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ABSTRACT

In this thesis, a dynamic spatial model for the spread of Chronic Wasting
Disease in Colorado mule deer is derived from a system of differential equations
that captures the qualitative spatial and temporal behaviour of the disease.
These differential equations are incorporated into an empirical Bayesian hierar-
chical model through the unusual step of deterministic autoregressive updates.
Spatial effects in the model are described directly in the differential equations
rather than through the use of correlations in the data. The use of deterministic
updates is a simplification that reduces the number of parameters that must be
estimated, yet still provides a flexible model that gives reasonable predictions for
the disease. The posterior distribution generated by the data model hierarchy
possesses characteristics that are atypical for many Markov chain Monte Carlo
simulation techniques. To address these difficulties, a new MCMC technique is
developed that has qualities similar to recently introduced tempered Langevin
type algorithms. The methodology is used to fit the CWD model, and posterior
parameter estimates are then used to obtain predictions about Chronic Wasting

Disease.
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Fitted values and corresponding frequentist confidence intervals for
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component-wise median of the posterior sample. Depicted are (a)
DAU 4, and (b) DAU 5. Observed prevalences are denoted with o,
95% confidence intervals are denoted by [0 and the predicted value
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Fitted values and corresponding frequentist confidence intervals for
the proportion of infected deer in the endemic region, based on the
component wise median of the posterior sample. Depicted are (c)
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95% confidence intervals are denoted by [0 and the predicted value
isdenoted by V. . . . . . oo
Fitted values and corresponding frequentist confidence intervals for
the proportion of infected deer in the endemic region, based on the
component wise median of the posterior sample. Depicted are (e)

DAU 44. Observed prevalences are denoted with o, 95% confidence

intervals are denoted by [1 and the predicted value is denoted by V.

Predicted prevalences from 1976 to 2250, for all DAUs based on the
median curve based on the posterior Markov chain sample. . . . . .
Solid line is the median track for prevalence based on the posterior
Markov chain sample (N = 300, 000). Dashed lines represent point-
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1. Introduction

One of the most fascinating and important branches of population biology is
the modeling of contagious phenomenon, or epidemics. The study of epidemics
is integral to the survival of humanity. The potential impact of a disease as it
moves through a society can be frightening. For example, in fourteenth century
Europe, 25 million people died from the Black Death (pulmonary plague, out of
a population of about 100 million. An estimated half of the 3.5 million Aztecs
died from smallpox. More recently, in 1919, more than 20 million people died
globally in the influenza pandemic [63, 74]. Today, there is widespread awareness
and attention given to diseases such as AIDS [52, 63], as well as non-infectious
illnesses such as heart disease and cancer. There are also widespread cases of less
glamorous diseases such as malaria, which has an estimated 350 million cases in
endemic areas [63, 74].

The potential devastation that can be caused by an infectious disease has
caught the attention of both the news media and the public. Potential biological
attacks aside, natural diseases still pose a grave threat to the public. Recent
outbreaks of Severe Acute Respiratory Syndrome (SARS), West Nile Virus, and
avian influenza have all grabbed headlines and prompted the reaction of public
health officials across the world. Even illnesses that do not kill are costly to
society in terms of lost productivity and reduction of the quality of life. Under-
standing how diseases evolve dynamically and spatially has and will continue to

help public health officials combat these negative effects. Mathematical mod-



els that describe the temporal behaviour and the spatial spread of disease are
important in this process.

Mathematical models of epidemics represent a simplification of the biological
processes involved, but they are nonetheless important, because they enable
researchers to understand disease dynamics and to predict the potential impact
of an epidemic. Complicated biological systems often have features that can be
reasonably modeled by relatively simple mathematical systems. Epidemics have
been studied using deterministic, statistical, and stochastic modeling techniques.
These three methods originated at different times and for different reasons, and
at times they seem unrelated, but they have been applied jointly with great
success [33, 63, 17, 52].

Deterministic models describe the spread of disease through systems of or-
dinary or partial differential equations [63, 33, 79]. In building a deterministic
model the goal is often to give the model as much freedom as necessary to make
it biologically plausible. Thus a deterministic model can have a large num-
ber of parameters, and is judged by the qualitative behaviour it exhibits and
its explanatory capabilities. Little regard is given to available data or parsi-
mony. Unfortunately, “good” but complicated models are often impossible to
solve explicitly, so a modeler employs qualitative analysis or numerical approxi-
mation. Many deterministic models begin as simple population models, such as
the logistic equation, and are derived as particular cases of multiple species com-
petition models, such as the Lotka-Volterra predator-prey model. Variations on
these models include time-lag differential equation models and partial differen-

tial equations that incorporate age structures. Spatial population processes can



be modeled deterministically using discrete spatial structures such as lattices.
More complicated spatial models use deterministic versions of diffusion equa-
tions [51, 63, 33]. An important feature of differential equations of epidemics is
that simple models with a small number of parameters often have qualitative
features that are similar to those of more complicated models. This point will be
exploited later in this thesis for building a model for Chronic Wasting Disease.
Stochastic models describe the spread of disease using stochastic differential
equations such as contact processes, diffusion process, or continuous birth and
death process [52, 63, 42]. Stochastic models consist of a dynamic model with
random parameters that contain a noise term. These models are often difficult to
solve explicitly. The goal is to capture, as fully as possible, the random nature of
population systems, which can result in models that are mathematically rigorous
but with no biological interpretation [63]. Simplifying assumptions can make
the model tractable, such as the assumption that the noise term is a Brownian
motion [41]. Although these assumptions are mathematically desirable and make
the model both computationally feasible and easier to manipulate, they may
not be biologically appropriate and do not incorporate available data. Often,
however, analytical approximations lead to workable models with features that
are both biologically interpretable and mathematically elegant [51, 63].
Critical to statistical models of epidemics is the direct incorporation of data
to the model [52, 17, 54]. The primary considerations for a statistical model are
the type and amount of data, and availability of covariate information. Limited
data availability can make the use of many of the more common deterministic

or stochastic models infeasible, since these models often have an abundance of



parameters. Statistical models typically have other considerations as well, such
as the difficulty of fitting models with nonstandard distributions, and the rela-
tive ease and benefit of fitting models with normally distributed data. In many
instances, parameters are transformed in an attempt to achieve a model with
normality or linearity, simplifying the calculations for the model. One of the
great benefits of statistical modeling is the ability to reduce the variability in
the parameter estimates through the use of covariates and the introduction of
other explanatory variables. However, transforming the parameter space and
including the explanatory variables and covariates can sometimes come at the
loss of “direct interpretability”. For example, some of the spatial disease models
employed now do not estimate transmission rates directly, but instead model the
log-relative risk, since the transformed space can be modeled as a Gaussian au-
toregressive process [17, 54]. Through the use of Bayesian hierarchical modeling,
the modeler can develop extremely complex but interpretable models. Bayesian
hierarchical models relate multiple parameters that are connected by the struc-
ture of the problem. For statistical epidemic models, a priori knowledge of the
qualitative behaviour of the disease is of less concern than for deterministic or
stochastic models. The ease with which the data can be used to fit the model
and the confidence of the parameter estimates are of greater concern. It is the
data that drive the modeling process.

In the body of this thesis, these three modeling paradigms are discussed in
more detail, with the emphasis on the Bayesian hierarchical modeling aspect
of statistical modeling. A dynamic spatial model for Chronic Wasting Disease

(CWD) in Rocky Mountain Mule deer is introduced. To date, a spatial statisti-



cal model for this disease has not been presented. This model is derived from a
system of differential equations, and describes the spatial dynamics directly in
the differential equations, rather than through correlations in the data. Because
the posterior distributions for the CWD model have some unusual characteris-
tics, a new Markov Chain Monte Carlo simulation technique is constructed that
utilized qualities from existing techniques to efficiently sample distributions that
live on bounded parameter spaces. The properties of the new MCMC technique
are examined and compared to existing methods. The model is fit using the new
MCMC technique. The results of the model are discussed and interpreted, and
both the modeling method and the simulation method are empirically validated.

Throughout the paper, [X] denotes the marginal distribution of the random
variable X, [X|Y] denotes the conditional distribution of X given Y. The mul-
tivariate normal distribution with mean p and covariance matrix Y is denoted
by N(p,Y). For matrices, A~! denotes the inverse matrix, and A” denotes the

transpose.



2. Models of Epidemics

Epidemic modeling is an intensely interdisciplinary subject, drawing to-
gether a variety of mathematical and statistical disciplines. Modeling approaches
range from stochastic processes to deterministic models to empirical data anal-
ysis. These approaches are generally guided by biological considerations that
help to construct a model and to determine its effectiveness. The approaches
that are most important in the construction of a model for Chronic Wasting

Disease are deterministic and statistical models.

2.1 Deterministic Models of Epidemics

Deterministic models describe the behaviour of dynamic systems through
the use of ordinary or partial differential equations. The study of dynamics
systems has its origins in the mid-1600’s, with Sir Isaac Newton’s work on grav-
itation and planetary motion [75]. Newton’s first work on the subject involved
the two-body problem of calculating the motion of the earth around the sun.
Later efforts at extending Newton’s methods to the three-body problem— for
example, the motion of the sun, earth, and moon— led to an eventual realiza-
tion that some systems of differential equations were analytically unsolvable.
However, unsolvable models can still be analyzed qualitatively, and this char-
acteristic is why these models are still used in many applications. For detailed
discussions of the qualitative analysis of differential equations, see [83, 8, 75].

Perhaps the earliest use of mathematics to deterministically model a pop-

ulation can be traced to 1202, when Leonardo Fibonacci proposed the famous



sequence of integers to model a rabbit population [33]. The subject’s first im-
portant early application did not surface until the exponential growth model
introduced in 1798 by Thomas Malthus. The exponential growth model re-
sults as the solution to Malthus’ constant rate of growth assumption, and is a

standard example of the simple separable differential equation:

dN
— =rN 2.1

where N is the size of the population, and r is the growth rate.

Malthus’ exponential model is a linear differential equation, and hence the
solution predicts unbounded growth or extinction, depending on the choice of
parameters and the initial conditions. Neither unbounded growth nor extinction
occurs in most populations, which typically tend towards a long term stable
population level, called the carrying capacity. Thus equation 2.1 is only useful
as a short term population model.

The need for a self-limiting population model led to the logistic equation for
growth, which was proposed initially by Pierre Verhulst in 1838 [63]. Verhulst’s
model is more realistic than the Malthus model as a long term description of
population growth, and it incorporates a carrying capacity parameter K. The
logistic model is now one of the most commonly used models in mathematical
biology, and variations appear in many different applications. It is a relatively
simple nonlinear model, and it exhibits qualitative behaviour generally observed
in many populations. Verhulst suggested the model in 1838 to describe human
populations, although it was not until 1920 that his work received notice, when
Raymond Pearl searched for a model which has solutions characteristic of a

sigmoidal curve and empirically constructed Verhulst’s logistic equation [56].



However, the logistic model was not derived analytically until 1925 by Alfred
James Lotka [45]. A nice derivation of the logistic model is provided in [63].
The logistic model with its sigmoidal curve will be the starting point for the
Chronic Wasting Disease model presented in this thesis. The logistic model can

be written as:

%:TN(N—K), (2.2)
where K is the carrying capacity, 7 > 0 is the constant growth rate, and [V is the
size of the population. The form of equation 2.2 is relatively simple and leads to
an explicit nonlinear model for population growth. The model assumes that the
growth rate r is constant, as is the carrying capacity K. These assumptions are
somewhat simplistic, in that growth rates typically vary with weather conditions,
by regions, or due to other factors. The model can be extended in a variety of
ways to include these factors. One implied property of the simple logistic model
is that new members of the population immediately contribute to the growth,
which is not true for populations that reproduce sexually. Members of these
populations must reach a certain age before they are able to reproduce. There

are several ways of incorporating this property into the differential equation 2.2.

One method is by adding a time-delay term ¢, to 2.2, which leads to equation 2.3.

dN
Eer(N(t—td)—K). (2.3)

Though somewhat crude, the logistic equation 2.2 is useful in providing a
qualitative understanding of simple growth of a single population under limited

resources. One generalization of the logistic model that is important to epidemi-

ology is the class of models broadly called competition models. These models



describe the interaction of two or more species, and are a simple extension of

the one-species logistic model. The general two species model is:

dN
—dtl = Nl(’l“l + a1 Ny + UIIQNQ) (24)
dN.

where Np, is the size of population one, N, is the size of population two, ais
and ay; are interaction terms representing the competition between species for
limited resources, the parameters a;; and ayy represent the within species com-
petition, and r; and 7y are the net birth/death rates for each species. The
model 2.4 is extremely versatile for describing two species interactions, and can
easily be extended to three or more species. Because each of the six parameters
can be zero, positive, or negative, for no effect, enhancement, or impedance, re-
spectively, there are a total 3% = 729 variations for the two species model alone,
and each combination leads to a different configuration with a different interpre-
tation [63]. The focus here is on two species models, both because the numbers
of variations are even larger for more species (3*" for n species), and because
they are of greatest importance in epidemic modeling. Various configurations

for the two species model using the two by four array 2.5

sign(r1) | sign(an) sign(aiz)
(2.5)

sign(rz) | sign(as1) sign(az).
It should be noted, however, that not every mathematical model has a biological
interpretation. The variations of 2.4 and 2.5 with the greatest significance are

those that describe biological competition (species competing for the same lim-

ited resource), scavenging, symbiosis, and most importantly for epidemiology,
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predator-prey relationships. A good examination of several competition models
is provided by [63] and [79].
The predator-prey relationship is represented by the array 2.6, with NV; being

the number of prey and N, being the number of predators.

+]0—
(2.6)

—[+0
Setting a1 = age = 0 removes the within species competition, so that the growth
of the predators is limited only by the availability of prey, and the growth
of the prey is limited only by the number of predators. The first predator-
prey competition model was constructed independently by Alfred Lotka in 1925
[45] and Vito Volterra in 1926 [77]. The Lotka-Volterra model is important to
epidemic models and will be developed in more detail. There are, in fact, several
kinds of predation scenarios. These include parasitism and cannibalism, but the

most common is that in which one species feeds upon another.

dN-

—dtl = Ni(r1 + b1 Ny) (2.7)
dN.

Efzmeﬁ+@My

Equation 2.7 shows the Lotka-Volterra model, where all coefficients are assumed
to be positive. In the absence of predators (N;), the prey (N;) will multiply
indefinitely at rate r{, while in the absence of prey, the predators will die off at
rate ro. The predators kill off the prey at rate by, while the skill of the predators
in catching their prey is represented by bs.

Qualitative analysis of the Lotka-Volterra model reveals that for any initial

position (N;(0), N5(0)), the model gives a family of closed curves, which implies
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cyclic behaviour [63]. This means that as the number of prey increases, the
number of predators will increase, until the prey are killed off faster than they
reproduce. Then the predators, lacking food, will decrease also, and the cycle
will then repeat itself.

As mentioned before, most variations on the two species competition model
have no biological interpretation. To construct a workable model for epidemics,
however, the Lotka-Volterra model only needs to be altered slightly. Let S = N;
be the number of susceptible individuals in the population, and let I = Ny be
the number of infected individuals (infectives). For a simple epidemic, the birth
rate of susceptibles, 7, is set to zero. Setting by = b, = 3 > 0, and r, =7 > 0,

the Lotka-Volterra epidemic model is:

dsS
dl
— = p51 — ~I.
g =P —

Equation 2.8 is a special case of the predator prey model 2.7. The funda-
mental difference lies in the interpretation of the parameters. Since the “death”
of a susceptible results in the “birth” of an infective, for this model, S can be
interpreted as the infection rate. The parameter v is interpreted as the death
rate or removal rate for the disease. The Lotka-Volterra epidemic model assumes
that the population experiences homogeneous mizing, that is, every contact pair
individuals in the population is equally likely to meet. This model does not
allow for any new susceptibles to be introduced to the system, so the time frame
is necessarily short. Thus the disease modeled by equation 2.8 will eventually

“burn out” or run its course, since there are no new susceptibles being added to
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the population. When only the general dynamics of the disease are of interest,
it is not uncommon to scale both parts of the equation by the total popula-
tion N (%), so that both S and I represent the proportion of the total that is
susceptible and infective, respectively.

Model 2.8 can also be represented concisely using a flow chart or compart-
mental diagram, which shows each class and indicates the rates at which individ-
uals flow into and out of a particular class. Thus equation 2.8 can be represented

as:

S—ﬂSI—)fyI—)

The arrow between S and [ indicates that individuals are flowing out of the
susceptible class and into the infective class at a rate of —3S51, and out of the
infective class at a rate of yI.

Equation 2.8 is a simple model of an epidemic that occurs over a relatively
short period of time, such as influenza. The period over which the disease evolves
is short enough that the birth rate of the susceptible population is negligible. If
the disease has a longer incubation period, a net birth term « can be added for

susceptibles. This yields the equation:
@

—aS — BSI 2.
— as — 8BS (2.9)
dI

= — BST —~I.

7 BST — v

Using the compartmental description, we have:

aS%SfﬁSI—)I'yI—)

Equation 2.9 allows the disease to evolve over a longer period of time. This

enables exploration of deeper questions about a disease, such as whether or not
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the disease has long term sustainability. If the growth of the disease depends on
both susceptibles and infectives, and if the infection rate is too high compared to
the birth rate o, then susceptibles will be removed faster than they are replaced,
causing S to approach zero, thus the number of infectives will also reach zero
as there are no susceptibles left left to infect. Since the infectives die off faster
than they can be replaced, the disease will burn out. Similarly, if the death
rate of the disease, 7, is too high compared to the infection rate, then infectives
will die off faster than they can be replaced by newly infected individuals, again
causing the disease to burn out.

There are many examples of diseases that are unable to sustain themselves
over long periods of time. Measles, for example, will typically run its course
too quickly to sustain itself long term, although other factors such as human
response to control the disease, affect this as well. More deadly diseases also
fall into this category. One example is Ebola, which causes hemorrhagic fever,
leading to massive internal and external bleeding in its victims. The course of
infection is 2 to 21 days, ending in death for up to ninety percent of victims.
So far, the disease has progressed so quickly that it has been unable to sustain
itself in human populations for long periods of time.

Some infectious diseases can sustain themselves, however. One example is
Acquired Immunodeficiency Syndrome (AIDS) caused by the human immunod-
eficiency virus (HIV). HIV can have a lengthy incubation period, and is spread
only through fluid contact with mucous membranes or broken skin. The dis-
ease can take years to run its course, during which time the carrier can infect

others. The relationship between the infection rate and the death rate are such
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that the disease is easily able to sustain itself. Other examples of sustainable
diseases include non-lethal infectious diseases such as influenza or the common
cold. These diseases run their course over a period of weeks, and the removal
rate is low. However, the fact that these diseases do not typically kill requires
an alteration to equation 2.8.

Equation 2.8 is the simplest of the SEIR class of epidemic models. These
initials stand for susceptible, exposed, infective, and removed (or quarantined).
The addition of the other classes gives these models a wide range of descriptive
capability, allowing the description of non-deadly diseases as well. For example,
the Kermack-McKendrick model adds a quarantined class to describe diseases
that are not deadly or for which victims build immunity [33]. As before, this
model imposes the restriction that exposed susceptibles immediately become

infected. Thus, the system of differential equations is:

%:—651 (2.10)
dI

o _BST —~I

I BST —~

dQ

LAY &

a7

Infectives no longer necessarily die, but once they recover from the disease they
are no longer susceptible and become quarantined. This model can also account
for the situation where a disease management strategy is in place, and infected
individuals are removed from the population and isolated. Once in the quar-
antined group, they are no longer considered susceptible, either because they

are immune to the disease, or because they are isolated. Model 2.10 can be
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represented using the diagram:
S—ﬂSI—)]’ﬂ—)Q'

Because there are no additions to the susceptible class, the time period for this
model is short, and the epidemic eventually passes. The addition of a birth rate
is required to describe a disease that would last a longer period of time, possibly
reaching a sustainable level. Because quarantine models typically assume that
an epidemic is in progress and that a control strategy is being applied, it does
not include a birth rate.

A variation on this model includes an exposed class. This model was initially
proposed for measles, where exposed susceptibles do not immediately become
infectives. This occurs when a disease has an incubation period from the point
when an individual is exposed to the disease to the point when that individual
develops the disease [33]. The model can also include a birth rate for suscepti-
bles, and allow for long term sustainability. Let 7 be the length of the incubation

period, and let ¢ be the duration of the disease. Then the model is:

A—)5—ﬂSI—)ET—>Ia'—)R'

Even if the incubation period is constant, the resulting differential equations are
difficult to solve analytically, and must be approximated numerically. The fixed
values of 7 and o lead to time-delay differential equations, which can be difficult
to solve analytically. An in depth analysis of this model is given in [33].
Epidemiologists and public health officials are not only concerned with how
a disease evolves temporally, but also how it evolves spatially. From the earliest

times, people have been aware that there was a spatial component to disease.
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During the Black Death epidemic of fourteenth century Europe, residents of
urban areas where the plague had struck would flee to the country, hoping that
the isolation would save them from the disease. Public health professionals are
aware that it is just as important to know how a disease spreads geographically
as it is to know the disease’s dynamic characteristics— infection rate, etc.

Spatial models of epidemics describe the spread of the disease across a ge-
ographic region. There are several ways of modeling the spread within the
context of differential equations models. Without discrete spatial units, a typ-
ical method of spatial modeling is through a stochastic diffusion process model
[61, 52, 63]. Non-discrete spatial systems can also be modeled deterministically,
using partial differential equations similar to those used in modeling reactive
contaminant transport in porous media [18]. These equations are deterministic
analogs to stochastic diffusion models.

When the spatial regions are discretized, a model can be built by first con-
structing an epidemic model such as equation 2.9 within each spatial unit, and
then adding a term in each equation that models the interaction between that
unit and every other unit. If there are 1 = 1,..., N discrete spatial units, then

for each unit 7:

dS;
dl;
o BiSil; — vili + Li(vi1 + ... + vin)

where u;; is the net migration of susceptibles from unit j to unit ¢, and v;; is the
net migration of infectives from unit j to unit i [63]. These models are relatively

easy to construct, but the addition of the migration rates, u;; and v;; make the
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solution to the system of equations analytically intractable.

Even though an analytical solution is not available in most cases, equa-
tion 2.11 lends itself to numerical solutions or approximation by difference equa-
tions. The first-order Euler approximation is the easiest approximation to use,
though higher-order approximations also exist. A discussion of most approxi-
mation methods can be found in [83]. Numerical approximations are typically
designed with the assumption that the parameters in the differential equation
are known, and the goal is to generate values of the process. This is the re-
verse of the statistical setting, where, in most cases, the data consists of discrete
observations of the process, with the parameters unknown. The focus in this
thesis is therefore on difference equation approaches, because these more easily
fit with data types typical of epidemics.

2.2 Bayesian Hierarchical Models of Epidemics

The Bayesian hierarchical modeling strategy has proven to be extremely
effective for modeling complex processes with multiple parameters [82, 78, 81].
Hierarchical models allow complex relationships between multiple parameters to
be separated into several levels. The hierarchical framework helps the analyst
to understand the underlying process linking to data to the model, and to de-
velop computational strategies to simulate the desired posterior distributions.
Except in rare cases, simulation is necessary. For an introduction to hierarchical
modeling, see [24].

The overall strategy of the Bayesian hierarchical model has been informally
but concisely outlined in [3] and [17]. The strategy provides a link— called the

process— between the observed data and the unobserved parameters of interest,
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denoted by 6.

[Data|Process, 6] (2.12)
[Process|6)]

9]

The top layer is the observed data, which is modeled by an appropriate likelihood
function. It is assumed that the data is generated by an unknown process, for
example, an epidemic process. The process depends on unobserved parameters,
as shown in the middle layer. It is in this middle layer that the ”art” of statistical
modeling takes place. On the bottom layer are the prior distributions that
represent a priori beliefs about the parameters.

Typically interest centers on the joint posterior distribution of the parame-
ters, that is, the conditional distribution of the parameters, given the observed
data.

[@|Data,Process]| o [6] [Process|@ || Data|Process,6)] (2.13)

The posterior distribution, shown in equation 2.13, is found using Bayes’ Theo-
rem.

Modern disease data typically comes in the form of counts. For human
diseases, the data are numbers of occurrences per unit time. If the data has
a spatial component, then it is grouped by spatial unit as well. This type of
data is often modeled using Poisson random variables. Disease data can also be
binomial in nature, that is, number of positive cases out of a total. This type of
data can also be grouped by spatial and temporal units. The groupings in each

case may not be time and space. For example, the data could be grouped by
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time and age [5].

Works such as [17], [54] and [25] implement the Bayesian hierarchical strat-
egy for an epidemic model where the spatial dependency is modeled as a Markov
random field. These models deal with areal data— that is, data aggregated over
discrete spatial regions. Data consists of the number of occurrences of a disease
in a spatial unit, aggregated over some unit of time as well. The count data is

modeled as a Poisson random variable:
[yit| Ei, zit] ~ Poisson(E;e*t), (2.14)

where Fj; is the expected number of occurrences in spatial unit 4, and z; is the
log-relative risk, which accounts for the deviation from the expected number of
cases. The expected number of occurrences per unit area, F;, can be obtained
from overall death rates or prior, expert knowledge of the disease [50].

Because Poisson data cannot easily generalized to a multivariate setting and
thus cannot directly incorporate spatial effects, the spatial and temporal process
is often modeled in z;;. Covariate information, denoted by z;, is added via a
linear model. This yields:

Zip = Ty + Sy (2.15)

where s;; follows a multivariate first-order autoregressive Gaussian time series,

defined by:

St = HSt_l + €. (216)

The term €; is a multivariate noise term, with €; ~ N(0,%). The model in

equations 2.14, 2.15, and 2.16, has been used successfully to model spatially
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dependent count data from a variety of epidemics [54, 16, 17, 50, 78] and other
sources [34].

The dynamic nature of epidemics, especially the change from growth to de-
cline to stability, has resulted in a variation of the previous model to describe
an influenza outbreak by [54, 17]. The term e, is altered to become the epi-
demic forcing term, causing an increase and decrease over the course of the
epidemic. This is done by introducing another parameter [, as the mean in
the distribution of ¢;.

Suppose that over a time interval t; < t; < ty the number of occurrences
of a disease grows from a state of stability to a full fledged epidemic, and then
declines down to a stable state as the epidemic burns out 2.2. As the epidemic
takes off and increases in intensity, the parameter 3,; moves from the value
Bo to Bi. After it reaches its peak and begins to subside, 3,4 changes from (3,
to fB,. Finally, as the epidemic passes, the value of 3, returns to 3. p(t) is
an index parameter indicating the stage of the epidemic. p(t) = 0,1, or 2 for

stability, growth, or decline, respectively. Thus, £, is:

e

50; t<t0
Br,to <t <t

Bogt) =
Ba,t1 <t <ty

kBO? tZtQ

Using B4, the error term is then ¢ ~ N(B,41,%). This has the result of
turning the epidemic "on” and ”off”.
The spatial dependencies in the data are built into the structures of the

matrices H and ¥. This covariance matrix has the form ¥ = ¢?(I — ¢C)~' M,
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where M is a diagonal matrix containing conditional variances, C' is a matrix
of partial-regression coefficients with zeros on the diagonal, and ¢ is chosen so
that X is positive definite. The form of the covariance matrix is common to the
conditional autoregressive spatial models discussed in [16, 4]. The structure of
the covariance matrix is found by making use of the Markovian property of the
spatial dependency. For this particular model, E; ! are the diagonal entries of
M, and the entries of the matrix C are given by ¢;; = (%)1/2, and zero for i # j
[17, 54].

Spatial structure is also built into the matrix of autoregression parameters,
H. This is done by choosing a neighborhood structure for the model. For a given
spatial unit ¢, it must be determined which of the other units j are neighbors of
unit 4, and whether they are first order, second, third, etc. neighbors. For those
units that are not in the neighborhood of 4, h;; is set to zero. For the influenza
model in [54, 17], the neighborhood structure is chosen to include up to second
order neighbors, and h;; = 19, hi; = m; if units 7 and j are first order neighbors,
and h;; = 1y if units 7 and j are second order neighbors. The parameters 7, are
then transformed so that a Gaussian prior distribution may be used. To finish
the modeling process, [54, 17, 78] choose appropriate prior distributions for the
remaining parameters, and simulate the resulting posterior distribution.

In the above model, the spatial dynamics of the disease are modeled through
correlations in the transformed parameter space, or by spatial dependencies in-
cluded in the autoregressive coefficients, again on the transformed space. This
approach is convenient from a statistical point of view. The transformed param-

eters are normally distributed, making computation and analysis of the spatial
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and temporal dependencies easier. Standard differential equation models de-
scribe the dynamics of an epidemic process in terms of numbers of susceptibles
and infectives. Counts are modeled using Poisson or Binomial random variables,
and there are no common multivariate generalizations of the binomial or Poisson
distribution.

For binomial count data, the general strategy is the same. Suppose that
N;; is the total number of individuals in spatial unit ¢ at time ¢, and let p;; be
the probability that a given individual has the disease. Let y;; be the observed

number (out of V;;) that have the disease. Then we can use the model

[Yit| Nit, pit) ~ Bin(Ny, pit)- (2.17)

This type of data is commonly modeled using autologistic models. An example is
a model for prostate cancer given in [5]. Using the transformation &; = ln(%)

yields:

Eit =+ 0; + 0, + i + € (2.18)

where 0;, 0;, and 1;; are observed covariates that explain temporal, spatial, and
interaction effects. The error term ¢;; follows a normal distribution, with mean
zero and variance v.

The autologistic model can be generalized to include other covariate infor-
mation in the equation 2.18. The error term can also be modeled as a Gaussian
autoregressive process, similar to 2.16. Let €; be the error term aggregated over
spatial regions, so that:

e =He_1+ V], (2.19)
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so that ¢, ~ N(He;_1,vI), and the matrix of autoregression parameters, H,
includes spatial structure as in 2.16.

Both of these models share the general strategy of modeling spatial and
temporal dynamics indirectly by transforming to a convenient parameter space.
While this can be effective, as in [17, 54, 78], it does not directly answer the ques-
tion of “how fast is the disease moving?” The Poisson conditional autoregressive
models of [78], [17], and [54] use the Poisson approximation to the Binomial dis-
tribution and therefore rely on large sample sizes and relatively small infection
rates. The practicality of these types of models is examined in [28].

Hierarchical Poisson models have been used to model domestic animal dis-
eases as well. An example is a hierarchical model for clinical mastitis in herds
of dairy cattle given in [64]. Let X; be the number of cases of mastitis in herd

1. The hierarchical specification is:

X; ~ Poisson(\;) (2.20)
i ~ Gamma(a, 5;)

Bi ~ Gammal(a, b)

where ); is the underlying infection rate in herd 7, and 3; is the spatial (herd)
explanatory variable, and a, b, and « are hyperparameters. As in the influenza
and prostate cancer models described above, a conditional autoregressive model
could be employed for the infection rate. A Poisson model is appropriate in
this situation, because the number of cattle that are infected can be accurately

determined. For epidemic models of wild animals, this is not usually the case.
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Modeling epidemics in wild animal populations presents difficulties that hu-
man epidemic models do not ordinarily have. The largest difficulty is the fact
that cases of a disease are not reported. Accurate data on the number of in-
fected individuals is rarely available for wild animal populations, so researchers
instead use prevalence data. Prevalence data consists of the number of animals
that test positive for a disease, M, out of the total number tested, N. Thus a
binomial distribution is natural.

For the Chronic Wasting Disease prevalence data, sample sizes are small,
and so a Poisson approximation with its convenient transformation to normality
cannot be employed. Additionally, there is not a large amount of specific data
on transmission rates. What is available, in addition to the prevalence data,
is a qualitative understanding of the behaviour of CWD. Using this general
understanding of the disease, a differential equations model that has the same
qualitative behaviour can be derived. This ODE model will be the basis for a
statistical model that directly uses the available prevalence data via a Bayesian

Hierarchy.
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3. A Spatial Model for Chronic Wasting Disease

Chronic Wasting Disease (CWD) is a transmissible spongiform encephalopa-
thy (TSE) that occurs in wild cervid populations in North America. It is found
in both mule deer (Cervus odocoileus spp.) and the North American elk, also
known as the wapiti (Cervus elaphus nelsoni) [49, 27]. CWD is related to
other TSE’s found in domestic animals, such as scrapie in sheep and bovine
spongiform encephalopathy, commonly called mad cow disease [49]. It is also
related to TSE’s found in humans, such as classic Creutzfelt-Jacob disease and
variant Creutzfelt-Jacob disease. The exact agent that causes CWD has not yet
been positively identified, and the method of transmission is currently unknown.
However, the disease is accompanied by the presence of mutant proteins called
prions in the nervous tissue[14, 49, 27, 31, 32].

Chronic Wasting Disease is always fatal, causing damage to portions of the
brain in infected animals. Animals with CWD show a progressive loss of body
condition, behavioral changes, and eventually death [14, 27]. The course of
infection in mule deer appears to include both latent and clinical periods, and
spans from 18 to 36 months. Once clinical signs appear, few deer survive more
than 12 months [27].

Thus far, chronic wasting disease has been far more common in deer than in
elk. It has been estimated that in infected regions, between 5% to 6% of mule
deer have CWD, compared to only about 1% in elk [27, 14], although recent

data suggests that the infection rate in elk may be increasing [14]. While both
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mule deer and white-tail deer can contract the disease, in the Rocky Moun-
tain region the epidemic seems to be focused in those areas where mule deer
(Odocoileus hemionus) are common and few, if any, white-tailed deer are found.
Consequently, research and data collection on the dynamics of the disease in
the Rocky Mountain area have focused on mule deer [27, 31]. The research that
has been done on white-tailed deer suggests that the species responds similarly
to CWD, but a clustering effect is more likely, since white-tailed deer are more
social than mule deer.

Chronic Wasting Disease was first found near Fort Collins, Colorado, in
1967, and has been spreading over the past two decades. The disease has been
making its way across Colorado and has recently crossed the continental divide
[14]. The incidents of the disease in Central and Western Colorado have been
isolated thus far, although they are occurring with greater frequency. Currently,
the disease appears most concentrated in the region encompassed by Northeast-
ern Colorado and Southeastern Wyoming, although there have been recent hot
spots in Wisconsin, South Dakota, Nebraska, and a few reported cases in Utah
and New Mexico.

Since hunting is such big business in many states, the potential consequences
of the CWD epidemic are great. A recent article in the October 24, 2003, edition
of the Denver Post reported that hunting added $599 million to the economy of
the state of Colorado in 2002. The same article estimated the potential economic
impact of CWD nationwide to be $100 billion. Thus, Chronic Wasting Disease
is recognized nationally as a potentially disastrous problem, and every state

except Hawaii has implemented a CWD surveillance program.

27



Current efforts for modeling the spread of chronic wasting disease have fo-
cused on the simulation of individual interactions between deer using standard
epidemic models such as a birth-death process [27] and modeling the spread as
a diffusion process [31], and these models have provided insight into the disease
dynamics. The disease has been spreading throughout the Rocky Mountain Re-
gion for more than 30 years, but a statistical model with spatial components
has yet to be presented.

There are several standard differential equations that are commonly used as
epidemic models. These are described previously in this thesis in section 2.1.
One such is the adaptation of the Lotka-Volterra predator-prey model (equa-
tion 2.9) to diseases given in [63] and [33]. Some of these variants have been
applied to chronic wasting disease because they exhibit the qualitative behavior
observed in many epidemics [27, 32]. The differential equations used by [27],
[31], and [32], implicitly model disease dynamics based on individual interac-
tions between deer and very small time steps. However, most available data
for these models are aggregated over relatively large time steps and large ar-
eas. These authors use stochastic forward integration as the primary tool for
understanding and exploring the spatio-temporal dynamics. The link between
the mathematical model and the data is indirect.

The correlated Poisson model of [78], [17], and [54], discussed in section 2.2,
is effective in modeling the spatial spread of human diseases such as influenza,
but application to CWD is hindered by fundamental differences in data. The
models discussed in section 2.2 rely on the Poisson approximation to the Bino-

mial distribution and therefore implicitly rely on large sample sizes and relatively
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small infection rates [78, 17, 54]. It is extremely difficult and expensive to obtain
prevalence data on a wildlife population, so models for Chronic Wasting Disease
need be to appropriate for small samples.

A Bayesian hierarchical model is constructed for chronic wasting disease
that directly integrates mathematical models related to those of [27], [31] with
a model for observations taken on CWD prevalence. Critical to the model is
a difference equation approximation to traditional differential equation models
of prevalence to model dynamics in time. A mechanism is included that allows
for spatial mixing between regions of interest. Available data is incorporated
through a Bayesian hierarchical framework, thus linking the data and mathe-
matical model. This hierarchical approach integrates data and epidemic theory
into a single model, is capable under the constraint of small data sets, and

provides a mechanism for prediction and the study of data collection designs.

3.1 Data

Data for CWD is economically and ecologically expensive to obtain since
the testing procedure, until recently, required sacrificing the animal [14, 32].
Prevalence data consists of the numbers of deer that are tested for CWD in
each DAU, and the number of those tested that are found to have the disease
[49] and [27]. The testing procedure used to determine whether or not an animal
is infected is considered to be extremely accurate, and is performed in highly
controlled conditions [14]. Consequently, the false positive and false negative
rates for the test were assumed to be small enough to be neglected. Currently,
the data is predominantly obtained from hunters, who submit harvested animals

for testing. These submissions are required by the Colorado Division of Wildlife
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in the endemic areas. For animals taken outside the endemic area, the animals
may be submitted voluntarily but are subject to a $15 testing fee. Because the
type of deer a hunter may take is restricted by age, and in most areas gender,
harvest data may provide a biased view of the disease [15]. Determining these
biases requires more detailed data than is available here. Nevertheless, the
model presented here is valid for the population of huntable deer, although the
definition of huntable can change from region to region.

Wildlife biologists divide the state of Colorado into geographic regions called
data analysis units (DAUs). Different species of animals have different DAU
definitions, so that the spatial units are specific for different species of animals.
For example, deer and elk have different DAUs. Since the focus of the model
presented here is mule deer, DAU will refer only to the data analysis units for
deer. These DAUs can be seen in Figure 3.1. The data shows that there are 13
DAUs where chronic wasting disease is known to exist as of the 2002 hunting
season. These are DAUs 2, 3,4, 5,6, 7, 8,9, 10, 12, 17, 27, and 44 in Figure 3.1.
Because the disease has not yet spread to much of the state, the majority of the
data is from an endemic region located in the northeastern region of the state
of Colorado, consisting of DAUs 4, 5, 10, 27, and 44 [14]. While there have been
a number of cases from units surrounding the endemic region, the Division of
Wildlife believes that the disease is still controllable in the non-endemic areas.
It is thought that the disease will be a permanent presence in the endemic region
[14, 32].

The prevalence data from Colorado was collected over 27 years, from 1976

to 2002. The data were obtained from the Colorado Division of Wildlife, and
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Figure 3.1: Colorado Deer Data Analysis Units across the state. The larger
spatial units are the DAUs, the smaller units are game management units.

each DAU-year value consists of two numbers M and N, where N is the number
of deer that were tested for CWD and M is the number that were found to be
infected. Because the disease was only recently recognized as an epidemic, much
of the data is from the endemic region and is most complete from the years 1996-
2002. Prior to 1996 the data was collected sporadically. The Colorado Division
of Wildlife has recently made the testing results for the 2002 and 2003 hunting
seasons available publicly [14].

3.2 Prevalence Model for Chronic Wasting Disease
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The approach presented in this thesis utilizes a system of differential equa-
tions which exhibit the appropriate qualitative temporal and spatial behaviour.
Solutions to this system are approximated using a set of difference equations on
a scale appropriate for the data. Through a hierarchical Bayesian construction,
the data are used to estimate the unknown parameters that govern these dif-
ference equations. One fundamentally different aspect of this approach is the
explicit modeling of spatial dynamics in the differential equations, rather than
indirectly attempting to capture the effect using spatial correlations typical in
statistical models.

3.2.1 Model Motivation

The logistic model 2.2 discussed in section 2.1 is commonly used to model
biological populations [63]. The model is simple, but applicable to a surprising
number of biological applications. The logistic model forms the basis for a
Chronic Wasting Disease model.

For a single population, the logistic model 2.2 exhibits the desirable charac-
teristic of having two equilibrium points, at N =0 and N = K. A fized point
or equilibrium point for the differential equation % = f(p¢) is a point p* such
that % = f(p*) = 0. These points represent a steady state, since if the system
begins at p* it remains there for all time. Fixed points can be either stable, so
that if the system is perturbed off of the fixed point it will eventually return to
the steady state, or unstable, so that if the system is perturbed off of the fixed
point it will not return. The carrying capacity, K, represents a maximum sus-

tainable population. As the population size approaches this value, the growth

will slow. Analysis shows that the point NV = 0 is an unstable equilibrium point,
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and N = K is a stable equilibrium point. Thus, if the initial value of the pop-
ulation is greater than the carrying capacity, N > K, then the population will
decrease back towards this stable point. Likewise, if 0 < N < K, then N is
increasing. This model is easily generalized to a spatial model by aggregating
over discrete spatial units and including migration terms [63].

A differential equation for the prevalence of a disease based on the logistic
model can be formulated by rescaling by K [33, 63]. Rescaling by the carrying
capacity results in a differential equation with the same basic properties as
equation 2.2, but which lives on the interval [0, 1]. Beginning with equation 2.2,
divide by the maximum population K. This gives a logistic equation modified
for prevalence, restricted to the unit interval. Let p denote the proportion of

deer in a given DAU that are infected. Then,

& = ap(1-p) (1)

is a model for the change in prevalence over time.

Let pg; denote the proportion of infected deer in DAU,, for time period ¢ and
p: be the vector of prevalences aggregated over all DAU’s for a given year ¢. For
now, the focus is on the observed qualitative behaviour within a single DAU,
and the spatial dynamics will be added later. From historical observations and
recent studies of CWD [49, 27], it is known that CWD takes approximately 3
years from infection to the death of the animal. For a disease with an incubation
period this long, it is a reasonable supposition that a sustainable level of the
disease is possible. Additionally, if the disease is in fact caused by environmental
sources or carried by another animal, this would indicate that a sustainable

level is likely, since an external carrier could potentially be unaffected by the
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disease. A classic example of an external host is the flea that carries the plague,
aiding in the spread of the disease and enabling the disease to sustain itself.
Furthermore, CWD has yet to show signs of elimination even in those areas
where the disease has been present the longest, giving further support to the
sustainability assumption. Another reasonable assumption is that if the disease
is not present in a given area, i.e. if py; = 0, then the proportion of deer that
are infected will stay at zero, unless infected deer from another area migrate
in (although this implies that deer are the vector for the infection, and not an
environmental source, and it is not known for certain that this is the case).
These two assumptions seem, on the surface, to be supported by the current
understanding of the disease. They provide support for the choice of the logistic
model 3.1, which has these qualitative characteristics.

The parameter « in equation 3.1 represents a kind of acceleration for the
disease, and can be interpreted as an infection rate. Fixing o as a constant
restricts the dynamics of the model by fixing the infection rate. Instead, by
choosing @ = «a(p,t) and following the basic tenet of the correlated Poisson
model discussed in section 2.2, more freedom is obtained for the model. This
type of freedom can be extremely useful in describing different types of disease
dynamics. One such dynamic is the observed behaviour in many epidemics of
fast growth in the initial stages of the epidemic, followed by a decline in the
latter stages of the epidemic. The parameter «(p,t) plays a role similar to that
of the control parameter 3,; in the influenza model of [17, 54] discussed in

section 2.2.
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The form of @ = «(p,t) must be chosen to provide the appropriate be-
haviour. It can be designed to account for a variety of effects, such as spatial
and seasonal effects. With appropriate data, explanatory covariates can also be
included in the expression for a(p,t). In this case, due to the small amount of
data, the desire for appropriate qualitative behaviour guides the form of «(p, ?).
Making the assumption that there is a non-zero, long-term sustainable level for
the disease, set o = a(d — p;). This acts as a varying acceleration. The ac-
celeration slows down the closer the proportion gets to §. When p, = 9§, the
acceleration term is zero, and the internal rate of change of the DAU is also
zero. The parameter § is the long term proportion of infected deer that the
DAU is able to sustain, and plays a role similar to that of the carrying capacity
in the logistic equation 2.2.

For a single DAU, the differential equation becomes:

P = op(5 - )1 - p). (3.2
With this modification, prevalence is increasing for levels below §, and decreasing
for levels above 9. If 6 = 0, then the disease is killing off the existing infectives
faster than it is creating new infectives and there will be an eventual burn out
of the disease. For § = 1, then the disease will eventually infect all the deer.
When 0 < § < 1, the model has a long-run stable proportion of infectives at
level §.

Figure 3.2 shows the graph of the derivative, p’, versus p for equation 3.2,
with § = 0.25. The equilibrium points, p* are on the p axis, where p’ = 0. To

graphically determine the nature of the equilibrium point, arrows are drawn to

the right for values p’ > 0, and to the left for values p’ < 0. When the arrows flow
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Figure 3.2: Graph of the derivative of p versus p. Stable points (0,1/4) are on
the p axis.

away from each other the point, p*, is unstable, when the arrows flow towards
each other p* is stable. The graph shows that the equilibrium point p* = 0 is
unstable, while the other equilibrium point, p* = 4, is stable, supporting the
interpretation of the parameter § as a long term sustainable level. The idea can
be extended to several dimensions as well.

Having developed an appropriate model for the dynamics of prevalence in a

single DAU, the model is extended to multiple DAU’s. This is done most directly
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by replicating over the DAU’s to produce the system of differential equations:

dpy

a a0l —p) Op: © (1 —py) (3.3)

where p; is the vector of prevalences, so that p; = (p1¢, pat, ..., Psa). The symbol
© represents the Hadamard (element by element) matrix product. Importantly,
this system of differential equations allows for different prevalence values in each
DAU.
3.2.2 Incorporating Spatial Mixing
Although equation 3.3 is a relatively easy extension that has the appropriate
general temporal dynamics, it treats each DAU separately and does not take into
consideration any spatial dynamics. In equation 3.3, neighboring DAU’s do not
affect each other, which is an unlikely scenario. It is known that the disease is
spreading across the state, so a spatial component for the model is needed.
The spatial dynamics are incorporated into the model by adding a spatial

mixing term to equation 3.3, yielding:

dpy

P a(61 —p;) ©p; © (1 —py) + Qpy, (3.4)

where () is a matrix such that the values g;; represent the instantaneous net
effect that the prevalence in DAU j has on the prevalence of DAU 4. Thus the
rate of change in the prevalence over DAUs consists of an linear combination of
the internal dynamic processes governed by logistic equations, and the external
contributions by the other DAUs.

The multi-DAU spatial model is extremely difficult to solve analytically, so

a first-order Euler discretization is used to approximate the differential equation
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by a difference equation. This discretization is a simple method of approximating

n LAY F()

a derivative, and has the form f'(t) A

Since the data is aggregated by year, the time step is assumed to be At = 1.

The difference equation for (3.4) is therefore:

Prr1 =001l —p) Op: © (1 —py) + Wpy. (3.5)

where W is a spatial mixing matrix that indirectly represents deer migration,
and is a discrete version of the matrix () in equation 3.4.

Equation 3.5 is the dynamic spatial model for Chronic Wasting Disease,
and the prevalence data is used to find the parameters for this equation. The
migration of deer changes prevalence in that a single infected deer migrating from
one DAU to another changes the makeup of prevalence for both the “from” and
“to” DAUs. However, the matrix W does not directly describe this movement of
deer, but instead describes the movement of the disease prevalence. The change
in prevalence for a given DAU consists of a mixture of the internal dynamic
processes modeled by the logistic equations, and the external contributions from
migration to and from neighboring DAUs. Including the migration matrix W
neither implies nor removes the possibility that deer are the transmission method
for the disease in the model.

The fixed points for the difference equation will be the same as those for the
corresponding differential equation, provided that W1 = 1, where 1 is a unitary
vector [75, 83|, and therefore the parameters in the difference equation 3.5 have
the same interpretation as the parameters in the differential equation 3.4.

Various forms of the spatial mixing matrix W could be designed to incorpo-

rate elaborate schemes for disease transport. However, because the mechanism
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by which the disease moves is currently unknown, two simple cases were con-
sidered. Assuming that the disease can only migrate between adjoining DAUs,
so that if DAU; and DAU; are neighbors, and DAU; and DAU}, are neighbors,
but DAU; and DAUj, are not, then in a single time step (one year in this case)
migration occurs between ¢ and j, and between j and k, but not between ¢ and
k. This is a reasonable assumption supported by biological studies of the behav-
ior of deer in the wild and the spread of CWD in Colorado, and the manner in
which the state of Colorado has constructed the DAU’s [14, 15, 49, 27, 31, 32].

Let W;; denote an element of the stochastic transition matrix W. For par-
simony, fix W;; = « if DAU; and DAU; are first-order neighbors with a “sig-
nificant” proportion of boundary that touch. If DAU; and DAU; have less of
boundary that touch, or are almost touching, then W;; = w < 7. For DAUs
that are separated and hence are not neighbors, W;; = 0. The diagonal values
of W are fixed so that row sums of W are equal to 1. Thus, the W;; can be
loosely interpreted as the average proportion of deer that migrate from DAU;
to DAU; each year. The classification of first-order neighbors and second-order
neighbors was admittedly subjective. Tables 3.1 and 3.2 show the relationships
between the DAUs that were used.

In order to ensure that equation 3.5 produces values for p, that are inter-
pretable, certain restrictions are made on the parameters «, J, v, and w. For
simplicity, let F(p,n) = a(01—p)Op®(1—p)+Wp, where n = (a, 6,7, w). The
parameters v and w are the nonzero elements of the matrix W. The relationship

in equation 3.5 is therefore written as p;11 = F(ps, m)-
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DAU Near Secondary | DAU Near Secondary

1 2.6 7 28 33,45,46,47 48

2 1,34 8,9 29 24,52 :

3 2.4.9 8,10 30 35,36,52 25

4 2,3,5,10 9,44 31 32,35,36 37

5 4,44,54 ; 32 31,34,45 33

6 1,7,11 ; 33 28,45 32

7 | 6,8,11,41,42,43 1 34 16,32,37,45 15,26,48
8 7.9,14.43 2,3.15,16,53 35 30,31,36 37

9 3,8,10,17,27 2,4,16,38 36 | 25,26,30,31,35,37 -

10 4.927.44 3 37 26,34,36 15,31,35
11 6,7,18,41 12 38 16,17 9,50

12 13,41,51 11,18,19,42,43 39 20,21,40 25,501

13 12,15,22,51 42,43 40 19,25,39 24,51

Table 3.1: Neighborhood relationships between DAUs. Digits refer to DAU

number in Figure 3.1.
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DAU Near Secondary || DAU Near Secondary
14 8,43,53 - 41 7,11,12 42
15 13,16,22 8,26,34,37,53 42 7,43 12,13,41
16 15,34,38,48,50 8,9,45 43 7,8,14,42 12,13,53
17 9,38,44,49,50 48 44 5,10,17,54 4,27
18 11,19 12,23 45 | 28,32,33,34,48 16,46
19 18,23,24,40 12,51 46 28,47,48,49,54 45
20 21,39,51 22 47 28,46,54 -
21 20,22,25,39 - 48 16,45,46,49,50 17,28,34
22 13,15,21,25,26 20 49 17,27,46,48,54 50
23 19 18,24 50 16,17,48 38,49
24 19,29,52 23,40 51 12,13,20 19,39,40
25 21,22,26,36,40 30,39,52 52 24,29,30 25
26 22,25,36,37 15,34 53 14 8,15,43
27 9,10,49 44 54 5,44,46,47,49 -

Table 3.2: Neighborhood relationships between DAUs. Digits refer to DAU

number in Figure 3.1.
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The parameters «, d, v, and w are restricted so that 0 < o < min{4/(1 —

6)%,4/6*t, 0<d<land 0 < w <+ < 1/max(d.,;W;). With these

J#1
restrictions and W defined as above, there is the following theorem.
Theorem 3.2.1 Let o, 0, 7, and w be restricted as above. Then the update

function F' has the following properties:

F(p,n) €[0,1]" Vpelo,1]* (3.6)
F(0,m)=0 (3.7)
F(61,m) =461 (3.8)

The first property (3.6) guarantees that the dynamic system will always return
prevalences between zero and one. The second property (3.7) implies that if
there is no disease in the system, the disease cannot propagate. The third (3.8)
implies that the system has a steady state where the disease maintains a stable
relationship with the deer.

PROOF: To show that these properties hold, first note that the form of W' is
such that W1 =1, W71 =1 and W;; > 0. Thus, W41 = 61, and Wp € [0, 1]¥
whenever p € [0, 1]%X. It remains to be shown that g(z) = r+ax(1—x)(§—x) €
[0, 1] whenever z € [0,1]. Note that g(z) = (1 + ad — (1 + )z + az?) = zq(z)
where ¢ denotes the quadratic form. Now ¢ has a root at x = 0 and may have
up to two more roots at the roots of ¢q. If the roots of ¢ are complex, then
g(z) = 0if and only if z = 0. It is easy to show that the roots of ¢ are complex
for 0 < @ < 4/(1 — §)% Thus g(z) > 0 on [0,1] when 0 < @ < 4/(1 — §)*. Let
h(z) = 1—g(z) and note that g(z) < 1 whenever h(z) > 0. Factoring out (1—=x)

in h, argue as before to show that g(z) < 1 for x € [0, 1] whenever o < 4/§2. O
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In what follows, let o € (0,1) be the proportional acceleration and the ac-
celeration to be 4amin(1/62,1/(1—6)?). Likewise, re-scale w and  to represent
the proportion of complete interchange, so that w and ~y are the probabilities

used in the spatial transition matrix W.

3.2.3 The Hierarchical Statistical Model

Because there are different sampling schemes for different stages of the
knowledge of disease prevalence, a simple modification is required. The change
amounts to modeling (location,time) observations from two possible distribu-
tions. One distribution corresponds to time-periods where a DAU has a large
number of deer tested for the disease. In this case, the effort behind the test-
ing is primarily geared towards determining and understanding prevalence. The
Division of Wildlife knows that the disease is present, wishes to collect as much
data as possible, and has the additional goal of protecting hunters from eating
infected animals. On the other hand, when the number of tested carcasses is
low, that corresponds with a time when the CDOW is opportunistically search-
ing for the disease in an area where it has not yet been found. This data comes in
the form of animals found already dead, and hunters in non-infected areas that
wish to pay for testing. The differences in searching for the disease add biases
which are explicitly included in the model to facilitate estimation. Furthermore,
model selection techniques are used to find a cutoff value which separates the

two processes.
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The likelihood for the observation at DAU; at year ¢, denoted by Yj, is

modeled as one of two binomial distributions

Yit ~ B(Nit, pit) for Ny > C

~ B(Ny,) for N;; <C. (3.9)

depending on some cutoff value C and where N;; is the number of tests completed
for DAU; at year ¢ and p;; is the i*® component of p;. This duality is required
because of the different sampling schemes for different stages of the knowledge
of disease prevalence. The first distribution corresponds to time-periods where
a DAU has a large number of deer tested for the disease. In these cases, the
Division of Wildlife knows that the disease is present and wishes to protect
hunters from eating infected animals. On the other hand, DAU-years when the
number of tested carcasses is low correspond with the CDOW searching for the
disease in an area where it has not yet been found or confirmed problematic.
This approach is somewhat ad hoc, and only moderately reflect the true nature
of the sampling mechanism. Nonetheless, the modification provides sufficient
flexibility to allow the model to accurately describe the changing prevalences.
This modification essentially eliminates the data values below the cutoff from
the spatio-temporal model, as the posterior of 7 given all the data is independent
of the other parameters. Because of this independence, data that are used to
improve knowledge regarding 7 cannot be used to increase information about
the other parameters.

The binomial sampling scheme used here is a simplification that considers

the values [V;; as fixed. Common practice is to consider these values as random,
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perhaps modeling them as Poisson or binomial draws from the total population.
There are several reasons why a second layer of hierarchy was not added. First,
although populations estimates were available for most DAUs over a ten year
period, these estimates were considered unreliable. Population estimates are
prepared by game region, and the manner in which they are calculated varies by
region. Game regions can consist of several DAUs, and information about how
the game regions are structured was unavailable. Moreover, the method in which
the populations are estimated has changed over time, as new estimation tech-
niques are adopted, both because of scientific advancement and changes in game
region management. Information on what population estimation methods were
used was unavailable. Finally, the testing data was obtained predominantly from
harvested animals. These animals form a subset of the population, because of
strict regulations that govern which animals can be harvested and which cannot.
In most areas of Colorado, huntable deer consists only of male deer two years or
older [14]. There was no information available on what percentage or number
of deer are harvested each year, although the Colorado Division of Wildlife does
collect estimates on this information, grouped by game management units [14].
The simple sampling scheme that was used means that even though all of the
results presented in this thesis may not be applicable to the total population of
deer, they can still be reliably applied to the population of harvested deer.
Given an initial prevalence vector py and the parameters in 7, the values of
p: are fixed. It is important to note the difference between this approach and a
standard state space model [23]. In a state space model, the value X; at time

t is equal to a function F(X;_1,n) plus error. That is, given the parameters n
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and the previous value X;_;, the new value is random. In the approach followed
in this thesis, the value of X; given the parameter values i and the initial value
Xy are deterministic. This approach also differs from the traditional state space
model by using binomial distributions for the observational equation, rather than
normal distributions. By using deterministic rather than stochastic updates, the
size of the parameter space is effectively reduced from 54 x 27+ 4 to 54 + 4. In
fact, the parameter space is smaller because many of the initial conditions (the
54 elements of the vector py) are forced to zero.

The likelihood for the prevalence data is given by,

54 27
E( M ‘ p()) n; HH pi\flt (Nzt M; )j|1{Nit>C}
=1 t=1
x [mMit(1 — ) Nee—Mar)] Lo<n;<0) (3.10)

where 14 is 1 if condition A is true and zero otherwise. p;; is the i** component
of p;, defined by recursion in equation 3.5, IV;; is the number of deer from DAU;
that are tested in year ¢, M;; is the number of those that are infected, 7 is
the probability that a tested deer has CWD given that a small number of deer
are tested in that DAU-year, C is a cutoff which models the different sampling
schemes relative to 7 and 1. The value C = 3 provided a reasonable fit to the
data, and will be discussed later. The posterior distribution of parameters is

proportional to

P(po, m, ™) x L(Y | po, m, m, C ) q(po) q(n) q(m) (3.11)

where ¢(-) denotes a prior distribution. For simplicity below, let 8 = (1, po, 7)

denote the complete vector of unknown parameters.
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This model has qualitative characteristics, through the deterministic differ-
ential equations, that are consistent with current knowledge and expectations of
CWD. It is also flexible enough to accommodate spatial mixing of prevalences
due to deer migration and possibly other factors. The model is formalized with
an Bayesian hierarchy, giving the added benefit of allowing for comparison of
different models, testing whether or not the disease is spreading spatially (if
7 > w > 0) and whether or not there disease can coexist with the mule deer
population (if 0 < § < 1). The Bayesian hierarchy also provides a method of
checking sampling schemes that will maximize information from data collected
in years to come [37].

Prior distributions for «, § and m were all independent Beta distributions,
since each parameter in the model is bounded on [0, 1]. The prior distributions
for the different parameters were chosen to reflect the current understanding of
CWD researchers and the statewide, large scale observations of the disease [14].
Information for the prior distributions comes from current research and expert
knowledge that is indirectly based on this and other data. Consequently, the
modeling strategy is not a formal Bayesian model, but instead has an empirical
Bayesian flavor.

The overall level of the disease in the endemic area is currently believed to
be between 8-13% [14]. While the disease still appears to be spreading spatially,
in those areas that have been infected the longest the level of the disease seems
to have stabilized. Consequently, the prior for § was chosen to be a Beta(8,82),

which has a mean of 0.09, or 9%., and a standard deviation of 0.0298.
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Currently, there is little knowledge or expectations for the acceleration pa-
rameter . Detailed study of the dynamics of Chronic Wasting Disease is rel-
atively recent but is ongoing [31, 32, 27]. Consequently, a uniform density on
[0, 1] was chosen as the prior distribution to reflect this lack of information.

Because the DAUs are defined so that deer will tend to remain within their
DAU, the migration parameters v and w are expected, a priori, to be small.
However, there is a lack of information available on the migration rate of the
disease [14]. Consequently, the prior distribution for v and w are chosen to be
Beta(1,50) and Beta(1,100) respectively, subject to the constraints that v > w
and that max;{} ., Wi;} < 1.

According to the Colorado Division of Wildlife, the disease was rare before
1990 [14]. CWD was unknown to non-experts in 1975 (¢ = 0), and no cases were
observed in wild populations prior to 1980. Consequently, the initial prevalence
values were expected to be extremely small. Additionally, because the disease
prevalence has only been observed increasing, those DAUs that are not currently
infected were not allowed to have the disease present at year zero. The prior
distributions for py were therefore either Beta(1,200) or a point mass at zero.
3.3 Finding a Good Model

The first task in choosing a particular model is to determine a reasonable
value for the cutoff C in the likelihood (3.10). The joint posterior distribution
can be factored so that the posterior distribution of 7 is independent of the
posterior for i and py.

For a given N, the binomial distribution which accounts for more data

variability than any other binomial model is the distribution with p = 0.5.
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Figure 3.3 shows the proportion of deer that test positive by year and the total
number tested for the three DAUs which have been infected the longest. There is
a large amount of variability in the early data, where the number of deer tested is
small. As the number of deer tested increases, the variability in the data appears
to decrease. Thus, a search is conducted for the value of C that yields a cutoff
level that has, as close as possible, half of the observations diseased and half
not. By inspecting the data it is found that this corresponds to a cutoff value of
C = 3. Thus in DAU-years where 4 or more deer are tested for Chronic Wasting
Disease, the modeled prevalence will be from the updates given by equation 3.5.

Otherwise, the prevalence is modeled as Bin(Ny, 7).

Endemic Area
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Figure 3.3: Proportion of deer which test positive by year for DAUs 4, 5, and
10. The total number tested is shown in the background, also by year. The
proportion which test positive decreases as the number tested increases, as does
the variability.
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Given the parameters «, 6, 7, w and m, several model variations can be
formulated by determining how many, and which, of the elements of py are
non-zero. Because the data begins in 1976, the year 1975 is set as year O.
The numbering scheme for the DAUs has nothing to do with Chronic Wasting
Disease, so it is necessary to impose an order on them that is sensible for CWD.
This is done by optimizing the posterior distribution over different arrangements
of DAUs to determine which DAU is likely to have the highest infection rate of
the disease down to which is least. There are a total of 54 DAUs, so to reduce
the search space the focus is only on those DAUs in the endemic area where
the disease is currently found. This assumption is reasonable since, at least
presently, the disease is still spreading, making it unlikely that it would have
disappeared from an area. The optimal ordering for the DAUs in the endemic
area is 10, 4, 5, 3, 17, 9, 54, 27, and 44.

The best model given this ordering can be determined using Bayes Factors
[24]. Several sets of models are tested. The first set assumes that the disease
was present in only one DAU in 1975, and that all other DAUs had an initial
value of 0. This is accomplished by putting the prior distribution for p;( as a
point mass at zero for all DAUs except for the one of interest. The second set
of models assumes that two DAUs are infected at time 0 and all others are zero.
The pattern continues adding one DAU at a time, up to nine, the number that
are currently in the endemic region. Additionally, models were compared with
w > 0 and w = 0 to determine whether or not the second order migration term

was significant.
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The different models are compared using Bayes factors. Bayes factors are
ratios of the marginal likelihood of the data under one model to the marginal

likelihood under another model. Hence:

— f‘C(Y|n’pOa7TaMi)q(p05n57T|Mi)dp0dnd7r
[ L(Y|n, po, ™, M;)q(po, n, 7| M;)dpodndr

where M, implies that the integration is with respect to the prior and likelihood

BF(MZ, M])

(3.12)

under model 7 [24]. Both the numerators and denominators of the Bayes factors
are approximated via a random sample of the prior distributions implied by the
two models M; and M;, respectively. For k = 1,... K, draw the appropriate
collection of parameters, denoted by 0;, from the prior distribution imposed
by M;. Let £; denote the evaluation of the log-likelihood implied by (3.10)
evaluated at @;; and wy, = exp({;; — maxg{ly;}) and w;. = >, wix/K. Then
BF(M;; M;) = exp{limax — jmax )W/ 0j..

The Bayes factor gives a weighting of the relative skill of one model compared
with another, competing, model. Under this criteria, it is found that the model
with P4, P50, P100 > 0, with all other DAUs having zero starting values, and
w = 0 is as or more effective than other models with the same number or more
parameters. The estimated Bayes factor was 1.18 when comparing this model
with a similar model that also included non-zero initial values for DAUs 3, 17,
and 9. The next smallest Bayes factor (3.55) was for the comparison with the
model that forced ps o = 0. The Bayes factors for comparison of the model with
P10, P50, P10, > 0 and w = 0 and all remaining models were all greater than
100.

The results of the Bayes’ Factor comparisons are supported by the fact that

the first observed case of Chronic Wasting Disease occurred near Fort Collins,
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Colorado, which is surrounded by DAUs 4, 5, and 10 [22]. These DAUs are
currently the heart of the endemic area. Given this prior knowledge of the
disease, it is unlikely that it would have begun anywhere else.

The particular model that is chosen is that with dynamic parameters

n=(94,7),

and the initial conditions

Po = (p10,oap4,0, ps,o),

so that @ = (n,pg). Thus, it is necessary to find the posterior distribution of
[0]Y], where Y denotes the data. Because this distribution does not have a
convenient or known form, computational methods are needed to simulate the

posterior distribution.

3.4 Accept/Reject Methods for the CWD Model

The posterior distribution for this model depends on many nonlinear rela-
tionships, which makes direct analysis difficult. Consequently, understanding
the posterior is most easily achieved using a simulated random sample. The
posterior distribution of the CWD model was first sampled in [37] using an
acceptance sampler. The results of this sample illustrate the characteristics
of the posterior distribution, and will help to determine if a more adaptable
Markov chain simulation is sampling from the correct density. Developing a
usable Markov chain simulation might allow for a more complete exploration of
the model by future researchers.

The Accept/Reject or acceptance method of sampling results in a random

sample from the desired distribution. Let f(x) be the target density. Let g(x)
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be a distribution from which it is easy to sample, called the envelope density.
Further, suppose there exists a constant M such that f(z) < Mg(x), everywhere
on the support of the density f.

Algorithm 3.1 The basic Accept/Reject (A/R) algorithm is:

1. Generate a value X from the density g, and a value U from the uniform

density on [0, 1].
f(X)
2. If U < Mo(X)” then accept the value X.

An accepted X 1s distributed according to the density f.

The acceptance sampler can work extremely well, but its performance de-
pends on finding an envelope density g that closely matches the target density,
as well as knowledge of the constant M. Further, for properly normalized den-
sities, the average probability of accepting the value X in the algorithm 3.1 is
1/M, so that the expected number of iterations until a value is accepted is M
[64]. Thus to make the acceptance sampler efficient, the density g must closely
match the target density so that a sizable random sample can be generated in
a reasonable amount of time [64, 25].

Acceptance samplers have the benefit of generating an independent sample
exactly from the target distribution, and they can be applied to multivariate
densities. However, the problem of finding a suitable envelope density if often
prohibitive, especially in higher dimensions, although there are methods such as
Adaptive Rejection Sampling that can reduce this problem for certain kinds of
target densities. In addition, accept/reject samplers are difficult to modify, so

that slight changes in a model can require the construction of a new sampler.
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There are a total of seven parameters in the CWD model. However, the sev-
enth parameter, 7, is independent of all of the others. Its posterior distribution
has a known form, Beta(18.5,19.5), so it does not need to be included as part of
the simulation, since it can be simulated directly. Hence only the remaining six
parameters, pio,0, P1,0, P50, &, 0, and 7, must be sampled. Each parameter has a
beta distribution as its prior, and hence the probability density function is non-
zero only on the interval (0,1). Because the posterior distribution is known to
be confined to the six dimensional unit cube, a beta distribution seems a natural
starting point for the envelope distribution. Since there are six parameters, six
independent beta distributions are used with their parameters chosen so that the
modes of the beta distribution match the mode of the posterior distributions.
The mode is calculated by numerically maximizing the log of the posterior func-
tion, using the Nelder-Mead non-linear optimization method [59, 55] built in to
Matlab. The modes for the marginal posterior distributions in this model are
shown in table 3.3. The value of the log posterior distribution at the mode was
—2731.9. The specific envelope distributions for the CWD acceptance sampler
were Beta(2.7,106) for the parameter pjgp, Beta(2.1,164.2) for the parameter
Pap, Beta(0.7,310.7) for the parameter pso, Beta(2.5,15.6) for the parameter
a, Beta(9.4,54.4) for the parameter §, and Beta(27.4,3375.3) for the parameter
7. The results of the acceptance sampler are discussed in [37].

The acceptance sampler was run using Matlab, version 6, on a machine with
a 2.2Ghz Pentium 4 processor, with 2GB RAM. The sampler generated a ran-
dom value from the posterior roughly every 3 seconds. To generate a sample of

size 25,000 took nearly 24 hours. The slowness of the acceptance sampler makes
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it impractical for studying variations of the model, or for applying to future
data sets. The long run time was likely due to the complicated nature of the
parameter space and the independence assumed in the envelope distributions.
Nevertheless, the random sample that was generated by the acceptance sampler
allows for examination of the characteristics of the joint posterior, and provides
a guide in designing a more efficient Markov chain sampler.

The 95% Bayesian credible intervals and the posterior estimates for the
six parameters based on this sample are shown in table 3.3. These summary

statistics will be used as an additional check for the Markov chain sampler.

Parameter | L.Limit | U.Limit | Mode | Mean | Median | Std.Dev.
P10,0 1.67 5.63 251 | 3.35 3.24 1.01
Pa,10 0.82 3.17 1.27 | 1.77 1.69 0.61
Ds,0 0.07 0.69 0.22 | 0.31 0.28 0.16

@ 6.67 22.13 | 14.08 | 13.01 | 12.51 3.98
) 11.18 20.39 | 14.79 | 15.08 | 14.84 2.38
0% 0.62 1.09 0.81 | 0.84 0.83 0.12

Table 3.3: 95% Bayesian credible intervals, posterior estimates, and modes
for the marginal posterior densities simulated using the acceptance sampler. All
values have been multiplied by 100.

Scaled histograms of the variables pig0,p4,0,p5,0, @, ¢, and 7 from the pos-
terior sample are given in Figure 3.4. For comparison, the prior distribution is
shown with a solid line. The prior and histogram approximation of the posterior

have been scaled to highlight the differences between the two distributions. This
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Relative Frequency

Relative Frequency

gives some indication of both the ignorance in the prior distributions and the

strength of the data in the model. Noting that the prior and posterior distribu-

tions are different for each variable, it is evident that the model is making use

of the information in the available data.
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Figure 3.4: Comparisons of the posterior sample with prior distributions for pa-
rameters (a) pio,0, (b) a the acceleration parameter, (c) ¢ the long run prevalence and
(d) vy, the average propensity to migrate. The prior and histogram approximation of
the posterior have been scaled to have maximum value of one in order to highlight
the difference between the two distributions.

Examination of the posterior distribution indicates that the parameters are

highly correlated. This correlation is demonstrated graphically in the pairwise
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contour plots of the variables. Figure 3.5 shows the contour plot of the param-
eters o and 6. The points occur along a ridge of high probability. The pattern
indicates a high negative interdependency between these two parameters. The
ridge has a “banana” shape that is the most pronounced feature of the pos-
terior distribution, and goes far in explaining the slowness of the acceptance
sampler based on independent Beta distributions. Any successful Markov chain
simulation will need to reproduce this ridge.

The pairwise contour plots of the remaining variables are shown in figures 3.6
and 3.7. Each pair plot shows a pattern that indicates a relationship between
the two variables. The initial prevalence values pig ¢, P40, and ps o show evidence
of positive correlation. The acceleration parameter o shows evidence of negative

correlation with all of the other variables, while § and ~ are positively correlated.

Calculating the correlation matrix of the A/R sample confirms the graphical
evidence of relationships amongst the six parameters. The correlation matrix is
shown in 3.13. The initial prevalence in DAU 10 is strongly correlated with the
other initial prevalences themselves, with Corr(pio, ps) = 0.7214 being the high-
est correlation within this group of parameters. The other group of variables—
the dynamic parameters— also exhibits strong interdependence, although it is

clear from the graphical evidence in figure 3.5 that this relationship is nonlin-
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Figure 3.5: Contour plot of a by §. Most of the values occur along a banana
shaped ridge of high probability.
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Figure 3.6: Contour plots of variable pairs for the acceptance sampler. Plot
(a) shows the graph of the acceleration « versus the movement parameter +.

Plot (b) shows the graph of the long term sustainable level § versus . Plot
(c) shows the graph of « versus pigp, the initial prevalence in DAU ten. Plot
(d) shows the graph of pso versus the acceleration . These graphs indicate
correlation among the parameters.
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Figure 3.7: Contour pair plots of the variables for the acceptance sampler.
Plot (a) shows the graph of the acceleration a versus the initial prevalence in
DAU five, pso. Plot (b) shows the graph of the initial prevalences pigo and pa.
Plot (c) shows the graph of pig and ps . Plot (d) shows the graph of p4 versus
the DPs0-
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ear.
( 1.0000 0.7214 0.5135 —0.4183 0.0461 0.0812 \
0.7214 1.0000 0.4060 —0.4892 0.1321 0.2553
0.5135 0.4060 1.0000 —0.4440 0.2194 —0.0426 (3.13)
—0.4183 —0.4892 —0.4440 1.0000 —0.8582 —0.4340

0.0461 0.1321 0.2194 —0.8582 1.0000 0.4406

\ 0.0812 0.2553 —0.0426 —0.4340 0.4406 1.0000

There appears to be two natural groups of parameters, the initial prevalence
values, P10, P10, and ps o, and the dynamic parameters «, ¢, and . There is
strong interdependence within each of these groups, and some evidence, based
on the pairwise graphs in figures 3.6 and 3.7, of a relationship between the
two groups. However, because the model is highly nonlinear, and because the
graphical evidence indicates that the relationships between the parameters are
nonlinear, a more general measure is needed. A canonical correlation analysis
shows the canonical correlation coefficient for the two groups to be 0.8134. This
is a strong indication that the two groups of variables are interdependent. This
interdependence will be an important consideration in the construction of a

Markov chain sampler for the CWD model.
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4. Markov Chain Monte Carlo Simulation for the CWD Model

For some distributions, qualities such as independence or conditional in-
dependence make direct sampling analytically tractable and computationally
feasible. However, more complex models, such as the CWD model in chapter 3,
can lead to situations where the target distribution does not have a recognizable
form, or has characteristics that make direct sampling difficult or impossible to
apply. When direct sampling is not possible, alternative methods such as the
acceptance sampler (see section 3.4) or Markov chain Monte Carlo (MCMC)
approaches must be applied. The complex form of the posterior distribution in
the Chronic Wasting Disease model (equation 3.11) requires the use of computa-
tional methods to sample from the posterior distribution. This is not an uncom-
mon situation for Bayesian hierarchical models, but in some cases the hierarchy
does allow for some computational simplifications. Analytical construction and
analysis of the posterior distribution is only possible in very simple hierarchical
models, such as the normal model discussed in [24]. The relative advantages
and disadvantages of some common simulation methods are discussed, and an

efficient Markov chain sampler is constructed.

4.1 Markov Chain Methods

A Markov Chain is a sequence of random variables { X} such that:
(XD x® X)) =[x x ()] (4.1)

For the Markov chain {X®}, if there exists a distribution f such that X ~ f

implies X1 ~ f. then the distribution f is called the stationary distribution
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for the Markov chain [64, 68]. The stationary distribution is a limiting distri-
bution, where convergence is with respect to the total variation norm, || - ||7v.

The total variation norm between two distributions f; and fs is defined by:

||f1—f2||TV:SgP|f1($) — fa(z)|. (4.2)

A sequence of distributions f, converges to a limiting distribution f if
lim ||fp — fll7v =0
n—oo

A Markov chain is called ergodic if the convergence to a stationary distribution
does not depend on the initial state of the chain X [64]. The possible values
of the Markov chain are called the states of the chain. A Markov chain is called

reversible if it has the property
(XXM = g] = [XCFD| XD = 4] (4.3)

A Markov chain Monte Carlo (MCMC) method for simulating from a distri-
bution f is any method that produces an ergodic Markov chain, {X®}, with f
as the stationary distribution. MCMC methods do not produce an independent
sample exactly from the target density f. Instead, they produce a dependent
sample that is approximately distributed according to f. This may seem inferior
to accept/reject methods, which sample exactly from the target distribution, but
Markov chain methods possess a number of benefits that make their use advan-
tageous. First, it is usually easy to construct a Markov chain that converges,
at least theoretically, to the target distribution. Markov chain methods are
also easier to generalize and alter than their A/R counterparts, and therefore

facilitate the exploration of more complicated models.
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The Metropolis-Hastings algorithm is a very general method for simulating
a Markov chain [64, 25]. Using virtually any distribution, a Markov chain can
be constructed with the target density f as its stationary distribution.
Algorithm 4.1 Suppose that q(y|z) is a conditional density from which it is
easy to simulate. Given a current value z), generate the next value in the

chain as follows.

1. Generate a value Y from the density q(y|z®).

Y z|y
2. Let Oz(x(t),Y) = fj(ci(tg)ggy|z|(t)g'

8. Take 2 =Y with probability min(a, 1). Otherwise, z+1) = 2®,

Under broad regularity conditions, the algorithm 4.1 produces a Markov
chain with stationary distribution f. The convergence of algorithm 4.1 depends
on the relationship between the target density f and the conditional density

q(z|y). This relationship is given by theorem 4.1.1 taken from [64].

Theorem 4.1.1 Let S denote the support of the density f, and suppose that
S s connected. If the support of the conditional density q contains S, then the

Markov chain produced by the algorithm 4.1 has f as its stationary distribution.

There are many variations of the Metropolis Hastings algorithm. One of the
most common is random walk Metropolis-Hastings, which is frequently called
the standard random walk algorithm [25, 64, 58], and is the terminology used in
this thesis. In the standard random walk algorithm, given the current state of
the chain, X the proposed value is generated by Y = X® + ¢,, where ¢, has

distribution g. The conditional distribution ¢ in algorithm 4.1 is equal to g(y—z),
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so that ¢ now has the symmetric property ¢(z|y) = ¢(y|z). In many applications,
g is a normal distribution. If the proposal density ¢ and the target density
in the standard random walk satisfies the conditions of theorem 4.1.1, then
the standard random walk will converge in the limit to the correct stationary
distribution.

The conditional density ¢ in algorithm 4.1 is called the instrumental or
proposal density. Finding a proposal density is typically very easy compared
to finding a suitable envelope density for the acceptance sampler. Thus the
Metropolis-Hastings algorithm is in theory easy to apply. The resulting Markov
chain will converge in the limit to the desired stationary distribution. Moreover,
if the conditional density satisfies the conditions of theorem 4.1.1, then the
Markov chain produced by algorithm 4.1 is ergodic [64]. After a suitably large
number of iterations, Ty, called the burn in period, the chain provides a good
approximation to the target distribution.

For multivariate densities, the components can be sampled individually,
and the target distribution constructed by means of the complete conditional
distributions, that is, the distribution of the component X; given all of the
other components. Suppose that the random variable X has the desired mul-
tivariate density f, and that X can be written as X = (Xi,...X,). Let
[X;|z1, .-.®i 1, Tiy1, .-, Tn] denote the complete conditional distribution of X;

given all of the other components of X.

Algorithm 4.2 Given X = (xgt),...,xff)), a Markov chain with stationary

distribution f is produced by the following algorithm:
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1. Generate X§t+1) ~ [X1|x§t), ...,x,(f)}.

2. Generate X\ ~ [X2|x§t+1),xgt), ...,xﬁf)} .
3. Repeat for each conditional until...

4. Generate X3 ~ [Xn|x§t+1), ez 11)]

The algorithm 4.2 is called the Gibbs sampler, and is a classic example
of a strategy called successive substitution sampling (SSS), which enables high
dimensional problems to be broken into a series of univariate or simple block
sampling problems. The Gibbs sampler is a special case of the algorithm 4.1
in which the proposed value is always accepted. The Gibbs sampler is typically
used when the complete conditional densities have a known form and are easy
to sample. In general, the blocks X; may be either univariate or multivariate.
For problems in which the complete conditional distributions are unknown, or
do not have a simple form, the conditional densities in 4.2 may be sampled using
a Metropolis Hastings step.

In practice, the burn in period for a Markov chain sampler can be pro-
hibitively large. While building a Markov chain that theoretically converges is
relatively easy, building one that works in a reasonable amount of time may be
difficult. This difficulty is more common in higher dimensional problems where
the straight forward application of algorithm 4.2 by means of the complete con-
ditional distributions is impossible. Complex models may lead to situations
where the target distribution has characteristics that make the chains produced
by standard MCMC methods miz slowly, that is, the Markov Chain does not

move rapidly about the support of the target distribution, which causes the
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chain to converge slowly. This leads to a variety of techniques to accelerate con-
vergence of the chain. The application of these techniques often involves careful
tuning by trial and error.

Complex multivariate distributions can have a number of features that make
a density difficult to simulate. If the target distribution is multi-modal, has
sharp ridges of high probability, exhibits high correlation between individual
variables, or exists on a bounded parameter space, then constructing a Markov
chain that converges to the stationary distribution of interest in a reasonable
amount of time may be difficult. For multi-modal target distributions, the chain
can get stuck near one mode, oversampling near that mode and perhaps missing
others entirely. When a target distribution has sharp ridges of high probability,
a Markov chain can bypass these areas if the average step size, that is, the
distance between the current state X® and the proposed future state Y, is
too large. The step size is determined by both the mean and the variance
of the proposal distribution. When there is high correlation between individual
variables, sampling each component separately is inefficient, since the acceptance
or rejection of one variable can have a large impact on the acceptance or rejection
of another. With bounded parameter spaces, care must be taken to not propose
outside of the parameter space too often, since too many rejected proposals will
slow down convergence of the chain.

There are a variety of techniques available to alleviate some of the possible
difficulties when sampling from multivariate distributions. When the variables
are highly correlated, reparameterization can remove some of the correlation.

Examples of regression models and random effect models where this approach
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is especially effective are given in [25]. Implementation of a reparameterization
technique requires the identification of an appropriate transformation, which
may not be an easy task.

The technique of blocking seeks to utilize the correlation between parame-
ters to accelerate convergence. Blocking makes use of the correlation between
parameters in a multivariate setting by updating highly correlated variables to-
gether to increase the mizing speed of the chain, that is, the speed at which the
chain moves around the support of the target density [29]. This method can
be especially effective in hierarchical models with spatially structured data. A
discussion of how the blocking approach can be used when dealing with areal
data, i.e. data aggregated over discrete spatial regions, is found in [29, 6].

Hit and run samplers are a class of algorithms that have been designed
to simulate target distributions that exhibit signs of multi-modality [72, 11,
25]. The hit and run samplers are based on a generalization of the Metropolis-
Hastings algorithm [72, 11, 58], and use a proposal distribution that chooses a
direction at random, and then moves a random distance in that direction. The
difference between the hit and run method and the standard random walk is
that the new move is always accepted. The hit and run sampler can be effective
in sampling multi-modal target distributions, because the algorithm, with some
small probability, traverses the entire parameter space in a single move, which
allows mode-hopping when the proposed move is in the direction of another
mode. The hit and run algorithm has problems with mixing when the target
distribution has sharp ridges or spikes of high probability. The hit and run

algorithm may not pick out these areas of high probability sufficiently often,
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causing the resultant chain to mix slowly. The problem of slow mixing becomes
even more significant in higher dimensions.
4.2 Stochastic Dynamics Methods

Stochastic dynamics methods are a class of algorithms motivated by stochas-
tic differential equations. Stochastic dynamics methods are commonly used to
simulate physical systems such as quantum molecular dynamics and heat trans-
fer. There are a number of Markov chain methods based on stochastic differential
equations, many of which are specifically designed for use in statistical physics,
although some have seen broader application [58]. The Langevin algorithm is
perhaps the most common, and is based on the discrete simulation of a contin-
uous time diffusion process [58, 25, 64]. Stochastic dynamics methods suppress
the random walk behaviour of a Markov chain, which has been shown to improve
convergence results for high dimensional target densities [28].

A general diffusion process Xy = X (t) is a continuous time stochastic process

defined as the solution to the stochastic differential equation:
dXt = /,L(Xt)dt -+ O'(Xt)dBt, (44)

where B, is standard Brownian motion [41]. In equation 4.4, u(X}) is called the
drift term or drift coefficient, and o(X}) is the diffusion term or diffusion coef-
ficient. For simple cases, a solution to 4.4 can be found using the Ito Calculus,
which is derived in [13, 41]. If a solution to equation 4.4 does not exist or X
tends to infinity in a finite amount of time, then the diffusion process is called
explosive [41].

If a target density f is continuously differentiable, and if for some real num-

bers N, a,b < oo, when (Vf(z))'z < al|z|| +b, for all ||z|| > N, then a diffusion
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process can be constructed that has f as its stationary distribution [41, 71, 66].

The only non-explosive, reversible diffusion with this property is the Langevin

diffusion [64], which has the form:
1
dX, = 5V log(f(X,))dt + dB,. (4.5)

Where B, is the standard Brownian motion.

A continuous time stochastic process cannot be directly simulated. Instead,
a discretized version of equation 4.5 must be used. The simplest such discretiza-
tion is the Euler discretization. If w > 0 is the size of the discretization, then
the continuous time diffusion process 4.5 is approximated by a smart random

walk, with steps given by:

2
Xpp1 =X + %V]og f(X) + wey, (4.6)

where ¢; follows a multivariate normal distribution with mean 0 and covariance I.
The random walk in 4.6 is called “smart” because proposed values are generally
in directions of higher probability than the current state. Equation 4.6 can also

be written as:

w
Xy ~ N(X; + §V10g f(X1), W), (4.7)

The Euler discretization in 4.6 and 4.7 is a first order approximation to
the stochastic differential equation 4.5. Other methods based on higher order
approximations have been developed, notably the Ozaki discretization which
uses a second order approximation [67]. A variety of discretization schemes for
stochastic dynamics methods are discussed in [58].

Unfortunately, the behaviour of the continuous time Markov process and

the discretized version may be radically different. This is because the Markov
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chain based on stochastic process 4.5 samples from the correct distribution only
as the discretization size goes to zero [58]. Consequently, there are many situa-
tions where the random walks given by equations 4.6 and 4.7 can be transient,
that is, there exists a state X of the chain such that the expected number of
times the Markov chain visits this state is finite. A Markov chain that is not
transient is recurrent. Situations that lead to transience include those for which
the target distribution is insufficiently smooth, or erratic, so that the gradient
experiences large changes in a local area or has a large magnitude. This erratic
behaviour of the gradient makes the chain unstable. Many of these problems
can be corrected with a Metropolis-Hastings rejection step [5, 64, 25, 58]. This
method of correcting for the discretization is sometimes called Hybrid Monte
Carlo, Langevin Monte Carlo [58], or a Metropolis Adjusted Langevin Algorithm
(MALA) [71].

Algorithm 4.3 The MALA can be summarized as follows. Let the target dis-

tribution be denoted by f(x), and let p(x) = §Vlog f(x). Let a(z,y) be defined

by:
F(y) exp(— IIw*y;&(y)IP))
f(x) exp(— IIy—z—u(w)lP))

2w?

Given the current state X', the Markov chain is simulated by:

ofr,y) = ) (4.8)

1. Generate Y ~ N(X'+ ¥V log f(X"),w?])
2. Find min(a(X',Y),1).
3. With probability min(c, 1), set X' =Y. Otherwise, set X**' = X*.

The proposal value is kept with probability min(c, 1). The rejection step 4.8

turns the Langevin algorithm into a Metropolis-Hastings algorithm with a smart
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proposal [25, 64]. The conditional density in the Metropolis-Hastings algo-
rithm 4.1 for the MALA is ¢(z]y) o N(y + p(y),w?I), where the form of the
conditional density in 4.8 comes from the Brownian motion in the stochastic
differential equations 4.4 and 4.5. The key difference of the Metropolis adjusted
Langevin algorithm from the standard random walk is that the MALA sup-
presses the random walk behaviour of the chain by using the local properties
of the target density (i.e. Vlog f(X;)) to adjust the proposal distribution [28].
This nudges the chain “uphill” in the direction of a mode, which is a highly
desirable property in high dimensional problems where the behaviour of the
gradient is smooth [71, 64, 25, 67].

The chain 4.3 will tend to propose values that are in the direction of the
mode. Because algorithm 4.3 is a special case of the Metropolis Hastings algo-
rithm, convergence of the chain relies on the properties of algorithm 4.1, and not
those of the Langevin diffusion process. Strategies such as reparameterization
and blocking can be employed with 4.3 to increase the mixing speed. The sim-
ulation can be further adjusted for erratic behaviour of the gradient by using a
truncated proposal step to achieve more robust ergodic properties [5, 71]. This
truncation comes through the imposition of an upper limit on the step length
in the proposal distribution [25, 65].

The MALA has been shown to perform as well as or better than the standard
random walk in many settings [66, 67, 71]. As with other kinds of Metropolis-
Hastings simulations, convergence properties depend largely on the smoothness
of the target distribution. One situation where the MALA works especially well

is when the target distribution is from the exponential family of distributions. In
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situations where the target distribution is discontinuous or is not differentiable
at some points, then smoothed proposals can be employed [71].

A recent variation of the Langevin algorithm is the tempered Langevin algo-
rithm [67]. The standard MALA approach uses a fixed variance coefficient (w
in equations 4.6 and 4.7). A more general diffusion process can be used to get
another variation of the Langevin algorithm. Note that equation 4.5 is a special
case of equation 4.4, where the drift term is p(X;) = $Vlog(f(X;)), and the
diffusion coefficient is o(X;) = wl. If a more general diffusion term is used in
4.4, then the tempered Langevin diffusion is obtained [67].

If the diffusion coefficient is o(z), then the diffusion matriz is given by a
positive definite matrix a(z) = o(z)o” (z). Let 0 < d < 1. Choosing a(z) =
f2(x)] = W!, and setting the drift term to be p(z) = 1=22a(z)V log(f(z))
gives the Langevin tempered diffusion [67]. The tempered diffusion is the solu-

tion to the stochastic differential equation:

4X, = 20 XV dog(F(X0))dt + f(X,) 4B, (4.9)

The diffusion in equation 4.9 is a more general form of the Langevin diffusion
4.5 and is sometimes called a heated Markov chain. The two special cases of
equation 4.9 that are important are when d = 0, which implies the standard
Langevin diffusion, and d = 1/2, which gives Brownian motion [67]. Choosing
different values of d gives different heated chains.

Heated Markov chains have stronger theoretical convergence properties than
unheated chains, since the diffusion matrix acts as an accelerator [67]. The
accelerator can alleviate some of the problems encountered with multi-modal

target distributions. In areas of low probability, the variance a(z) = f~2%(z)I

73



will be larger, causing the chain to take larger steps in those areas. As the chain
enters areas of high probability, a(z) will decrease, leading to a smaller step size.

The discretized version of the diffusion 4.9 is given by:

1—-2d

X1 ~ N(X; + a(Xy)Vlog f(X3), a(Xy) I). (4.10)

Using a rejection step gives a Metropolis algorithm. To adjust the probability 4.8
for the tempered diffusion, set w? = a(X;), which gives:

Xe—Yi—u(Y)|]2
£(Y) exp(—” t 22(;1() ol ))

F(X0) excp(— D= tCulE)y”

(X(Xt, }/;i) =

(4.11)

where p(z) = 2% (z)V1og(f(z)) and a(X;) = f724(Xy).

The tempered Langevin algorithm, like the standard Langevin algorithm 4.3,
is a random walk that makes “smart jumps”. That is, the chain is likely to
propose values that are in the direction of an area of high probability.

Blocking, hit and run algorithms, Langevin algorithms, and tempered
Langevin algorithms, are only a subset of the many methods for sampling from
complicated distributions. When more than a couple of difficulties are encoun-
tered, it can require the innovative use of several of these or other approaches
to generate a sample.

The joint posterior distribution produced by the Chronic Wasting Disease
model presented in chapter 3 has a number of characteristics that make the
implementation of a Markov Chain simulation difficult. Firstly, the posterior
distribution exists on a bounded parameter space. Secondly, calculation of the
gradient at various points of the parameter space indicates that the surface of

the density function contains sharp ridges of high probability.
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The sharp ridges of high probability mean that a hit and run type algorithm
could miss the area of high probability, thereby over-sampling regions where
the density is comparatively low. Langevin algorithms also have difficulty in
this situation, because the steepness of the density causes the magnitude of the
gradient to be extremely large in areas of moderate probability, a common source
of instability in Langevin algorithms. The difficulties are compounded with the
bounded parameter space, since proposals are likely to fall outside the support
of parameter space. When using a normal proposal distribution, as with the
standard Langevin algorithm, too many proposals outside the parameter space
will cause the chain to mix slowly.

One possible method of dealing with this problem is to use a proposal distri-
bution in algorithm 4.3 with the same support as the parameter space. However,
even using a different proposal distribution, such as a truncated normal distri-
bution on [0, 1], can slow the mixing of the Markov chain, because the potential
asymmetry of the truncated normal can cause difficulties for the standard ran-
dom walk or MALA. Additionally, the convergence theorems for the stochastic
differential equation 4.5 no longer apply, since the noise term is no longer a

Brownian motion.

4.3 A Tempered Langevin Algorithm for Bounded Densities

The posterior sample produced by the acceptance sampler in [37] and dis-
cussed in chapter 3 illustrates the complicated nature of the posterior distribu-
tion 3.11. The largest issue is the fact that the support of the posterior density
exists on a bounded parameter space. All of the parameters, pio0, Ps,0, P50,

a, 0, and 7, exist only within the unit interval, whereas standard approaches
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to constructing a Markov chain simulation often have target distributions that
exist on the set of real numbers. The restriction of a bounded parameter space
requires the choice of a sufficiently small proposal variance for a random walk
sampler, otherwise, the chain may propose values outside the parameter space
too often, causing it to converge slowly. On the other hand, if the variance of
the proposal distribution is too small, the random walk may converge slowly
since it may take too long to adequately move around the support of parameter
space. Suitably scaled, a Langevin type algorithm can provide some relief for
this problem, as it will nudge the chain in the direction away from areas of low
probability. A truncated Langevin algorithm may also provide some relief, but
the problem of scaling remains.

Another complication of the posterior distribution for the CWD model is
the sharp ridges of high probability. These ridges are especially noticeable in the
plot of « versus ¢ (figure 3.5). The step size must be carefully chosen to avoid
frequently overshooting these concentrated high probability areas. Additionally,
the chain could get stuck in an area of high probability, so that if the target
distribution has more than one mode, it will not reach all of them.

Many of the problems presented by the bounded parameter space and sharp
ridges of high probability can be overcome by using a stochastic dynamics
method, such as the Langevin algorithm given by equation 4.6. However, the
standard Langevin algorithm can have instability introduced by using the gradi-
ent. If the target distribution has local properties that lead to erratic behaviour
in the gradient, the instability results in wildly overshooting modes or areas of

high probability. This could be corrected by using an upper bound on the step.
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For example, proposals of the form ¥ ~ N(X; + min(b, ¥V log f(X})),wI), can
retain most of the advantages of the Langevin algorithm while removing some of
the inherent instability of the gradient [25]. For the bounded parameter space of
the CWD model, however, the choice of the upper bound b is a difficult problem,
and would likely need to depend on the current state X;.

The use of a truncated proposal in the Langevin algorithms is called a
Metropolis adjusted Langevin truncated algorithm (MALTA). These chains can
have better convergence properties than the MALA [71]. By retaining the “up-
hill” direction while putting an upper bound on the step, many of the advantages
of the Langevin algorithm are kept, while the disadvantages caused by instabil-
ity in the gradient are lost. However, for target distributions with insufficiently
smooth surfaces, scaling the MALTA can be difficult. As an example, if the
posterior distribution possesses a narrow region of high probability, surrounded
by an area of low probability, such as the Witch’s Hat distribution [64], then
the chain may still overshoot the mode, resulting in oversampling. Calculation
of the gradient of the log of the posterior density at various points indicates
that the density surface is very steep for the CWD model. The magnitude of
the gradient of the log density ranges from values on the order of 10 to values
greater than 107.

The tempered Langevin algorithm 4.10 provides a remedy for this difficulty
in many cases, and has been shown to have better theoretic convergence prop-
erties [67]. With its variable step size, it will, on average, take larger steps in
areas of low probability, and smaller steps in areas of high probability. For target

distributions in the exponential family of densities, this technique can be highly
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effective [67]. However, the tempered Langevin algorithm relies on a compli-
cated scheme for the proposal variance, making it difficult to implement and
computationally infeasible. For the Chronic Wasting Disease model, use of the
tempered diffusion may require a transformation of parameters, since empirical
study on the tempered diffusion has thus far been only on target densities with
unbounded support [67].

Individually, the problems mentioned above can make the construction of an
effective Markov chain simulation difficult. In combination, these characteristics
can lead to serious problems, which are exacerbated in high dimensions. Never-
theless, a Markov chain simulation can be constructed that will approximately
produce the posterior distribution 3.11. To handle the complexities of the poste-
rior distribution and to construct an efficient simulation method, features from
the truncated and tempered Langevin algorithms are used. These features are
tailored to handle the particular difficulties presented by the posterior in the
chronic wasting disease model.

4.3.1 Markov Chain Simulation Attempts for the CWD Model

Several attempts at constructing a Markov chain simulation for the CWD
model were made using the standard random walk, the Metropolis adjusted
Langevin algorithm, and the tempered Langevin algorithm methods discussed
above. Each method was run for 300,000 iterations, but graphical evidence
showed that they failed to produce the correct stationary distribution.

The first method attempted was the standard random walk. Because of the
correlation the parameters in the CWD posterior density, a blocking strategy was

employed, and all six parameters were updated simultaneously. The proposal
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distribution was a six dimensional multivariate normal distribution, with the
variance of each component chosen to be proportional to the prior variance. A
large number of proportionality constants for the proposal variance were tried
in an attempt to construct a chain that mixed and converged quickly. Most
values for the proposal variance resulted in a chain that moved very little, since
many of the proposed values lay outside the parameter space. An extremely
small step size was needed to prevent this from occurring. Figure 4.1 shows
300,000 iterations of the pairwise plot of the parameters a and ¢ chain, for
a random walk sampler with a variance on the order of 1 x 107°. The graphs
shows little movement for these parameters, indicating that most of the proposed
values are being rejected. The distinctive banana shape seen in figure 3.5 is
not present in figure 4.1, although the attraction to the mode is evident. The
pairwise plots for some of the other six parameters are shown in figure 4.2. These
graphs clearly do not match those produced by the acceptance sampler shown
in figure 3.6. Reducing the proposal variance results in more accepted values
for the parameters, but the chain moves very slowly about the parameter space,
and when started in an area of low probability remained there after 300,000
iterations.

The second method attempted was the Metropolis adjusted Langevin algo-
rithm 4.3. The MALA had problems similar to the standard random walk, but
these were more pronounced. Figure 4.3 shows the pair plot of the parameters
a and §. The gradient for the posterior distribution in the CWD model causes
instability in the algorithm. The log posterior density ranges from values on the

order of —10% to —2731.9, which in turn causes large changes in the gradient,
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Figure 4.1: Pair plot for all 300,000 iterations of the parameters a and §
produced by the standard random walk sampler. The distinctive banana shape
seen in the acceptance sample is not present. The algorithm failed to produce
the correct distribution after 300, 000 iterations.
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Figure 4.2: Pair plots for all iterations of the variables for the standard random
walk sampler. The algorithm failed to produce the correct distribution after
300, 000 iterations. Plot (a) shows the graph of the acceleration a versus the
movement parameter . Plot (b) shows the graph of the long term sustainable
level § versus 7. Plot (c) shows the graph of « versus pyg,, the initial prevalence
in DAU ten. Plot (d) shows the graph of p, versus the acceleration a.



making the choice for the discretization step (w in equation 4.3) extremely dif-
ficult. Because of the differences in the posterior standard deviations shown in
the sample generated by the acceptance sampler (discussed in chapter 3), the
proposal variance was different for each component, and was proportional to the
prior variance. Larger values for w caused little movement in the chain. The
chain would become stuck in some areas of the parameter space, since extremely
large gradient values resulted in many proposals that lay outside the parameter
space, and hence were rejected. Choosing extremely small values for the w had
better results, but caused the chain to move very slowly about the parameter
space. Figure 4.3 shows the pairwise plot of the parameters o and ¢ for 300, 000
iterations of the Metropolis Adjusted Langevin Algorithm with w = 1 x 10~%
Although the chain appears to be heading towards the mode, the moves are
so small that even after the large number of iterations the chain has failed to
produce the distinctive ridge seen in figure 3.5.

Finally, the tempered Langevin algorithm 4.10 was attempted. This algo-
rithm was hampered by the particular form of the diffusion matrix in 4.10, since
the wide range of values for the log posterior corresponded with a wide range
of values for the proposal variance. In addition, the extremely small values of
the log posterior at times resulted in a nearly zero or infinite proposal vari-
ance. The problems with the proposal variance caused the algorithm to fail.
Figure 4.4 shows the pairwise plot of  and § for 300,000 iterations for the
tempered Langevin algorithm. Figure 4.5 shows four other pairwise plots. The

algorithm has clearly failed to reproduce the density shown in figures 3.5 and
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Figure 4.3: Pair plot of all iterations for the parameters o and § produced
by the Langevin sampler. The distinctive banana shape seen in the acceptance

sample is not present. The step size was on the order of 1 x 1072°. The algorithm
failed to produce the correct distribution after 300,000 iterations.
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Figure 4.4: Pair plot of all iterations for the parameters o and § produced
by the tempered Langevin sampler. The distinctive banana shape seen in the
acceptance sample is not present, and the chain was unable to venture far from
its initial position at the origin. The algorithm failed to produce the correct
distribution after 300, 000 iterations. Note from the axes that the chain is tightly
concentrated near its starting value at the origin.
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Figure 4.5: Pair plots of all iterations for the variables for the tempered
Langevin algorithm. The algorithm failed to produce the correct distribution
after 300, 000 iterations. Plot (a) shows the graph of the acceleration « versus the
movement parameter . Plot (b) shows the graph of the long term sustainable
level § versus 7. Plot (c) shows the graph of « versus pyg,, the initial prevalence
in DAU ten. Plot (d) shows the graph of p, versus the acceleration a.

85



3.6.
4.3.2 Overcoming the Difficulties

The failure of the standard random walk, Metropolis adjusted Langevin al-
gorithm, and tempered Langevin algorithm, to correctly and efficiently sample
the posterior distribution for the Chronic Wasting Disease model prompts the
construction of a new simulation method. The new method is suitable for tar-
get densities with bounded parameter spaces and concentrated areas of high
probability, yet retains the qualities of the MALTA and the tempered Langevin
method.

The greatest benefit of Langevin type algorithms is the use of the gradient
in choosing a direction for the proposal value. However, for a target density
with erratic gradient behaviour, the magnitude of the proposed value could be
extremely large. Proposals with a large magnitude are a serious problem in a
confined parameter space, but the gradient direction is still useful. The direction

can be retained by turning the gradient into a unit vector, thus rather than using

V log f(X3), it is scaled to
V log(f (X¢)
IV log(f (Xo)II

This keeps the direction information in the gradient, but allows for more pre-

(4.12)

cise control over the step size. However, this requires that the gradient of the
log density exists, for equation 4.12 to be defined. If the gradient of the log
density is the zero vector, as it would be at the mode of the target density,
then 4.12 is defined to be the zero vector, which avoids potential complications.
The analytical gradient can also be replaced with a numerical approximation if

necessary.
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Rather than attempt to find a single step size for all parameters, a dynamic
step size is constructed that is similar to the tempered Langevin algorithm.
Qualitatively, the chain is “heated”, so that the further the current state is from
the mode of the distribution, the larger the step size that should be taken. When
the current state is close to the mode, the steps should be smaller. In the case of
the CWD model, the fact that the density function has small values over much
of the parameter space makes the use of the posterior density function unstable,
thus the log of the posterior density is used instead.

A expression must be found that is at a minimum when the current state,
X® is at the mode of the target density. It should get larger the further X
gets from the mode. For the stability purposes discussed above, this expression
should use the log of the posterior density. Let f denote the posterior density
function. Let & denote the mode of the posterior density. Then for any X® in
the support of f, we have f(X®) < f(z). Since the logarithm is a monotonic
transformation, this implies log(f(X®)) < log(f(#)). Subtracting log(f(X®))
from both sides gives 0 < log(f(2)) — log(f(X®)). However, since the step size
in the Markov chain simulation should be nonzero, one is added to both sides.
Thus,

1 < log(f(2)) — log(£(X®)) +1. (4.13)
Let h(2, X®) = log(f(2)) — log(f(X®)) + 1, and note that 1 = h(#,2) <
h(Z,z) for any x. For log-concave densities, h(#, X*)) increases as the value of
log(f(X®)) gets farther from the log density value at the mode. The use of the
difference of the log densities is useful for situations where the use of the density

function would lead to numerical instability. For more stable target densities,
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a ratio proportional to m, as in the tempered Langevin algorithm of [67],

would be effective. A candidate that makes use of the mode would be the ratio

f(@)

Fx®) which is always bounded below by one. Taking the logarithm of both

1)
Fx®)

sides of the inequality 1 < and adding one results in the same expression
as 4.13. In practice, the mode in expression 4.13 can be found using any of
a host of numerical optimization procedures, such as the Nelder-Mead method
used for the acceptance sampler above.

To make the step size appropriate for a given target density, both the pro-
posal variance and the step size function hA(Z, X (t)) must be scaled correctly.
In the standard Metropolis adjusted Langevin algorithm, the variance of the
proposal has the form wl, so that it is constant for each component, although
this is not necessary, and varying the proposal variance for different components
is possible. As noted above, the results obtained from the acceptance sampler
show that the different components in the CWD posterior have widely different
standard deviations, in some cases an entire order of magnitude. Consequently,
the diagonal covariance matrix, 32, is kept, but the entries are scaled differently
for each component. This is a less complicated approach than the construction
of the diffusion matrix used for the tempered Langevin algorithm in [67]. The
entries of ¥ must be chosen to ensure that values are not proposed outside of the
parameter space too often. In addition to the proposal covariance, the step size
k must be chosen. The tuning parameter £ is similar to the discretization size
w in algorithm 4.3, and must be chosen to counteract the effects of h(z, X®),
which can take on extremely large values. The parameter k£ can be chosen by

calculating the step size for points throughout the support of the target density,
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and choosing the values of £ to make h as large or as small as desired. This
tuning parameter gives relatively precise control over the minimum step size.
Guidelines for choosing the tuning parameter k£ and the covariance matrix X
are discussed in section 4.3.3. In addition to the proposal covariance, the step
size k must be chosen. The tuning parameter £ is similar to the discretization
parameter w in algorithm 4.3, and must be chosen to counteract the effects of
h(z, XD)

The resulting algorithm is a modification of the tempered Langevin algo-
rithm, and in this thesis it will be called the Modified Adjusted Langevin Algo-
rithm with Tempered Step size (MALTS). The MALTS will be used to simulate

the CWD posterior distribution 3.11.

Algorithm 4.4 (MALTS) Let the current state of the chain be denoted by the
m-dimensional vector Xy and the target density by f(x). Let & denote the mode
of the distribution f. Choose the m entries of the m by m diagonal matriz X,

and tuning parameter k. Let h(Z,y) = kI(log(f(2)) — log(f(y)) +1).

1. Set u(Xy) = Xp + Sudy, where sy = kh(z,X}) is the step size at Xy, and
d, = %, s the unit vector in the direction of the gradient at X;.
If Vog(f(X,)) =0, then set d,, = 0.

2. Generate Y ~ N(u(X;),X).

3. Let u(Y)=Y + syd; be calculated as is step 1.

_F(Y) exp(=0.5+(Xs—p(Y)) TS (X —p(Y)))
4 Let o( X4, Y) = 357 axp(c0(v —p (X)) TS u(50))

5. With probability min(c, 1), set X' =Y. Otherwise, set X;11 = X;.

89



Convergence of algorithm 4.4 to stationarity can be established by demon-
strating that it is a special case of the Metropolis-Hastings algorithm. The
relationship between the target density and the conditional proposal distribu-
tion in the algorithm 4.1 must be established. Basic convergence to the target

distribution is stated in the following theorem:

Theorem 4.3.1 Let u(x) and X be defined as above in algorithm 4.4. Then,
if the log of target density f has a connected support contained by the set of
real numbers, and continuous first partial derivatives throughout its support, the

Markov chain produced by 4.4 will converge to the stationary distribution f.

PROQOF: The continuous first partial derivatives are necessary to ensure the
existence of the gradient throughout the support of the target density. The
gradient is used in determining the direction of the proposal value. The unnor-

malized conditional density in algorithm 4.1 is given by:
g(z]y) = exp(=0.5* (Y — u(X)) " 271 (Y — pu(Xy))) (4.14)

This is the kernel of an m-dimensional multivariate normal distribution, with
support R™.

Recall that a set A is connected if every two points 21,20 € A can be con-
nected by a piecewise smooth curve entirely contained within A. The connected
support of the target density is not absolutely necessary, but this condition
avoids many mathematical and practical difficulties, so it is assumed here [64].
Let supp(f) denote the support of the target density f. If supp(f) € R™, then
convergence of the Markov chain produced by algorithm 4.4 to the correct sta-

tionary distribution is ensured by theorem 4.1.1. [J
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If the target density is a mixture of both discrete and continuous compo-
nents, then 4.4 could be only be applied to the continuous components, since
the gradient would not exist for the discrete components. Theorem 4.3.1 ensures
the basic convergence to stationarity for algorithm 4.4. For a given target den-
sity, however, actual convergence rates will depend on the values of the elements
of ¥ and the specific characteristics of the target density. Since the algorithm
suppresses the random walk behaviour of the chain by proposing, on average,
in an uphill direction, performance will in general be better than the standard
random walk as the number of dimensions increases [28, 64].

The MALTS algorithm, like the MALA, uses the gradient information to
pick a direction for the proposed value. These algorithms are more likely to
accept proposed values than the standard random walk, because the standard
random walk generates a candidate state by adding symmetrically distributed
noise about the current state, which is tantamount to searching for high proba-
bility regions at random. On the other hand, Langevin type algorithms modify
the search by biasing the proposal distribution in favor of candidate states that
lie in directions of higher probability. This difference is clear demonstrated by
a simple univariate example. Figure 4.6 shows a normal distribution with the
candidate state labeled X. A standard random walk is equally likely to generate
a proposal value to the right as it is to the left of the current value. However,
the values slightly to the left are more likely to be accepted. This effect be-
comes more noticeable as the dimension of the target density increases, because

the probability of the standard random walk choosing a direction with higher
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density values diminishes as a result of the “curse of dimensionality”.

Figure 4.6: Univariate normal density with mean zero, variance three. A
current state is labeled X. The higher probability area is to the left of the
current state, lower probability areas are to the right.

Note that if a target density is flat, as with a uniform distribution, then
the gradient vector will be zero. In such a case, the proposal direction will
be the zero vector, so that the proposal mechanism in algorithm 4.4 reduces
to a standard random walk. With a locally flat density the gradient contains
no information about regions of higher probability, but the algorithm will still
function.

Given the similarities with the tempered Langevin diffusion [67], the conver-
gence of the chain produced by this algorithm may be better than the unheated
Langevin algorithm 4.3. An empirical study of the algorithm is performed in
section 4.3.4. Further results on the theoretical convergence properties for algo-

rithm 4.4 are necessary.
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MALTS is essentially a random walk with a “smart” proposal step, which
makes use of the gradient information while removing potential instabilities in
the gradient. Additionally, because of the properties of h(Z, X;), the chain will
take larger steps in areas of low probability, and smaller steps in areas of high
probability. However, the algorithm requires at least some knowledge of the
mode of the target density, which will often require the use of computation-
ally intensive optimization procedures before the method can be implemented.
Finding the mode of the target distribution can become quite difficult as the
number of dimensions increases. Additionally the algorithm can have a compar-
atively large number of parameters— the m entries of the diagonal matrix ¥ and
the constant k£ for an m-dimensional distribution. This added complexity does
provide the benefit of giving the algorithm more freedom to explore complicated
target densities. It should be noted, however, that like the MALA (4.3), the
MALTS algorithm (4.4) can be defined to require a single tuning parameter, as
> can be chosen to be identity matrix.

The complexity of the MALTS algorithm is comparable to the MALA. If the
gradient is approximated numerically, then for each iteration, both algorithms
require 2m + 1 evaluations of the density function for an m-dimensional target
distribution. By contrast, the random walk algorithm requires only one density
evaluation per iteration. Each iteration of the standard random walk algorithm
will therefore require less time than either the MALTS or MALA. The advantage
of algorithm 4.4 or the MALA over a standard random walk is that the standard
random walk can require an extremely large number of iterations to converge to

stationarity [58, 9, 64].
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4.3.3 Tuning the MALTS Algorithm

The considerations in choosing the tuning parameters for the MALTS algo-
rithm are the same as those for other methods. For bounded densities, the tuning
parameter k in algorithm 4.4 must be chosen to prevent the chain from frequently
proposing values that lay outside the parameter space. For unbounded densities,
k and ¥ must be chosen to ensure sufficient exploration of the parameter space.
The dynamic step size h must be also be considered, and the tuning parameter
k must balance the behaviour of the step size equation A.

The variances of the prior distributions are generally easy to calculate and
make convenient choices for the entries of the proposal variance matrix . An-
other natural choice for the elements of ¥ are the preliminary estimates of the
marginal posterior variances. Since the MALTS algorithm requires the calcula-
tion or approximation of the mode of the target density, this information can
be conveniently used in the choice of the tuning parameters. The inverse of the
Hessian matrix of the log-posterior density, evaluated at the mode, provides an
analytical approximation of the posterior covariance matrix. The values of the
approximate covariance matrix can then be used to choose the values of the
matrix 3. If desired, ¥ can be diagonal.

Using either the prior marginal variances or the posterior marginal variances
alone may lead to step sizes that are too large or too small. Consequently, the
matrix > may need to be increased or decreased. This is especially important
for bounded densities, since an efficient Markov chain sampler should most often
propose values that lie within the support of the target density. If h(%, x) is easy

to maximize on the support of the target density, then an upper bound for the
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step size can be established, to aid in choosing the tuning parameter k. A simple
alternative is to calculate h(z,z) for several points in low probability areas on
the support of the target density, and then scale the values of the step matrix
to achieve a particular step size.

A common consideration when choosing tuning values for Markov chain
simulations is the acceptance rate— the proportion of proposed moves that are
accepted. A low acceptance rate can indicate that the step size is too large,
since for many densities, a large move is extremely unlikely to be accepted
[25, 64]. A smaller step size typically leads to a larger acceptance rate, since
proposed moves that are extremely close to the current state are very likely to
be accepted. As an example, as the step size w in the Langevin algorithm 4.6
approaches zero, the discrete Langevin random walk approaches the continuous
time Langevin diffusion, in which moves are always accepted. While a high
acceptance rate indicates that the chain is making more moves, the small step
size has the drawback of causing the chain to move about the parameter space
very slowly.

There is some theoretical justification for an acceptance rate in the range
[0.15,0.5]. These values are based on limiting acceptance rates for high dimen-
sional densities, and will be discussed in section 4.3.4. If possible, the value of
the tuning parameter k£ should be adjusted to achieve an acceptance rate in this
range. Theoretical studies of the Metropolis adjusted Langevin algorithm have
indicated that the optimal acceptance rate for the MALA is near 0.5 [64, 28].
Thus the optimal acceptance rate for the MALTS algorithm 4.4, may be near
0.5 as well.
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4.3.4 Test Scenarios with Known Densities

Fundamentally, a Markov chain algorithm needs to accurately simulate the
correct target density, or at least a good approximation to it. This can be
checked both theoretically, as in theorem 4.3.1, and empirically. Once there is
confidence that a method will produce the target density, there are questions
of performance. The MALTS algorithm will be tested on a simple truncated
bivariate normal distribution, to empirically demonstrate the results of theo-
rem 4.3.1 on a simple target density. An experiment will then be conducted to
compare the performance of MALTS, MALA, and the standard random walk.

A simple test of accuracy can be performed by using the MALTS algorithm
to sample a density with known parameters. The normal distribution truncated
to [0, 1], with mean (0.5,0.5) and covariance chosen so that the majority of the
density is concentrated around the mode of the distribution, provides an oppor-
tunity to test algorithm 4.4 on a bounded density with known parameters. The
concentration of the density 4.7 around the mode and the bounded parameter
space are features similar to those possessed by the posterior distribution 3.11 in
the Chronic Wasting Disease model. Figure 4.7 shows the graph of a truncated
normal distribution, centered at (0.5,0.5)T, with covariance matrix 0.001 * I.

The truncated normal distribution shown in figure 4.7 is simulated using
algorithm 4.4. Four chains are run, with four initial values chosen to be dispersed
about the parameter space. These starting points are: (0,0), (0.7,0.1), (0.1,0.7),
and (0.9,0.9). The proposal variance for the MALTS algorithm was a diagonal

matrix with the step size 1 x 10719 for each variable, and the tuning parameter

96



Figure 4.7: The bivariate normal distribution truncated on [0, 1] with mean
(0.5,0.5)T and covariance 0.001 x 1.
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was also k = 1x1071°. The results of the simulation are shown in figure 4.8. The
majority of the points are concentrated around the mode of the target density,
providing graphical evidence that the method has sampled the correct density.

The potential scale reduction is a comparison of the variance between runs
and within runs, denoted by \/]T% This diagnostic is used to assess the conver-
gence of a Markov chain simulation to stationarity [24]. This measure should
decrease to one as the number of iterations increases for all parameters of in-
terest. The potential scale reduction is calculated using the fours runs of the
MALTS algorithm, and the plot of the statistic \/E versus iterations is shown
in figure 4.9. The graph shows the potential scale reduction decreasing to one as
the number of iterations increases, giving evidence that the simulated Markov
chain is reaching approximate stationarity. A common rule of thumb for the
potential scale reduction is that it should be less than 1.2 for each parameter,
which occurs within 2000 iterations, indicating that this is an acceptable burn-
in period. Additionally, the posterior means averaged over all four runs and
adjusted for a 2000 iteration burn-in period were 0.5010 for #;, and 0.5001 for
fy. The 95% Bayesian credible intervals averaged over all four simulations are
(0.4925,0.5110) and (0.4840,0.5010), indicating that algorithm 4.4 was able to
recover the correct parameters. Having determined the basic accuracy of algo-
rithm 4.4, a comparison of the relative performance of the MALTS algorithm
versus the standard random walk and the MALA is needed.

Having determined the basic accuracy of the MALTS algorithm, the next
step is to compare the performance of the algorithm with other methods, in

particular the standard random walk and the Metropolis adjusted Langevin al-
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Figure 4.8: Pairwise plots of the mean parameters #; and 65 for the truncated
normal distribution with true mean (0.5,0.5)7 and true covariance 0.001 . (a)
shows 8, 000 iterations for the initial value (0,0)”. (b) shows 8,000 iterations for
the starting value (0,0.001)7. (c) shows 8,000 iterations for the starting value
(0.3,0.4)T. (d) shows 8,000 iterations for the starting value (0.1,0.8)T.
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Figure 4.9: Plots of the log potential scale reductions by thousand iterations
for the mean parameters #; and 6, for the MALTS simulation of the truncated
normal distribution. The solid line shows the results for 6;, the dotted line shows
the results for 6,.
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gorithm. There are a number of criteria for assessing the performance of a
Markov chain simulation, including run time, convergence to stationarity, con-
vergence to independent sampling, and mixing speed. The relative importance
of the different criteria is not widely agreed upon in the literature. For this the-
sis, the most important quality is the number of iterations that the algorithm
requires to converge to stationarity. Secondly is how well the algorithm mixes.
Thirdly is the amount of time required to run the algorithm.

Theoretical results on optimal algorithm performance thus far have centered
on two questions: what is the optimal step size, and how well does the algorithm
perform at this step size. Results on these two questions are limited for more
complex algorithms, and rely on simplifying assumptions such as independence
of components or identically distributed components for an m-dimensional target
density. Theoretical results examine the limiting behaviour as m diverges to
infinity.

Under the assumption of independent components, the step size of the stan-

dard random walk scales with the dimension as m™!

, and leads to an limiting
acceptance rate of 23% as m — oo [64, 9, 28]. By contrast, the Langevin algo-
rithm has a step size that scales as m~'/3, and leads to a limiting acceptance rate
of 57% [9, 65, 66, 28]. The higher acceptance rate for a larger step size indicates
that the Langevin algorithm is moving about the parameter space more than
the standard random walk.

There is no theory for more complicated scenarios, such as sampling multi-

variate distributions with correlated components. In such cases empirical meth-

ods are used to compare algorithms [28]. One common approach is to fix the
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step size and examine the acceptance rates for different algorithms. For a given
step size, a higher acceptance rate is an indication that an algorithm is making
more moves about the parameter space, and consequently is mixing better than
an algorithm with a lower acceptance rate. The acceptance rate is only a rough
measure of how well a chain is mixing, but large differences in the acceptance
rate would indicate differences in the mixing speed.

To compare the performance of the MALTS, MALA, and standard ran-
dom walk, an experiment was performed to compare both the mixing speed and
the convergence to stationarity of each algorithm. This experiment examined
a bounded and an unbounded group of distributions. The bounded group of
distributions were multivariate normal distributions truncated to the unit cube.
The unbounded group of distributions were highly correlated multivariate nor-
mal distributions. These distributions form a reasonable test bed, as they have
been used by many authors as prototypical target distributions (see, for example,
[28, 25]). For each distribution within a group, 80,000 iterations of a Markov
chain simulation were run from five randomly chosen initial values, using the
standard random walk, the MALA, and the MALTS algorithm. Each method
used multivariate updating, rather than univariate, so that at each iteration, all
of the components were updated. The potential scale reduction was calculated
for the first and second components and for the variance of the first and sec-
ond components using the five chains for each simulation method to assess the
convergence to stationarity, both in terms of the number of iterations and the
amount of time. Additionally, the acceptance rate was calculated to determine

how well the chains produced by each simulation method were mixing.
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For the truncated normal distributions, the components were independent,
each with mode 0.89. Truncated normal distributions provide a classic case of
a bounded density. The variance of the first component was set at 1 x 103,
and the variance of the remaining components was set at 1 x 10~°. Four sets of
simulations of increasing dimension were run within this group. In increasing
order, the dimensions were 2, 6, 12, and 36, and the step size parameter was
fixed at 1 x 1072 for each method. The acceptance rates for each simulation are
given in appendix A. The results for the simulation show the standard random
walk and MALTS algorithms produced comparable acceptance rates for each
dimension. This is evidence that both methods are mixing reasonably well. Both
the standard random walk and the MALTS algorithm have higher acceptance
rates than the MALA for all dimensions (nearly 5% higher), indicating that these
methods are accepting more proposed moves, and consequently exploring more
of the parameter space. While the acceptance rate for the MALTS algorithm
is slightly higher the acceptance rate for the standard random walk for each
dimension, the differences are small, and may not be practically significant.

Figures 4.10 and 4.12 show the plot of the log potential scale reduction ver-
sus iteration for each method for the first component, with variance 1 x 1073,
and the second component, with variance 1 x 107°, for the two dimensional
and 36 dimensional simulations. For both components, first order convergence
to stationarity for the MALA and MALTS algorithms occurs in fewer itera-
tions than the standard random walk. The MALA converges in fewer iterations
than algorithm 4.4 for the first component, but the two algorithms performance

is nearly identically for the second component. The results for second order
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convergence, shown in figure 4.11 and 4.13, are similar. For the truncated nor-
mal distribution, algorithm 4.4 thus appears to provide a middle ground, with
convergence to stationarity comparable to the Langevin algorithm 4.3 in fewer
iterations than the standard random walk, and a mixing speed better than the
Langevin algorithm and comparable to the standard random walk.

An important consideration when comparing algorithms is the amount of
time it takes to run the algorithm. For the two dimensional truncated normal
simulation, the random walk simulation requires an average of 5.0 x 10~* sec-
onds for each iteration, compared to 23.0 x 10~* seconds for the Langevin and
MALTS algorithms. Figure 4.14 shows the plot of the log potential scale reduc-
tion versus seconds for each method for the two dimensional truncated normal
distribution. The longer time per iteration results for the MALTS algorithm
results in a longer amount of time to reach convergence for the first component.
The standard random walk and MALA reach stationarity in a much shorter
amount of time. For the second component, however, the MALTS and MALA
clearly reach stationarity faster than the standard random walk. Figure 4.15
shows the results for second order convergence, which are similar. The results
are almost the same for the 36 dimensional simulation, shown in figures 4.16 and
4.17. The longer per iteration time of 24.0 x 10~* for the MALTS and MALA
clearly has a significant impact, but only on the order of seconds. The fewer
iterations required by the derivative using methods (MALA and MALTS) will

result in fewer wasted iterations, requiring less memory resources for a usable
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Figure 4.10: Plots of the log potential scale reductions by hundred iterations
for the parameters #; and 6, for the the simulation of the 2 dimensional truncated
normal distribution. The solid line is the MALTS algorithm, the dash-dot is the
Langevin algorithm, and the dotted line is the standard random walk. (a) shows

the results for ;. (b) shows the results for 6.
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Figure 4.11: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters #; and 6, for the the simulation of the 2 dimen-
sional truncated normal distribution. The solid line is the MALTS algorithm,
the dash-dot is the Langevin algorithm, and the dotted line is the standard
random walk. (a) shows the results for 6;. (b) shows the results for 6.
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Figure 4.12: Plots of the log potential scale reductions by hundred iterations
for the parameters 6; and 6, for the the simulation of the 36 dimensional trun-
cated normal distribution. The solid line is the MALTS algorithm, the dash-dot
is the Langevin algorithm, and the dotted line is the standard random walk. (a)
shows the results for 6;. (b) shows the results for 6.
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Figure 4.13: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters #; and 6y for the the simulation of the 36
dimensional truncated normal distribution. The solid line is the MALTS al-
gorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
ztandard random walk. (a) shows the results for #;. (b) shows the results for
2.
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Figure 4.14: Plots of the log potential scale reductions by time for the pa-
rameters 6; and 6, for the the simulation of the 2 dimensional truncated nor-
mal distribution. The solid line is the MALTS algorithm, the dash-dot is the
Langevin algorithm, and the dotted line is the standard random walk. (a) shows

the results for ;. (b) shows the results for 6.
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Figure 4.15: Plots of the log potential scale reductions by time for the variance
of the parameters #; and 6, for the the simulation of the 2 dimensional truncated
normal distribution. The solid line is the MALTS algorithm, the dash-dot is the
Langevin algorithm, and the dotted line is the standard random walk. (a) shows
the results for ;. (b) shows the results for 6.
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Figure 4.16: Plots of the log potential scale reductions by time for the pa-
rameters 6; and 6, for the the simulation of the 36 dimensional truncated nor-
mal distribution. The solid line is the MALTS algorithm, the dash-dot is the
Langevin algorithm, and the dotted line is the standard random walk. (a) shows

the results for ;. (b) shows the results for 6.
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Figure 4.17: Plots of the log potential scale reductions by time for the variance
of the parameters #; and 6, for the the simulation of the 36 dimensional truncated
normal distribution. The solid line is the MALTS algorithm, the dash-dot is the
Langevin algorithm, and the dotted line is the standard random walk. (a) shows
the results for ;. (b) shows the results for 6.
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sample.

For the multivariate normal distribution, the components were chosen to be
highly correlated. Each distribution had a mean of zero and covariance (1—p)Iy+
pJ, where the matrix Iy is the k-dimensional identity, Ji is a matrix of all ones,
and p is the correlation between parameters. Three levels of correlation were
examined, p = 0.879, 0.970, and 0.992. These are the same correlation levels
examined in [28]. For each of these correlation values, four sets of simulations
were run, with dimensions 2, 6, 12, and 36. Three step size parameters were
used for each method, 1 x 107%, 1 x 107%, and 1 x 10~2. Additionally, for the
correlation level of p = 0.992 and step size of 1 x 10~°, simulations were run with
dimensions 64, 144, 200, and 300. The acceptance rates for all of the simulations
are given in appendix A.

For the step size 1 x 1075, correlation p = 0.879, there is little difference in
the acceptance rates, as shown in table A.2. At this correlation level, each of the
methods has an acceptance rate above 95% for each dimension. This indicates
that, at this level of comparison, all of the methods are mixing at approxi-
mately the same speed, and accepting roughly the same number of proposals.
However, the graphs of the log potential scale reductions by iteration, shown in
figures 4.18, 4.20, and 4.26, show differences in the number of iterations in which
the methods converge to stationarity, especially for the first component. For the
two dimensional simulation, with p = 0.879, the MALTS algorithm converges
to stationarity in far fewer iterations than the Langevin and standard random
walk, as shown in figure 4.18. As the dimension increases to 36 (figure 4.20),

the MALTS algorithm still requires fewer iterations to converge than the other
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two algorithms. For second order convergence, shown in figures 4.19 and 4.21,
the results are similar, although the differences are less noticeable.

For the two dimensional simulation, the standard random walk requires 3.0 x
10~* seconds per iteration, compared to 8.0 x 10~* for the MALA and 9.0 x 10~*
for the MALTS algorithm. In spite of the longer time per iteration required by
the MALA and MALTS method, the performance of the three algorithms is
similar. The plot of the log potential scale reduction versus time is shown in
figure 4.22. The graphs for both the first and second parameters are very similar,
and show little differences between the algorithms. The graphs for second order
convergence, or convergence of the second moments, shown in figure 4.23, show
that the standard random walk and MALTS methods take less time to converge
than the MALA. Increasing the number of dimensions to 36 produces similar
results, although the shorter time per iteration should give the standard random
walk a distinct advantage. The standard random walk requires 3.1x10~* seconds
per iteration, while a single iteration of the MALA requires 8.2 x 10~* seconds
and the MALTS algorithm requires 9.2 x 10~ seconds per iteration. Figures 4.24
and 4.25 show the plots of the log potential scale reduction by time, which
indicate that the three algorithms converge at approximately the same rate.
For the second order convergence shown in figure 4.25, the differences are barely
noticeable.

Increasing the level of correlation has a noticeable effect on the differences
between the algorithms. This is demonstrated in figures 4.26 and 4.27, which
shows that with correlation of 0.992, there is a noticeable effect on the potential

scale reduction of the second component for the MALTS and MALA algorithms.
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Figure 4.18: Plots of the log potential scale reductions by hundred iterations
for the parameters 6, and 6 for the the simulation of the two dimensional normal
distribution, with correlation p = 0.879 and step size 1 x 107°. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6,.
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Figure 4.19: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters #; and 6, for the the simulation of the two
dimensional normal distribution, with correlation p = 0.879 and step size 1 X
1075. The solid line is the MALTS algorithm, the dash-dot is the Langevin
algorithm, and the dotted line is the standard random walk. (a) shows the
results for #;. (b) shows the results for 6.
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Figure 4.20: Plots of the log potential scale reductions by hundred iterations
for the parameters 6; and 5 for the the simulation of the 36 dimensional normal
distribution, with correlation p = 0.879 and step size 1 x 1075, The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6.
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Figure 4.21: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters #; and 6y for the the simulation of the 36
dimensional normal distribution, with correlation p = 0.879 and step size 1 X
1075. The solid line is the MALTS algorithm, the dash-dot is the Langevin
algorithm, and the dotted line is the standard random walk. (a) shows the
results for #;. (b) shows the results for 6.
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Figure 4.22: Plots of the log potential scale reductions by time for the parame-
ters #; and 6 for the the simulation of the two dimensional normal distribution,
with correlation p = 0.879 and step size 1 x 1075, The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for #;. (b) shows the results for
0.
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Figure 4.23: Plots of the log potential scale reductions by time for the variance
of the parameters 6; and 6, for the the simulation of the two dimensional normal
distribution, with correlation p = 0.879 and step size 1 x 1075, The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6.
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Figure 4.24: Plots of the log potential scale reductions by time for the param-
eters #; and 6 for the the simulation of the 36 dimensional normal distribution,
with correlation p = 0.879 and step size 1 x 1075, The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for #;. (b) shows the results for
0.

121



@

N

log(Rhat)
o I = I Iy I
[} o] = N S (o2} ©
T == T T T T
1 1 1 1

I
~

0.2

0 5 10 15 20 25 30
Time (s)

(b)

N

log(Rhat)

o PR e
[e¢] [ N > o 2]
T T T T T T
1 1 1 1 1 1

o
(=2
T
1

0 5 10 15 20 25 30 35 40
Time (s)

Figure 4.25: Plots of the log potential scale reductions by time for the variance
of the parameters #; and 6, for the the simulation of the 36 dimensional normal
distribution, with correlation p = 0.879 and step size 1 x 1075, The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6.
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The plot of the log potential scale reduction by iteration for the standard random
walk does not decay to zero as completely as it does for the other methods. The
standard random walk experiences difficulties with second order convergence,
although the time advantage of the standard random walk by iteration becomes
more apparent at the higher correlation level.

The acceptance rates for each algorithm remain quite high at this step size
and correlation level p = 0.992. As the dimension increases, differences in the
acceptance rates become more apparent. Simulations conducted at a correlation
of 0.992 for dimensions 64, 144, 200, and 300 begin to highlight the differences
between the algorithms. Figure 4.30 shows the graphs of the log potential scale
reductions for the 200 dimensional normal distribution simulation. As the num-
ber of iterations increases, log(\/IT%) decreases rapidly for 6, for both the MALA
and the MALTS algorithms, compared to the standard random walk. For the
parameter 5, the log potential scale reduction factor for the MALA decreases
more rapidly than the standard random walk, and then appears to experience
difficulties, flattening out as the number of iterations increases. The log poten-
tial scale reduction factor of 6, for the MALTS algorithm also initially decreases
faster than the standard random walk, but unlike the MALA, it continues to
decrease as the number of iterations increases. By this measure, the MALTS
algorithm is clearly reaching stationarity in fewer iterations than the other two
methods. The time advantage of the standard random walk disappears at the
higher dimension, as demonstrated in figure 4.31.

For the higher dimensional distributions, there is a difference in the accep-

tance rates as well. As the number of dimensions is increased from 36 to 64,
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Figure 4.26: Plots of the log potential scale reductions by hundred iterations
for the parameters #; and 6, for the the simulation of the 36 dimensional normal
distribution, with correlation p = 0.992 and step size 1 x 107°. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6,.
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Figure 4.27: Plots of the log potential scale reductions by time for the param-
eters #; and 6 for the the simulation of the 36 dimensional normal distribution,
with correlation p = 0.992 and step size 1 x 1075, The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for #;. (b) shows the results for
0.
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Figure 4.28: Plots of the log potential scale reductions by hundred iterations
for the variance of the parameters #; and 6y for the the simulation of the 36
dimensional normal distribution, with correlation p = 0.992 and step size 1 x
1075. The solid line is the MALTS algorithm, the dash-dot is the Langevin
algorithm, and the dotted line is the standard random walk. (a) shows the
results for #;. (b) shows the results for 6.
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Figure 4.29: Plots of the log potential scale reductions by time for the variance
of the parameters #; and 6, for the the simulation of the 36 dimensional normal
distribution, with correlation p = 0.992 and step size 1 x 1075, The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6.
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Figure 4.30: Plots of the log potential scale reductions by hundred iterations
for the parameters #; and 6, for the the simulation of the 200 dimensional normal
distribution, with correlation p = 0.992 and step size 1 x 107°. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the

results for 6,.
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Figure 4.31: Plots of the log potential scale reductions by time for the param-
eters 01 and 0, for the the simulation of the 200 dimensional normal distribution,
with correlation p = 0.992 and step size 1 x 1075, The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for #;. (b) shows the results for
0.
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the acceptance rates drop significantly, from above 95% for each method to
88.7%, 88.0%, and 85.1% for the standard random walk, MALTS, and MALA,
respectively. Importantly, as the number of dimensions is increased further, the
acceptance rate for the standard random walk decreases, while the acceptance
rates for the MALA and MALTS hold steady. The increased dimension has less
of an impact on the Langevin type algorithms. Figure 4.32 shows the plot of
the acceptance rate versus dimension. All three simulation methods experience
a noticeable decline in the acceptance rate as the dimension is increased from
36 to 64, from above 95% to less than 90%. Importantly, as the dimension is
increased further, the acceptance rate for the standard random walk continues
to decline, while the acceptance rates for the MALA and MALTS algorithms
remain steady at 85% and 88%, respectively. This indicates that the increased
dimension is having less of an impact on the mixing of the MALA and MALTS
algorithms.

The small step size of 1 x 10~ causes nearly every proposal to be accepted.
The slightly lower values for the acceptance rates of the MALA and MALTS
algorithms are because the chains produced by these methods will on average
take larger steps for a fixed step size parameter than the standard random walk.
Recall that the h(Z,z) in algorithm 4.4 has a minimum value of one, so that
the step size parameter of 1 x 107° is the smallest step size that is proposed. A
similar characteristic exists for the MALA, where the actual step size depends
on the magnitude of the gradient at the current state. Increasing the step size
by a factor of ten to 1 x 10~* results in a decrease in the acceptance rates,

given in appendix A. While the standard random walk has a higher acceptance
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Figure 4.32: Plots of the acceptance rates by dimension for the multivariate
normal simulation with correlation p = 0.992 and step size 1 x 107°. The solid
line is the MALTS algorithm, the dash-dot is the Langevin algorithm, and the
dotted line is the standard random walk.
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rate than the MALA and MALTS, the three methods are within 3% of each
other, indicating that they are mixing at about the same rate. The number of
iterations required for convergence, shown in figure 4.33, is again less for the
MALA and MALTS algorithms than for the standard random walk, although
the differences are slight. The plot of the log potential scale reduction versus
time in figure 4.34, shows that at this step size the three methods are equally
fast. Both the mixing speed and the speed of convergence are nearly equal for
the step size of 1 x 107

For the sake of comparison, the step size was increased to 1 x 1072. The
larger step size results in a decrease in the acceptance rate of about 10% for each
method. Figure 4.35 shows the plot of the log potential scale reduction versus
number of iterations for the parameter #; and the variance of the parameter 6;.
The graphs show that the MALTS and MALA methods achieve first and second
order convergence in fewer iterations than the standard random walk. The time
plots in figure 4.36 show that the three methods take about the same amount
of time to reach first order convergence, while the MALA and MALTS methods
achieve second order convergence faster than the standard random walk. Thus
the derivative using methods (MALA and MALTS) converge to stationarity at
the same rate or faster than the standard random walk, and with fewer wasted
iterations.

These experiments provide a brief examination of the comparative mixing
and convergence properties of the standard random walk, Metropolis adjusted
Langevin algorithm, and Modified adjusted Langevin algorithm with tempered

step size. A more in depth study, such as that in [28], would better quantify the
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Figure 4.33: Plots of the log potential scale reductions by hundred iterations
for the parameters 6; and 5 for the the simulation of the 36 dimensional normal
distribution, with correlation p = 0.992, and step size 1 x 10~%. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for #;. (b) shows the
results for 6.
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Figure 4.34: Plots of the log potential scale reductions by time for the param-

eters #; and 6 for the the simulation of the 36 dimensional normal distribution,

with correlation p = 0.992, and step size 1 x 10~%. The solid line is the MALTS

algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the

ztandard random walk. (a) shows the results for #;. (b) shows the results for
2.
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Figure 4.35: Plots of the log potential scale reductions by hundred iterations
for the parameters #; and 5 for the the simulation of the 36 dimensional normal
distribution, with correlation p = 0.992, and step size 1 x 10~2. The solid line is
the MALTS algorithm, the dash-dot is the Langevin algorithm, and the dotted
line is the standard random walk. (a) shows the results for 6;. (b) shows the
results for the variance of 6.
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Figure 4.36: Plots of the log potential scale reductions by time for the param-
eters 0, and 6, for the the simulation of the 36 dimensional normal distribution,
with correlation p = 0.992, and step size 1 x 1072, The solid line is the MALTS
algorithm, the dash-dot is the Langevin algorithm, and the dotted line is the
standard random walk. (a) shows the results for #;. (b) shows the results for
the variance of 6.
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differences between the three algorithms, as well as better explain the effect of
correlation, step size, and dimension on the convergence rate, and is reserved for
future work. However, the results here indicate that algorithm 4.4 will perform
at least as well as the MALA and standard random walk, and for some target
densities the MALTS method will outperform these competitors. It should be
noted that these experiments used numerical approximations of the gradient
in the MALA and MALTS algorithms, which requires log posterior evaluations
and slows down the algorithm. Use of the analytical gradient will speed up the
algorithms, making them closer competitors with the standard random walk.
4.3.5 Implementation for the CWD Model

Having determined the potential effectiveness of algorithm 4.4, the next step
is to implement the method on the Chronic Wasting Disease model. It can easily
be checked that the target density for the CWD model satisfies the requirements
of theorem 4.1.1, since the posterior is continuous, and has the six dimensional
unit cube for its support, which is both connected and contained in the set R.
Hence the Markov chain produced MALTS algorithm for the posterior density
in the CWD model will theoretically converge to its stationary distribution.

The correlation between the parameters in the CWD model was exploited
by employing a blocking strategy. Again, because the variable 7 is independent
of the others, it is not included in the Markov chain simulation. Because of the
strong interdependencies between the parameters, a single block of six variables
was used to update the chain at each iteration.

Moving all six parameters at once can slow the mixing of a Markov chain, but

the correlation among the parameters and the use of the gradient information
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to guide the chain (step 1 in 4.4) compensates for the curse of dimensionality,
since proposed values will tend to be in directions of higher probability than
the current state. Langevin-type algorithms are known to perform better, both
empirically and analytically, in higher dimensions than the standard random
walk [64, 67, 71].

Algorithm 4.4 requires the calculation of the gradient. For simplicity, a
first order, one-sided Euler approximation is used, rather than the analytical
gradient. Because the posterior distribution for the CWD model is non-zero
only within the six dimensional [0, 1] cube, the algorithm rejects values outside
of this space, since the acceptance probability will be zero. The use of a one-
sided approximation presents a slight problem, since the approximation perturbs
each component to the right, and will produce a value that must be rejected if
any of the parameters have a current value greater than 1 —¢, where € > 0. This
difficulty is overcome by restricting the parameter space to the six dimensional
[0,1) cube, which results in the loss of a set of measure zero, and does not
noticeably affect the simulation.

The step size chosen in step 2 of 4.4 requires the comparison of the posterior
density at the current point X} to the density at the mode. If £(z) is the log of the
posterior function evaluated at z, then the step vector at X, is k(¢(z) — £(X};) +
1), where Z denotes the mode of the posterior. The diagonal elements of the
proposal covariance matrix 3 were chosen to independently scale the variance for
each component of the parameter vector @. Both £ and ¥ are chosen to prevent
the frequent proposal of values outside the support of the parameter space. This

was done by calculating the step size at several points in the parameter space
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and adjusting £ and X as necessary. For the CWD model, the non-zero diagonal
components of ¥ are 1 x 10~? time the variances of the prior distributions, with
a step size parameter of £k = 1 x 10~°. The small step size was used because of
the erratic behaviour of the gradient, and it is not known if these are the optimal
values. The code is given in appendix C section C.4.4. Tuning guidelines are
discussed in section 4.3.3.

4.4 Performance of the Markov Chain Sampler

The Markov chain sampler was run using Matlab, version 6, on a machine
with a 2.2Ghz Pentium 4 processor, with 2GB RAM. The machine was the same
machine as that used to run the acceptance sampler. The Markov chain simu-
lation was significantly faster than the acceptance sampler, completing 300,000
iterations in one hour and 15 minutes. To assess the performance of the Markov
chain sampler, the generated sample is compared to the sample generated by the
acceptance sampler. As a performance benchmark, the results of algorithm 4.4
are compared to the standard random walk implementation for the CWD model.
The standard random walk simulation took 40 minutes to run on the same ma-
chine on which algorithm 4.4 was run.

There are a number of criteria for determining a suitable stopping value
for a Markov chain simulation [64]. One of the most important is convergence
of the chain to the stationary distribution. Currently, methods such as perfect
sampling rigorously achieve stationarity from the beginning, but these methods
are currently impractical and difficult to apply in most settings [64, 60]. For the
CWD model, convergence will be determined by starting the chain from multiple

starting points and calculating the potential scale reduction discussed and used
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in section 4.3.4, and by the application of graphical methods. Graphical methods
are the easiest to apply, and allow for a qualitative decision on whether or not
a Markov chain has reached stationarity, but the results can be misleading [64].

Figure 4.37 shows the plots of the initial prevalence in DAUs 10 and 4 versus
the iteration. While there does appear to be a small amount of structure in the
graphs, overall they are oscillating around a stable value. The same is true of
the parameters ps o and 7y, shown in figure 4.38. In each case, the marginal chain

seems to have settled into a nearly stationary distribution.
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Figure 4.37: Time plots of the parameters pio and ps for the Markov chain

simulation. (a) shows the plot of pioo by iteration. (b) shows the plot of pso by
iteration.
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Figure 4.38: Time plots of the parameters ps, and 7 for the Markov chain
simulation. (a) shows the parameter p; by iteration. (b) shows the parameter
v by iteration.
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The plots of the parameters a and ¢ versus the iteration, shown in fig-
ure 4.39, are not as comforting as those for the other parameters. There is not
convincing evidence one way or the other to show that the marginal distribu-
tions have reached their stationary state, even though they have run for a total
of 300, 000 iterations. Neither of the plots in figure 4.39 appears to have settled
around a single value, and there appears to be large scale oscillations. However,
these parameters are highly interdependent, as shown by the pairwise contour
plot in figure 3.5 generated by the acceptance sampler. Careful examination of
the step plots of @ and ¢ shows that the large scale behaviour of one parameter
is opposite that of the other. That is, as « trends up, d trends down. It is likely
that the correlation between these two parameters is the reason for the undesir-
able behaviour. The pairwise contour plot of the two, shown in figure 4.40, is
perhaps a better indication of whether or not the chain is close to its stationary.
The pairs plot shows the “banana”— the ridge of high probability in figure 3.5
that was expected for the posterior sample.

The other pairwise plots show the same structure and range as the plots
generated by the acceptance sampler. Figures 4.41 and 4.42 show the contour
plots for the remaining pairs of parameters. These plots show strong similarities
to those produced by the acceptance sampler (figures 3.6 and 3.7), which gives
evidence that the Markov chain is approximating the correct distribution.

The potential scale reduction can alleviate the concerns about the behaviour
of the parameters o and 9, as well as provide a quantified assessment of con-
vergence. A Markov chain simulation was run for 300, 000 iterations from each

of six initial values using both algorithm 4.4 and the standard random walk.
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Figure 4.39: Time plots of the parameters « and ¢ for the Markov chain
simulation. It is not clear from these plots that the chain has reach stationarity.
(a) shows the parameter « versus the iteration. (b) shows the parameter ¢ versus
the iteration.
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Figure 4.40: Contour plot of the dynamic parameters o by § for 250,000
iterations of the Markov chain simulation. The contour plot is extremely close
to the acceptance sampler plot in figure 3.5 and produces the distinctive banana
shaped ridge.
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Figure 4.41: Contour plots produced by 250, 000 iterations of the Markov chain
simulation. The large number of points produces a smoother image than the
contour image produced by the acceptance sampler. (a) shows the parameters
v versus «. (b) shows the parameters 7 versus 0. (c) shows the parameters «
versus pioo. (d) shows the parameters « versus pyp.
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Figure 4.42: Contour plots produced by 250, 000 iterations of the Markov chain
simulation. The large number of points produces a smoother image than the
contour image produced by the acceptance sampler. (a) shows the parameters «

versus pso. (b) shows the parameters py o versus pigo. (c) shows the parameters
P50 versus pioo- (d) shows the parameters ps o versus py .
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The potential scale reduction was calculated every 1,000 iterations and the re-
sults, shown in figure 4.43, alleviate any concerns about convergence raised by
figures 4.39. The rule of thumb for convergence to approximate stationarity is
that the statistic V'R is below 1.2 for each parameter [24], which occurs by 5000
iterations for algorithm 4.4, and does not occur at all for some of the parameters
with the standard random walk. Although the standard random walk produced
300, 000 iterations faster than algorithm 4.4, the potential scale reduction clearly
indicates that this method has not reached stationarity.

Calculation of the potential scale reduction gives evidence that the Markov
chain produced by algorithm 4.4 has converged to its stationary distribution. To
ensure that the chain has converged to the correct distribution, the marginal dis-
tributions produced by the Markov chain sampler are compared to the marginal
distributions produced by the acceptance sampler. The comparisons are done by
means of the non-parametric Kolmogorov-Smirnov Test on the marginal distri-
butions [2, 53]. For both the acceptance sample and the Markov chain sample,
1000 values were drawn at random. For each parameter, the null hypothesis is
that the sample produced by the acceptance sampler and the sample produced
by the Markov chain simulation were drawn from the same continuous distribu-
tion. This is tested against the alternative hypothesis that the two samples were
drawn from different continuous distributions. The results of the Kolmogorov-
Smirnov tests are shown in table 4.1. The smallest p-value is 0.432 for the
parameter psg, so the null hypotheses are clearly supported by these results.

Any differences in the marginal distributions are not statistically significant.
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Figure 4.43: Plot of the potential scale reduction by iteration for each param-
eter. The dashed line shows the results of the standard random walk. The solid
line shows the results for algorithm 4.4. The graphs illustrate both the poor
performance of the standard random walk and the convergence to stationarity
of 4.4. (a) shows the results for pigo. (b) shows the results for pso. (c) shows

the results for pso. (d) shows the results for . (e) shows the results for §. (f)

shows the results for .
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Parameter | K-S Statistic | p-value
P10,0 0.026 0.888
P4,10 0.029 0.794
Ds,0 0.039 0.432

! 0.022 0.969
0 0.029 0.794
v 0.021 0.980

Table 4.1: Values of the Kolmogorov-Smirnov test statistic and the correspond-
ing p-values comparing the acceptance sample with the Markov chain sample
for each parameter.

The potential scale reductions and the results of the Kolmogorov-Smirnov
Tests indicate that the Markov chain produced by algorithm 4.4 has converged
to its stationary distribution, and the marginal distributions produced by the
Markov chain sampler are statistically identical to the marginal distributions
produced by the acceptance sampler discussed in chapter 3. This conclusion
is further supported by comparing the contour plots from the Markov chain
simulation with those obtained by the acceptance sampler. The results of the
Markov chain simulation can therefore be confidently used to analyze the pos-
terior distribution of the Chronic Wasting Disease model.

The 95% credible intervals for the Markov chain simulation are shown in
table 4.2. These intervals are almost identical to those produced by the accep-
tance sampler, shown in table 3.3. This is further evidence that the Markov
chain is producing a good approximation to the target distribution. The mean,

median, and standard deviation of each parameter can also be examined to
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compare them with those obtained by the acceptance sampler. The posterior
estimates and credible intervals are shown in table 4.2. The standard deviations
for the Markov chain sampler are slightly smaller than those for the acceptance
sampler. Visual inspection of the graphs of the parameters versus the iteration
indicates that approximate stationarity occurs at about the 8000th iteration,
so the first 8000 values can be removed from a single run before the posterior
Monte Carlo Estimates are constructed. To better approximate an independent
sample, however, the last 50, 000 iterations of each of the six runs are combined
and the results used as the posterior sample. This is an accepted method of

achieving a nearly independent sample [24, 25].

Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
10,0 1.73 6.34 3.58 3.41 1.28
D40 0.86 3.71 1.92 1.78 0.88
D5,0 0.08 0.78 0.34 0.30 0.28

Q 5.90 20.76 12.27 | 11.96 3.76
) 11.32 21.00 15.24 | 14.96 2.55
04 0.63 1.10 0.85 0.84 0.12

Table 4.2: 95% Bayesian credible intervals and Monte Carlo estimates for pos-
terior density from the Markov chain simulation. All values have been multiplied
by 100.

Algorithm 4.4 works exceptionally well for the Chronic Wasting Disease
model. The MALTS algorithm is significantly faster than the acceptance sam-

pler that was used, and analysis of multiple chains indicates that the chain
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reaches stationarity relatively quickly compared to the standard random walk.
Using the sample generated by the acceptance sampler as a reference, a good-
ness of fit test indicates that the dependent sample produced by the Markov
chain is closely approximating the target distribution. Having built a model
for Chronic Wasting Disease, and designed an efficient sampling mechanism,
the next stage is using the results of the Markov chain sample to analyze the

posterior distribution, and then interpreting the results of the simulation.
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5. Results
5.1 Analysis of the Posterior Estimates

Having generated two samples from the posterior distribution (using both
an acceptance sampler and a Markov chain sampler), the posterior parameter
estimates must be interpreted. This is done using the sample generated by the
Markov chain simulation. Although there is some Monte Carlo error inherent in
using the approximate sample generated by a Markov chain, the large sample
size of 300,000 should mitigate this error. Moreover, since six runs were made
using different initial values, the last 50, 000 iterations of each run were combined
and the results used as the posterior sample. Combining the results from each
run results in a nearly independent sample [24]. The results of the model will
be compared to reasonable expectations for the future behaviour of Chronic
Wasting Disease.

Firstly it must be determined whether or not the model provides a reason-
able fit for the data. This is done by comparing the predicted values with the
actual values from the data. Figures 5.1, 5.2, and 5.3 show fitted prevalence
values, based on the median of posterior sample (depicted by dashed line and
V,) with corresponding 95% frequentist confidence intervals for the prevalences
(dotted line, ). The figure shows that the model provides a reasonable fit to
the data (solid line, o). The five DAUs shown here are those at the heart of
the endemic area, and the data corresponding to the five panels are primarily

responsible for the model form as they carry most of the information in the
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likelihood and hence posterior distribution. The intervals capture nearly all of
the data, and provide assurance that the model is not completely off base.

Figure 5.4 shows the predicted prevalence curve for the DAUs based on the
year by year medians of the prevalence tracks based on the posterior sample.
The curves maintain the sigmoidal shape expected by the logistic equation,
increasing with time toward the median long-term stable state, § = 0.149. This
behaviour is expected from the logistic differential equation model constructed
for prevalence (3.4). This result indicates that the posterior distributions are
retaining the qualitative behaviour of the differential equations. This retention
quality is crucial to the performance of the model. Those DAUs that were
first infected approach ¢ first. Because the spatial mixing term + is greater
than zero, and because every DAU is connected with at least one other DAU
via the relationships in Table 1, all DAUs eventually become infected, and thus
eventually approach the stable state. By design, non-infected DAUs can become
infected only through spatial mixing, an assumption that is in-line with the
current understanding of this and other infectious diseases. Because the disease
is seen over time to be spreading to the non-infected DAUs, the spatial mixing is
effective. Figure 5.4 demonstrates that incorporating spatial dynamics directly
into the model is an effective mechanism.

Figure 5.5 shows the medians (solid line) and 95% credible intervals (dashed
lines) for the prevalence tracks over time for the five endemic DAUSs. The cred-
ible intervals are calculated by drawing a random sample of 25,000 from the
simulated joint posterior, and using each of these parameter values to determin-

istically calculated future prevalence values using equation 3.5. For each year, a
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Figure 5.1: Fitted values and corresponding frequentist confidence intervals for
the proportion of infected deer in the endemic region, based on the component-
wise median of the posterior sample. Depicted are (a) DAU 4, and (b) DAU 5.
Observed prevalences are denoted with o, 95% confidence intervals are denoted
by [] and the predicted value is denoted by V.
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Figure 5.2: Fitted values and corresponding frequentist confidence intervals for
the proportion of infected deer in the endemic region, based on the component
wise median of the posterior sample. Depicted are (¢) DAU 10, and (d) DAU 27.
Observed prevalences are denoted with o, 95% confidence intervals are denoted
by [ and the predicted value is denoted by V.
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Figure 5.3: Fitted values and corresponding frequentist confidence intervals for
the proportion of infected deer in the endemic region, based on the component
wise median of the posterior sample. Depicted are (e) DAU 44. Observed
prevalences are denoted with o, 95% confidence intervals are denoted by [] and
the predicted value is denoted by V.
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Figure 5.4: Predicted prevalences from 1976 to 2250, for all DAUs based on
the median curve based on the posterior Markov chain sample.

95% credible interval is calculated. These intervals are narrowest in that period
where the majority of the data lies (1996-2002) and grow wider as the model
projects further into the future. The model is a simplified representation of
the actual dynamic process, but it provides both a reasonable fit to the data
and predictions for future prevalence that are congruent with current scientific
knowledge of CWD. The steadily increasing trend shown in the graph indicates
that the disease will spread across the state and increase to a maximum sustain-
able level of about 14%. This prediction may seem pessimistic, but considering
that a period of decrease for Chronic Wasting Disease has not yet been observed

in nearly 30 years of monitoring, it is neither unreasonable nor surprising. These
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Figure 5.5: Solid line is the median track for prevalence based on the posterior
Markov chain sample (N = 300,000). Dashed lines represent pointwise 95%
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predictions do not account for any control strategies.

Examination of the posterior credible intervals gives more insight into the
behaviour of the disease as predicted by the model. From a wildlife manage-
ment perspective, the most important parameter is probably the long run disease
prevalence 6. The posterior distribution on § has the median and mode at ap-
proximately 0.148. The estimated 95% credible interval from the Markov chain
sample is (11.3%,21.0%), compared with (4.0%,15.5%) for the prior distribution.
This credible interval is evidence of a non-zero long-run sustainable level for the
disease, and therefore is strong evidence that CWD is unlikely to disappear
naturally from the deer population. This conclusion is graphically depicted in
figures 5.4 and 5.5. Thus, carefully crafted strategies are of critical importance
in order to manage CWD. From what is currently known, the steady increase to
a sustainable level is reasonable, perhaps expected, over the given time frame.
Thus far, the disease has only been observed to increase.

The posterior estimates for the initial prevalence values for DAUs 10, 4, and
5 provide another qualitative check for the model. The posterior mode for the
marginal distribution for the initial prevalence for DAU 10, denoted by pi¢,, is
2.51%, with mean and median 3.58% and 3.41%, respectively, and a correspond-
ing credible interval of (1.68%,5.63%) from the Markov chain sample. The initial
prevalences for DAUs 4 and 5 are given in chapter 4. These results may seem
somewhat high for an initial prevalence value, but it must be considered that
they represent prevalence in 1975, the year before the first data values. Chronic
Wasting Disease had first been diagnosed near Fort Collins, Colorado in 1967

[22], and the disease had eight years to propagate before the first data record.
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Thus a value of 3.41% is not unreasonable, especially considering the proximity
of Fort Collins with DAUs 10, 4, and 5. The prior standard deviation, 0.0298,
is larger than the posterior standard deviation, 0.0238, indicating that the data
is improving the knowledge of the parameter 0.

The main prediction of the model, in terms of the future evolution of Chronic
Wasting Disease, is that, unless drastic and effective control measures are taken,
the disease will continue to march across Colorado. This model corroborates
recent research that indicates current control strategies have been ineffective [69,
14]. This could potentially have a devastating impact on hunting and tourism
in the state.

5.2 Model Validation

The problem of recovering the parameters for a differential equation is in
general ill-posed. For most differential equations, small changes in the data can
lead to large changes in the parameter estimates. Theorems and techniques
for inverse problems are very specialized and applicable only to very specific
problems [83]. Consequently, while the modeling procedure outlined in chapter 3
appears to have worked for the specific CWD model and data, it is unlikely that
it would be applicable for a more general case. Nevertheless, the effectiveness
of the method can be checked by generating data for a simpler variation of the
model, and determining whether or not the parameters can be recaptured. The
MCMC method introduced in chapter 4 can be used to simulate the posterior
distributions for these simpler versions of the CWD model.

A simulation was performed on nine variations of the CWD model. The

spatial structure was a simple three by three rectangular grid, with nine test
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DAU’s, numbered one through nine in the usual left to right, top to bottom
order. Regions were considered neighbors if they shared an edge. The values of
« and 7y were fixed, with @ = 0.10 and v = 0.01. Three sets of initial conditions
were chosen, the first p; o = 0.05, the second p; o = 0.05 and py o = 0.01, and the
third p; o = 0.01. There were also three values of the parameter ¢ for each initial
condition, 0.05, 0.15, and 0.50. These combine to yield nine test cases. These
nine sets of initial conditions were used to deterministically generate twenty
years of prevalence values for each DAU. The number tested, N, was fixed in
each region at 15 for years one to four, 100 for years five to fifteen, and 1000 for
years sixteen to twenty. These prevalence values and the values for N were then
used to generate binomial data for each year and each region. This data was then
used with the same likelihood form and prior distributions that were presented
in chapter 3 to construct a posterior distribution. The prior distributions were
kept the same throughout all 450 simulations for convenience.

For each combination of initial conditions, fifty pseudo-data sets were gen-
erated. For each individual pseudo-data set, algorithm 4.4 was used to simulate
200, 000 iterations of a Markov chain. The fourth group of simulations (see sec-
tion B.4) was used to test the code, and an example from this group was run for
200, 000 iterations. The graphical evidence from this test indicated that approx-
imate stationarity was reached within 50, 000 iterations. Consequently, the first
50,000 iterations were used as the burn-in period for each of the 450 simula-
tions. The fourth group of simulations successfully captured the true parameter

values, and will be discussed below.
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Algorithm 4.4 requires the value of the log-posterior density at the mode,
and for the CWD implementation, several minutes had been spent numerically
maximizing the log-posterior density to obtain a good approximation for the
mode. With nine model variations and fifty simulations, there were a total of
450 different posterior functions that would need to be maximized, which was
impractical. Instead, for each of the nine model variations, one of the fifty data
sets was used to numerically maximize the resulting log-posterior density. This
was thought to be a reasonable compromise strategy since the characteristics of
the posterior density within a group were expected to be similar, although the
ill-posed nature of the inverse problem suggests this may not be the case.

The use of algorithm 4.4 for these simulations also requires careful choice
of the tuning parameters and proposal variance (depending on the simulation
group) to appropriately scale the step size, which in turn requires some empirical
exploration of the log posterior at several points. This process is not possible for
each of the 450 simulations, so the values for the tuning parameters were kept
the same throughout the simulations, and were fixed as the same values used in
the CWD implementation in chapter 4, and given in appendix C, section C.5.
However, the inability to correctly tune the algorithm for each simulation and
the lack of a good approximation to the mode will negatively affect the conver-
gence of the chain. If a poor approximation of the mode is used in the MALTS
algorithm, the dynamic step size 4.13 can bias the proposal in the wrong di-
rection. Let ¥ be a poor approximation to the mode of the target density f,
and suppose the current state of the chain is X® is closer to the true mode,

than log(f(%)) — log(f(X®)) + 1 may be negative. This would have the effect
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of pulling the chain in the wrong direction, away from the areas of higher prob-
ability. A corrective measure to this potential problem, which was not applied
here, is to update the mode approximation at every iteration by checking if
log(f(7)) < log(f(X®)), and setting # = X*) as the new approximation to the
mode if this is true.

Most of the results are listed in appendix B. The results that are listed
here are the groups with the best and worst performances. The method was
a complete success for one group of parameters, and a complete failure for one
group. The method had varying degrees of success on the remaining seven groups
of simulations, capturing at least some of the true parameter values. All of the
tables show the lower and upper limits of the 95% Bayesian credible intervals
for each parameter averaged over the fifty simulations. The tables also show the
mean, median, and standard deviations for each parameter, averaged over all
fifty runs. Most of the simulation groups met with mixed success. The results
ranged from one parameter captured, to all but one captured. The results of
the simulations are given in appendix B.

Table 5.1 shows the results of the third group of simulations. The true
parameters for this group were p; o = 0.05, « = 0.10, § = 0.50, and v = 0.01.
This time, none of the parameters were captured by the credible intervals. This
group of simulations had the poorest performance, although the true value of
the parameter p; o lay just outside the calculated credible interval. The poor
performance is likely due to the prior distributions. In particular, the prior for
0, with mean 0.0889, is an informative prior centered far from true value of

0 =0.5.
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Parameter | L.Limit | U.Limit | Avg. Mean | Avg. Median | Std.Dev.

p1o = 0.05 | 0.0606 | 0.0797 0.0772 0.0791 0.0057
a=0.10 | 0.1374 | 0.2453 0.2335 0.2362 0.0425
0=0.50 | 0.1243 | 0.1898 0.1854 0.1873 0.0314
v=0.10 | 0.0305 | 0.0411 0.0407 0.0425 0.0037

Table 5.1: Results of the group 3 simulation, with p;o = 0.05, = 0.10,
0 = 0.50, and v = 0.01. Values are the average result of 50 pseudo data sets.

The results of the fourth group of simulations, with true parameters p; o =
0.05, p2o = 0.01, & = 0.10, 6 = 0.05, and v = 0.01, are shown below in
table 5.2. The results are a clear success for this group of models, since all
of the parameters are captured by the credible intervals, although the credible
interval for « is quite large. This group of simulations is more similar to the
true data than the previous groups, both in terms of the number of parameters
and the values for the parameters. The true values of the parameters are close
to the values of the CWD posterior shown in table 4.2, which may account for
the success of the method. Moreover, this group of simulations was used to

determine the burn-in period.

The results of these simulations point to a number of difficulties with the
method discussed in chapter 3. There are a number of constraints that were
imposed to insure that the deterministic update equation 3.5 produced preva-

lence values on the unit interval. Additionally, algorithm 4.4, introduced in

164



Parameter | L.Limit | U.Limit | Avg. Mean | Avg. Median | Std.Dev.

p1o =0.05 | 0.0210 | 0.0515 0.0350 0.0347 0.0067

P2 = 0.01 | 0.0035 | 0.0106 0.0066 0.0064 0.0021
a=0.10 | 0.0462 | 0.4388 0.1661 0.1482 0.0911
0=0.06 | 0.0477 | 0.0992 0.0773 0.0735 0.0228
v=0.05 | 0.0064 | 0.0131 0.0093 0.0093 0.0014

Table 5.2: Results of the group 4 simulation, with p;o = 0.05, pso = 0.01,
a =0.10, 6 = 0.05, and v = 0.01. All of the true parameter values are captured
by the credible intervals. Values are averaged over 50 pseudo data sets.

chapter 4, has several characteristics that make it difficult to apply. First, the
tuning parameter £ and proposal variance ¥ must be chosen carefully to achieve
convergence for a given posterior distribution. These parameters were not ad-
justed for each new posterior distribution, or even within a particular group
of runs. Because the dynamic step size is dependent upon the mode, and be-
cause the tuning parameters are chosen to compensate for large values of 4.13,
moderate changes in the model could potentially have a drastic impact on the
performance of the MALTS algorithm. Changes made to the model that result
in moderate or large changes in the value of the log posterior density at the
mode will require significant re-tuning of algorithm 4.4.

The changes made to the model for the simulations discussed in this section
almost certainly had a negative impact on the convergence of the chains to
the stationary distribution. For each of the 450 simulations, a cursory statistic
was used as a rough convergence measure, the difference in the means for each

parameter between the first and last half of the chain. For some of the runs,
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this difference is greater than a standard deviation, indicating that these runs
probably did not reach the stationary distribution, calling the results obtained by
the simulations into question. The CWD simulation in chapter 4 had a distinct
advantage that these simulations did not, namely, that the characteristics and
shape of the posterior density were known ahead of time.

Perhaps the most serious difficulty is the strong interrelationships among
the parameters in equation 3.5, especially between « and §. Some of this inter-
dependency comes from the restrictions on the parameters imposed to guarantee
that the difference equation 3.5 always produces prevalence values in (0, 1), and
from biological considerations through the data, as discussed in chapter 3. It
is likely that some combinations of parameter values in these simulations were
unrealistic and hence impossible to capture.

Another source of complications were the prior distributions that were used
in both the simulations and the analysis of the Chronic Wasting Disease data.
Some of these prior distributions were informative, based on prior information
about the large scale behaviour of the disease. The sensitivity of the model to
these prior distributions is unknown. However, the simulations in groups six
and nine, with § = 0.50, were able to capture the true value within the credible
interval for the this parameter. The prior distribution is informative with a
mean of 0.09, which is far from the true value of §. The value 6 = 0.50 was
chosen partly to determine if the prior distribution for this parameter had too
great an effect on the posterior, and it was expected that the method would fail
to capture the true value for all of these instances. Surprisingly, the method was

still able to recover the true value for § in two of the three cases with § = 0.50,
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in spite of the misguided prior distribution.

The results of the nine groups of tests show that the modeling approach
used for Chronic Wasting Disease in chapter 3 has limitations that make it
difficult to apply in a more general setting. Still, the success of the method
for the fourth group of models, shown in table 5.2, indicates that the method
is effective in some situations. Moreover, the interpretation of the posterior

estimates in section 5.1 gives results that are in-line with experts predictions for

CWD [69, 14, 22].
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6. Discussion

Chronic Wasting Disease presents a large number of possible avenues of
research, especially in biological areas, many of which are being pursued [31, 32].
However, they are outside the mathematical and statistical arena, and are not
directly related to this thesis. There are several avenues for future research
springing from this work, namely, improvements for the model including the
incorporation of covariate information, using the model to examine different
strategies for controlling the spread of the disease, a more complete exploration
of the methodology introduced by the model, and a detailed analysis of the
MALTS method used for the MCMC posterior exploration.

Prevalence is an important aspect of studying CWD, but it is not the only
one. Of equal importance in understanding the disease is knowing how the
number of deer that are in a given region affects the ability of the disease to
“burn out,” coexist, or kill off the host. The model in chapter 3 does not
explicitly describe the interplay between total population size and prevalence,
but there are many differential equations models designed for such interactions.
Models that include the interaction of population size with prevalence are beyond
the scope of this thesis, but certainly are avenues worth pursuing. The exact
nature of this relationship is an important avenue of future work. This lack
notwithstanding, the model presented here does give some evidence that the

disease and the deer population can coexist.
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Another possible avenue of future research is to determine the impact dif-
ferent control strategies imposed by a state wildlife division might have on the
posterior distribution of 4, and whether the controls could be used to lower the
long run prevalence to a level close to zero. The Bayesian hierarchy allows for
different schemes to be tested via computational simulation prior to implemen-
tation, which has been done elsewhere [37]. In particular, the sampling designs
in [37] suggest that the CDOW should increase testing of deer harvested in
non-endemic areas to gain the most information about the transmission of the
disease. This corresponds with conventional wisdom that one learns more by
asking questions for which the answer is unknown than by asking questions for
which the answer is known. Part of the effect may be due to the binomial as-
sumption and the relationship between the probability of infection (prevalence)
and variance of observations. Namely, the variance of binomial distributions is
smaller for distributions with smaller probabilities of “success”.

The model can be modified to include added information as more is learned
about the disease. In particular, information on how the disease is spread could
be used to improve the disease migration effects modeled by elements of the
matrix W in equation 3.5. This could be perhaps be done through the use of
covariate information. For example, the parameter v could be dependent on
DAU, weather, the total deer population, and other ecological or environmental

factors. These could be included in the expression for ~, so that, for example:

v = X4 (6.1)

where X, is a vector of covariate variables and 3 is a vector of regression param-

eters. Additional information through covariates would give more information

169



on the migration effects. This change in the form of v could affect the structure
of the matrix W.

Changing W by adding covariate information may have some effect on the
estimation of § because of the high correlation between parameters, but these
differences are likely to be quantitative rather than qualitative. Likewise, as
more is learned about the transmission mechanism, modifications to the form of
acceleration, currently, «(01 — p), can be considered to reflect that knowledge.
In particular, it is possible to let the acceleration parameter, «, depend on DAU
and covariates, such as deer density, range type and condition, and incorporated
into the model via an autologistic model for the level of o as a function of the
covariates. Recent efforts by the Colorado Division of Wildlife, such as the
recent moratorium on transport of domesticated deer and elk from ranches or
the increase in hunting season lengths and number of licenses issued in endemic
areas, may have an impact on the spread of the disease. The effects of these
kinds of policies could also be incorporated into the model through modifications
to the acceleration parameter a.

The Chronic Wasting Disease model in chapter 3 has some similarities with
random coefficient autoregressive models (RCAR) [23, 1, 40]. There are, how-
ever, fundamental differences. RCAR models were introduced as a tool for
handling the nonlinear features commonly seen in real-life data, without resort-
ing to a nonlinear model. This strategy is not unreasonable, given that there
seems to be a closer correspondence between linear stochastic models and non-
linear deterministic models than between nonlinear deterministic models and

nonlinear stochastic models [51].
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The random coefficient autoregressive model of order p, denoted by RC AR(p)
is given by:

p

X, = Z(ak + Uk;t)Xt—k + € (62)
k=1

where t € 7, (al,...,ap)T is a vector of autoregressive parameters, {u, =
(u1:4y -y ups)T5t € Z} is an unobservable zero mean ii.d. sequence of p-
dimensional random variables, mutually independent of {€; = €;t € Z}, an-
other unobservable sequence of zero mean i.i.d. random variables. When uy is
almost surely zero, the RC AR(p) reduces to the ordinary autoregressive model,
AR(p).

Random coefficient autoregressive models still possess a linear form, even
though they were introduced to describe nonlinear data [1, 40]. The strong ad-
herence to linear models is perhaps due to the desire to avoid the difficulties
associated with non-Gaussian noise terms, since many RCAR(p) models have
asymptotic normality properties. The property of normality gives rise to es-
timators and a variety of parametric and semiparametric methods [1]. Many
of these methods still rely on a Gaussian noise term, at least in part, which is
frequently an inappropriate assumption for nonlinear data [1, 40].

The CWD model in chapter 3 is fundamentally different in that deterministic
updates are used for prevalence. That is, given the values of the parameters «,
d, 7, and the initial prevalences pg, equation 3.5 generates the prevalence value
for each DAU-year in a deterministic manner. These deterministic updates
for prevalence are quite strict and may not accurately reflect the true nature
of disease spread, but they do rest on a firm mathematical foundation. The

leap of faith occurs when the error term in the update equation is neglected.

171



This is not to say that the process is truly deterministic. Rather, all of the
uncertainty in the model is pushed into the likelihood and the distributions on
the parameters. This line of thinking has been used in stochastic processes
[41]. However, it is not common in a statistical setting. The greatest benefit of
using deterministic rather than stochastic updates is that deterministic updates
reduces the dimension of the parameter space. Rather than estimating a density
function for prevalence at each DAU-time period combination, only the density
on the prior for the initial conditions, py, and the parameters is needed. This
was an important consideration considering the limited amount of data that was
available.

Another critical difference is that the model is inherently nonlinear. Con-
structing a suitable differential equation model leads to a nonlinear difference
equation for the updates. Rather than beating the model into a linear form,
such as in the RC AR models, the nonlinear model is retained. This nonlinear-
ity makes the details of the model difficult, and in particular is likely to be the
primary reason for the high interdependencies amongst the parameters. The
nonlinearity arises naturally from the differential equations, and it is necessary
to provide the desired qualitative behaviour, such as the bounded growth of the
sigmoidal curve. Nonlinearity also enables the direct modeling of the spatial
dynamics of the disease.

The method used for describing the spatial dynamic is drastically different
from the common approach. In most statistical epidemic models, spatial effects
are modeled as dependencies in the data through covariance terms. With bino-

mial count data, this is often done via an autologistic model with an attendant
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transformation of the parameter space to achieve normality. The CWD model
is different and more direct in that spatial effects are modeled as rates of move-
ment, just as they are in the differential equations that are used to model the
prevalence. One of the key questions that biologists ask, i.e. how fast is the
disease moving across the state, is modeled directly by the parameter -y, which
can be interpreted as the average proportion of infected deer that migrate from
DAU; to DAU;. This approach flows directly from the interpretation of param-
eters in the differential equations. Fitting the difference equations is in essence
fitting a first order approximation of the spatial differential equation model to
the data. Conditional autoregressive models for diseases such as those presented
in chapter 2 rely on both large sample sizes and small infection rates to apply
a Poisson approximation to the Binomial distribution. This in turn allows for
the use of transformations to achieve normality, where the spatial effects are
again modeled through the covariance in a Gaussian multivariate autoregressive
process. Some spatial structure can be built into the coefficient matrix for the
transformed log-relative risk autoregressive process, but again, this approach
is indirect. The results of the posterior analysis discussed in section 5.1 and
the model validation results in section 5.2 show that building the spatial mix-
ing term directly into the update equation is an effective way of describing the
spatial dynamics.

The deterministic updates are a simplification, but they do provide the
benefit of parsimony. Moreover, the model attempts to directly describes the
dynamics. The resulting model, while perhaps not a detailed description of the

spatial and temporal process, does possess the desired qualitative behaviour.
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The model provides some predictive capability that can be checked against fu-
ture observations. The use of deterministic updates seems to contradict the
approach of statisticians since 1777. Consequently, the lack of a noise term is a
difficult pill to swallow, especially in a model of a biological process. However,
the simulations conducted in section 5.2 indicate that the estimation process is
effective in some situations. More data would allow for the addition of a noise
term to the update equation 3.5, which may make the model more flexible. Ex-
ploring the connection between the model presented here and random coefficient
autoregressive models may be the way to do this.

The posterior in the CWD model possesses a number of characteristics that
make it difficult to simulate. In general, a practical solution to a problem should
be accurate, expedient, and flexible. Algorithm 4.4 used for the Markov chain
simulation for this model was designed with these qualities in mind to deal
with the specific difficulties of the complex parameter space in the CWD model.
Sampling from multivariate distributions is in general difficult, especially when
the target density is bounded and contains steep ridges of high probability sur-
rounded by a relatively large area of low probability.

The MALTS algorithm is not the only possible method of simulating the
CWD posterior. Applying a transformation to the model to reduce the correla-
tion and to obtain an unbounded parameter space in a common approach to mit-
igate the difficulties presented by the CWD posterior. However, identifying an
appropriate transformation is not necessarily obvious, and none were attempted
here. Additionally, the failures of the methods discussed in section 4.3.1 to con-

verge to stationarity within 300, 000 iterations do not mean that these methods

174



are inappropriate. In particular, the standard random walk will converge to
the correct stationary distribution, given enough time. A straightforward solu-
tion to the simulation difficulties would be to simply run the standard random
walk for an extended period of time. However, while this approach would be
accurate, it would not be expedient, nor is it a flexible solution, as any new
simulations would require an extremely large number of iterations to produce
a usable sample. Changes in the model that do not drastically alter the value
of the log posterior density function at the mode will not require retuning of
the MALTS algorithm, which can produce a large number of simulated draws
from the posterior in a relatively short amount of time. The standard random
walk, on the other hand, would still require a large amount of time to produce
a usable sample, and could require retuning.

An empirical comparison of the performance of standard random walk
Metropolis-Hastings algorithms to Langevin type algorithms, which use deriva-
tive information to suppress the random walk behaviour of the Markov chain,
is performed in [28], and shows that the Langevin algorithms perform better
on average than the standard random walk. Langevin algorithms often require
fewer burn-in iterations and thus converge to the stationary distribution faster.
Other researchers have examined Langevin algorithms analytically, and reached
the same conclusion [66, 71]. With this in mind, it was expected that a Langevin
algorithm to perform better for the CWD model than a random walk. However,
the methods studied by [28], [66] and [71] do not consider models with bounded
parameter space. The difficulties in sampling from such a space in higher dimen-

sions is perhaps one of the reasons so many models make use of transformations
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to achieve normality, and with it an unbounded parameter space. Such trans-
formations may have been useful here, but were not attempted. Additionally,
the model was derived from a system of differential equations, and it was the
parameters of these equations that were of direct interest. The inability of the
standard random walk and the Langevin algorithms to quickly produce a us-
able sample from the CWD posterior prompted creation of a new technique
(algorithm 4.4).

The difficulties of the target distribution 3.11 were overcome by adapting the
qualities, and not the details, of several MCMC methods. From the Metropolis
Adjusted Langevin Truncated Algorithm (MALTA) the use of the gradient to
direct the proposal and suppress the random walk was taken [71, 5, 25]. The idea
of truncating the proposal to control the instability in the gradient commonly
seen in Langevin algorithms for a non-normal target density was also used. The
step was truncated without losing the information in the gradient by finding the
unit vector with the same direction. This allowed for more precise control over
the step size than the use of a single dicretization parameter as in the MALA.

Methods for choosing the appropriate step size for Langevin algorithms have
received a lot of attention [28, 66, 9, 65]. For the posterior distribution in the
CWD model, there is a sharp ridge of high probability surrounded by areas of
low probability. This is especially noticeable in figure 3.5. Too large a step,
and the high probability area is missed, too small, and oversampling occurs in
low probability areas. Rather than seeking a single optimal step size in this
difficult situation, a more dynamic approach is chosen, inspired by recent work

on tempered Langevin algorithms. Tempered Langevin diffusions are examined
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in [67], in which both the step size and the variance of the proposal is adjusted
by the value of the density function at the current value in the chain. The
form used in [67] was chosen both to ensure convergence of the continuous time
process and to achieve a generalization of the Langevin diffusion, and it is a bit
cumbersome for practical use.

A dynamic step size effect similar to that of the tempered Langevin diffusion
is achieved by adjusting the value of the step size with respect to the mode. The
form used in algorithm 4.4 is bounded below by one, allowing the minimum step
size for each parameter being simulated to be chosen through the use of tuning
parameters. Unlike the tempered diffusion, the variance is not adjusted at each
step. In addition to a varying step size, a diagonal matrix is used rather than an
identity matrix in the proposal covariance, allowing the variance of the proposal
to be scaled differently for each parameter. This addition was useful because
the parameters in the target distribution differ in their standard deviations by
up to an order of magnitude.

The experiments performed in section 4.3.4 show that, for a bounded target
density, the MALTS algorithm 4.4 can be as or more effective than the cor-
responding standard random walk or MALA. Algorithm 4.4 has a number of
tuning parameters, which could make it difficult to implement. Guidelines are
provided in this thesis for choosing values of the tuning parameter and proposal
covariance, but a more rigorous method for choosing the optimal values for these
tuning parameters is necessary. Results for choosing optimal discretization sizes
for the Metropolis Adjusted Langevin Algorithm for uncorrelated parameters

are given in [66]. Applying these results to the algorithm introduced in this
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thesis, and to correlated parameters, would be helpful in making algorithm 4.4
easier to apply. Clearly, poor choices for the tuning parameters lead to poor or
uncertain results, as shown in section 5.2.

The efficiency of algorithm 4.4 was assessed empirically, and for the CWD
model was judged a success in part because the run time was significantly shorter
than for the acceptance sampler. Use of algorithm 4.4 to simulate a simple test
case demonstrated that the method could correctly sample the target distribu-
tion, a truncated bivariate normal. A structured comparison of the performance
of the MALTS algorithm to the standard random walk and Langevin algorithms
on several test cases showed that the convergence and mixing properties of the
new method were comparable to those of the other methods. Calculation of
the potential scale reduction showed the MALTS algorithm converges at least
as fast as the standard random walk and MALA. The acceptance rates for the
bounded densities indicate a noticeable improvement in the mixing speed of the
MALTS algorithm over the MALA for a fixed step size.

The convergence analysis and comparison of the standard random walk and
algorithm 4.4 on the CWD posterior distribution showed dramatic differences.
Although the standard random walk had a shorter run time than algorithm 4.4,
both the graphical evidence and the potential scale reduction showed the failure
of the standard random walk to reach the stationary distribution after 300, 000
iterations. By contrast, at the same proposal variance of 1 x 1079, the MALTS
algorithm quickly and successfully converged to the stationary distribution, and
is likely to be useful in other situations where the distribution is highly correlated

and the gradient experiences large changes. Statistical comparison of the pos-
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terior sample obtained using the new Markov chain method with that obtained
by the acceptance sampler indicated that the marginal distributions of the two
samples were the same. The new Markov chain simulation algorithm was a clear
success for CWD posterior distribution. A more detailed theoretical analysis of
the algorithm’s performance is necessary and is reserved for future work. In
particular, [67] introduce the notion of ezponential ergodicity for the tempered
Langevin diffusion. Whether algorithm 4.4 has this property is unknown.

Blocking— updating highly correlated parameters together— is a generally
accepted strategy of accelerating the convergence of a multi-dimensional Markov
chain when the component variables are highly correlated, and seems to have
worked for the CWD example where the joint distribution has a total of seven
parameters. Because the seventh, 7, is independent of the other six, it is sampled
separately. The remaining six parameters show a high level of interdependence,
so they are updated together. However, if the parameters «, §, or v are allowed to
vary by DAU, a simple blocking strategy may not work, and more sophisticated
methods of exploiting the spatial structure may be needed. The structured
MCMC approach in [29], which exploits the spatial structure inherent in the
model and the data, is one possible avenue that could be explored. If the spatial
structure has the properties of a Markov Random Field then the structured
approach can be especially effective [4].

Perhaps the most important area for further study is the precise relationship
between the differential equations used in the model and the distributions in the
statistical hierarchy. Previous work has indicated that some of the properties of

the differential equations cannot be overcome by data, so that if the ODEs are

179



inappropriate, then attempting to fit a model will be a failure [35]. The results
in section 5.2 indicate that the relationship between the prior, data, statistical
hierarchy, and differential equations is complex. A detailed understanding of

this relationship is necessary to fully explore this method.

180



7. Conclusion

This thesis introduced a spatial statistical model for chronic wasting dis-
ease that was derived from and directly incorporated a system of differential
equations. Importantly, the spatial dynamics were not modeled through instan-
taneous correlations in the data, but as rates of movement in the differential
equations. Thus the model provided a more direct answer for the question of
“how fast is the disease spreading?” in the form of the matrix W in equation 3.5
and the parameter . The use of deterministic updates, rather than stochastic,
reduced the number of parameters in the model, and allowed for better use of
the limited amount of data that was available. The use of deterministic up-
dates is different from the standard statistical way of thinking, but appears to
be effective in this setting. Model validation calculations with simulated data
indicated that the approach can, in some settings, successfully recover the true
parameter values. The conditions in which the use of deterministic updates in
a statistical model is appropriate need to be fully explored.

The Chronic Wasting Disease model posterior distribution had a number
of qualities that make it difficult to sample. An acceptance sampler was used
previously to generate a random sample from the posterior distribution [37], but
it was both slow and difficult to modify. Using existing Markov chain simulation
methods based on stochastic dynamic processes as a starting point, a strategy
was developed and a simulation approach designed that has similarities with

tempered Langevin algorithms, and was effective for simulating the posterior
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despite the restrictions of a bounded parameter space and ridges of high prob-
ability. A series of simulation experiments indicate that the new method, the
MALTS algorithm, is competitive with the MALA and standard random walk.
The MALTS algorithm proved to be significantly faster than the acceptance sam-
pler, and was successful in simulating the CWD density, while attempts with a
standard random walk failed to converge within a large number of iterations.
The convergence and mixing properties of the MALTS algorithm were examined
empirically, but its theoretical properties need to be rigorously studied.

In summary, this thesis has introduced a spatial statistical model for Chronic
Wasting Disease, and a new Markov chain simulation method was designed
to overcome the difficulties of the posterior distribution produced by that
model. The new simulation method provided an accurate, expedient, and flexi-
ble method of producing a sample from the posterior density, and the posterior
parameter estimates were used to obtain predictions about Chronic Wasting
Disease. The modeling methodology was tested on simulated data, with mixed
results, indicating that the method used here has limitations. However, the
Markov chain simulation technique introduced here will allow the methodology
of the CWD model to be applied to other disease modeling problems. It is hoped
that the simulation method introduced here overcomes some of the problems of
other Langevin type algorithms, and will be an effective tool for simulating
target densities with bounded parameter spaces, as well as those with erratic

gradient behaviour.
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Appendix A. Acceptance Rates for Simulation Comparisons
This appendix contains the acceptance rate results of the experiments con-
ducted on the truncated normal distributions and multivariate normal distribu-

tions discussed in section 4.3.4.

A.1 Acceptance Rates for the Truncated Normal Simulations

The standard random walk, Metropolis adjusted Langevin algorithm (MALA),
and Modified adjusted Langevin algorithm with Tempered step size (MALTS)
were used to simulate multivariate normal distributions of increasing dimension,
truncated to the unit cube. The dimensions were 2, 6, 12, and 36. The step size

was fixed for each method at 1 x 107°.

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.699 0.699 0.699 0.698
MALA 0.661 0.659 0.660 0.658
MALTS | 0.700 0.700 0.701 0.697

Table A.1: Acceptance rates for the multivariate truncated normal distribu-
tion.

A.2 Acceptance Rates for the Multivariate Normal Simulations

The standard random walk, Metropolis adjusted Langevin algorithm (MALA),

and Modified adjusted Langevin algorithm with Tempered step size (MALTS)
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were used to simulate multivariate normal distributions of increasing dimension
and correlation. The dimensions were 2, 6, 12, and 36, and the levels of correla-
tion were 0.879, 0.970, and 0.992. Additional simulations were run at correlation

0.992 with dimensions 64, 144, 200, and 300. The step size was fixed for each

method at 1 x 1075, 1 x 107*, and 1 x 1072

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.967 0.969 0.969 0.968
MALA 0.959 0.959 0.958 0.958
MALTS | 0.955 0.955 0.956 0.956

Table A.2: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.879. The step size is 1 x 1075.

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.904 0.902 0.902 0.903
MALA 0.871 0.871 0.871 0.871
MALTS | 0.873 0.872 0.872 0.873

Table A.3: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.879. The step size is 1 x 107%.
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Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.809 | 0.809 0.808 0.809
MALA | 0.758 | 0.758 0.759 0.756
MALTS | 0.775 0.774 0.773 0.774

Table A.4: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.879. The step size is 1 x 1072.

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.997 0.969 0.969 0.969
MALA 0.995 0.958 0.958 0.959
MALTS | 0.995 0.956 0.958 0.958

Table A.5: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.970. The step size is 1 x 107°.

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.902 0.901 0.901 0.902
MALA 0.870 0.871 0.871 0.870
MALTS | 0.872 0.873 0.872 0.873

Table A.6: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.970. The step size is 1 x 107%.
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Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.809 | 0.807 0.809 0.808
MALA | 0.756 | 0.758 0.758 0.757
MALTS | 0.773 | 0.774 0.774 0.774

Table A.7: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.970. The step size is 1 x 1072.

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36

Std. RW | 0.969 0.969 0.968 0.969
MALA 0.956 0.959 0.958 0.959
MALTS | 0.957 0.957 0.955 0.956

Table A.8: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.992. The steps size is 1 x 1075.

Method | Dim=64 | Dim=144 | Dim=200 | Dim=300

Std. RW | 0.887 0.880 0.878 0.861
MALA 0.851 0.851 0.851 0.851
MALTS 0.880 0.882 0.881 0.881

Table A.9: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.992. The steps size is 1 x 1075.

186



Method | Dim=2 | Dim=6 | Dim=12 | Dim=36
Std. RW | 0.903 0.902 0.901 0.902
MALA 0.873 0.871 0.871 0.871
MALTS | 0.872 0.873 0.873 0.873

Table A.10: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.992. The step size is 1 x 10*.

Method | Dim=2 | Dim=6 | Dim=12 | Dim=36
Std. RW | 0.810 | 0.808 0.808 0.808
MALA | 0.759 | 0.758 0.758 0.757
MALTS | 0.774 | 0.774 0.774 0.774

Table A.11: Acceptance rates for each dimension for the multivariate normal
distribution with correlation p = 0.992. The step size is 1 x 1072.
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Appendix B. Tables for the Model Validation Simulations

This appendix contains the tables for the remaining model validation sim-
ulations discussed in section 5.2. The tables for groups three and four are in

section 5.2.

B.1 Group One Simulation Results

The group one simulation had the true parameter values p;o = 0.05, a =

0.10, 6 = 0.05, and y = 0.01.

Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
P10 0.0273 0.0320 0.0305 | 0.0305 | 0.0005

o 0.0737 0.0825 0.0805 | 0.0804 | 0.0012

0 0.0966 0.1025 0.1003 | 0.1003 | 0.0006

04 0.0075 0.0108 0.0100 | 0.0100 | 0.0003

Table B.1: Results of the group 1 simulation, with p;y = 0.05, a = 0.10,
0 = 0.05, and v = 0.01.

B.2 Group Two Simulation Results

The second group of simulations had true parameters values p;o = 0.05,

o =0.10, § = 0.15, and v = 0.01.
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Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
D1,0 0.0311 0.0370 0.0352 | 0.0352 | 0.0016

! 0.0783 0.0871 0.0860 | 0.0868 | 0.0023

0 0.0987 0.1033 0.1026 | 0.1026 | 0.0010

0% 0.0088 0.0107 0.0104 | 0.0104 | 0.0003

Table B.2: Results of the group 2 simulation, with p;y = 0.05, oo = 0.10,
0 =0.15, and v = 0.01.

B.3 Group Three Simulation Results

The true parameter values for the third group of simulations were p; o, =
0.05, @« = 0.10, 6 = 0.50, and = 0.01. This table (5.1) is shown in section 5.2.

B.4 Group Four Simulation Results

The fourth group of simulations used the true parameters p; o = 0.05, pay =
0.01, @« = 0.10, 6 = 0.05, and y = 0.01. This table (5.2) is shown in section 5.2.

B.5 Group Five Simulation Results

The group 5 true parameter values are p; o = 0.05, poy = 0.01, o = 0.10,
0 = 0.15, and v = 0.01.

B.6 Group Six Simulation Results

The group 6 simulations used the true parameter values are p;o = 0.05,

P20 = 0.01, & = 0.10, § = 0.50, and v = 0.01.

B.7 Group Seven Simulation Results
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Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
D1,0 0.0205 0.0521 0.0360 | 0.0355 | 0.0072
D2,0 0.0033 0.0091 0.0059 | 0.0058 | 0.0016

! 0.1271 0.3090 0.2075 | 0.2032 | 0.0572
0 0.0907 0.1453 0.1209 | 0.1183 | 0.0179
vy 0.0061 0.0100 0.0081 | 0.0081 | 0.0010

Table B.3: Results of the group 5 simulation, with p; o =

a =0.10, § = 0.15, and = 0.01.

005, P20 = 001,

Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
P10 0.0173 0.0300 0.0244 | 0.0242 | 0.0034
D2,0 0.0040 0.0064 0.0053 | 0.0052 | 0.0007

@ 0.0976 0.1128 0.1048 | 0.1046 | 0.0040
0 0.4894 0.5048 0.4964 | 0.4964 | 0.0041
y 0.0081 0.0100 0.0090 | 0.0090 | 0.0005

Table B.4: Results of the group 6 simulation, with p; o = 0.05, p2o = 0.01,
a = 0.10, § = 0.50, and v = 0.01.

The group 7 simulations used the true parameter values p; o = 0.01, o =

0.10, 06 = 0.05, and v = 0.01.

B.8 Group Eight Simulation Results

The group 8 simulations have the true values for the parameters were p; o =

0.01, « = 0.10, § = 0.15, and v = 0.01.
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Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
D1,0 0.0026 0.0107 0.0072 | 0.0071 | 0.0025

! 0.0443 0.3985 0.1500 | 0.1320 | 0.0971

0 0.0522 0.0888 0.0759 | 0.0725 | 0.0264

0% 0.0055 0.0143 0.0097 | 0.0095 | 0.0022

Table B.5: Results of the group 7 simulation, with p;o = 0.01, o« = 0.10,

0 = 0.05, and v = 0.01.

Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev

P10 0.0020 0.0107 0.0087 | 0.0082 | 0.0033

@ 0.0664 0.6720 0.3521 | 0.3380 | 0.1449

0 0.0418 0.1024 0.0762 | 0.0720 | 0.0231

0% 0.0061 0.0121 0.0086 | 0.0085 | 0.0014
Table B.6: Results of the group 8 simulation, with p; o = 0.01, o« = 0.10,

§ = 0.15, and y = 0.01.

B.9 Group Nine Simulation Results

The true parameter values for the group 9 simulations are p;y = 0.01,

a = 0.10, 6 = 0.50, and v = 0.01.
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Parameter | Lower Limit | Upper Limit | Mean | Median | StdDev
P1,0 0.0039 0.0076 0.0056 | 0.0056 | 0.0009

o 0.0971 0.1156 0.1050 | 0.1046 | 0.0046

0 0.4836 0.5069 0.4965 | 0.4945 | 0.0056

v 0.0081 0.0100 0.0091 | 0.0091 | 0.0004

Table B.7: Results of the group 9 simulation, with p;y = 0.01, a = 0.10,
0 = 0.50, and v = 0.01.
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Appendix C. Matlab Code for the Markov Chain Simulations

This appendix contains the code for the Markov chain simulation of the trun-
cated normal distribution and the posterior distribution in the Chronic Wasting
disease model. The code was written and run with Matlab, version 6, on a

2.2Ghz Pentium 4 processor, with 2GB RAM.

C.1 Miscellaneous Probability Functions

These are functions that are used throughout the simulations. They are
the log density kernels of the multivariate normal distribution and the normal
distribution truncated to [0, 1].
C.1.1 Function: logmvnkern.m

This function calculates the kernel of the log of the multivariate normal
density function.

function YY=logmvnkern(X,mu,Sig)
%This function calculates the kernel of the log of the multivariate
Jsnormal density function with mean vector mu and covariance matrix

%Sig at the values given in the vector X.

/

%Christopher H. Mehl, 2003.

YY=-0.5%1log(det (Sig))-0.5%((X-mu)’/Sig) * (X-mu) ;
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C.1.2 Function: logtruncmvn.m
This function calculates the kernel of the log of the normal density function,
truncated on [0, 1].

function YY=logtruncmvn(X,mu,Sig)

%This function calculates the kernel of the log of the truncated
Jmultivariate normal density function with mean vector mu and
hcovariance matrix Sig at the values given in the vector X. The
Jtruncation is on [0,1] in each dimension. The covariance matrix
Jmust be diagonal for this to work.

%Christopher H. Mehl, 2004.

mu=mu(:); X=X(:);

mvnkern=logmvnkern (X,mu,Sig) ;

% use the erf to get the normal cdf at 0 and 1 for each dimension
h

argl=(1-mu) ./sqrt(diag(Sig) *2) ;

arg0=(0-mu) . /sqrt (diag(Sig) *2);

cdf1=0.5%erf (argl)+0.5;

cdf0=0.5%erf (arg0)+0.5;
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sTruncation part

if (0>min(X)) | (max(X)>1)
YY=-inf;

else
YY=mvnkern-sum(log(cdf1-cdf0));

end

YA

C.2 Code for Simulating the Truncated Normal Distributions

This code was used to simulate a normal distribution truncated to the in-
terval [0,1]. The simulation methods were the algorithm 4.4, the MALA, and
the standard random walk, all discussed in chapter 4.
C.2.1 Program: truncnormcomps.m

This program performs a MALTS step, a MALA step, and a standard ran-
dom walk step for the truncated normal distribution. The program calculates
the acceptance rate and the potential scale reduction using five runs which are
started from random initial values.

warning off

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;
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arrw=zeros(5,1);
armehl=zeros(5,1);
arlang=zeros(5,1);
rwvarl=zeros(5,80000) ;
langvari=zeros(5,80000) ;
mehlvari=zeros(5,80000) ;
rwvar2=zeros(5,80000) ;
langvar2=zeros(5,80000) ;
mehlvar2=zeros(5,80000) ;
mehlrhatl=zeros(1,800);
mehlrhat2=zeros(1,800) ;
langrhati=zeros(1,800) ;
langrhat2=zeros(1,800);
rwrhatl=zeros(1,800);

rwrhat2=zeros(1,800);

for runs=1:5
Mu=0.89*ones (dim,1) ;
modes=Mu;
CoSig=0.00001*eye(dim) ;
CoSig(1,1)=0.001;
cnt1=0;

cnt2=0;
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cnt3=0;

NChain=80000;

thetal0a=zeros(dim,NChain) ;

thetaOb=zeros(dim,NChain) ;

thetalOc=zeros(dim,NChain) ;

#Runs started at random points.

thetala(:,1)=rand(dim,1);

thetaOb(:,1)=thetala(:,1);

thetalc(:,1)=thetala(:,1);

tempsampl=zeros(dim,1);

tempsamp2=zeros (dim,1) ;

tempsamp3=zeros(dim,1) ;

logposti=logtruncmvn(thetala(:,1),Mu,CoSig);

logpost2=logtruncmvn(thetalb(:,1) ,Mu,CoSig);

logpost3=logtruncmvn(thetalc(:,1) ,Mu,CoSig) ;

for k=2:NChain
tempsampl=thetala(:,k-1);
tempsamp2=thetaOb(: ,k-1);
tempsamp3=thetalc(:,k-1);
[tempsampl,logpostl]=mehlwitch(tempsampl,logpostl);
[tempsamp2,logpost2]=langwitch (tempsamp2,logpost2) ;
[tempsamp3,logpost3]=rwwitch(tempsamp3,logpost3);
thetala(: ,k)=tempsampl;

thetaOb(: ,k)=tempsamp2;
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thetalc(:,k)=tempsamp3;
end
mehlvarl(runs, :)=thetala(l,:);
langvarl(runs, :)=thetaOb(1,:);
rwvarl (runs, :)=thetalc(1,:);
mehlvar2(runs, :)=thetala(2,:);
langvar2(runs, :)=thetaOb(2,:);
rwvar2(runs, :)=thetalc(2,:);
armehl (runs)=cnt1/NChain;
arlang(runs)=cnt2/NChain;
arrw(runs)=cnt3/NChain;

end

for k=1:800
mehlrhatl(k)=assess(mehlvarl(:,1:(100%k)));
mehlrhat2(k)=assess(mehlvar2(:,1:(100%k))) ;
langrhatil(k)=assess(langvari(:,1:(100%k)));
langrhat2(k)=assess(langvar2(:,1:(100%k))) ;
rwrhatl(k)=assess(rwvarl(:,1:(100%k)));
rwrhat2(k)=assess(rwvar2(:,1:(100%k)));

end

C.2.2 Function: mehlwitch.m
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This function performs the tempered, modified Langevin step for algo-
rithm 4.4 on the truncated normal distribution discussed in section 4.3.4.

function [newpars,newpost]=mehlwitch(oldpars,oldpost)

%This function performs a modified Langevin step for
%a truncated normal distribution.
b

%Christopher Mehl, 2004.

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

LNG=1length(oldpars) ;

logold=oldpost;

hApproximation of the gradient.
h=0.000000005;

b

SIG=0.00001*eye (LNG) ;
delpar=zeros(LNG,1);
shift=zeros(LNG,1);

postfunmax=logtruncmvn(modes,Mu,CoSig) ;
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for k=1:LNG
shift(k)=h;
delpar(k)=(1/h)*(logtruncmvn(oldpars+shift,Mu,CoSig)-logold) ;
shift(k)=0;

end gradold=delpar; if norm(gradold,2)==0
mutheta=oldpars;

else
dir=gradold/norm(gradold,2);
step=(SIG)*(postfunmax-logold+1) ;
hstep=(0.5%SIG. 2)*(postfunmax-logold+1) ;
mutheta=oldpars+step*dir;

end thetaprop=mvnrnd(mutheta,SIG,1)’;

%thetaprop=csmvrnd (mutheta,SIG,1)’;

if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;

else
lognew=logtruncmvn (thetaprop,Mu,CoSig) ;
delparnew=zeros(LNG,1);
shift=zeros(LNG,1);
for k=1:LNG

shift(k)=h;
delparnew(k)=(1/h)*. ..

...(logtruncmvn(thetaprop+shift,Mu,CoSig) -lognew) ;
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shift(k)=0;
end
gradnew=delparnew;
dirnew=gradnew/norm(gradnew,2) ;
stepnew=(SIG) * (postfunmax-lognew+1) ;
hstepnew=(0.5%SIG. 2)*(postfunmax-lognew+1) ;
munew=thetaprop+stepnewxdirnew;
lalpha=lognew-logold+logtruncmvn(thetaprop,mutheta,SIG). ..

..~logtruncmvn(oldpars,munew,SIG) ;

if log(rand(1,1))<lalpha

cntl=cnti+1;

newpars=thetaprop;

newpost=lognew;
else

newpars=oldpars;

newpost=logold;
end

end

/

C.2.3 Function: langwitch.m

This function performs a Langevin Metropolis step for the truncated normal

distribution discussed in section 4.3.4.
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function [newpars,newpost]=langwitch(oldpars,oldpost)

%This function performs a Langevin step for
ha truncated normal distribution.
h

%Christopher Mehl, 2004.

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

LNG=1length(oldpars); logold=oldpost;

%Approximation of the gradient.
h=0.000000005;
b

SIG=0.00001*eye(LNG) ; delpar=zeros(LNG,1); shift=zeros(LNG,1);

for k=1:LNG
shift(k)=h;
delpar(k)=(1/h)*(logtruncmvn(oldpars+shift,Mu,CoSig)-logold) ;
shift(k)=0;

end gradold=delpar;

mutheta=oldpars+(SIG)*gradold;
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Jmutheta=oldpars+(0.5%SIG."2)*gradold;
thetaprop=mvnrnd (mutheta,SIG,1)’;
hthetaprop=csmvrnd (mutheta,SIG,1)’;
if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;
else
lognew=logtruncmvn (thetaprop,Mu,CoSig) ;
delparnew=zeros (LNG,1) ;
shift=zeros(LNG,1);
for k=1:LNG
shift (k)=h;
delparnew(k)=(1/h)*(logtruncmvn(thetaprop+shift,Mu,CoSig) . ..
...-lognew);
shift (k)=0;
end
gradnew=delparnew;
munew=thetaprop+(SIG) *gradnew;
Jmunew=thetaprop+(0.5*SIG. 2)*gradnew;
lalpha=lognew-logold+logtruncmvn (thetaprop,mutheta,SIG). ..
...—logtruncmvn(oldpars,munew,SIG) ;
if log(rand(1,1))<lalpha
cnt2=cnt2+1;

newpars=thetaprop;
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newpost=lognew;
else

newpars=oldpars;

newpost=logold;
end

end

h

C.2.4 Function: rwwitch.m
This function performs a standard random walk Metropolis step for the
truncated normal distribution in section 4.3.4.

function [newpars,newpost]=rwwitch(oldpars,oldpost)

%This function performs a random walk MH step for

%the witch’s hat distribution.

/

%Christopher Mehl, 2004.

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

LNG=1ength(oldpars) ;
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logold=oldpost;

SIG=0.00001*eye (LNG) ;

%SIG=0.5%SIG."2;

tmpl=zeros (LNG,1) ;
thetaprop=oldpars+mvnrnd (tmpl,SIG,1)’;

hthetaprop=oldpars+csmvrnd(tmpl,SIG,1)’;

#Reject values outside of [0,1].
if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;
else
lognew=logtruncmvn (thetaprop,Mu,CoSig) ;
lalpha=lognew-logold;
if log(rand(1,1))<lalpha
cnt3=cnt3+1;
newpars=thetaprop;
newpost=lognew;
else
newpars=oldpars;
newpost=logold;
end

end
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/

C.3 Code for Simulating the Normal Distributions

This code was used to simulate a multivariate normal distribution. The sim-
ulation methods were the algorithm 4.4, the MALA, and the standard random
walk, all discussed in chapter 4.
C.3.1 Program: mvnormalcomps.m

This program performs a MALTS step, a MALA step, and a standard ran-
dom walk step for the normal distribution. The program calculates the accep-
tance rate and the potential scale reduction using five runs which are started
from random initial values.
%The true values will be

Jmvrnd (zeros (dim, 1) , (1-rho) *eye (dim) +rho*ones (dim,dim)) .

warning off

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

arrw=zeros(5,1);

armehl=zeros(5,1);

arlang=zeros(5,1);

rwvarl=zeros(5,80000);
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langvarl=zeros(5,80000) ;
mehlvari=zeros(5,80000) ;
rwvar2=zeros (5,80000) ;
langvar2=zeros(5,80000) ;
mehlvar2=zeros (5,80000) ;
mehlrhati=zeros(1,800);
mehlrhat2=zeros(1,800);
langrhati=zeros(1,800) ;
langrhat2=zeros(1,800) ;
rwrhatl=zeros(1,800);

rwrhat2=zeros(1,800);

for runs=1:5
Mu=zeros(dim,1);
modes=Mu;
CoSig=(1-rho)*eye(dim)+rho*ones(dim,dim) ;
cnt1=0;
cnt2=0;
cnt3=0;
NChain=80000;
thetala=zeros (dim,NChain) ;
thetalOb=zeros (dim,NChain) ;
thetalOc=zeros(dim,NChain) ;

sInitialize runs at random points.
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thetala(:,1)=chol(CoSig) *randn(dim,1);

thetaOb(:,1)=thetala(:,1);

thetaOc(:,1)=thetala(:,1);

tempsampl=zeros(dim,1);

tempsamp2=zeros(dim, 1) ;

tempsamp3=zeros(dim, 1) ;

logposti=logmvnkern(thetala(:,1) ,Mu,CoSig);

logpost2=logmvnkern(thetaOb(:,1) ,Mu,CoSig) ;

logpost3=logmvnkern(thetalc(:,1) ,Mu,CoSig) ;

for k=2:NChain
tempsampl=thetala(:,k-1);
tempsamp2=thetalb(:,k-1);
tempsamp3=thetalc(:,k-1);
[tempsampl,logposti]=mehlnormal (tempsampl,logpostl);
[tempsamp2,logpost2]=langnormal (tempsamp2,logpost2) ;
[tempsamp3,logpost3]=rwnormal (tempsamp3,logpost3) ;
thetala(:,k)=tempsamp1l;
thetaOb(:,k)=tempsamp2;
thetaOc(:,k)=tempsamp3;

end

mehlvarl (runs, :)=thetala(l,:);

langvarl(runs, :)=thetaOb(1,:);

rwvarl(runs, :)=thetalc(1,:);

mehlvar2(runs, :)=thetala(2,:);
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langvar2(runs, :)=thetaOb(2,:);
rwvar2(runs, :)=thetalc(2,:);
armehl (runs)=cnt1/NChain;
arlang(runs)=cnt2/NChain;
arrw(runs)=cnt3/NChain;

end

for k=1:800
mehlrhatl(k)=assess(mehlvari(:,1:(100%k)));
mehlrhat2(k)=assess(mehlvar2(:,1:(100%k))) ;
langrhatil(k)=assess(langvari(:,1:(100%k)));
langrhat2(k)=assess(langvar2(:,1:(100%k))) ;
rwrhatl(k)=assess(rwvarl(:,1:(100%k)));
rwrhat2(k)=assess(rwvar2(:,1:(100%k)));

end

h

C.3.2 Function: mehlnormal.m

This function performs the tempered, modified Langevin step for algo-

rithm 4.4 on the normal distribution discussed in section 4.3.4.

function [newpars,newpost]=mehlnormal(oldpars,oldpost)

%This function performs a modified Langevin step for
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%a MVN distribution.
/

%Christopher Mehl, 2004.

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

LNG=length(oldpars) ;

logold=oldpost;

hApproximation of the gradient.
h=0.000000005;

b

SIG=0.00001*eye(LNG) ;
delpar=zeros(LNG,1);
shift=zeros(LNG,1);

postfunmax=logmvnkern(modes,Mu,CoSig) ;

for k=1:LNG
shift(k)=h;
delpar(k)=(1/h)*(logmvnkern(oldpars+shift,Mu,CoSig)-logold);
shift(k)=0;

end
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gradold=delpar;

if norm(gradold,2)==0
mutheta=oldpars;

else
dir=gradold/norm(gradold,?2);
step=(SIG)*(postfunmax-logold+1) ;
hstep=(0.5%SIG. 2)* (postfunmax-logold+1) ;
mutheta=oldpars+step*dir;

end

thetaprop=mvnrnd (mutheta,SIG,1)’;
hthetaprop=csmvrnd (mutheta,SIG,1)’;
lognew=logmvnkern(thetaprop,Mu,CoSig) ;
delparnew=zeros (LNG,1) ;

shift=zeros(LNG,1);

for k=1:LNG
shift(k)=h;
delparnew(k)=(1/h)*(logmvnkern(thetaprop+shift,Mu,CoSig)-lognew) ;
shift(k)=0;

end

gradnew=delparnew;
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dirnew=gradnew/norm(gradnew,2) ;
stepnew=(SIG) * (postfunmax-lognew+1) ;
hstepnew=(0.5*%SIG. ~2)*(postfunmax-lognew+1l) ;

munew=thetaprop+stepnewxdirnew;

lalpha=lognew-logold+. ..
.. .logmvnkern(thetaprop,mutheta,SIG)-logmvnkern(oldpars ,munew,SIG) ;
if log(rand(1,1))<lalpha
cntl=cnti+1;
newpars=thetaprop;
newpost=lognew;
else
newpars=oldpars;
newpost=logold;

end

h

C.3.3 Function: langnormal.m

This function performs the Langevin step on the normal distribution dis-

cussed in section 4.3.4.

function [newpars,newpost]=langnormal(oldpars,oldpost)

%»This function performs a regular Langevin step for
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%a MVN distribution.
/

%Christopher Mehl, 2004.

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

LNG=length(oldpars) ;

logold=oldpost;

hApproximation of the gradient.
h=0.000000005;

b

SIG=0.00001*eye(LNG) ;
delpar=zeros(LNG,1);

shift=zeros(LNG,1);

for k=1:LNG
shift(k)=h;
delpar(k)=(1/h)*(logmvnkern(oldpars+shift,Mu,CoSig)-logold);
shift(k)=0;

end
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gradold=delpar;
mutheta=oldpars+(SIG)*gradold;
Jmutheta=oldpars+(0.5%SIG.~2)*gradold;
thetaprop=mvnrnd (mutheta,SIG,1)’;
hthetaprop=csmvrnd (mutheta,SIG,1)’;
lognew=logmvnkern(thetaprop,Mu,CoSig) ;
delparnew=zeros (LNG,1) ;
shift=zeros(LNG,1); for k=1:LNG

shift(k)=h;

delparnew(k)=(1/h)* (logmvnkern(thetaprop+shift,Mu,CoSig)-lognew) ;

shift(k)=0;
end gradnew=delparnew; munew=thetaprop+(SIG)*gradnew;
Jmunew=thetaprop+(0.5*SIG.~2)*gradnew;
lalpha=lognew-logold+. ..
.. .logmvnkern(thetaprop,mutheta,SIG)-logmvnkern(oldpars ,munew,SIG) ;
if log(rand(1,1))<lalpha

cnt2=cnt2+1;

newpars=thetaprop;

newpost=lognew;
else

newpars=oldpars;

newpost=logold;

end
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C.3.4 Function: rwnormal.m
This function performs a standard random walk Metropolis step for the
multivariate normal distribution discussed in section 4.3.4.

function [newpars,newpost]=rwnormal(oldpars,oldpost)

%This function performs a random walk MH step for
%»the MV normal distribution.
b

%Christopher Mehl, 2004.

global Mu CoSig cntl cnt2 cnt3 modes dim rho;

global arrw armehl arlang;

LNG=1length(oldpars) ;

logold=oldpost;

SIG=0.00001*eye (LNG) ;

%SIG=0.5%SIG."2;

tmpl=zeros (LNG,1) ;
thetaprop=oldpars+mvnrnd (tmpl,SIG,1)’;

hthetaprop=oldpars+csmvrnd (tmpl,SIG,1)’;
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lognew=1logmvnkern(thetaprop,Mu,CoSig) ;

lalpha=lognew-logold;

if log(rand(1,1))<lalpha
cnt3=cnt3+1;
newpars=thetaprop;
newpost=lognew;

else
newpars=oldpars;
newpost=logold;

end

h

C.4 Code for the Chronic Wasting Disease Model
This code was used to analyze the prevalence data for the Chronic Wasting
Disease model. The programs include the posterior function, and the Markov

chain simulation.

C.4.1 Function: pmaker3.m

This is the deterministic update function used to calculate prevalence values,
given the parameters. The update equation is discussed in section 3.2.3.
function pall = pmaker3(par,mdl,nn)

%% function pall = pmakeri(par,i,nn)
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YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA
YA

Builds the probabilities according to

the difference equation

for the model with MDL non-zero probabilities and

5-other parameters

p(:,t+1) = Q*p(:,t) + alphaxX_t*x(delta -X_t)

INPUTS

PAR =

NN

[p1,p2,...p_i,alpha,delta,pi,omegal’;

pp0 = [pi,p2,...,p_i, 0,0,0,0]1;

Each DAU has its own starting level

tht = [alpha,delta,pi,omegal’;
these parameters control the

disease dynamics in the model

1 <=1<=3

the number of non-zero starting prevalences.

an integer > 1

How many years to build?

(default is set to 27 if nothing is entered)
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YA

YA

%% OUTPUTS

/YA PALL the probabilities that correspond
oo with each year/DAU

/YA an 16 x NN matrix

Tolh

global DD1 DD2 TT1 TT2 ORDR NNN;
[nr,nc] = size(NNN);

if (nargin<3)

nn = nc+1;

end

ppO=zeros(nr,1);

ppO (ORDR (1:md1l) )=par(1:mdl);

alph = par(mdl+1);
delt = par(mdl+2);
gama = par (mdl+3);

accl=alph*4*min(1./delt"2,1./(1-delt)"2);
pall = zeros(nr,nn);

pall(:,1) = ppO;
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WWW=gamax*xTT1;

WWW=eye (nr)-diag(sum(WWW’) ) +WWW;

for j =1:(an-1);
dum = WWW¥pall(:,j) + ...
...acclxpall(:,j).*(delt-pall(:,j)).*(1-pall(:,j));
pall(:,j+1) = dum;

end

C.4.2 Function: postfun3nopi.m
This is the log posterior density for the CWD model. The parameter 7 is
not used in this posterior, since it is independent of the other parameters.
function pst = postfun3_nopi(par,mdl)
%% Evaluates log(POSTERIOR DISTRIBUTION)
%% without the parameter pi.
%% INPUTS
o PAR
o

global PRIORS PR_PROB DD1 TT1 DD2 TT2 CUTOFF MMM NNN ORDR;

[nr,nc] = size(MMM); pp0 = zeros(nr,1); ooo = ORDR(1:mdl);
pp0(o00) = par(1:mdl); tht = par(mdl+(1:3)); alph = tht(1);
delt = tht(2); gama = tht(3);

%pii = tht(4);
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slo=min(pp0)>=0&max (pp0) <=1&alph<i&alph>0&delt<1& delt>0;

slo = slo & max(DD1)*gama < 1 ;

if(slo)
prpr = sum((PR_PROB(1:mdl,1)-1).*1log(pp0(000)));
prpr = prpr + sum( (PR_PROB(1:mdl,2)-1).*log(1-pp0(000)));
prth = sum((PRIORS([1:3],1)-1).xlog(vec(tht)));
prth = prth + sum((PRIORS([1:3],2)-1).%log(1-vec(tht)));
prior = prpr + prth ;
ppt = pmaker3(par,mdl);

ppl = ppt(1:nr,2:(nc+1));
%ppl (NNN<=CUTOFF) = pii;
% ensure that prevalences are between zero and 1
tml = min(pp1(:))>=0 & max(ppl(:))<=1 ;
% ensure that CWD is never observed when prevalence is 0
% or that CWD is always observed when prevalence is 1.
tm2 = sum(MMM(pp1==0) > 0) == 0 & ...
.. .sum( (NNN(pp1==1)-MMM(pp1==1))>0)==0;
if( tml & tm2 )
tmp = “isnan(MMM) & “isnan(NNN) & “(ppl==0 & MMM==0)...

...& “(ppl==1 & MMM == NNN);
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tmp = tmp & NNN>CUTOFF;

like = sum(MMM(tmp) .*log(ppl(tmp)) + ...

.. . (NNN (tmp) -MMM (tmp) ) . *1og(1-ppl(tmp))) ;

like = like;
else

slo = 0;
% disp(’postfun3!’)

like = -(999999999+8888888*sum(abs(par)) + rand(1)*77777);
end

end

if(slo)
pst = prior + like;
else
% disp(’postfun3!’)
pst = -(999999999+88888888*sum(abs(par)) + rand(1)*77777);
end

h

C.4.3 Program: prevmehl7g.m

This is the Markov chain simulation for the CWD data, using the algorithm
discussed in chapter 4.
%#Declare global variables

global MMM NNN TT1 TT2 DD1 DD2 PRIORS PR_PROB YRS DAU UUU CUTOFF;
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global ORDR;

%PR_PROB

%0RDR

(4,

APRIORS(1,:)

APRIORS(2,:)

yA mean

%PRIORS(3, :)

%PRIORS (4, :)

%PRIORS(5, :)

warning off

%This loads the

load matlab

load LOADME

%The Sampler

10,5,27,44,3,9,17];
[1,11; % alpha:
[8,82]; % delta:

8/90=0.09, std.dev.
[1,50]; % gamma
[1,100]; % omega

[1.5,1.5]; % pi

[ones(54,1) ,ones(54,1)*200] ;

Uniform

= 0.0298

.mat file with the saved variables and data.

%»The sampler will implement a Tempered Truncated

iMetropolis Adjusted Langevin algorithm to

%simulate the posterior distribution.

/

%The simulation will use the same functions:

/
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%as the acceptance sampler in [Johns and Mehl, 2004].

sLength of Markov Chain, initialization

NChain=300000;

%Parameters are: theta(l,:)= p_10

yA theta(2,:)= p_4
% theta(3,:)= p_5
% theta(4,:)= alpha
% theta(5, :)= delta
% theta(6,:)= gamma

thetal=zeros(6,NChain) ;

hSuccessive Substitution Sampler

tempsamp=zeros(6,1); logpost=postfun3_nopi(thetal(:,1),3);

for k=2:NChain
tempsamp=thetal(:,k-1);
[tempsamp,logpost]=metpar7g(tempsamp,logpost);
thetal(:,k)=tempsamp;

end

oo to

save LONGRUN1Ga
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/

C.4.4 Function: metpar7g.m

This function performs a tempered, truncated Langevin Metropolis step,
using the method introduced in chapter 4.

function [newpars,newpost]=metpar7g(oldpars,oldpost)

%»This function performs a Langevin Metropolis step for
%all parameters but pi.

h

%The proposal will be in the direction of the gradient,
%using a standard normal distribution.

h

%It returns the updated parameter vector and the log
%of the posterior probability, to avoid recalculation.
h

hArguments: oldpars= old parameter vector, should be a

yA 6 vector, we don’t
h simulate pie
h oldpost= value of posterior distribution

pl0=o0ldpars(1); p4=oldpars(2); pb=oldpars(3); alph=oldpars(4);

delt=oldpars(5); gamm=oldpars(6); logold=oldpost;

hApproximation of the gradient. h= step size,
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»SIG= tuning parameter.
/#Because the different components of our vector have
hdifferent SD, we want to step them different distances.

T

h=0.000000005;
SIG=(0.000000000001)*diag([0.1005,0.0781,0.0400,0.1995,0.1543,0.0346]) ;
modes=[0.0251;0.0127;0.0022;0.1408;0.1479;0.0081] ;

postfun3max=postfun3_nopi(modes,3);

delp10=(1/h)* (postfun3_nopi([p10+h;p4;p5;alph;delt;gamm],3)-logold);
delp4=(1/h)*(postfun3_nopi([p10;p4+h;p5;alph;delt;gamm],3)-1logold) ;
delp5=(1/h)*(postfun3_nopi([p10;p4;p5+h;alph;delt;gamm],3)-1logold) ;
delalp=(1/h)*(postfun3_nopi([p10;p4;p5;alph+h;delt;gamm],3)-logold);
deldel=(1/h)*(postfun3_nopi([p10;p4;p5;alph;delt+h;gamm],3)-logold);
delgam=(1/h)* (postfun3_nopi([p10;p4;p5;alph;delt;gamm+h],3)-logold);

gradold=[delp10;delp4;delp5;delalp;deldel;delgam];

%The quantity logmax-logold+l is bounded below by 1.

%General idea: the closer to the mode, the smaller the step size.

dir=gradold/norm(gradold,2) ;

step=(0.000000000005) * (postfun3max-logold+1) ;

mutheta=oldpars+step*dir;
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thetaprop=mvnrnd (mutheta,SIG,1)’;

%#Decision rule

if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;

else
plOnew=thetaprop(1) ;
p4new=thetaprop(2) ;
pbnew=thetaprop(3) ;
alpnew=thetaprop(4);
delnew=thetaprop(5);
gamnew=thetaprop(6) ;

lognew=postfun3_nopi(thetaprop,3);

delplOnew=(1/h)*(postfun3_nopi([plOnew+h;p4new;pbnew;. ..

...alpnew;delnew;gamnew] ,3)-lognew) ;

delp4new=(1/h)*(postfun3_nopi([plOnew;p4new+h;pbnew;. ..

...alpnew;delnew;gamnew] ,3)-lognew) ;

delp5new=(1/h)* (postfun3_nopi([plOnew;p4new;pbnew+h;. ..

...alpnew;delnew;gamnew] ,3)-lognew) ;
delalpnew=(1/h)*(postfun3_nopi([plOnew;p4new;pbnew;. ..
...alpnew+h;delnew;gamnew] ,3)-lognew) ;

deldelnew=(1/h)*(postfun3_nopi([plOnew;p4new;pbnew;. ..
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...alpnew;delnew+h;gamnew] ,3)-lognew) ;
delgamnew=(1/h)*(postfun3_nopi([plOnew;p4new;pbnew;. ..
...alpnew;delnew;gamnew+h] ,3)-lognew) ;
gradnew=[delplOnew;delp4new;delpbnew;. ..
...delalpnew;deldelnew;delgamnew] ;
dirnew=gradnew/norm(gradnew,2) ;
stepnew=(0.000000000001) * (postfun3max-lognew+1) ;

munew=thetaprop+stepnewxdirnew;

lalpha=lognew-logold+. ..

.. .logmvnkern(thetaprop,mutheta,SIG)-. ..

.. .logmvnkern (oldpars,munew,SIG) ;

b

if log(rand(1,1))<lalpha
newpars=thetaprop;
newpost=lognew;

else
newpars=oldpars;
newpost=logold;

end

end

ot

C.4.5 Function: metpar7a.m
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This function is used as the Metropolis step in the standard random walk
Markov chain simulation for the CWD model.

function [newpars,newpost]=metpar7a(oldpars,oldpost)

%This function performs a Random Walk Metropolis step
hfor all parameters but pi.

h

h

%It returns the updated parameter vector and

»the log of the posterior

hprobability, to avoid recalculation.

h

pl0=oldpars(1);
p4=oldpars(2);
p5=oldpars(3) ;
alph=oldpars(4) ;
delt=oldpars(5);
gamm=oldpars(6) ;

logold=oldpost;

SIG=0.000001*diag([0.1005,0.0781,0.0400,0.1995,0.1543,0.0346]) ;

thetaprop=oldpars+mvnrnd(zeros(6,1) ,SIG,1)’;
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%thetaprop=oldpars+csmvrnd(zeros(6,1) ,SIG,1)’;

%sDecision rule
if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;
else
lalpha=lognew-logold+logmvnkern (thetaprop,oldpars,SIG). ..
.. .—logmvnkern(oldpars,thetaprop,SIG);
if log(rand(1,1))<lalpha
newpars=thetaprop;
newpost=lognew;
else
newpars=oldpars;
newpost=logold;
end

end

o

C.5 Simulation Code for Model Validation

The code in this sections was used to generate the artificial data and run the
simulations discussed in section 5.2. The code here was used for the first three
simulations. The remaining simulations differed only in the initial prevalence

values, as detailed in section 5.2.
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C.5.1 Program: groupltest.m

This ran the first three model variations. The initial prevalence value was
P10 = 0.05, and the levels of § were 0.05, 0.15, and 0.50. The remaining simu-
lations varied only in the initial prevalences that were chosen. The mode was
determined using the function fminsearch.m that is built into Matlab. For each
of the nine model variations, a data set was selected randomly and used in max-
imizing the log posterior density. This value was used for all fifty runs as the
mode.

%»This program will generate data for a given model

global alptrue deltrue gamtrue MMM NNN TT1 DD1 PRIORS PR_PROB;

global NChain CUTOFF ORDR;

NChain=200000;

load SPATIALMATS

CUTOFF=0;

ORDR=[1,2,3,4,5,6,7,8,9];

PR_PROB = [ones(9,1),ones(9,1)%*200];
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PRIORS(1,:) = [1,1]; % alpha: Uniform
PRIORS(2,:) = [8,82]; % delta:
PRIORS(3,:) = [1,50]; % gamma:

%Building the fake NNN.

yrs=20; NNN=zeros(9,yrs); NNN(:,1:4)=15; NNN(:,5:15)=100;

NNN(:,16:yrs)=1000;

YA
YA
YA

YA
YA
YA
YA
YA
YA
YA
YA
YA
YA

There will be 12 sets of models tested, each for 50 runs.

\alpha, \gamma will be the same throughout.

The second set will have p(1,0)=0.05, p(2,0)=0.01,

\delta=[0.05;0.15;0.25]

The third set will have p(1,0)=0.01,

\delta=[0.05;0.15;0.25]

The fourth set will have p(1,0)=0.01, p(2,0)=0.01,

\delta=[0.05;0.15;0.25]
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J#Bear in mind that \alpha and \delta are highly correlated!

alptrue=0.10; gamtrue=0.01; deltrue=[0.05;0.15;0.5];

save SIMPREP

%% Model set 1: Manufacture the data.

%% The first set will have p(1,0)=0.05,

%% \delta=[0.05;0.15;0.5]

mdl=1; p0=0.05;

%Initialize

% j is the level of \delta. j=1 is \delta=0.05.
% j=2 is \delta=0.15. j=3 is \delta=0.5.

% k is the run number (out of 50).

fakedatal=zeros(9,yrs,3,50);

for j=1:3
tht0=[p0;alptrue;deltrue(j) ;gamtruel;
pits=pmaker3(tht0,mdl,yrs);
for k=1:50
fakedatal(:,:,j,k)=binornd (NNN,pits);
end

end

save GROUP1DATA
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%Model set 1.
mdl=1;

grp=1;

#Stats: 4 pars, 3 delt values, 50 runs.
glmean=zeros(4,3,50);
glmed=zeros(4,3,50);
glstd=zeros(4,3,50);
gllow=zeros(4,3,50);
glup=zeros(4,3,50);

Difil=zeros(4,3,50);

for j=1:3
mode=pstmax (grp, j) ;
for k=1:50
[gimean(:,j,k),gimed(:,j,k),glstd(:,j,k),...
...gllow(:,j,k) ,glup(:,j,k),Dif1(:,j,k)]...
...=simrun(fakedatal(:,:,j,k),mdl,mode);
end

end

clear fakedatal
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save GROUP10UTPUT gimean glmed glstd gllow glup Dif1l

clear glmean glmed glstd gllow glup Difl

C.5.2 Function: simrun.m

This function runs 200,000 iterations of a Markov chain sampler using al-
gorithm 4.4 from chapter 4. The posterior estimates are calculated, using the
last 150, 000 iterations as a burn-in period. The posterior estimates are stored
for each of the fifty runs within a particular model variation.

function [Pmean,Pmed,Pstd,PLowCI,PUpCI,Dif]=simrun(data,mdl,mode)

%This function will take the DATA as its argument. It will

hperform NChain iterations of my MCMC method. After computing the

%koutput of the MCMC method, it will calculate posterior estimates

%and credible intervals. SIMRUN calls METSIMT7G.

global alptrue deltrue gamtrue MMM NNN TT1 DD1 PRIORS PR_PROB;

global CUTOFF ORDR NChain;

MMM=data;

if (mdl==1)

tmpl=zeros(4,1);
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tmp2=zeros(4,1) ;
thetaO=zeros (4,NChain) ;
theta0(:,1)=[0.03;0.08;0.1;0.01];
%»This loop needs to be run inside each data loop.
%Successive Substitution Sampler
tempsamp=zeros (4,1) ;
logpost=postfun3(thetal(:,1),mdl);
for k=2:NChain
tempsamp=thetal(:,k-1);
[tempsamp, logpost]=metsim7g(tempsamp,logpost,mdl,mode) ;
thetal(:,k)=tempsamp;
end
hsave CHECK thetal
elseif (md1==2)
tmpl=zeros(5,1);
tmp2=zeros(5,1);
theta0=zeros(5,NChain);
theta0(:,1)=[0.03;0.03;0.08;0.1;0.01];
%This loop needs to be run inside each data loop.
%Successive Substitution Sampler
tempsamp=zeros (5,1) ;
logpost=postfun3(theta0(:,1) ,mdl);
for k=2:NChain

tempsamp=thetal(:,k-1);
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[tempsamp, logpost]=metsim7g(tempsamp,logpost,mdl,mode) ;
thetaO(:,k)=tempsamp;
end

end

#Posterior Mean, Median, Std, LowCI, UpCI.
burnin=50000;
tmpl(1)=prctile(thetal(1l,burnin:NChain),0.025);
tmpl(2)=prctile(thetal(2,burnin:NChain),0.025);
tmp1(3)=prctile(thetal(3,burnin:NChain),0.025);
tmpl(4)=prctile(thetal(4,burnin:NChain),0.025);
if mdl==2

tmp1 (5)=prctile(thetal(5,burnin:NChain),0.025);
end
tmp2(1)=prctile(thetal(1,burnin:NChain),0.975);
tmp2(2)=prctile(thetal(2,burnin:NChain),0.975);
tmp2(3)=prctile(thetal(3,burnin:NChain),0.975);
tmp2(4)=prctile(thetal(4,burnin:NChain),0.975);
if mdl1==2

tmp2(5)=prctile(theta0(5,burnin:NChain),0.975);
end Pmean=mean(thetal(:,burnin:NChain)’);
Pmed=median(thetal(:,burnin:NChain)’);
Pstd=std(thetal(:,burnin:NChain)’); PLowCI=tmpl; PUpCI=tmp2;

1ngth=NChain/2;
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Dif=mean(thetal(:, (lngth+1) :NChain)’)-...

...mean(thetal0(:,burnin:1lngth)’);

C.5.3 Function: metsim7g.m

This function performs a tempered, truncated, Langevin Metropolis step for
the model validation simulation, as detailed in chapter 4. The values for > were
kept the same through all of the simulations.

function [newpars,newpost]=metsim7g(oldpars,oldpost,mdl,mode)

%This function performs my Langevin Metropolis step

%for all parameters of the simulated run.

%The proposal will be in the direction of the gradient,
husing a standard normal distribution.

b

%It returns the updated parameter vector and the log of
sthe posterior probability, to avoid recalculation.

h

hArguments: oldpars= old parameter vector, should be a 4
h or 5 vector,

b oldpost= value of posterior distribution

global alptrue deltrue gamtrue MMM NNN TT1 DD1 PRIORS PR_PROB
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global CUTOFF ORDR NChain;

logold=oldpost;

h=0.000000005;

if (length(oldpars)==4)
postfun3max=postfun3(mode,mdl) ;
pl=oldpars(1);
alph=oldpars(2);
delt=oldpars(3);
gamm=oldpars (4) ;
SIG=0.00001*diag([0.1005,0.5995,0.1543,0.0346]) ;
%SIG=0.000000000001*eye(4) ;
delp1=(1/h)*(postfun3([pl+h;alph;delt;gamm] ,md1l)-logold) ;
delalp=(1/h)*(postfun3([pl;alph+h;delt;gamm] ,mdl)-logold);
deldel=(1/h)*(postfun3([pl;alph;delt+h;gamm] ,mdl)-logold);
delgam=(1/h)*(postfun3([pl;alph;delt;gamm+h] ,mdl)-logold) ;
gradold=[delpl;delalp;deldel;delgam];
dir=gradold/norm(gradold,2);
step=(0.00000000000005) * (postfun3max-logold+1) ;

mutheta=oldpars+step*dir;

thetaprop=mvnrnd (mutheta,SIG,1)’;
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if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;

else
plnew=thetaprop(1);
alpnew=thetaprop(2) ;
delnew=thetaprop(3);
gamnew=thetaprop (4) ;
lognew=postfun3(thetaprop,1);
delpinew=(1/h)*(postfun3([pinew+h; ...
...alpnew;delnew;gamnew] ,md1l)-lognew) ;
delalpnew=(1/h)*(postfun3([pinew;. ..
...alpnew+h;delnew;gamnew] ,md1l)-lognew) ;
deldelnew=(1/h)*(postfun3([pinew;. ..
...alpnew;delnew+h;gamnew] ,md1l)-lognew) ;
delgamnew=(1/h) * (postfun3([pinew;. ..
...alpnew;delnew;gamnew+h] ,md1)-lognew) ;
gradnew=[delplnew;delalpnew;deldelnew;delgamnew] ;
dirnew=gradnew/norm(gradnew,2) ;
stepnew=(0.00000000000005) * (postfun3max-lognew+1) ;
munew=thetaprop+stepnewkxdirnew;
lalpha=lognew-logold+. ..
...logmvnkern(thetaprop,mutheta,SIG)-...

...logmvnkern(oldpars,munew,SIG) ;
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if log(rand(1,1))<lalpha
newpars=thetaprop;
newpost=lognew;
else
newpars=oldpars;
newpost=logold;
end
end
elseif (length(oldpars)==5)
postfun3max=postfun3(mode,mdl) ;
pl=oldpars(1);
p2=oldpars(2);
alph=oldpars(3);
delt=oldpars(4);
gamm=oldpars(5) ;
%SIG=0.000000000001*eye(5) ;
SIG=0.00001*diag([0.1005,0.0781,0.5995,0.1543,0.0346]) ;
delp1=(1/h)*(postfun3([pl+h;p2;alph;delt;gamm] ,md1)-logold);
delp2=(1/h)*(postfun3([pl;p2+h;alph;delt;gamm] ,md1)-logold);
delalp=(1/h)*(postfun3([pl;p2;alph+h;delt;gamm] ,mdl)-logold) ;
deldel=(1/h)*(postfun3([pl;p2;alph;delt+h;gamm] ,mdl)-logold) ;
delgam=(1/h)*(postfun3([pl;p2;alph;delt;gamm+h],mdl)-logold) ;
gradold=[delpl;delp2;delalp;deldel;delgam];

dir=gradold/norm(gradold,?2) ;
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step=(0.00000000000005) * (postfun3max-logold+1) ;

mutheta=oldpars+step*dir;

thetaprop=mvnrnd (mutheta,SIG,1)’;

if min(thetaprop)<0 | max(thetaprop)>1
newpars=oldpars;
newpost=logold;

else
plnew=thetaprop(1);
p2new=thetaprop(2) ;
alpnew=thetaprop(3);
delnew=thetaprop(4) ;
gamnew=thetaprop(5) ;
lognew=postfun3(thetaprop,mdl) ;
delpinew=(1/h)*(postfun3([plnew+h;p2new;. ..
...alpnew;delnew;gamnew] ,md1)-lognew) ;
delp2new=(1/h)*(postfun3([plnew;p2new+h;. ..
...alpnew;delnew;gamnew] ,mdl) -lognew) ;
delalpnew=(1/h)*(postfun3([pinew;p2new;. . .
...alpnew+h;delnew;gamnew] ,mdl)-lognew) ;
deldelnew=(1/h)* (postfun3([pilnew;p2new;. . .
...alpnew;delnew+h;gamnew] ,mdl)-lognew) ;
delgamnew=(1/h) * (postfun3([pinew;p2new;. . .

...alpnew;delnew;gamnew+h] ,md1l)-lognew) ;
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gradnew=[delplnew;delp2new;delalpnew;deldelnew;delgamnew] ;
dirnew=gradnew/norm(gradnew,?2) ;
stepnew=(0.00000000000005) * (postfun3max-lognew+1) ;
munew=thetaprop+stepnewxdirnew;
lalpha=lognew-logold+logmvnkern(thetaprop,mutheta,SIG)...
...~logmvnkern(oldpars,munew,SIG) ;
if log(rand(1,1))<lalpha

newpars=thetaprop;

newpost=lognew;
else

newpars=oldpars;

newpost=logold;
end

end

end

Yoo
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