within this component.

This chapter presents and describes the functionality implemented by the

DotNetSim modelling component, emphasizing the integration of the different

packages. Finally, some comments on the prototype’s implementation are made and

lead to further discussion on the value of the integration of different Microsoft

applications for modelling DES systems.

6.1. OBJECTIVES OF THE DOTNETSIM MODELLING COMPONENT

With the DotNetSim stencil component, the DotNetSim modelling component

prototypes a software environment within which the logic and the dynamics of DE

models can be captured diagrammatically by Event Graphs and stored in relational

databases. The DotNetSim modelling component employs the Event Graph extended

modelling notation implemented by the Event Graph stencil (see chapter 5) to

represent DE models as networks of events and inter-event relationships. The logic

structure of a DE model is captured diagrammatically either directly from the user’s

Visio drawing or from a descriptive list written in another Microsoft application and

converted automatically into Event Graphs. The dynamic behaviour of a DE model,

which is described by the state transition triggered by the events and the

characteristics of the time that passes through the edges, is read upon dragging and

dropping the stencil’s masters onto the Event Graph or from the descriptive list of the

model. This data is then stored in the tables of custom properties associated with each

event and edge.

Thus, the modelling component of the DotNetSim prototype consists of a

collection of VBA programs which provide tools for performing the following main

operations:

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

122

� Capture the logic of a DE model diagrammatically in an Event Graph

� Traverse the Event Graph to determine the sequence of the events

� Read the data which describe its temporal behaviour

� Place the diagram and the modelling data into a relational database to

facilitate the review of the model and its placement into other packages

� Run the DE simulation, invoking the DotNetSim simulation engine

component

Additional generic tools were implemented to provide utilities and perform

general operations on the visualisation of the diagram and the customisation of

Visio
TM

. The prototyping of this modelling component aims, however, to derive

modelling tools from generic software tools built in widely-used Microsoft

applications in order to enable DE models to be devised by allowing the integration of

data originated in different Microsoft packages. Microsoft applications are then

customised and integrated to create, by object-orientation, a modelling environment

for DES systems. Microsoft Visio
TM

 constitutes its central core, which manipulates

the applications from which the modelling data is sourced and in which the models are

placed. The DotNetSim modelling component supports the integration of Visio

documents with Excel spreadsheets and Word and PowerPoint documents. The

integration is bidirectional so that, for example, Excel
TM

 reads the names of the

masters currently in an Event Graph stencil and Visio
TM

 places the description of its

diagrams in Excel
TM

. Integration with other applications, namely Project
TM

 and

Access
TM

, would also be possible by applying the object-oriented principles that

underline Microsoft Automation.

Fig. 6.1 depicts the DotNetSim prototype’s architecture focussing on the

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

123

modelling component of the DotNetSim environment. The DotNetSim modelling

component loads the Event Graph stencil and bi-directionally exchanges data with

various Microsoft applications to capture the logic and dynamics of DE models in

Event Graphs and relational databases. Eventually, it invokes the DotNetSim

simulation engine which, after executing, returns control to the modelling component.

Fig. 6.1: Zooming the modelling component in DotNetSim’s architecture. The

execution of the DotNetSim starts and ends within the Visio-based modelling

environment, passing through the stages ‘Modelling – Simulation – Output analysis’

6.2. DOTNETSIM MODELLING ENVIRONMENT: THE MODELLING

COMPONENT

The DotNetSim modelling component is implemented on the Visio template

EGmodelling.vst, which is the container of the VBA components that implement the

functionality required by the Event Graph paradigm for modelling and running DES

systems. EGmodelling.vst is a class of document which is instantiable into new

documents and the documents based on the EGmodelling template inherit the whole

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

124

following modelling functionality:

� Drawing the diagram: The diagram is drawn by the user in Visio drawing

pages or it is automatically generated from a tabular description of the model

in Excel
TM

 or other Microsoft application.

� Reading the diagram: The diagram is traversed to number the events and the

edges, to store the sequence of the events and to label the nodes and edges so

that it complies with the Event Graph modelling notation.

� Describing the model: The modelling data such as the state variables, the

state transition actions and the simulation parameters are prompted to the

user.

� Reviewing the model: The diagram data and the modelling data are placed

into a relational database in Visio, Excel
TM

 or other appropriate Microsoft

application in order to facilitate a synthesised review of the model.

� Reporting the model: Data is extracted from the diagram and listed in

Excel
TM

 and the diagram is pasted into Word documents and PowerPoint

slides. Also, a summary of the model is output in a Word document and an

Excel
TM

 workbook.

� Performing general operations: The diagram can be resized, zoomed or

deleted. Also, a pan and zoom window may be used to magnify part of the

diagram.

� Simulating the model: The model is executed by an event-based simulation

engine written in C#.

Apart from this functionality associated with Event Graph modelling, the

EGmodelling.vst exploits Visio customisation by allowing selective loading or

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

125

visualisation of the Visio built-in tools. It also allows Excel files to be created and

opened from within Visio
TM

and it demonstrates the invocation of an web-based help

system also from within Visio
TM

. The DotNetSim modelling component has no

contextual user help or assistance, but a test HTML help was created and compiled by

resorting to HTML HELP WORKSHOP [70, 72] to investigate the effectiveness of its

integration with Visio
TM

.

These functions are displayed in the Event Graphs menu shown in Fig. 6.2. This

menu is generated and appended to the Visio menu bar on creating a drawing

document based on the EGmodelling template.

Fig. 6.2: Event Graphs menu

6.2.1. CUSTOMISING VISIO
TM

To limit the generic features of Visio
TM

 to those needed by each DE model and also to

maintain the simplicity of the graphical user interface, the EGmodelling template

starts with just the basic features needed for modelling. It automatically unloads or

hides the stencils, menus and tool bars that are not directly used by the Event Graphs.

However, at any time, other tools can be activated if required, as shown in Fig. 6.3.

Other generic features of Visio
TM

, such as those that display the properties of the

diagram’s pages and shapes, can be used by selecting the corresponding commands on

the Event Graph menu.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

126

Fig. 6.3: The boxes list the menus, tool bars and stencils available for the current

Visio installation

6.2.2. DRAWING THE DIAGRAM

Event Graphs are manually drawn in the Visio drawing pages or generated

automatically from the corresponding descriptive lists managed by any Microsoft

package which supports Automation. Both processes resort to the Event Graph stencil.

The DotNetSim prototype implements the automatic generation of any Event Graphs

described in Excel worksheets. Graph generation from other Microsoft applications

such as Project
TM

 or Word
TM

 are similar, but have to comply with the respective

application object model and its VBA variation.

An Excel template, EGdiagram.xlt, provides the format for describing Event

Graphs. Excel files based on this template can be created from within Visio
TM

 or may

be created manually. The list format is basically the headings of the columns which

correspond to the properties of the graph’s events and edges as described for the

master shapes. Two further fields must be included in this list: the name of the master

which represents the event or the edge and the level – a function of the y-coordinate –

which each event occupies in the drawing page. The Excel template contains VBA

code to generate a listbox from the current masters in the Event Graph stencil and to

display it whenever a master’s name is to be entered. This event handler pops up the

listbox shown in 6.4 whenever an Excel cell of the master name’s column is selected.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

127

Fig. 6.4: ListBox generated in Excel
TM

 from the masters currently in the Event Graph

stencil

Creating and opening Excel files, based in this template from within Visio
TM

,

requires bidirectional data passing from Visio
TM

 to Excel
TM

 (creating and opening the

Excel file from Visio
TM

) and vice-versa (generating the list of the masters currently in

the Event Graph stencil). Fig. 6.5 lists the VBA statements for instantiating Excel
TM

and creating an EGdiagram-based workbook from within Visio
TM

.

Fig. 6.5: VBA statements that create an EGdiagram-based workbook from within the

Visio
TM

Fig. 6.6 lists VBA statements for instantiating Visio
TM

 and reading the masters’

names applicable to the Event Graph stencil from within Excel
TM

.

Fig. 6.6: VBA statements that read a master’s name of the Event Graph stencil from

within Excel
TM

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

128

If working in Visio
TM

 with a model file created in Excel
TM

, VBA code instantiates

Excel
TM

, reads the descriptive list and generates the Event Graph. Simultaneously, the

properties of the events and edges are stored in the corresponding shapes sheets. Table

6.1. displays part of the list read by Visio
TM

 to generate the diagram shown in Fig. 6.7.

Table 6.1: Data extracted from a created Excel file

Fig. 6.7: Event Graph generated from table 6.1

6.2.3. READING THE DIAGRAM

Reading a diagram consists of traversing it so that the sequence of events is

determined, i.e. the structure of the scheduling and the cancelling relationships

between events is automatically captured into the edges’ properties. Events and edges

are numbered sequentially. The numbers of the events connected by each edge are

stored in the origin and destination properties of the corresponding edge, as shown in

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

129

Fig. 6.8. Edges that do not link two events display an error that invites the user to

revise their connection points.

Fig. 6.8: Origin and destination properties of three edges of an Event Graph

Next, the diagram’s events and edges are labelled to facilitate its understanding

and to comply with the modelling notation of the Event Graphs. The name of the

event and the parameter it passes to the adjacent edge are inscribed in the event’s

circle, as shown in Fig. 6.9. The event description and the state transition are

displayed on double clicking the graph’s nodes in conformity with the event handler

registered in the master definition and implemented in the modelling template.

Fig. 6.9: State transition of an event

The labels of the edges display, at most, the variable that represents the delay time

or its value if it is deterministic, the head-condition between brackets and the

parameter that passes through the edge to the destination event. On double clicking a

scheduling edge, the delay time or the parameters of the delay time’s distribution

function are prompted as shown in Fig. 6.10.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

130

Fig. 6.10: Labelling of the edges

6.2.4. DESCRIBING THE MODEL

The modelling data such as the model name and description, the definition of state

variables, the event transition actions and the simulation parameters are prompted to

the user and stored as custom properties of the diagram’s first page. This data is split

into four parts which should be supplied in sequence:

� General attributes: Two forms are displayed in sequence to collect the name

and description of the model. This can be easily extended to prompt and

store other properties such as the modellers’ names, creation and revision

dates.

� State variables: The name, description, type and the maximum value of each

state variable are prompted and stored as custom properties of the diagram’s

page. Four types of variables are allowed: integer, boolean, string and array

of integers, as shown in Fig. 6.11.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

131

Fig. 6.11: User form that prompts the definition of a state variable

� State transition: The state transition definition displays for each event the set

of its state variables so that these state changes can be defined (see Fig.

6.12).

 …

Fig. 6.12: Successive display of user forms to prompt the state transition triggered by

each event

The custom properties of each event are extended to record all the state

variables and the corresponding changes. Changes to integer variables are

stored as increments or decrements; 0 means that the event does not change

the state variable. Changes to boolean variables keep or switch the current

truth value; true keeps the current truth value and false switches it. Changes

to string variables represent their new values. Fig. 6.13 shows the state

transition associated with the start of a service in a single server system.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

132

Fig. 6.13: In a single server system, starting serving a customer does not change the

number of customers in the system, decrements the length of the queue as one

customer is dequeued and changes the status of the server to busy

� Simulation parameters: Finally, the simulation parameters such as the run

length, the random seed and the number of replications to execute are

prompted as shown in Fig. 6.14.

Fig. 6.14: The simulation parameters as prompted for the single server system

Fig. 6.15: Modelling data stored for a single server system

The simulation parameters are also stored as custom properties of the

diagram’s first page. Fig. 6.15 illustrates how the modelling data is stored as

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

133

custom properties of the diagram’s page.

6.2.5. REVIEWING THE MODEL

The diagram and its associated modelling data are now organised into a set of tables

(shown in Fig. 6.16) which facilitates a synthesised review of the model. It also eases

the placement of the model in other applications, e.g. Excel
TM

.

Fig. 6.16: Set of tables that store the data extracted from an Event Graph and

corresponding modelling data

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

134

These tables are stored in arrays which are displayable either from within Visio
TM

,

as shown in Fig. 6.17 or in an Excel workbook. The latter is built on the EGmodel

Excel template, especially created for this prototype and shows each table in a

separate worksheet.

Fig. 6.17: List of the Visio arrays that describe the model and are displayable on a

selection basis

To further facilitate the review of the model, the changes to the state variables can

be highlighted along the Event Graph, i.e. each event is coloured to show the changes

it triggers on a selected state variable. A toolbar, the tracing toolbar, is generated to

allow the selection of a state variable and to show its changes in the diagram. The

tracing toolbar displays the colours’ legend and two buttons, V and R, for selecting a

state variable and re-setting the original colours respectively. Fig. 6.18 depicts the

tracing toolbar and the changes triggered on the state variable which stands for the

length of the queue in a single server system.

Fig. 6.18: Changes triggered on the length of the queue in a single server system

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

135

6.2.6. REPORTING THE MODEL

Inserting data in the model into written reports or slide presentations is done by

manipulating the objects of other applications from within Visio
TM

, so that Event

Graphs and modelling data can be displayed in other Microsoft applications, namely

Excel
TM

, Word
TM

 and PowerPoint
TM

. The EGmodelling template provides VBA code

which implements the following functionality:

� Listing a diagram into an Excel worksheet: The current diagram is read and

converted into a list of properties such as the type of the shapes and their

levels in the drawing page. This list, together with the custom properties of

the shapes, is written in an Excel file based on the EGdiagram template. The

Visio VBA procedures prompt the name of the Excel file, open the file and

write the data in predefined columns (see Fig. 6.19).

Fig. 6.19: VBA statements which write the name of a shape into a range of an Excel

worksheet from within Visio
TM

This is the inverse operation of the Event Graph generation described above.

� Copying a diagram to Word documents and PowerPoint presentations: The

current diagram is copied and may be pasted either into new or existing

Word files and PowerPoint files. It will be placed in the current position of

the cursor. Fig. 6.20 was automatically pasted from the Visio active

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

136

document to this Word document.

Fig. 6.20: This diagram was automatically pasted from the active Visio document

Visio
TM

 selects the current diagram and either instantiates the Word
TM

 or the

PowerPoint
TM

 applications or get references to already created objects;

methods are invoked on these objects to instantiate new documents or get

references to the active documents (see Fig. 6.21) and, finally, the diagram is

pasted into them. This applies to other Microsoft applications that support

automation. However, the invocation of the properties and methods exposed

by each application’s object model depends on the VBA variation.

Fig. 6.21: VBA statements that get a reference to the active PowerPoint presentation

and paste the diagram into it

� Summarising the model in a Word document: The properties of the model,

namely its name and description, the state variables and their transition and

the simulation parameters, are written into the active Word document. A set

of Visio’s VBA procedures reads the data from the custom properties of the

drawing’s page, gets a reference to the active Word document and writes the

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

137

data in the it. The VBA code could well be extended to define a style sheet

for formatting this document from within Visio
TM

.

6.2.7. GENERAL OPERATIONS ON THE MODEL

General operations on the diagram visualisation and the deletion of the current model

were also coded in VBA so that they can be executed from the Event Graph menu.

The diagram, or parts of it, can be resized or zoomed to improve its readability. Thus,

the whole diagram can be enlarged or reduced, its edges can be resized to make their

labels easier to read and parts of the diagram can be selected in a pan window and

zoomed as shown in Fig. 6.22. Also, the current diagram can be deleted and its custom

properties removed to erase the corresponding modelling data.

.

Fig 6.22: Pan and zoom window to select the part of the diagram to be zoomed

6.2.8. SIMULATING THE MODEL

The model data is read by the simulation engine described in detail in chapter 7. This

prototype implements an event-based simulation engine in C#, but other schemas can

be substituted. The simulation engine gets a reference to the Visio-based DE model

and reads the data that defines its logic and dynamics by invoking the appropriate

methods of the custom properties. The simulation results are returned to an Excel

workbook for data analysis and reporting (see chapter 8).

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

138

6.2.9. UTILITIES

Excel files based on EGdiagram and EGmodel templates can be created, opened and

closed from within the EGmodelling-based Visio documents. These utilities are

executed by Visio’s VBA modules which instantiate the Excel
TM

 application and

invoke its methods to perform general operations on Excel files.

6.2.10. HELP

As a prototype, the DotNetSim modelling component has no contextual user help or

assistance, though this could obviously be added. To demonstrate this, a test help web

site (see Fig. 6.23) was created and compiled using the HTML HELP WORKSHOP

which is an authoring tool from Microsoft [70, 72]. This help system runs from within

EGmodelling Visio template.

Fig. 6.23: HTML help that is launched by a Visio VBA module

6.3. COMMENTS ON THE IMPLEMENTATION OF THE MODELLING

COMPONENT

The modelling component of the DotNetSim prototype provides an environment in

which DE models can be defined by integrating data originated in different Microsoft

packages. Microsoft Visio
TM

 provides the basis for its central core, which manipulates

the applications from which the modelling data is sourced and in which the models are

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

139

placed. DotNetSim supports the integration of Visio documents with Excel

spreadsheets and Word and PowerPoint documents. The integration is bidirectional so

that, for example, Excel
TM

 reads the names of the masters currently in an Event Graph

stencil and Visio
TM

 places the description of its diagrams in Excel
TM

. Integration with

other applications, namely Project
TM

 and Access
TM

, would also be possible by

applying the object-oriented principles which underline Microsoft Automation.

6.3.1. PACKAGES AS OBJECTS OF OTHER PACKAGES

Simple purpose-written VBA modules allow the instantiation of other applications

within Visio
TM

. These applications are presented to Visio
TM

 as abstract classes whose

instantiations become the entry points to the corresponding hierarchical object models.

By setting a variable of the type of an application, Visio
TM

 gets a reference to that

application, which, in fact, is the root of a tree of sub-classes and it therefore acquires

the capability of manipulating the whole hierarchy of objects. Fig. 6.24 illustrates how

Visio
TM

 extends its functionality by referencing the object model of another

application. By instantiating Excel
TM

, Visio
TM

 can set and get the properties of Excel’s

objects and invoke their methods. The EGmodelling prototype uses this capability to

allow Visio
TM

 to collect modelling data from Excel worksheets to automatically draw

diagrams on this data and to insert data and diagrams in Word documents and

PowerPoint presentations.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

140

Fig. 6.24: By instantiating Excel
TM

, Visio
TM

 gains control over the object model of an

instance of Excel
TM

The Visio
TM

 ability to manipulate other applications facilitates the gradual

refinement of DE models. A diagram, for example, can be drawn and re-drawn

automatically by Visio
TM

 as additional data is typed in Excel
TM

. The following

process may be iterated until a satisfactory graphical representation of the model is

attained:

1. Initially, a diagram is sketched in elementary form in Visio
TM

, by dragging

and dropping events and edges on the drawing page;

2. Visio
TM

 extracts the modelling data from this sketch, causal relationships

included, and writes it in an Excel sheet.

3. The modeller types additional data in the Excel sheet

4. Visio
TM

 collects this data and automatically re-draw the diagram

Thus, diagrams can be successively refined by combining sketches with data lists,

which serves the gradual development of the models as recommended by the principle

of parsimony [85, 87].

The DotNetSim prototype also relies on instantiating packages as objects of other

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

141

packages to generate reports on the models. Diagrams and modelling data are sent by

Visio
TM

 to Word
TM

 and PowerPoint
TM

 by invoking the appropriate methods on the

objects of these applications’ objects. For example, Word documents and Word tables,

PowerPoint presentations and slides are created by Visio
TM

, which also places on

them diagrams and modelling data.

6.3.2. APPLICATIONS OBJECT MODELS

The object models built into the widely-used Microsoft applications are hierarchical

structures of classes of objects rooted in the applications themselves. The whole

models unfold into subclasses which successively define objects as elements of their

containers. A shape in Visio
TM

 and a range of cells in Excel are, for example, defined

as objects contained respectively within a page and a worksheet. Thus, all the

applications which this modelling prototype integrates have classes of objects that

derive from others by inheritance and which encapsulate their implementation from

other programming figures. It might be argued that, apart from the absence of

polymorphism, the object models are fully object-oriented in all these applications.

However, the object-orientation does not go beyond the built-in objects in any of these

packages. The new classes created by the user are just containers of properties and

methods that, at most, can be nested. This incomplete object-orientation was a major

drawback in the implementation of the DotNetSim modelling component. The

different variants of the edges, for example, could not be defined as a substructure of

classes and subclasses.

The object model of Visio
TM

 is, in some ways, more favourable for user-defined

data structures than other Microsoft packages. Some objects, such as pages and

shapes, have sheets of properties attached to them. These sheets consist of sets of

three-dimensional arrays of properties organised in sections, rows and columns.

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

142

Additional sections and rows can be added by the user in certain circumstances, but

the number of columns is always fixed.

In spite of its fixed structure, the custom properties section attached either to the

diagram pages or the shapes was frequently used in this prototype to define the

attributes of the DE model and the Event Graphs modelling notation. The custom

properties operate as user-defined data types, i.e. value types that contain the data

itself. They cannot, however, reference objects on a heap so a custom property cannot

be the entry-point to a dynamic structure of related properties. For example, the

custom property which stores the name of the delay time distribution cannot point to a

class that characterises the appropriate distribution function.

The events section attached to the shapes was also used in this modelling

prototype to define the shapes’ response to certain events, such as double clicking a

shape or dropping a new shape. For example, in this prototype, double clicking a

scheduling edge prompts the user for the parameters of the delay time distribution.

6.3.3. VISUAL BASIC FOR APPLICATIONS

The negative side of the implementation of this prototype is the VBA programming

language. VBA was used because we intended to integrate VBA-enabled applications

by resorting to the generic development tools supported by the corresponding vendor.

There may be several reasons for Microsoft to use VBA as the language for

customising and extending the functionalities of many of its packages [76] and,

among them, is that VBA has a simple and friendly development environment.

However, VBA, due to its procedural nature and to the lack of proper dynamic data

structures, imposes a huge programming effort to implement more complex

algorithmic solutions. VBA classes, modules and user forms are useful for

encapsulating code but they lack inheritance and polymorphism primitives. In

CHAPTER 6 – THE DOTSIMNET MODELLING ENVIRONMENT: THE MODELLING COMPONENT

143

addition, the syntax incoherence of VBA is a major delay obstacle in manipulating

objects within each application and across them. Actually, the different syntax applied

to different object models contributes to the existence of several VBA dialects, one

per application.

Nonetheless, VBA allows the integration of the different packages. The

development of this modelling prototype showed that the integration of widely-used

Microsoft packages is possible and may serve the purposes of different DE modelling

graphical methodologies. A template was developed to create an Event Graph based

modelling environment, other templates may be developed for other graphical

modelling paradigms and to suit other simulation worldviews.

6.4. THE CHAPTER IN CONTEXT

This chapter describes the modelling component of the DotNetSim prototype which

together with the Event Graph stencil component forms the DotNetSim graphical

modelling environment. The DotNetSim modelling component is an extension of the

Visio
TM

 which uses the Event Graph stencil and OO integrates with other Microsoft

applications to provide the functionality required to capture the logic of a DE model as

an Event Graph. The diagrammatical and the modelling data are placed in a relational

database which the DotNetSim simulation engine component reads by applying the

OOP principles.

The next chapter discusses the implementation of the DotNetSim simulation

engine component which prototypes an event-based simulation executive that runs,

through simulated time, the model captured within the DotNetSim modelling

environment.

