
Chapter 4: Implementation of the System

49

Chapter 4: Implementation of the System

4.1 Outline

This chapter first introduces the DLT question answering system that served as the

starting point for the software used in this project. The second section describes the pre-

processing of the documents in SOK-i. The last section explains how we modified

various components of the system for the purpose of this project.

4.2 The DLT Question Answering System

4.2.1 Background

The Documents and Linguistic Technology group at the University of Limerick

participated for the first time in the TREC evaluation in 2002 (Sutcliffe, 2003). The DLT

system which was entered in TREC-11 (2002) was developed within three weeks and

thus was basic. The system managed to answer 9% of questions correctly (excluding

inexact and unsupported answers). During 2003, the system was adapted for cross-

lingual (French to English) question answering purposes (Sutcliffe, Gabbay and

O'Gorman, 2003b), and some of these adaptations were incorporated in the monolingual

system when used for TREC-12 (Sutcliffe et al., 2003a). In TREC-12, the system

achieved the same level of performance as in TREC-11 (see Table 4.1).

 Run 1 Run 2

Correct (factoid) 37 (9%) 33 (8%)

Inexact (factoid) 9 (2%) 3 (0.7%)

Unsupported (factoid) 0 1 (0.3%)

Wrong (factoid) 367 (89%) 376 (91%)

Factoid accuracy 0.09 0.08

Average F score for list questions 0.032 0.034

Average F score for definition questions 0.126 0.133

Final combined score 0.084 0.082

Table 4.1 Performance statistics of the DLT system in TREC-12. Run 1 used the

highest_scoring strategy for answer selection. Run 2 used the highest_google scoring.

Chapter 4: Implementation of the System

50

Figure 4.1: General architecture of the DLT question answering system used in TREC-12

(White, 2003).

4.2.2 Overall Strategy of the System

The architecture of the DLT system (see Figure 4.1) is common to many other question

answering systems in TREC and consists of

• Question analysis—determining the type of question and formulating a search

query;

• Document retrieval—submitting the search query to a search engine indexed

on the AQUAINT corpus and returning a list of documents likely to contain

answers to the question.

• Named entity recognition—searching for named entities appropriate to the

question type as identified during question analysis.

• Answer selection—deciding which named entity is the right answer.

Chapter 4: Implementation of the System

51

4.2.3 Processing a Question by the DLT System

The search engine in DLT is dtSearch (dtSearch, 2000) and this was used to index each

paragraph (determined by <p> tags) in the collection as a separate ‘document’ . Search is

case- insensitive and stopwords were not indexed.

4.2.4 Processing a Question by the DLT System

To illustrate by example, the factoid question in number 1900 in TREC-12, ‘What

country is Aswan High Dam located in?’ (here forth we will use the notation T12-1900),

is first classified as a what _count r y type (one of 43 categories based on the

interrogative adverbs and keywords, with no parsing), because it starts with the phrase

‘What country’ .

To formulate the query the system then analyses the question by

• Removing initial words and phrases,

• Recognising capitalised word sequences and expressions within quotation

marks,

• Computing alternatives for capitalised word sequences and for acronyms or

abbreviations (with or without dots between characters),

• Computing alternative formulations for numbers,

• Removing stopwords,

• Changing the tense of any remaining verbs to simple past.

The remaining terms are assigned an importance score (quotations score 10, capitalised

word sequences 9, numbers, pure nouns and verbs 7, superlative adjectives 6, pure

adjectives 2, pure adverbs 1 and every other term 5). Terms are then ordered by

increasing score with AND operators between them to form a Boolean search.

In the above example, ‘What country’ are removed as an initial phrase, while ‘ is’ and

‘ in’ are stopwords. ‘Aswan High Dam’ is a sequence of capitalised words and therefore

assigned the score 9. ‘ located’ is a pure verb (cannot have any other part of speech), and

assigned the score 7. The resulting search query is thus ‘ l ocat ed AND Aswan

Hi gh Dam’ . This was submitted to dtSearch.

Chapter 4: Implementation of the System

52

In TREC-12, the number of documents retrieved was set to 30. If no document is

returned, the first term in the search query (i.e., the one with the lowest score computed

as above) is removed, and the search is repeated. The process is continues until at least

one document is found or no terms remain.

To prepare for answer selection, the system marks up query terms in retrieved

documents. In the example, the terms are ‘Aswan High Dam’ or ‘aswan high dam’ (the

alternatives to all-capitalised words are computed during question analysis) and

‘ located’ . The system then searches for named entities appropriate for the type of

question appearing in documents (paragraphs) containing at least one query term

(‘Aswan High Dam’ or ‘aswan high dam’ or ‘ located’). In this example, the named

entity is a country. The system identifies in the document every country name which

appears in a database of countries. When the type of question is unknown (unclassified),

the system searches for a general name (a sequence of up to five capitalised words with

optional lower case prepositions).

In 2002 the two strategies for answer selection were highest_scoring and most_frequent.

In the first strategy the system selects as the answer the named entity that appears in the

document with the highest number of unique query terms. In the second strategy the

system selects as the answer the named entity that is most frequent across all documents

retrieved.

In 2003, a new strategy for answer selection was introduced. This is similar to an

algorithm which was suggested by Magnini et al. (2002) and is based on the idea of

using the Web search engine Google to validate answers. The system

1. submits the answer candidate to Google with the search query terms, and

records the number of hits,

2. submits the answer candidate alone to Google and records the number of hits,

3. divides the value recorded in Step 1 by the value recorded in Step 2.

For factoid questions such as question T12-1900, the candidate with the highest Google

score was selected (for list questions the threshold is set to 0.03).

Chapter 4: Implementation of the System

53

Two of the answer candidates found for T12-1900 were Egypt and Sudan. When

‘Egypt’ (the correct answer) is submitted to Google with the query terms (Aswan

Hi gh Dam AND l ocat ed), the hit count returned is 2,960. When ‘Egypt’ is

submitted alone, the hit count is 9,400,000. Thus the ratio of the two values is 0.000314.

When ‘Sudan’ is submitted with the query terms the hit count is 942. When ‘Sudan’ is

submitted alone, the hit count is 3,090,000, and the ratio of the two values is 0.000305.

Therefore, ‘Egypt’ should be selected as the answer.

4.2.5 Answering Definition Questions with the DLT System

For the purpose of this thesis, we had created an initial set of simple lexical patterns to

find answers to ‘What is X’ questions (Table 4.2). The patterns were based on the work

available in mid 2003 (Liu, Wee and Ng, 2003; Joho, 1999; Joho and Sanderson, 2000;

Hearst, 1992; Klavans and Muresan, 2001), before we learnt about the strategies applied

by all the other TREC participants tackling the definition question sub-task for the first

time.

TERM is the term for DEF

TERM is the term used to describe DEF

TERM is used to describe DEF

TERM is/was/are/were defined as DEF

TERM, which is/are/was/were DEF

defines TERM as DEF

TERM defines DEF

TERM and other DEF

TERM or other DEF

TERM, a DEF

TERM, the DEF

TERM means DEF

TERM, or DEF

Table 4.2 The set of patterns used by the DLT system in TREC-12 to identify definitions.

TERM is the query term. DEF (definition) simply matches the rest of the sentence.

Chapter 4: Implementation of the System

54

The matching of additional patterns in which the definition is expected to precede the

term (for instance, DEF is termed TERM or DEF is known as TERM) was not

implemented in the DLT system.

The text returned as the answer to a definition question was extracted up to the end of

the sentence, although overshooting the exact definition ran the risk of being penalised

for exceeding the length allowance. The sentence boundary was defined as a full stop,

semicolon or colon. To avoid mistaking abbreviation stops for the end of a sentence

(e.g., the stop after ‘J’ in ‘Homer J. Simpson’), the word preceding the stop must be

longer than one character if it begins with an upper case letter, and the full stop must be

followed by a word beginning with an upper case letter.

Despite the crudeness of this technique and the small number of patterns used, the

system managed to retrieve at least one Vital nugget in 15 responses, and at least one

Okay nugget in four additional responses (see Tables 4.3 and 4.4 for examples). In at

least seven cases no documents were retrieved. In other instances, the question target

was misidentified. For example, the system searched for the definition of ‘Ph’ (this of

course should be pH) and ‘biology’ in response to the question ‘What is Ph in biology?’ .

Question Vital nugget

T12-1957 What are fractals? sets of complex geometric shapes that look

the same over a wide range of scales

T12-2224 Who is Andrew Carnegie? steel tycoon whose money built more that

1,6000 public libraries in the United States

in the early part of the century, is a name

that crops up frequently alongside Gates’

these days

T12-2267 Who is Alexander Pope? the greatest poet of his age, but as a

Catholic was unacceptable as laureate to

the Protestant House of Hanover

Table 4.3: Example of nuggets retrieved by the DLT system in response to definition

questions and evaluated as Vital in TREC-12.

Chapter 4: Implementation of the System

55

Question Okay nugget

T12-2321 What is Restorative Justice? mediator establishes a relationship

between the offender and the victim

T12-2060 Who is Albert Ghiorso? leading nuclear experimentalist at

Lawrence Berkeley National Laboratory in

Calif

T12-2203 What is a quasar? An object that has died billions of years

ago

Table 4.4: Example of nuggets retrieved by the DLT system in response to definition

questions and evaluated as Okay in TREC-12.

No attempt was made to classify definition questions as Who or What questions or into

Person, Organisation, and Thing categories. Of the 15 responses in which at least one

nugget was vital, 11 responses were to Who questions and 4 to What questions, but this

may simply reflect the preponderance of Who questions in the test set. Verbal phrases,

missing in the set, could have benefited the answers to Who questions, because persons

are more likely to be described by their actions. For example, the expected response to

T12-2258 ‘Who is Althea Gibson?’ included the following verbal phrases: ‘won

gr and sl am t i t l es ’ , ‘br oke spor t s (t enni s) col or bar r i er i n

1950’ , and ‘est abl i shed t he Al t hea Gi bson Foundat i on’ .

The patterns used in DLT did not allow definitions expressed in several parts connected

by anaphors such as ‘ it’ or ‘ this’ to be extracted. For example, consider the following

definition of ‘outbreeding depression’ : ‘One r i sk of cr ossi ng genet i cal l y

di f f er ent st r ai ns i s r educed aver age f i t ness (pr oduct i v i t y)

of F1 or l at er gener at i on hybr i ds (Endl er , 1977; Wal l ace,

1981) . This phenomenon i s cal l ed out br eedi ng depr essi on’ . In

TREC and in this project no attempt was made to retrieve such definitions.

Chapter 4: Implementation of the System

56

4.3 Pre-processing of the Document Collection

Since we focused on simple definitions containing no anaphors, it made sense to split the

documents into individual sentences. Marking sentence boundaries also helped in

extracting the definition, because when it followed the term (for example, in the pattern

TERM is defined as DEF), the answer we extracted was the text up to the end of

the sentence. On the other hand, when the definition preceded the term (for example, in

the pattern DEF such as TERM), the answer was the text from the beginning of the

sentence up to the term or up to the words in the pattern (e.g., ‘ such as’ in the last

example).

We split the documents, still in HTML format, into sentences, inserting the tag SEN on a

new line to mark a sentence boundary. Appendix B1 shows an example of an HTML

document in its source form before splitting took place. Appendix B2 shows the same

document after splitting and assigning sentence numbers (see below).

We detected the end of sentences heuristically. A sentence boundary was considered to

be

1. A full stop, or exclamation mark, or question mark followed by a space and an

upper case letter,

2. A full stop followed by a space and a lower case letter, if the lower case letter is

followed by an upper case letter,

3. A full stop followed by a space and an open angled bracket sign (<),

4. A full stop followed by a space and an ampersand,

5. Two newline characters,

6. Two spaces,

7. Header tags (<h1>, <h2>, <h3>, <h4>),

8. Paragraph tags (<p>).

Table 4.5 presents a real example of each of the above rules. After initial splitting of the

documents, we observed that the SEN tag was inserted inappropriately after two-letter

abbreviations such as ‘e.g.’ and author name initials (for example, after the ‘R’ in ‘H.R.

Morris’). The tag was also inserted wrongly after the abbreviation ‘al.’ (in ‘et al.’). We

corrected this by specifying these cases as exceptions.

Chapter 4: Implementation of the System

57

The next step was to number the marked sentences in the 1,000 documents. Each

sentence was assigned two numbers: the ordinal number of the sentence within the

document, and the total number of sentences in the document. As Appendix B2 shows,

the ordinal number was inserted in the next line after the SEN tag, and the total number

in the next line after the ordinal number.

All HTML tags were removed from the documents before indexing.

Rule Sentence boundary (marked by SEN)

1. Full stop, space, upper

case letter

‘ …and anot her by associ at i on wi t h RAMP3 [6,
23] . SEN I n cont r ast …’

2. Full stop, space lower

case letter, upper case letter

‘ …vi a CGRP r ecept or s. SEN sCT i s a pot ent
agoni st at bot h…’

3. Full stop, space, < ‘ …of t he decr ease i n t ot al ener gy cont ent .
SEN <a hr ef =" #bi b6" >de Boeck et al .
(1997) </ a> ar gued t hat …’

4. Full stop, space, & t hat dur i ng t he l ast 170 km. SEN
 Gi l l Na<sup>+</ sup>,

5. Two newline characters bet ween nut r i t i on, behavi our and
envi r onment al st r ess. SEN

<br c l ear =" al l " >

6. Two spaces Vol ume 177, I ssues 1- 4</ a>
SEN

7. Header tags <h2>
<p>Consumer per cept i ons of f ood pr oduct s
i nvol v i ng genet i c
modi f i cat i on– – r esul t s f r om a
qual i t at i ve st udy i n f our Nor di c count r i es
</ h2> SEN

8. <p> tags ‘ …gi ven t he expect ed cont i nued gr owt h of t he

i ndust r y. SEN <p>Far med sal mon escape f r om

net pens…’

Table 4.5: examples from SOK-i of sentence boundary detection using eight heuristics.

Chapter 4: Implementation of the System

58

4.4 Implementation of Changes to the System

4.4.1 Indexing the Document Collection with dtSearch

We used dtSearch version 5.22 for Windows to index the document collection (dtSearch,

2000). dtSearch allows a single file to be indexed on-the-fly as several documents by

means of segmentation rules which may be defined by the user. When indexing the

documents with dtSearch in CLEF 2003 (Sutcliffe et al., 2003b) and in TREC-12

(Sutcliffe et al., 2003a), we chose the tags <DOC> and <p> as the strings indicating the

start of a document, respectively. In both cases the tags were in the original documents,

unlike the new SEN tags.

dtSearch includes an editable file with stopwords (or ‘noise words’ in the engine’s

terminology). Stopwords are common words, such as ‘ is’ , ‘ the’ and ‘ if’ , which are

normally considered not useful in searches. Excluding stopwords when indexing also

reduces the size of the index. However, we chose to delete all the words in dtSearch’s

stopword file and index all the words in the documents, because we wanted to be able to

search for any exact phrase (e.g. TERM is a) in experimental configurations of the

system.

We availed of these other indexing options in dtSearch: We chose the index to be case

insensitive, so as to match any capitalised version of the terms searched. We decided to

treat hyphens as spaces (‘cut-off’ would match both ‘cut off’ and ‘cut-off’) and round

brackets as searchable characters, because some of the definition patterns included them.

The index totalled 293,847 sentences (“documents”). The number of sentences in a

document was 288 on average (median 306) and ranged between 5 and 1,864.

4.4.2 Adaptation of the System

Broadly, the changes made to the original DLT system were either to disable redundant

components or to add features to existing modules. All the changes were implemented in

Prolog, as was the original system. We used Quintus Prolog 3.4 (Quintus Prolog, 2000).

All the experiments were run on a Dell OptiPlex GX1 running Windows 2000 at a clock

Chapter 4: Implementation of the System

59

speed of 500 MHz and having 261Mb RAM.

In the original system, the queries were prepared by reading them into clauses of the

form r dq_quer y(Number , Quer y, Type) . The clauses were then written,

twenty at a time, to separate files. We kept this format of input. However, Type was

now instantiated invariably with ‘definition’ and Quer y was instantiated not with

questions but with isolated terms in the exact form in which they were suggested by the

salmon researchers or appeared in the FishBase glossary (see Figure 4.2).

r dq_quer y(' 4073' , ' sucki ng di sk ' , def i ni t i on) .

r dq_quer y(' 4074' , ' suct i on pump' , def i ni t i on) .

r dq_quer y(' 4075' , ' suct or i al ' , def i ni t i on) .

r dq_quer y(' 4077' , ' Sugar cur ed f i sh' , def i ni t i on) .

Figure 4.2: Example of the format of query input used in the experiments.

When searching the documents, we were interested in an exact phrase match of the

query term. Many of the terms consisted of one word, and this obviated the need for

query reformulation as described in Section 4.2.3. However, even longer terms should

not be reformulated or split, because they then might change their meaning completely

(e.g., ‘Length-weight relationship’). Different versions of capitalisation of the term were

matched during searching because, as mentioned in the last section, the indexing was

case insensitive. We therefore disabled the clauses that parsed and reformulated the

query. We also skipped the phase in which the system searched iteratively using

increasingly simplified queries until documents were found.

dtSearch was called through a batch script. The script specifies the index that should be

used for the search (e.g., AQUAINT or SOK-i documents), the query (with optional

operators), the file name into which the results are written, and whether different options

should be activated (e.g., stemming). Since we searched only for exact terms, we

activated the Boolean search option and de-activated the fuzzy searching and auto-

stemming options.

We discovered that if we searched for a term, our version of dtSearch did not match the

term when it was enclosed in round brackets. For example, searching for ‘ redd’ would

Chapter 4: Implementation of the System

60

not match ‘ (redd)’ . This was the result of indexing brackets as searchable characters. To

overcome the problem, we added the bracketed form to the query line in the batch script.

For example, when searching for the term ‘artificial photoperiod’ , the query in the batch

script read ‘ar t i f i c i al phot oper i od OR (ar t i f i c i al phot oper i od) ’ .

C:\resources\Salmon_numbered_sen_new\c00afe3e4946d5737fc4381817c963fd.p.txt -> #148 @20907

C:\resources\Salmon_numbered_sen_new\c00afe3e4946d5737fc4381817c963fd.p.txt -> #84 @13046

C:\resources\Salmon_numbered_sen_new\f0e39b2582a602c98d266abcbf9e9422.p.txt -> #97 @14988

C:\resources\Salmon_numbered_sen_new\a9ff2614396be82207cd35a2ebbf3af7.p.txt -> #112 @15593

C:\resources\Salmon_numbered_sen_new\5c67853ceaf0f2bd7c9c3e77664e8e6d.p.txt -> #116 @17811

Figure 4.3: Example of lines in the result files which are created by dtSearch. Each line

consists of an absolute filename string and a byte offset number.

The analysis of dtSearch result files remained mostly unchanged. Each line in the result

files consisted of the absolute filename and a byte offset number (see Figure 4.3)

referring to documents which matched the query. These documents were opened and

read from the byte offset point, up to the tag which marks the end of the document

according to the segmentation rule applied in dtSearch (see Section 4.4.1). We changed

this tag from <p> (the tag used in TREC-12) to SEN in the module that analysed the

dtSearch result files. In other words, the system opened a document and started reading

and extracting a sentence from the byte offset (verified by the presence of a SEN tag)

and stopped either at the next SEN or at the end of the document.

Since many sentences contained only a single occurrence of the query term, their

ranking by dtSearch, based purely on hit count, was arbitrary. We also assumed that

sentences with a higher hit count are not more likely to include definitions, because a

proper definition is supposed to avoid using the term it is defining. Therefore, the role of

dtSearch was reduced in essence to retrieving any sentence containing the term.

However, we set the maximum number of documents (sentences) to be analysed to 1000

to reduce processing time for frequent terms.

We extracted the sentence ordinal number and total sentence number and returned both,

as arguments in a list, in the space reserved for the AQUAINT document number (doc id

or Doc_no) in an asserted clause. This was possible because documents in SOK-i lack

identification numbers comparable to those in AQUAINT. Since these numbers

Chapter 4: Implementation of the System

61

appeared always in the two lines after the SEN tag, their extraction was simple.

When marking the term in the retrieved sentences, we had to match different capitalised

versions. The original system generated a version with all the initial letters capitalised

and a version which was all in lower case letters, kept the original version, and removed

duplicates. We added a version which capitalised only the first letter of the first word in

the term. This form is mainly useful when matching a term that consists of two or more

words and appears at the beginning of the sentence For example, if the term is ‘ response

to selection’ , the system will generate the following forms:

1. Response To Selection,

2. response to selection (this will be removed because it is identical to the original

form),

3. response to selection (original),

4. Response to selection (new form).

The bulk of the changes to the system when adapting it to the current project involved

adding Definite-Clause Grammar (DCG) rules to the section of the entity recognition

module which specified definition patterns (see Appendix C). We expanded the set of

rules in this section from the twenty that were used in TREC-12 for definitions to over

500 in the last experiment.

We disabled all the answer selection components to ensure that there were a substantial

number of answers available to study the effectiveness of the pattern extraction

technique in each experiment.

Any experimental filtering of the answers was done in the module which generates the

final output. This module allowed us to change the output for experimental purposes by

extracting selectively different arguments from the final asserted clauses. For example,

we were not always interested in printing out the sentence numbers or the context. When

generating the final output from these clauses we could also manipulate the information

they contained. For example, in one run we calculated at this stage the sentence position

by dividing the sentence ordinal number by the total number of sentences in the

document. Appendix D shows a sample final output.

Chapter 4: Implementation of the System

62

4.5 Summary

In this chapter we introduced the design of the DLT question answering system that was

used in TREC-11 and TREC-12, focusing on the way it answered definition questions in

TREC-12. We then described the pre-processing of the salmon fish documents. This task

mainly involved splitting the documents into individual sentences using heuristics before

indexing them with dtSearch. We explained how we implemented changes relating to

the input, search, retrieval and analysis of the documents, as well as named entity

recognition and output. The next chapter presents the experiments that were run using

the modified system in different configurations, their results and discussion.

