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Abstract

This work describes the development and application of genomic DNA tiling arrays: 

microarrays designed to represent all of the DNA comprising a chromosome or other 

genomic locus, regardless of the genes that may be annotated in the region of interest. 

Because tiling arrays are intended for the unbiased interrogation of genomic sequence, 

they enable the discovery of novel functional elements beyond those described by existing 

gene annotation. This is of particular importance in mapping the gene structures of higher 

eukaryotes, where combinatorial exon usage produces rare splice variants or isoforms 

expressed in low abundance that may otherwise elude detection. Issues related to the 

design of both oligonucleotide- and amplicon-based tiling arrays are discussed; the latter 

technology presents distinct challenges related to the selection of suitable amplification 

targets from genomic DNA. Given the widespread fragmentation of mammalian genomes 

by repetitive elements, obtaining maximal coverage of the non-repetitive sequence 

with a set of fragments amenable to high-throughput polymerase chain reaction (PCR) 

amplification represents a non-trivial optimization problem. To address this issue, 

several algorithms are described for the efficient computation of optimal tile paths for 

the design of amplicon tiling arrays. Using these methods, it is possible to recover an 

optimal tile path that maximizes the coverage of non-repetitive DNA while minimizing 

the number of repetitive elements included in the resulting sequence fragments. Tiling 

arrays were constructed and used for the chromosome- and genome-wide assessment 

of human transcriptional activity, via hybridization to complementary DNA derived 

from polyadenylated RNA expressed in normal complex tissues. The approach is first 

demonstrated with amplicon arrays representing all of the non-repetitive DNA of human 

chromosome 22, then extended to the entire genome using maskless photolithographic 

DNA synthesis technology. A large-scale tiling array survey revealed the presence of over 

10,000 novel transcribed regions and verified the expression of nearly 13,000 predicted 

genes, providing the first global transcription map of the human genome. In addition to 

those likely to encode protein sequences on the basis of evolutionary sequence conservation, 

many of the novel transcripts constitute a previously uncharacterized population of non-

coding RNAs implicated in myriad structural, catalytic and regulatory functions.
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I

This dissertation has been a long time coming. I originally went to college for 

music and received my first degree in composition. A growing interest in tech-

nology, along with a sense of commonality between art and mathematics, led 

me to computer science. I studied computation in graduate school for five years, 

specializing in artificial intelligence, programming language design and comput-

ability theory. Many aspects of computing are of great interest to me, but I also 

wanted to find an application for some of the techniques I had specialized in, 

particularly machine learning. Over time I became interested in molecular biol-

ogy for the wealth of interesting and complex research problems in the field.

Despite the current popularity of bioinformatics, working on real biologi-

cal problems was not straightforward. Without the large-scale data sets we deal 

with today, biologists had little need for computer scientists. When computa-

tional techniques were used, I saw a disappointing trend in the way computer 

scientists approached the situation. Given limited knowledge of biology, one is 

tempted to simply apply familiar techniques (e.g., string algorithms) to nucleic 

acid and protein sequences with little understanding of the underlying purpose 

or implications. I therefore decided that if I wanted to make a meaningful con-

tribution to the field, it would be necessary for me to pursue molecular biology 

and become an experimentalist in addition to working in computation. This was 

one of the best decisions I ever made, due in large part to the many people who 

gave me the opportunity to develop my career in this direction.

As each year passes, I am always surprised at how much my life has improved 

and how more knowledgeable I am than I was the previous year. This continued 

realization is a product of my interactions with friends, family and coworkers. 

These are the people who have influenced my life and shaped my goals, bringing 

me closer to the person I hope to become.

I first wish to thank my research advisors, Mark Gerstein and Michael Snyder. 

The advantages of working in both a computational and experimental environ-

ment cannot be overstated, particularly given the range of projects I have been 

able to work on through their sponsorship. It was immensely satisfying to be 

able to work in Mike’s lab to generate experimental data, then perform compu-

tational analyses in Mark’s group. This joint arrangement has given me a unique 

outlook on science, and for that I will always be grateful.

Preface and Acknowledgments



iiPreface and Acknowledgments

Bertone | Microarray approaches to experimental genome annotation

I also want to acknowledge the input of my research committee: Sherman 

Weissman, Perry Miller, Doug Kankel, Frank Ruddle and Frank Slack. I am par-

ticularly thankful for the many excellent conversations I have had with Sherm 

and Perry over the years about genetics, computers and life. I would also like to 

thank Joe Ecker (Salk Institute) for reading my dissertation. 

I want to thank my labmates and other colleagues with whom I have had 

many inspiring discussions: Bob Adams, Vadim Alexandrov, Sid Altman, Wilhelm 

Ansorge, Peter Bertone, Suganthi Balasubramanian, Scott Bidlingmaier, Metin 

Bilgin, Anthony Borneman, Ron Breaker, Nick Carriero, Antonio Casamayor, 

Alexandra Charos, Paolo Coelho, Rajdeep Das, Enrique De La Cruz, Xing-

Wang Deng, Geeta Devgan, Savithramma Dinesh-Kumar, Shawn Douglas, Nat 

Echols, Olof Emanuelsson, Don Engelman, Ghia Euskirchen, George Farr, 

Zareen Gauhar, Dan Gelperin, Tara Gianoulis, Yoav Gilad, Tom Gingeras, Bob 

Green, Dov Greenbaum, Jim Griffith, Roderic Guigó, Paul Harrison, Steve 

Hartman, Hedi Hegyi, Christine Horak, Art Horwich, Christine Jacobs, Ron 

Jansen, Ted Johnson, Ghil Jona, Jochen Junker, John Karro, Yuval Kluger, Anuj 

Kumar, Ian Laurenzi, Bob Leamnson, Sue Leclair, Peter Little, Nick Luscombe, 

Becky Martone, Chris Mason, John Mattick, Greg Michaud, Duncan Milburn, 

Janine Mok, Ken Nelson, Sara Nichols, Svante Pääbo, Alberto Paccanaro, Shae 

Padrick, Jason Ptacek, John Quackenbush, Bing Ren, John Rinn, Tom Royce, Joel 

Rozowsky, Bill Segraves, Mike Seringhaus, Tom Scheuermann, Falk Schubert, 

Chern Sing-Goh, Mike Smith, Dieter Söll, Ned Staples, Valery Trifonov, Richard 

Upchurch, Alex Urban, Marc Vidal, Eric White, Kevin Wise, Joe Wolenski, Yu 

Xia, Haiyuan Yu, Zhaolei Zhang, Deyou Zheng, Heng Zhu and Xiaowei Zhu.

I am lucky to have assembled an outstanding group of friends outside of 

Yale who have offered strong and consistent encouragement, including Alec 

Antobenedetto and family, James and Maggie Burke, John Choquette, Craig 

Dahlberg, Clif and Joyce Fischlein, Jack and Kim Foehl, Chris and Amy Goffredo, 

Arno Grbac and family, Adrian and Alison Griffiths, Osha Gula, Jon and Francie 

Harris, the Josti family, Todd Lander, Matthew Mandelbaum, Jamie and Karen 

Quinn, Bruce Rader, Jay and Suzy Rouhana, Craig and Trish Rousseau, Bob Sellers 

and family, Eric Staffier, Matt and Kelly Stevens, Scott Tarulli and family, Petie 
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My family has been a source of unwavering support over the years; my par-

ents Felice and Joan, brother Mark, sister Diana and niece Aislyn constitute the 

emotional core of my life. I also wish to thank my extended family, as well as 

the Liponis family, for all of their love and kindness. I am particularly grateful to 

Steve, Marilyn and Tom Liponis for making me feel like a member of their family 

from the outset. 

Most of all I want to thank my wife, Ruth. She has been a source of infinite 

love and encouragement, providing friendship and support through all my expe-

riences and endeavors. Throughout this section I have emphasized how fortunate 

I am to have known and worked with such amazing people. While that is cer-

tainly true, most of all I am lucky that Ruthie married me.

Organization and Synopsis

Chapter 1 contains an introduction to some of the problems inherent in eukary-

otic genome annotation, with respect to characterizing expressed mRNAs and 

mapping transcribed sequences. Here I outline a brief history of this area and 

describe why the microarray approach is well suited to this problem.

Chapter 2 describes computational approaches for designing microarrays for 

a variety of applications. In particular, the chapter addresses the problem of 

recovering a population of non-repetitive sequence fragments amenable to PCR 

amplification. To facilitate the design of amplicon (PCR-based) tiling arrays, I 

developed new algorithms to derive optimal tile paths through highly repetitive 

genomic DNA. This approach maximizes the coverage of non-repetitive DNA 

while minimizing the number of repetitive elements included in the amplified 

sequence fragments. This work was instrumental in the construction of amplicon 

arrays spanning human chromosome 22 (Chapter 3). Work on similar problems 

has been an ongoing collaboration with several people, including Ming-Yang 

Kao, Bhaskar DasGupta, Falk Schubert, Valery Trifonov and Joel Rozowsky. The 

theoretical analysis of various tiling problems is expanded in Appendices B–D.

Chapter 3 introduces a DNA microarray of human chromosome 22, devel-

oped by our group over a period of about three years. This was a large project 

carried out by a relatively small group of individuals. The work was initiated 
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by Ghia Euskirchen in early 2000, shortly after the sequence of chromosome 

22 was first published. Ghia began painstakingly acquiring and cataloging BAC 

clones from various labs in the sequencing consortium, while I began work on 

computational methods that would allow us to select thousands of sequences 

across the chromosome for PCR amplification. It eventually became clear that 

the BAC approach would be infeasible, so it was decided to amplify the DNA 

from genomic template (HeLa cells) instead. Ghia undertook this effort and 

PCR-amplified 50% of the chromosome herself (over 10,000 reactions). During 

this time I began building a database and analysis system to support the proj-

ect, integrating existing gene annotation from numerous sources and develop-

ing software to coordinate the capture of experimental data. The microarray 

construction effort was later shared between Ghia, Becky Martone and John 

Rinn, who joined the project in 2001. In addition to his participation in con-

structing the arrays, John would go on to probe them with a variety of complex 

tissue RNAs. Nick Luscombe and I used this data to map transcriptional activity 

across the chromosome. Nick was instrumental in developing a statistical scor-

ing method to determine positive hybridizing fragments, and I performed the 

remaining analyses in consultation with Paul Harrison. Paul and I used a number 

of gene prediction methods to guide the design of a secondary array, which was 

used to determine strand-specific transcription. This oligonucleotide-based ap-

proach was essentially a precursor to the genome-wide transcript mapping ex-

periment described in Chapter 4. Subsequent to this study, several members of 

our group have used this microarray platform to identify the chromosome-wide 

binding sites of several transcription factors via hybridization to chromatin im-

munoprecipitated DNA, as reviewed in Chapter 5.

Chapter 4 describes the application of a new DNA microarray technology 

called maskless photolithography, and extends the experiment described in 

Chapter 3. Using high-resolution oligonucleotide arrays, our group conduct-

ed the first complete survey of transcriptional activity across the genome. This 

work is based on a multi-year collaboration I led with the nanotechnology group 

at the NASA Ames Research Center. John Rinn was a great help as we carried 

out pilot experiments together to develop new hybridization protocols. I would 

later work with Alex Urban and Xiaowei Zhu to carry out these techniques 
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for a variety of different experiments. Using this technology I eventually devel-

oped a series of high-resolution microarrays to represent all of the non-repeti-

tive DNA in the human genome. Alex, Xiaowei and I used these arrays to map 

transcriptional activity in polyadenylated liver tissue RNA; these experiments 

were performed over a year-long period, and their enthusiastic dedication to 

the project did not go unnoticed. I was also fortunate to be able to work closely 

with Tom Royce and Joel Rozowsky in the analysis of the microarray data. It was 

largely through their efforts that we were able to formulate an accurate picture 

of the results, and I greatly enjoyed working with them. This study produced the 

first mammalian genome-wide transcription map, simultaneously identifying 

over 10,000 novel transcribed sequences and verifying the expression of nearly 

13,000 predicted genes.

Chapter 5 concludes with a view of alternate applications of genomic DNA 

tiling arrays, and how these methods relate to the problem of transcript mapping 

discussed earlier. At the end of the chapter I take the opportunity to highlight the 

excellent work of two labmates, Nick Luscombe and Haiyuan Yu, in the analysis 

of transcription factor-target relationships and the derivation of complex regu-

latory networks from these data. Due to the availability of large-scale data sets, 

this work has focused on the budding yeast Saccharomyces cerevisiae as a model 

organism. However, it seems apparent that the global analysis of transcriptional 

regulation will be of primary interest in human genetics as more comprehensive 

experiments are undertaken, so I felt it appropriate to underscore this work as 

an area where I think the field is headed.
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The principal typeface is Perpetua, designed by Eric Gill in 1928 for Samuel 

Morris of the Monotype Corporation. The font is an adaptation of the letter-

forms etched on the column of Trajan in Rome, and was first used in a limited 

edition book of The Passion of Perpetua and Felicity, after which the Roman and 

italic typefaces are named. The type is intended to have a chiseled quality that 

recalls Gill’s work as a stonecutter. Mathematical symbols and equations are set 

in Euclid and Computer Modern fonts used in the TEX system developed by 

Donald Knuth.

Chapter headings and figure labels appear in 

a clean and direct sans-serif typeface designed by 

Adrian Frutiger in 1968, originally commissioned 

for a new signage system to complement the mod-

ern architecture of the aéroport de Roissy (later 

named after Charles de Gaulle) outside Paris. 

Coming from a creative background, I appreciate a range of different art 

forms (trivia: I actually share a birthday with Vasarely, whose work I enjoy). I 

have a particular interest in Modernist design that was prevalent in work of the 

early twentieth century, when the introduction of machines began to change the 

landscape of society.  Among the most prominent centers of mod-

ern design was the Bauhaus school, founded by architect Walter 

Gropius in 1919. Although the Wiemar and Dessau facilities were 

in operation only until 1933 when the institute was shut down by 

the Nazis, the innovations developed at the Bauhaus would have 

a profound impact on industrial design, architecture, furniture 

construction, photography, painting, theatre sets and typography. 

In addition to the obvious cultural influence affected by the prod-

ucts developed there, I think that much credit for the success 

of the institute can be attributed to the methodology 

promoted by its founders. The faculty of the Bauhaus 

consisted of a panel of artisans with diverse back-

grounds: architecture, painting, graphic design, etc. 

However, the staff also included a number of master 

craftsmen and engineers. The reason for this deliberate 

L. Moholy-Nagy
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integration of various experts was to address the multifaceted de-

mands of new design projects. Students often devised unique plans 

where the machines and fabrication techniques required to realize 

their ideas might not exist. They would therefore work not only 

with a faculty artisan, but also in consultation with craftsmen to 

develop the necessary instrumentation. Engineering staff did not 

need a comprehensive background in design theory to be effective; 

likewise, the artists involved in directing a given project may not have been in-

timately familiar with the details of its implementation. Through collaborative 

effort, people with different areas of expertise worked to combine their skills to 

make a designer’s vision a reality.

I see many similarities in the way we approach modern scientific investiga-

tion, particularly where the application of emerging technologies is involved. 

Through the multi-disciplinary collaboration of experts, the Bauhaus school 

promoted a balance between technology development and ideas. In the same 

way, scientific research often demands the invention of new experimentation 

and analysis methods in order to realize large-scale projects. During my time 

at Yale I participated in many such projects, including the development of a sili-

cone elastomer-based microwell system for biochemical analysis of proteins, a 

contact-printed microarray of the yeast proteome, DNA microarrays represent-

ing an entire human chromosome, and the first high-resolution oligonucleo-

tide microarrays to span the human genome. With these and other innovations, 

our group has been able to carry out experiments that 

would have been nearly impossible only a few years 

ago. The people I have worked with shared their insight 

and expertise from a variety of disciplines, to create 

something from nothing in the pursuit of knowledge. 

Science offers the opportunity to draw on the diverse 

talents of many individuals to unite the concrete and 

abstract, producing the ideas and machines that will 

enable us to ask increasingly complex questions about 

the nature of life.
Paul Bertone | New Haven, CT | March 2005
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Microarrays have become an important new technology for 

surveying global patterns in gene expression and regulation. A 

number of innovative experiments have extended microarray ap-

plications beyond the measurement of mRNA expression levels, in order to un-

cover aspects of large-scale chromosome function and dynamics. This has been 

made possible due to the recent development of tiling arrays, where all non-

repetitive DNA comprising a chromosome or locus is represented at various 

sequence resolutions. Since tiling arrays are designed to contain the entire DNA 

sequence without prior consultation of existing gene annotation, they enable the 

discovery of novel transcribed sequences and regulatory elements through the 

unbiased interrogation of genomic loci. The implementation of such methods 

for the analysis of large eukaryotic genomes presents significant technical chal-

lenges. Nonetheless, tiling arrays are expected to become instrumental for the 

global identification and characterization of functional elements in a wide range 

of organisms. Combined with other experimental and computational methods 

to relate these data and map the complex interactions of transcriptional regula-

tors, tiling array experiments can provide insight toward a more comprehensive 

understanding of fundamental molecular and cellular processes.

Global Measurement of Gene Expression

It is widely recognized that the availability of a complete genome sequence can 

significantly enhance our ability to analyze biological phenomena and elucidate 

molecular and cellular function. Beyond the initial determination of the DNA 

sequence, the most valuable resource produced by genome mapping efforts en-

tails a comprehensive catalog of functional elements that encompass the genetic 

repertoire of an organism. Experimental methods for the global analysis of gene 

expression include subtractive hybridization (Hedrick et al. 1984), differential 

display (Liang & Pardee 1992), and representational difference analysis (Hubank 

& Schatz 1994). While these techniques are useful for characterizing differences 

in mRNA transcript populations, they are unable to generate comprehensive 

gene expression profiles.

Introduction: Genome Annotation 
via Large-scale Transcript Mapping 1
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The genome-wide identification of transcribed sequences was made possible 

with the development of the SAGE (serial analysis of gene expression) technique 

(Velculescu et al. 1995). SAGE enables the quantitative estimation of mRNA ex-

pression levels by sampling short (10nt–14nt) subsequences of transcribed mes-

sages, and using these to deduce the identity of the specific transcripts from 

which they are derived. The advantages of this approach are twofold: first, it 

is not necessary to use a unique hybridization probe to detect each individual 

transcript; second, multiple SAGE tags may be concatenated and sequenced to-

gether, providing several measurements simultaneously. A caveat inherent in the 

SAGE technique is that the use of relatively short sequence tags can result in 

ambiguous transcript identification. This deficiency can be overcome by using 

200nt–600nt expressed sequence tags (ESTs) (Adams et al. 1991). Although EST 

methods predate SAGE technology, they afford a higher degree of specificity and 

can produce long stretches of transcribed sequence. 

DNA microarrays are by far the most widely adopted platform for the 

high-throughput analysis of gene expression. The advent of cDNA (Schena et 

al. 1995, DeRisi et al. 1997), inkjet (Shoemaker et al. 2001, Hughes et al. 2001) 

and oligonucleotide (Fodor et al. 1993, Pease et al. 1994, Lockhart et al. 1996, 

Lipshutz et al. 1999) arrays has allowed researchers to simultaneously monitor 

the expression levels of thousands of genes in a single experiment. The cDNA 

format consists of mechanically-deposited DNA sequences, amplified via the 

polymerase chain reaction (PCR) and representing the entire coding sequence of 

annotated genes. Oligonucleotide arrays (e.g. Affymetrix GeneChips) typically 

contain one or more complementary oligomer sequences internal to spliced 

mRNA transcripts, generally positioned near the 3´ end to ensure hybridization 

to incomplete cDNAs. 

While all of these approaches provide the ability to measure genome-wide ex-

pression levels of annotated genes, only when a complete corpus of transcribed 

sequences has been defined can they be exploited to their full potential. Once 

an organism’s complement of transcribed sequences is known, high-throughput 

analysis methods can be used to comprehensively investigate the dynamics of 

gene expression over the entire transcriptome.
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Challenges in Genome Annotation

The early characterization of genes from prokaryotes and model eukaryotes 

revealed simple gene structures consisting almost entirely of protein-coding 

sequences. For these organisms, there usually exists a one-to-one relationship 

between the open reading frames (ORFs) that delineate transcribed sequences 

and the proteins they encode. In contrast, the genome sequences of higher eu-

karyotes tell a far different story. Here the predominant gene structures are 

often fragmented, largely due to the widespread integration of repetitive ele-

ments. The transcribed regions of larger, more complex genomes typically em-

body many short exons interspersed with long intron sequences (Figure 1.1A). 

The separation of coding sequences into discrete units provides the opportu-

nity for additional genetic variation through the mechanism of alternate splicing. 

Through selective exon usage, many different protein isoforms may arise from a 

single gene, greatly amplifying the potential coding complexity of the genome 

(Figure 1.1B,C). This is particularly true in mammals, where a typical gene may 

consist of dozens of exons and various combinations of these might be included 

in spliced messages expressed in different cell types or under different environ-

mental conditions. Thus, a single gene may give rise to a family of protein prod-

ucts that confer a wide range of functional roles. This mechanism is believed to 

account for the disproportionate increase in organismal complexity in relation 

to the number of genes it encodes.

Given the fragmented nature of mammalian genes, predicting coding regions 

from genomic DNA has proven a difficult computational challenge. Some introns 

may exceed tens of kilobases (kb) in length, making it difficult to aggregate the 

much shorter coding sequences they divide into plausible gene structures. As a 

result, many genomes are annotated through homology to characterized protein 

sequences from evolutionarily-related organisms. However, this approach is in-

herently biased in that the putative genes identified through sequence similarity 

must, by definition, be related to genes that are already known. The discovery of 

unique or highly divergent transcribed sequences is therefore precluded by this 

approach. Further, the problem of identifying non-coding RNA transcripts is 

largely neglected by current homology-based prediction methods.
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Plectin 1 (NM_201379), Chromosome 8 (-) 145061309 - 145121531

Dystrophin (NM_000109), Chromosome X (-) 30896993 - 33117215

Myosin heavy chain (NM_003802), Chromosome 17 (-) 10145530 - 10217047

Figure 1.1. Differential exon usage and splice variation in human transcripts. A) Com-
plex gene structure is evident the myosin heavy chain. B,C) Splice variation accounts 
for much of the complexity observed in higher eukaryotes, where a single gene may 
encode multiple functionally-distinct isoforms. Seven related splice variants arise from 
the plectin gene (B), while twenty isoforms can be mapped to the dystrophin locus im-
plicated in Duchenne and Becker muscular dystrophy (C). In each figure, vertical bars 
indicate exons (protein-coding segments) separated by intron sequences.
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Experimental methods of determining full-length mRNA sequences usually 

involve the cloning and sequencing of cDNA collections (Adams et al. 1991, 

Strausberg et al. 1999, Kawai et al. 2001, Ota et al. 2004). Once identified, 

cDNAs can be mapped onto the genome based on sequence similarity to yield 

a preliminary annotation of expressed gene structures. Although this approach 

captures a wealth of information about genes transcribed under specific cellular 

conditions, it often fails to identify rare splice variants or messages expressed in 

low abundance. Additionally, 5´ ends of genes may be under-represented due to 

the low fidelity of the viral polymerases used to reverse-transcribe polyadenyl-

ated RNA. 

Various techniques such as primer extension and 5´ RACE can be used to more 

precisely map transcriptional start sites; however, these methods are difficult to 

implement in a high-throughput manner. To address this problem, Marayuma 

and Sagano (1994) developed a protocol for ligating a primer to the modified 

5´ ends of RNA transcripts, thereby providing a template sequence from which 

to amplify the message for more accurate sequencing. The group went on to 

generate full-length cDNAs for the entire RefSeq collection (Pruitt et al. 2003), 

revising over one-third of the existing sequences (Suzuki et al. 1997). 

Empirical Discovery of Transcribed Sequences

The first microarray experiments designed to address the problem of gene anno-

tation were performed with the E. coli genome. Selinger et al. (2000) developed 

an oligonucleotide tiling array to represent the genome sequence at 30-bp reso-

lution, using the array for both transcript mapping and differential expression 

analysis. Nearly all of the annotated sense-strand ORFs were detected as well as 

3,000–4,000 antisense ORFs. Even though the genome of E. coli is among the 

best studied, subsequent microarray analysis by Tjaden et al. (2002) revealed 

a 25% increase in the number of transcriptional units detected beyond those 

previously annotated. 

The level of transcriptional activity detected within unannotated regions of 

genomic DNA appears to increase with the size and complexity of the genome in 

question. Recently, the entire genome of the flowering plant Arabidopsis thaliana 
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was surveyed using oligonucleotide array technology. Yamada et al. (2003) de-

veloped a series of 12 tiling arrays to characterize transcriptional activity in four 

complex tissue RNAs, producing the first comprehensive expression map of a 

eukaryotic genome. Many transcribed sequences were detected within inter-

genic regions devoid of existing gene annotation, and approximately 30% of an-

tisense transcription was found to be coincident to sense-strand coding regions.

Tiling arrays have also been used for global expression analysis of the fruit fly 

Drosophila melanogaster. Stolc et al. (2004) used maskless photolithographic DNA 

synthesis (Nuwaysir et al. 2002, Albert et al. 2003) to fabricate oligonucleotide 

arrays representing all of the predicted exons and exon splice junctions, as well 

as intergenic and intronic regions throughout the genome. RNA transcript lev-

els were measured at six developmental stages in the organism’s life cycle, pro-

filing the expression levels and splice variation of known genes but also revealing 

the presence of novel transcribed sequences. Comparison with the Drosophila 

pseudoobscura genome indicated that transcriptionally-active sequences within 

unannotated regions exhibit a greater degree of sequence conservation than 

those from which transcription was not observed.

The use of tiling arrays for human genome annotation has met considerable 

technical challenges, mainly due to the large size of mammalian genomes. As 

part of a study involving inkjet oligonucleotide arrays to survey annotated exon 

usage in the human transcriptome, Shoemaker et al. (2001) developed a tiling 

approach to accurately map the coding sequence of a novel transcript located 

within a 113-kb locus of chromosome 22. Although this analysis was carried out 

on a limited scale, the results clearly illustrated the value of using tiling arrays to 

delineate transcript boundaries, exon content and splice junctions.

The first tiling array developed to cover the sequence of an entire human 

chromosome was described by Kapranov et al. (2002). In this study, a series of 

oligonucleotide arrays representing all non-repetitive DNA on chromosomes 21 

and 22 was interrogated with cytosolic polyadenylated RNA from 11 cell lines. 

Surprisingly, a roughly two-fold increase in transcribed DNA was measured over 

that predicted by existing gene annotation. This finding was reproduced by Rinn 

et al. (2003) using a microarray representing all non-repetitive DNA of chromo-

some 22 with approximately 21,000 PCR products. Transcriptional activity was 
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measured across the chromosome in normal placental tissue RNA, followed by 

strand-specific hybridization of novel transcribed sequences to a contact-printed 

oligonucleotide array. This work is presented in detail in Chapter 3.

Chapter 4 describes the construction of 134 high-resolution oligonucleotide 

arrays representing both sense and antisense strands of the entire human ge-

nome (Bertone et al. 2004). The arrays comprise nearly 52 million 36-nt probe 

sequences, synthesized via maskless photolithography. Hybridization to poly-

adenylated liver tissue RNA revealed over 10,000 new transcribed sequences 

throughout the genome, and verified the transcription of nearly 13,000 predict-

ed genes. A large fraction of novel transcripts exhibited a high degree of similar-

ity to the mouse genome and other mammalian protein sequences, suggesting 

they may be functional on the basis of evolutionary conservation. Approximately 

11% were found to intersect retroprocessed pseudogenic sequences identified 

in previous studies (Harrison et al. 2002, Zhang et al. 2003). A small number of 

these were not determined to be homologous to other annotated genes, decreas-
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Figure 1.2. Transcriptional profiling of the human genome using three different tiling 
array platforms. A) The distribution of transcriptionally-active regions (TARs) is coin-
cident with annotated exon density on a global scale, as illustrated on human chromo-
some 3 (Bertone et al. 2004). B, C) Unbiased surveys of human chromosome 22 using 
oligonucleotide (B, Kapranov et al. 2002) and PCR-based (C, Rinn et al. 2003) tiling 
arrays reveal evidence of RNA transcription originating from previously unannotated 
regions as well as known genes.
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ing the likelihood of cross-hybridization and indicating that some of the detected 

pseudogenes may be transcribed. Many other novel transcribed sequences are 

presumed to correspond to exons retained in rare splice variants, under-rep-

resented untranslated regions (uTRs) of annotated genes, protein-coding tran-

scripts expressed in low abundance, and non-coding RNAs. All three human 

transcript mapping studies identified previously unannotated transcription units 

located distal to known genes, indicating they originate from distinct messages 

(Figure 1.2). 

The studies described in Chapters 3 and 4 measure differential hybridization 

of RNA to sense and antisense strands of transcriptionally-active regions and 

the entire genome, respectively. In both experiments, strand-specific transcrip-

tion was detected antisense to annotated gene components, notably introns. The 

initial transcriptome analysis of chromosomes 21 and 22 by Kapranov et al. in-

terrogated one strand of genomic DNA with double-stranded cDNA, and there-

fore could not discern the strand from which transcription originated. However, 

a subsequent study by Kampa et al. (2004) used end-labeled RNAs to obtain 

strand-specific information, finding 11% of novel transcription to occur anti-

sense to annotated coding sequences and 50% of transcription within intron 

regions to originate from the antisense strand, consistent with previous studies. 

Using a computational approach to select regions where antisense transcrip-

tion may occur, Yelin et al. (2003) conducted a microarray survey of 2,667 sense-

antisense sequence pairs to assay for strand-specific transcription. Hybridization 

to RNA from 19 cell lines and four normal complex tissues confirmed transcrip-

tion on both strands for 60% (1,600) of the sequences interrogated. A subset of 

these were confirmed by Northern blot hybridization to strand-specific RNAs, 

confirming the detection of endogenous natural antisense transcripts (NATs). 

Together, these findings reinforce an emerging view of widespread antisense 

and non-coding RNA transcription throughout the human genome (Cawley et 

al. 2004, Mattick 2003, Mattick 2004, Johnson et al. 2005). The repeated iden-

tification of novel transcribed sequences by several independent research studies 

provides compelling evidence of a complex transcriptome encompassing novel 

protein-coding, regulatory and structural RNAs that have previously eluded de-

tection by conventional genetic approaches.                                                      
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A recent development in microarray design entails the unbiased 

coverage, or tiling, of non-repetitive genomic DNA for the purpose 

of discovering unannotated transcribed sequences and regulatory ele-

ments. Tiling arrays represent intergenic sequences as well as the exons, introns 

and untranslated regions comprising annotated genes. Although many of the 

issues in tiling array design are straightforward in principle, the solutions can be-

come computationally intensive when applied to real genomes. This chapter de-

scribes the general problem of designing tiling arrays for either oligonucleotide 

or amplicon (PCR-based) implementations and the issues particular to each plat-

form. In particular, an efficient method for rapidly determining the uniqueness 

of oligonucleotide sequences is presented, followed by two algorithms for find-

ing an optimal tile path over genomic sequences for the design of amplicon tiling 

arrays. The first algorithm, a dynamic programming approach, finds an optimal 

partitioning in linear time and linear space; the second applies a heuristic search 

to reduce the space complexity to a constant requirement. These methods are 

applied to several eukaryotic genomes to illustrate the degree to which optimal 

tiling differs from a trivial partitioning of the sequence. The improvement in 

non-repetitive sequence coverage is most pronounced in complex mammalian 

genomes, which exhibit a much higher degree of sequence fragmentation due to 

increased repeat content. These approaches enable the construction of amplicon 

arrays that maximize the amount of non-repetitive DNA for the discovery of 

novel functional elements in eukaryotic genomes.

Introduction

DNA microarrays have become ubiquitous in genomics research as tools for the 

large-scale analysis of gene expression. Microarrays allow the simultaneous inter-

rogation of thousands of nucleotide sequences, providing a genome-wide snap-

shot of transcriptional activity. Until recently, the design of DNA microarrays 

has focused entirely on annotated genes, constructed either from PCR products 

comprising entire cDNA sequences (Schena et al. 1995), or from short oligo-

nucleotides representing internal regions of spliced mRNA transcripts (Lipshutz 

et al. 1999). Since its introduction, microarray technology has advanced to a de-

Design Optimization Methods for 
Genomic DNA Tiling Arrays 2
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gree that currently accommodates enough individual array features to represent 

all the annotated genes in a mammalian genome.

Commensurate with these technological improvements has been the devel-

opment of tiling arrays: microarrays that represent a complete non-repetitive 

tile path over a chromosome or locus, irrespective of any genes that may be 

annotated in that region (Figure 2.1). This unbiased approach has enabled the 

discovery of many novel transcribed sequences (Kapranov et al. 2002, Rinn et al. 

2002, Yamada et al. 2003, Kampa et al. 2004, Bertone et al. 2004), as well as the 

global identification of transcription factor binding sites (Ren et al. 2000, Iyer et 

al. 2001, Lee et al. 2002, Horak et al. 2002b, Martone et al. 2003, Cawley et al. 

2004, Euskirchen et al. 2004, Odom et al. 2004). 

In addition to genes and regulatory elements, eukaryotic genomes contain 

thousands of repetitive DNA sequences that have been introduced in high copy 

number over evolutionary time. The frequency and diversity of repetitive ele-

ments increases with the size and complexity of higher eukaryotic genomes, ac-

counting for approximately 45% of the total nucleotide content of mammalian 

genomes (see Appendix A for more information). In selecting sequence frag-

ments for inclusion on a microarray, it is important to exclude as many repetitive 

elements as possible. The reasons for this are twofold: first, microarray features 

whose sequences contain repeats present highly redundant hybridization targets; 

these generate non-specific background signals that mask the fluorescence re-

sulting from specific probe hybridization. Second, the inclusion of repeats would 

significantly increase the number of DNA sequences assigned to array elements. 

Many of these would contain superfluous information, thereby wasting a large 

number of available features on a given array platform. 

When tiling genomic DNA with oligonucleotides, near-optimal coverage of 

the non-repetitive sequence can be achieved in a relatively straightforward man-

ner, although a number of important factors should be considered for probe 

selection. A more problematic situation arises when selecting non-repetitive 

sequence fragments intended for PCR. For this application, it is necessary to de-

rive a tile path of larger sequences whose sizes are amenable to high-throughput 

amplification. Small PCR products can be difficult to resolve in a high-through-

put setting, while fragments of several kilobases (kb) in length can restrict the 
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Figure 2.1. Evolution of genomic tiling arrays. Representing large spans of genomic 
DNA with bacterial artificial chromosome (BAC) clones facilitates global experimenta-
tion using relatively few array features, at the expense of low tiling resolution. Higher-
resolution designs using PCR products or oligonucleotides allow precise mapping of 
transcripts and regulatory elements, but require labor-intensive or technologically so-
phisticated approaches to implement.
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ability to identify the precise locations of hybridizing sequences by reducing the 

tiling resolution of the array. Balancing these criteria to select appropriate target 

sequences presents a unique optimization problem.

Tiling Discontiguous Genome Sequences

Genomic tiling arrays are intended to maximally cover a span of non-repetitive 

DNA with representative sequence fragments, or tiles, whose sizes fall within 

a prescribed range. The number of repetitive elements included in the tile path 
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should be minimized, while partitioning the sequence into the fewest number 

of tiles that can maximally cover the non-repetitive DNA. The sequences in-

cluded on the array are either PCR-amplified and deposited mechanically onto 

glass slides via contact printing (Schena et al. 1995), or partitioned further and 

represented as oligonucleotides that may be printed mechanically or synthesized 

in situ using photolithographic (Lipshutz et al. 1999, Nuwaysir et al. 2002) or 

piezoelectric (Hughes et al. 2001) technologies (Table 2.1). Since the number of 

available features on a given microarray platform is often dependent on devel-

opment costs, an optimal tiling solution should comprise the fewest number of 

non-repetitive sequence fragments whose lengths approach a pre-determined 

upper bound. 

Repeat identification and low-complexity filtering. For the purpose 

of designing microarrays, it is necessary to locate repetitive elements in ge-

nomic DNA with local sequence alignment methods (Smith & Waterman 1981, 

Altschul et al. 1990). This is most easily accomplished through the use of publicly 

available software such as RepeatMasker (Smit & Green, unpublished), CENSOR 

Contact printing Inkjet synthesis Affymetrix NimbleGen

Arraying 
method

Mechanical deposition Phosphoramitide in situ 
DNA synthesis, piezoelec-

tric printing

3´®5´ phosphoramitide 
in situ DNA synthesis, 

chromium masked photo-
lithography

5´®3´ phosphoramitide 
in situ DNA synthesis, 
laser-based maskless 

photolithography

DNA size 
limit

None ~60nt 25nt ~100nt

Feature type Various Oligonucleotides Oligonucleotides Oligonucleotides

Features/
slide

£ 20K Typically < 5K; 25,575 for 
Agilent synthesizers

60K – 1.6M commercial; 
6.2M in development

200K–800K

Array design Flexible Flexible Fixed Flexible

Fabrication 
cost

High (DNA preparation) Moderate High Low

Array cost Low Moderate Moderate Moderate

Table 2.1. Comparison of DNA microarray formats. Although contact-printed arrays allow for un-
limited customization, initial production costs can be prohibitive compared to the relatively affordable 
but fixed array designs produced commercially. The recent development of maskless photolithograph-
ic synthesis technology represents a trade-off between these platforms, allowing customized design 
while maintaining very high feature density.
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(Jurka et al. 1996), Tandem Repeats Finder (Benson 1999) and RECON (Bao & 

Eddy 2002). Of these, RepeatMasker is widely used and is capable of identifying 

repeats in a variety of genomes using a database of characterized repetitive ele-

ments (Jurka 2000). 

In addition to identifying instances of canonical repeats, it is often desirable 

to screen genomic DNA for low-complexity sequences: stretches of polypu-

rine/polypyrimidine bases, or regions of extremely high A/T or G/C content. 

RepeatMasker is able to filter some low-complexity DNA by default; more ex-

tensive filtering is often performed using programs such as DUST (Tatusov & 

Lipman, unpublished) and NSEG (Wooton & Federhen 1993). DUST is included as 

a component of the NCBI BLAST distribution; NSEG is a member of the SEG family 

of programs and affords more flexible control over low-complexity filtering by 

using an information entropy-based model of sequence analysis.

Tiling Sequences with Oligonucleotides

Designing oligonucleotide tiling arrays constitutes a different problem than se-

lecting oligonucleotides for gene-based arrays, primarily because end-to-end 

or overlapping tile layouts present fewer options with regard to sequence se-

lection. However, several strategies can be used to improve both the annealing 

specificity and thermodynamic properties of oligonucleotides selected for tiling 

arrays. A number of factors should be considered when tiling genomic DNA 

with oligonucleotides, including tiling resolution, uniqueness of oligonucleotide 

sequences, and hybridization affinity.

Tiling resolution. An important factor in microarray design entails deter-

mining how the remaining non-repetitive DNA should be subdivided and how 

densely it should be represented by oligonucleotide probes. The serial place-

ment of oligonucleotides along non-repetitive genomic DNA can either be con-

tiguous, covering all of the available sequence, or discontiguous, where gaps of 

a predetermined size range are allowed between adjacent probes (Figure 2.2). 

This determination should be made according to the type of experiment for 

which the microarray is intended, and what kind of biological information the 
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Figure 2.2. Tiling options for oligo-
nucleotide arrays.  Above: Linear feature 
tiling with gapped (regularly spaced) and 
end-to-end oligonucleotide placement.
Gaps provide an opportunity to adjust the 
placement of oligonucleotide probes for 
optimal sequence properties. Depending 
on the experimental design, it is seldom 
necessary to interrogate every nucleotide 
of the genome sequence to obtain the 
desired measurement.  Right: Overlap-
ping tiles placed with a fractional offset 
(e.g., one 25mer probe placed every 5nt) 
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array is capable of measuring given a particular experimental sample. In the case 

of ChIP-chip experiments, chromatin-immunoprecipitated DNA is hybridized 

to an intergenic microarray to locate transcription factor binding sites (Horak 

& Snyder 2002, Cawley et al. 2004). The immunoprecipitated DNA is sonicated 

prior to hybridization to shear the molecules into smaller fragments; even so, 

fragments smaller than approximately 500bp will be largely unaffected by soni-

cation. Since the sample DNA comprises a population of molecules whose sizes 

will generally exceed 500bp, it is reasonable to represent the genomic sequence 

with oligonucleotide probes spaced under 500bp apart. Although closer probe 

spacing will yield more precise hybridization data, larger gaps are still appropri-

ate for ChIP-chip experiments because this layout will ensure adequate hybrid-

ization to the sample DNA.

For the fine-resolution mapping of transcribed sequences, much closer probe 

spacing is required. Because many exons span only tens of nucleotides, most of 

these would elude detection if the genomic sequence is tiled with large gaps. 

Further, if the experiment is intended to measure exon-intron boundaries, it 

may be desirable to cover the genomic DNA with multiple oligonucleotides 

Spaced oligo tiling25 nt

35 nt

End-to-end tiling25 nt

Single-copy tiling

and single-base offset. The latter strategy 
provides a finer-resolution tiling of the 
genomic sequence and can give a more 
precise indication of where hybridization 
is occurring along the chromosome.
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such that the starting position of each probe is shifted by several nucleotides in 

order to overlap the previous oligonucleotide’s coordinates (Figure 2.2, right). 

Although this strategy increases the tiling resolution, the number of probes re-

quired will eventually occupy many more features on the array. It is therefore 

important to select the desired tiling resolution in a manner that considers the 

intended microarray platform and optimizes the use of the available array ele-

ments.

Oligonucleotide probes selected for microarray applications are typically 

short (25nt–80nt) and uniform in length. These assumptions allow the non-re-

petitive regions to be tiled by adopting a straightforward approach in which the 

sequences are subdivided into fixed-size partitions. There will naturally be many 

cases where the oligomer length does not divide evenly into the size of a non-re-

petitive sequence fragment and the remainder is therefore omitted from the tile 

path. However, the resulting loss in sequence coverage is inconsequential given 

the typically short length of the oligonucleotides.

Uniqueness of oligonucleotide sequences. When developing gene-based 

microarrays, one or more oligonucleotides are typically selected to represent 

each gene. These are designed to be highly specific to the target gene, to an-

neal within a suitable affinity range, to occur within annotated exons so that 

they will hybridize to the mature spliced transcript, and are typically positioned 

proximal to the 3´ end of the gene to increase the likelihood of detecting par-

tially reverse-transcribed messages. Subdividing contiguous genomic DNA in a 

naïve, end-to-end fashion offers little opportunity to select optimal probe se-

quences because the aim is to cover the non-repetitive regions using predeter-

mined spacing constraints. However, the non-repetitive regions will inevitably 

include many contiguous sequences that are not equally divisible by the length 

of the oligonucleotide probes. In these situations, it is desirable to adjust the 

placement of oligonucleotides in order to bias the sequence selection toward 

the optimal criteria, thereby reducing the potential for cross-hybridization to 

sequences elsewhere in the genome.

To implement this approach the degree of uniqueness is computed for any 

given oligonucleotide sequence in a large region (i.e., an entire chromosome). 
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This problem can be stated as follows: given a large genomic sequence and an 

oligomer of length n, find all oligomers in the sequence differing from the input 

in no more than m places. In theory, we need only create a direct hash of each 

sequence to a list of all subsequence occurrences. However, the space required 

to implement the hash quickly becomes impractical. With 4n possible oligomer 

sequences, we find that a hash of size 14 requires 1 gigabyte of storage, in addition 

to the space needed to store each of the possible index coordinates of the input 

sequence – another gigabyte for large chromosomes. In practice, these require-

ments impose a limitation on the size of hash tables such that n £ 14. This is insuf-

ficient for most microarray applications where oligonucleotide sizes are typically 

³ 25nt.

To work around these memory constraints and deal with possible mismatches, 

a BLAST-like scheme similar to the approach described in Wang and Seed (2003) is 

adopted. A hash table is first created based on oligomers of size k < n. When con-

sidering a given oligonucleotide sequence, we look up each of the oligonucleo-

tide’s n-k substrings of length k, extending each hit to full length as dictated 

by the substring’s position in the oligonucleotide and comparing it to the input 

sequence. In doing so we can also allow for mismatches, knowing that we will de-

tect all oligonucleotides with no more than two mismatches to the input so long 

as k ³ (n - m) / (m + 1). Given a random model of a chromosome of length c, a 

substring of length k will have an expected c / 4k matches, each of which can be 

processed in constant time. In such a model the algorithm runs in an expected 

time of O((n - k) / 4k).

Thermodynamic properties of oligonucleotide probes. A third factor 

concerns the selection of oligonucleotide sequences for tiling arrays based on 

their predicted hybridization affinities (SantaLucia 1998). When representing in-

dividual genes with one or more probes, careful consideration is made to select 

sequences unique to each gene, having thermodynamic characteristics that are 

optimal for hybridization. For sequences longer than 13nt, hybridization affinity 

can be approximated by calculating the melting temperature (Tm) of each oligo-

mer using the following standard formula:

Tm = 64.9 + 41(nG + nC - 16.4) / (nA + nT + nG + nC)
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where n[A,C,G,T] indicates the number of instances of each nucleotide present 

in the DNA sequence. For more precise calculations, a base-stacking approach 

can be used that takes the exact sequence into account rather than the overall 

nucleotide composition:

Tm = [DH(kcal / °C*Mol)/DS + R ln([oligo] / 2)] - 273.15°C
where DH is the enthalpy of base stacking interactions, DS is the entropy of 

base stacking, [oligo] indicates the oligonucleotide concentration, and R is the 

universal gas constant 1.987 Cal / °C*Mol (Rychlik & Rhoads 1989). 

Considering these criteria, it is useful to shift the placement of oligonucleo-

tides within each region of non-repetitive DNA in order to reduce the variability 

of the melting temperatures associated with each probe sequence. In the case 

of spaced oligo tiling an individual probe is selected from within each available 

region such that the calculated Tm is closest to the optimal temperature. For 

overlapping tiling designs either the entire set of oligos can be shifted together 

such that their aggregate Tm is optimized, or the previous approach can be 

taken and the available regions for oligo placement simply overlap with adjacent 

regions instead of considering gaps between them.

Tiling Approaches for Amplicon Microarrays

Designing PCR-based microarrays involves a number of challenges beyond oligo-

nucleotide selection. Each of the non-repetitive sequence fragments must neces-

sarily be larger in size to facilitate high-throughput amplification. Typically, the 

size distribution of sequences amenable to both PCR amplification and micro-

array analysis falls between 300bp and 1.5kb. Although it is certainly feasible to 

amplify sequence fragments far exceeding this upper limit, it becomes difficult 

to determine the locations of hybridizing sequences within larger fragments. 

Conversely, amplifying thousands of small sequence fragments complicates the 

production of large-scale projects. This problem is examined in detail and sev-

eral methods are introduced to derive an optimal tile path that maximizes the 

coverage of non-repetitive DNA while minimizing the number of repetitive ele-

ments included in the resulting sequences.
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The repetitive elements present in eukaryotic genomes introduce a high de-

gree of fragmentation of the non-repetitive DNA. Avoiding repeats and targeting 

only the remaining sequence fragments 300bp and larger results in suboptimal 

coverage of the non-repetitive DNA (Figure 2.3). In order to improve the se-

quence coverage, a scheme must be devised to recover some of the non-repeti-

tive fragments that are too small to be efficiently amplified. This can be accom-

plished by strategically incorporating short repeat elements that lie between 

these non-repetitive sequences, effectively joining the adjacent fragments into 

larger contiguous tiles (Figure 2.4). 

Figure 2.3. Repeat-masked region of human chromosome 10 showing alternating re-
petitive and non-repetitive contiguous segments (plotted vertically). The sizes of these 
subsequences are reflected in the length of the vertical bars. The high level of fragmenta-
tion is clear, as is the wide range of sizes in both repetitive and non-repetitive sequences. 
The red bar indicates a size of 300bp; a large number of non-repetitive sequences below 
this threshold are omitted when using naïve tiling methods that simply avoid repeats.
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With regard to sequence tiling, a repeat-masked genome sequence can be 

viewed as containing two categories of nucleotide information: 1) coding, regu-

latory and intergenic sequences located in euchromatic regions, together viewed 

as non-repetitive DNA (nrDNA), and 2) nucleotides belonging to repetitive ele-

ments and low-complexity regions (rpDNA). Tiling of repeat-masked sequences 

can therefore be viewed as a two-class partitioning problem: Given a sequence 

with some subwords marked as repeat nucleotides and the remaining subwords 

composed of non-repetitive nucleotides, the sequence is partitioned into non-

overlapping tiles of either type such that the total amount of non-repetitive 

sequence covered by tiles is maximized, while the number of repetitive nucleo-

tides included in the resulting tile path is minimized.

Optimal Sequence Tiling Algorithms

Scoring potential tile paths. Given a sequence of nucleotides S1..n, we would 

like to find an optimal tile path (possibly not unique) comprising a set of non-

overlapping tiles, potentially separated by excluded regions, that maximizes a 

scoring function V over all possible tile paths, given by

Figure 2.4. Graphical representation of repetitive and non-repetitive segments in re-
peat-masked DNA. In the naïve tiling case, the sequence is subdivided into segments of 
equal length; consequently, many small non-repetitive regions are lost as indicated in 
yellow. These can be recovered by using partitioning methods that generate an optimal 
tile path over the sequence, as illustrated in the bottom example.
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Optimal tiling
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where wi is the weight associated with the ith nucleotide, m is the number of 

tiles and C is the cost for opening a tile (in this way, fewer longer tiles are 

favored over the creation of many smaller ones). For a given tile path each nu-

cleotide in the sequence is either in a tile (which have weights w
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T  and w
rp

T  for 
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We can also use the scoring function V to evaluate the score of either an indi-

vidual tile Ti..j or an excluded region Xi..j,
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Therefore the scoring function evaluated over an entire tile path is the sum of all 

scores for individual tiles and excluded regions,

V TilePath S V T V X
n a a

XaTa

1..{ }éë ùû = [ ]+ [ ]
{ }{ }
åå

where {Ta} is a set of all tiles in the tile path and {Xa} is analogously defined. A 

brute force algorithm would enumerate all tile paths to find an optimal solution; 

however, this approach would take exponential time to compute. We impose an 

additional constraint, that tiles are restricted to lengths between a lower bound 

l and an upper bound u. Given this constraint, the algorithm we present here 

solves the problem in linear time.

A dynamic programming solution. Dynamic programming solutions have 

been applied many times in bioinformatics. Examples include sequence align-

ment (Needleman & Wunsch 1970, Smith & Waterman 1981, Gotoh 1982), 

Eq. 2.2

Eq. 2.3

Eq. 2.4

Eq. 2.1
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gene prediction (Gelfand & Roytberg 1993, Snyder & Stormo 1993) and RNA 

secondary structure prediction (Zuker & Sankoff 1984). The key idea behind 

dynamic programming is the reuse of intermediate results. This is usually ac-

complished by breaking down an exponential search space into subparts, which 

are evaluated and whose results are tabulated for reuse. The analysis of large 

search spaces can then be done in polynomial time.

The main iteration of the algorithm can be described as follows: at an inter-

mediate step in the computation we have evaluated the optimal tile paths and 

their associated scores for all subsequences S1..1 to S1..(k–1). In order to find an 

optimal tile path for the subsequence S1..k, for each i  [max(1, k – u), max(1, 

k – l)] we compute the score for the tile path consisting of the optimal tile path 

from 1..i and the tile T(i+1)..k using the score of the optimal tile path from 1..i and 

V [T(i+1)..k]. Similarly, we also evaluate the score of the tile path consisting of the 

optimal solution from 1..(k – 1) and the excluded region Xk..k (the kth nucleo-

tide). The optimal tile path for S1..k is then one of the preceding tile paths having 

the maximal score. This tile path and its associated score are then stored and the 

algorithm proceeds to the next nucleotide in the sequence, k + 1. A schematic of 

the algorithm appears below.

Given optimal tiles paths for all subsequences S1..1 to S1..(k–1) and associated 

scores V OptimalTilePath S1 1..{ }éë ùû  to V OptimalTilePath S
k1 1.. -( ){ }é

ëê
ù
ûú
 :

STEP 1: For each i  [max(1, k – u), max(1, k – 1)] we construct the follow-

ing tile path:

TilePath S OptimalTilePath S T
k i i k1 1 1.. .. ..{ }= { }È +( )

and compute its score: 
V TilePath S V OptimalTilePath S V T

k i i1 1 1.. .. ..{ }éë ùû = { }éë ùû + +( ) kk
é
ëê

ù
ûú

We also construct an additional tile path
TilePath S OptimalTilePath S X

k k k k1 1 1.. .. ..{ }= { }È-( )

and compute its score:

V TilePath S V OptimalTilePath S V X
k k k1 1 1.. ..{ }éë ùû = { }é

ëê
ù
ûú
+-( ) ...k[ ]

STEP 2: From the preceding tile paths computed in Step 1, we select one 

having the maximal score and store it as OptimalTilePath S
k1..{ }, 

along with its associated score.

STEP 3: Repeat for subsequence S1..(k+1).
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The algebraic dynamic programming (ADP) framework (Giegerich et al. 

2000) was used to recursively construct all possible partitionings and apply 

the scoring scheme to each solution. Since many partitionings share common 

subpartitionings, we can tabulate their scores for reuse instead of recomputing 

them (Figure 2.5). Without the tile length constraints, the time and space com-

plexity of this approach would be O(n2), which is inherent in the ADP framework 

implementation. Given these constraints, the algorithm runs in linear time and 

space, specifically O((u – l)n).

A linear time, constant space solution. The dynamic programming algo-

rithm computes an optimal tiling solution over the target sequence. In practice, 

however, the time and space required to process real genomic DNA sequences 

preclude the use of this approach for large eukaryotic chromosomes (spanning 

up to ~250Mb). Here we present an alternative method which traverses the 

sequence in a single pass, placing tiles according to local constraints instead of 

considering every possible tiling solution. In contrast to the dynamic program-

ming algorithm, the result of this approach partitions the sequence into alternat-

Subword (i, k) Subword (k, j)i k j

Many different partitionings

Direction of sequence processing

Fixed subword Variable subword

Figure 2.5. Many different partitionings share common subparts. To compute any par-
titioning with a split at k, the best partitioning for (i, k) and for (k, j) must be known. 
Since there are many ways to partition the sequence with a split at k, we only need to re-
cursively evaluate a subpartitioning for subword (i, j) and (k, j) once. In all cases where 
we need the optimal solution for these subwords again, we refer to the pre-computed 
result instead of considering all further possible partitionings of that subword.
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ing included regions Ii..j and excluded regions Xi..j. A post-processing step is then 

required to subdivide the included regions into individual tiles Ti..j satisfying the 

length constraints.

The scores for included and excluded regions are given by

V I w
i j k

I

k

j

..
éë ùû =

=
å

1

,  V X w
i j k

X

k

j

..
éë ùû =

=
å

1

where the weights corresponding to included regions are the same as those for 

the tiles in the dynamic programming algorithm (w
k

I  = w
k

T ). Note that the score 

for included regions does not account for the tile cost C.

The algorithm partitions the sequence and outputs the region boundaries as 

processing continues. The sequence is scanned one nucleotide at a time, with 

the current position denoted by i. During the main iteration we keep track of an 

earlier position k, up to which an optimal partitioning has been determined. At 

each step, the algorithm attempts to determine if the window S(k+1)..i should be 

classified either as an extension of the last known region R (currently extending 

up to k), or as the prefix of a new region starting at k + 1. Depending on the type 

of region R (included or excluded) and the difference D = V[I(k+1)..i] – V[X(k+1)..i] 

between the values of the scoring function for the two potential classifications of 

the window S(k+1)..i, the algorithm selects one of three possible options: 

1)  If R is an included region and D is positive, or if R is an excluded region 

and D is negative, then R is extended to include the nucleotides up to i  

(i.e., k is set to i);

2)  If R is an included region and D < -C, or if R is an excluded region and 

D > C, then R is terminated at k and a new region of the opposite type is 

initialized at k+1 and extended to position i; 

3)  Otherwise, neither action is taken. 

Following this decision, the next nucleotide in the sequence is processed 

(i.e., i is incremented). The classification of the first and the last regions in the 

sequence is determined similarly, effectively assuming that the start of the se-

quence follows an excluded region, and only inspecting the sign of D if R is an 

included region at the end of the sequence (i.e., when i = n – 1).

Since the number of times each nucleotide is examined is bounded by a con-

stant, the overall time complexity is linear with respect to the size of the input 

Eq. 2.5
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sequence. The algorithm runs in constant space, as we need only keep a running 

value of D, the values of i and k, and the type of region R. A proof of optimality 

for this algorithm is presented in Appendix B.

This algorithm imposes no implicit upper bound on the size of nrDNA parti-

tions, although C is effectively a lower bound on tile sizes. Therefore, included 

regions must be subdivided into smaller tiles whose sizes reflect the desired 

upper limit for PCR products. In terms of experimental preparation and sub-

sequent microarray data analysis, it is preferable to create roughly equal-sized 

fragments whenever possible. Therefore the most straightforward tiling of long 

nrDNA partitions involves 1) taking the ceiling of the length of the partition 

divided by the maximum tile size, then 2) subdividing the partition into equal-

sized fragments of this number.

Tiling statistics for eukaryotic genomes. A summary of tiling genomic 

DNA sequences of various sizes and repeat densities is presented in Table 2.2. 

Several model organisms were included in this analysis; some genomes have 

relatively few repeats, whereas the genomes of more recently sequenced ro-

dents and primates contain large numbers of repetitive elements that constitute 

high percentages of nucleotide content relative to the size of each genome. The 

sequences were first tiled using a naïve approach, where the non-repetitive DNA 

was subdivided into tiles having lengths equal to the lower size bound (in this 

case 300bp). The linear time, constant-space tiling algorithm outlined above was 

then applied to the sequences to derive an optimal tile path for each.

In comparing these results, a number of observations become apparent. 

When the sequences are tiled in a naïve fashion, the coverage of non-repetitive 

DNA decreases dramatically as the target sequences progress from the relatively 

repeat-free Arabidopsis sequence to the larger mammalian genomes. This reflects 

the higher levels of genomic sequence fragmentation due to increased repeat 

content, a condition that clearly inhibits the optimal tiling of the sequence. The 

application of the tiling algorithm to the more complex eukaryotic genomes im-

proves the non-repetitive sequence coverage significantly in the optimized tile 

path, while the percentage of included repeats remains very low. 
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Summary

Tiling microarrays are becoming an important platform for empirical genome 

annotation, making available the maximum amount of non-repetitive DNA for  

interrogation. Numerous options exist for tiling genomic sequences with oligo-

nucleotides, leading to microarray designs of various sequence resolutions and 

feature densities. Representing the non-repetitive DNA with spaced, serial, or 

overlapping oligonucleotides is straightforward in principle, but a number of 

probe selection optimizations can be made to address cross-hybridization issues. 

In particular, biasing the selection of oligonucleotides toward uniform thermal 

properties and uniqueness across the genome can improve the annealing charac-

teristics and hybridization specificity of the probes.                                          

Organism Genome size Percent 
repeats

Linear sequence tiling Naïve 
tiling

Comparison

Percent non-
repeat

bp covered

Percent repeat 
bp included
vs. all non-
repeat bp

Efficiency Efficiency Percent 
improvement

Pan troglodytes 3,083,993,401 57.74 89.81 4.23 85.58 66.05 19.53

Homo sapiens 3,070,537,687 52.38 89.60 4.06 85.53 66.07 19.47

Mus musculus 2,638,213,512 45.62 91.09 5.51 85.58 66.18 19.41

Rattus norvegicus 2,795,745,218 48.75 91.43 5.54 85.89 66.86 19.03

Caenorhabditis elegans 100,277,879 11.26 98.54 3.10 95.44 84.29 11.16

Drosophila melanogaster 129,323,838 14.23 99.40 2.62 96.78 86.89 9.89

Fugu rubripes 349,519,338 15.06 99.07 2.13 96.94 87.97 8.97

Arabidopsis thaliana 119,186,497 0.16 100.00 0.00 100.00 99.97 0.02

Table 2.2. Comparison of optimal tiling and naïve tiling of various sequenced genomes for amplicon 
microarrays. The genome sequences vary in the degree of repeat density, ranging from mammalian 
genomes with nearly 50% repeat content to the relatively repeat-free Arabidopsis genome. Obtaining 
a high degree of non-repetitive sequence coverage for the genomes on the latter end of the spectrum 
is straightforward. However, as more complex genomes are considered it becomes impossible to op-
timally tile the highly repetitive sequences without further processing.



26

Amicroarray representing all of the non-repetitive sequence of 

human chromosome 22 was constructed and used to measure global 

transcriptional activity in polyadenylated [poly(A)+] placental RNA. 

Hybridization to fluorescence-labeled complementary DNA (cDNA) indicat-

ed that many of the known, related and predicted genes annotated across the 

chromosome are expressed. More importantly, this survey revealed twice as 

many transcribed bases as have been reported previously. Many of the newly 

discovered expressed fragments were verified by RNA blot analysis and a novel 

technique called differential hybridization mapping (DHM). Interestingly, a sig-

nificant fraction of these novel fragments are expressed antisense to previously 

annotated introns. The coding potential of these novel expressed regions is sup-

ported by their sequence conservation in the mouse genome.

Introduction

As the sequencing phase of the human genome project nears completion, in-

creasingly complete and accurate nucleotide-level data are becoming available 

(Lander et al. 2001, Venter et al. 2001). The next major challenge is to decipher 

the biological information encoded by the billions of ordered nucleotides. This 

goal requires identifying the various genes and proteins encoded in the DNA as 

well as how they function, how they are regulated, and how they work together 

to carry out complex biological processes. An essential step toward understand-

ing the coding information of the human genome is to obtain a detailed knowl-

edge of human transcriptional coding sequences on a genomic scale.

Current approaches for mapping mRNA-coding regions on a genomic scale 

have used a variety of techniques such as serial analysis of gene expression 

(SAGE), sequencing of expressed sequence tags (ESTs), STS mapping, radiation 

hybrid mapping, and full-length cDNA analysis (Saccone et al. 1996, Deloukas 

et al. 1998, Dunham et al. 1999, Caron et al. 2001). However, these techniques 

do not comprehensively interrogate all of the genomic coding information. Fur-

thermore, these methods are not versatile for probing many tissue types and 

conditions, and consequently may fail to detect alternatively spliced messages or 

tissue-specific alterations in transcriptional activity.

A Transcriptional Survey of Human 
Chromosome 22 3
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Recently, new developments in microarray technology have made it possible 

for high-throughput mapping of the transcriptional activity of large segments 

of the genome (Shoemaker et al. 2001, Kapranov et al. 2002). Nucleic acids 

representing non-repetitive segments of a chromosome can be printed at high 

density and probed with labeled cDNAs prepared from various tissues (Hegde et 

al. 2000). In principle, this approach can be used to detect transcriptional activ-

ity of both protein-coding and non-protein-coding RNAs chromosome-wide. 

This approach has been used recently in two complementary studies carried 

out by Shoemaker et al. (2001) and Kapranov et al. (2002). Shoemaker et al. 

(2001) developed oligonucleotide arrays to represent the known and predicted 

genes on human chromosome 22 and probed them with cDNA probes derived 

from RNA isolated from a number of tumor cell lines. Representative expres-

sion was observed for a majority of the known genes and a significant fraction 

of predicted genes, but the experiment did not comprehensively examine unan-

notated regions of the chromosome. Kapranov et al. (2002) developed a micro-

array containing 25-mer oligonucleotides for most of the non-repetitive DNA 

of human chromosome 22, and probed with double-stranded cDNA prepared 

from 11 different cell lines. The investigators observed RNA transcription in 

many unannotated regions. However, the expression of intron sequences (which 

comprise 36% of chromosome 22 DNA; Dunham et al. 1999) and the conserva-

tion of novel transcribed regions in other species were not reported.

This chapter describes the development of a microarray containing poly-

merase chain reaction (PCR) products encoding 17.4Mb of non-repetitive se-

quence on human chromosome 22, used to map transcribed regions from the 

entire chromosome. This array contains both coding and non-coding genomic 

DNA sequences. The non-repetitive regions of the chromosome were identi-

fied using the RepeatMasker program (Smit & Green, unpublished) and divided 

into 21,024 PCR fragments, ranging in size from 300bp to 1.4kb (mean size = 

820bp). PCR primer sequences were designed and the fragments were amplified 

from HeLa genomic template DNA; 19,525 fragments, representing 93% of 

the targeted sequences, were successfully prepared. Fragments were printed in 

duplicate onto three glass slides using a contact microarrayer. A set of positive 

and negative control fragments was also included on each slide.
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Following the construction phase, the microarrays were probed with cDNA 

reverse-transcribed from poly(A)+ placental RNA in order to assess chromo-

some-wide transcriptional activity. Gene expression was detected from a signifi-

cant fraction of the annotated regions of the chromosome using this approach. 

Moreover, a two-fold increase in transcription was observed over that expected 

by existing gene annotation. Interestingly, many of the novel transcribed se-

quences are located within introns of annotated genes. These findings suggest 

that a large fraction of the genome may be expressed as mRNA, and that there 

are likely to be many coding sequences that have not been annotated. 

Construction of a Chromosome 22 Microarray

Sequence analysis and primer selection. Chromosome 22q spans 34.5Mb, 

of which 45% consists of repetitive elements (e.g., SINES, LINES, retroviral DNA, 

and low-complexity sequence) identified by the RepeatMasker program (see 

Appendix A for more information). The remaining sequence fragments of suf-

ficient size to facilitate large-scale PCR (³ 300bp) accounted for only 87% of 

the non-repetitive DNA; the sizes of many non-repetitive fragments fell below 

this threshold. To improve the sequence coverage, the dynamic programming 

algorithm described in Chapter 2 was applied to the chromosome sequence. 

The algorithm is designed to recover many of the smaller non-repetitive frag-

ments by strategically incorporating short repetitive elements located between 

them, thereby joining the adjacent fragments into larger contiguous sequences 

amenable to PCR. This procedure generates an optimal tile path for the masked 

genomic sequence, simultaneously maximizing (1) the coverage of non-repeti-

tive DNA from the target sequence and (2) the number of sequence fragments 

within a specified size range (in this case, 300bp–1.4kb), while minimizing the 

number of repetitive nucleotides included in the amplified sequences. 

This procedure generated a set of target sequences amounting to 17.4Mb, 

or 92% of the non-repetitive DNA of chromosome 22. PCR primer pairs were 

selected using the Primer3 software [written by S. Rozen and H.J. Skaletsky 

(1996); code available online at http://www-genome.wi.mit.edu/genome_

software/other/primer3.html], and were designed to have similar melting 
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temperatures in a 55–70°C range, low alignment scores, and preferably a 3´ C 

or G base for increased binding efficiency. Sequences exceeding 1.4kb were 

subdivided prior to the primer design stage, defining the upper bound of am-

plicon size. To ensure complete inter-fragment coverage between these adjacent 

sequences, the 5´ primer sequences for amplicons (2 . . n) from subdivided frag-

ments were replaced with the reverse complement of the 3´ primer sequences 

from the amplicon directly preceding them. The modified primer pairs were 

examined for inter- and intra-oligo alignment, and the 3´ ends of problematic 

sequences were adjusted to reduce the potential for primer-dimer formation.

DNA preparation and array production. PCR reactions were performed 

using 2× QIAGEN MasterMix, 0.5µM of each primer, and 65ng HeLa genomic 

template DNA. Fragments were analyzed by agarose gel electrophoresis, and 

only those products that migrated as a single band of the predicted size were 

arrayed (Figure 3.1B). PCR products were precipitated with a 1:1 mixture of 

ethanol:isopropanol and dried and resuspended in 25µL H
2
O. The fragments 

were mixed with an equal volume of DMSO for printing. Slides were printed in 

house with an SDDC-2 arrayer (ESI-Virtek) on Corning CMT GAPS slides. Arrays 

were cross-linked, and print quality was confirmed by staining for total DNA 

with POPO-3 (Figure 3.1A).

Several quality-control experiments were performed to assess the fidelity 

of the amplified sequence and the reproducibility of microarray hybridization 

results. First, 349 PCR fragments were sequenced with priority placed on those 

that hybridized to cDNA probes reverse-transcribed from placental poly(A)+ 

RNA (see below). Sequences were compared with the entire human genome 

assembly using BLASTN (Altschul et al. 1997). Of the 349 fragments sequenced, 

314 matched the expected chromosome 22 sequence. For the remaining 35 frag-

ments, 15 matched a sequence very similar to that expected on chromosome 22 

(mean = 95% sequence identity to that of chromosome 22), and 20 were from 

elsewhere in the genome.

The degree of non-specific hybridization to repetitive sequences was ascer-

tained by probing the array with labeled Cot-1 DNA; approximately 6% of the 

array fragments were found to hybridize to the sample. This was reduced to 1% 
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when unlabeled Cot-1 DNA was added to the hybridizations (Figure 3.1C); un-

labeled Cot-1 was therefore included in all subsequent experiments to reduce 

or eliminate non-specific hybridization signal.

Chromosome 22 Microarray Database

Following the design of the chromosome 22 array and during the construction 

process, a web-accessible database was developed for chromosome-wide gene 

annotation and analysis of microarray data generated by the project. The system 

performs four central functions: (1) maintenance of array versions and printing 

Figure 3.1. Assessment of chromosome 22 microarray sequences, printing consistency 
and repetitive DNA content. A) Microarray slide scanned for total DNA after staining 
with POPO-3 (Molecular Probes). B) Agarose gel electrophoresis of chromosome 22 
PCR products. C) Hybridization of a subset of features to Cy5-labeled Cot-1 DNA (left); 
hybridization of control sample to the same region in the presence of unlabeled Cot-1 
DNA (right). 
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layouts, (2) management of user spaces, (3) archival of microarray data, and (4) 

relating microarray features to genetic loci. The last point is of particular signifi-

cance, as the chromosome 22 microarray design is not gene-oriented but instead 

based on a tile path over the entire non-repetitive sequence. It is therefore not 

obvious which microarray features are functionally significant from the experi-

mental data alone. Instead, the locations of existing gene components must be 

considered in relation to each feature’s location in genomic space. Furthermore, 

chromosomal sequence assemblies are periodically updated and gene annotation 

data is constantly in flux. A software system designed for tiling arrays must be 

able to consistently present information that accurately reflects the results of 

experiments performed against this changing background.

System architecture. To implement this functionality, the database architec-

ture is designed around two basic systems (Figure 3.2A). First, a general-pur-

pose microarray database serves as a data repository, slide design inventory and 

coordinate mapping system applicable to any microarray project. The format of 

the data is compliant with quantitated output from the GenePix densitometry 

software (Axon Systems). Among other functions, this component resolves the 

locations of individual features on the array according to a convolution map de-

termined by the microspotting parameters used for a given slide design version. 

A second database contains the DNA sequence and gene annotation data specific 

to chromosome 22. These include known genes (Dunham et al. 1999, Hubbard 

et al. 2002), predicted exons (GenomeScan gene predictions contributed by Ru-

Fang Yeh and Chris Burge, Massachusetts Institute of Technology), pseudogenes 

(Harrison et al. 2002), and SNPs (Balasubramanian et al. 2002). 

The two systems function independently to manage user accounts and ex-

perimental data (microarray database) or keep the microarray sequences current 

with the latest sequence assemblies and gene information (annotation database). 

The databases interact via high-level software to align various genetic features 

to the positional coordinates of the microarray fragments in genomic space. The 

system is also linked to a separate platform for the numerical analysis of experi-

mental data from any standard contact-printed array (Luscombe et al. 2003). 
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User interaction. Experimentalists interact with the system using a web 

interface to upload and process experimental data sets, where the microarray 

images have already been scanned and quantitated with the Axon GenePix sys-

tem (Figure 3.3). The data is then aligned with the positional locations of genes, 
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Data Display

User Accounts

Search Engine

User Login

View/Edit Access
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[1. . n]
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Experiment Profiles

Fluorescence Data

Microarray Database

Figure 3.2. A) Architecture of the general-purpose microarray database (left) and 
project-specific chromosome 22 annotation database (right). The systems can function 
independently or interact to relate microarray data with annotated genetic elements. 
B) High-level dependency graph illustrating the relationships between various software 
components. Several core modules through which other processes typically operate are 
depicted in grey.
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pseudogenes and single-nucleotide polymorphisms (SNPs) in an automated fash-

ion according to the desired sequence assembly (Figure 3.4A). PCR fragments 

or features of interest may then be explored in greater detail using a variety 

of graphical and text-based displays, with relevant links to external resources 

(Figure 3.4B). Specific genes or chromosomal regions may also be located on 

the array directly, using search functions that relate their nucleotide positions to 

the corresponding microarray fragments. Thus, researchers are able to correlate 

vast amounts of experimental data with existing knowledge in a rapid and intui-

tive way. At present the database contains nearly 1,000 experimental records 

comprising over 16 million individual data points.

User panel

Experiment panel

Fragment panel

This area is used to log registered users 
into and out of the system. A user account 
is not required to access the public areas of 
the system.

This section displays the current experi-
ment. Once an experiment has been se-
lected, detailed information about the 
experiment is presented, microarray frag-
ments and associated gene annotation may 
be viewed, and the data becomes available 
for download.

Selected PCR fragments are displayed here, 
with the 96-well plate location appearing 
below the fragment identifier.

When a microarray fragment has been se-
lected, users can view its DNA sequence, 
PCR primers, genomic location in a number 
of sequence assemblies, and links to exter-
nal web resources.

This area relates the genomic location of 
the fragment sequence to annotated genes, 
pseudogenes, or SNPs. When a fragment is 
selected and its genomic coordinates in-
tersect these features, the corresponding 
data set will be highlighted with red ar-
rows. Clicking these options in this menu 
will display the annotated features relative 
to the PCR fragment, along with additional 
annotation and links to external web re-
sources, if available. 

Figure 3.3. Breakdown of the main interface compo-
nents of the microarray database software. The control 
panel is divided into three subsystem modules which 
function as independent units. Each module main-
tains its own internal state, allowing users to navigate 
through different areas of the site simultaneously.
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(B) Intersection of PCR fragments with various genetic 
features. Nested genes and pseudogenes (top), sequenc-
es likely to contain bi-directional promoters ( above), 
annotated gene structures (right ), and SNPs (below ).

Figure 3.4. A) Search and display of microarray experiments and annotation data. SQL queries are 
constructed from web form input, returning tabular-formatted results. Various graphical displays (B) 
visualize gene structures, transcriptional start sites and single-nucleotide polymorphisms (SNPs).
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RNA Transcript Mapping

Microarray hybridization. To experimentally map the transcriptionally-ac-

tive regions of chromosome 22, placental poly(A)+ RNA was hybridized to the 

array (Figure 3.5A). RNA from placenta was chosen because it is (1) a normal 

tissue (i.e., not cancerous or from cell lines), (2) a complex tissue composed of 

many cell types, and (3) easily obtained in large quantities from a single source. 

Each chromosome fragment was probed in six independent experiments with 

cDNA derived from triple-selected poly(A)+ placental RNA.

Using amino-allyl cDNA labeling reagents (Ambion), 1.5µg of placental 

poly(A)+ RNA that had been purified three times through an oligo(dT) matrix 

was reverse-transcribed via the M-MLV RNA-dependent DNA polymerase. The 

reactions were primed with both oligo(dT) and random decamers in an equimo-

lar mix in the presence of an amino-allyl-modified cytosine. After reverse tran-

scription, the template RNA was degraded in the presence of NaOH at 70°C. 

The cDNAs were ethanol-precipitated and resuspended in 0.1 M NaHCO
3
 to 

facilitate coupling of the Cy5 mono-amine dye (Amersham) to the amino-allyl 

functional group. After the coupling reaction, fluorescence-labeled cDNAs were 

separated from unincorporated dye with Sephadex gel filtration columns. The 

cDNA samples were then ethanol-precipitated and resuspended in 5× SSC, 25% 

formamide, and 15µg of Cot-1 DNA (Invitrogen) to block non-specific hybrid-

ization. Microarrays were hybridized at 42°C as described (Hegde et al. 2000).

Data Analysis

Determination of hybridization positives. Microarrays were scanned 

with an Axon 4000A scanner, and images were analyzed with GenePix Pro 3.0 

software. To identify fragments exhibiting significant hybridization signal, a sta-

tistical data analysis scheme was devised specifically for microarrays probed with 

a single color fluor. To identify hybridized fragments, the raw GenePix output 

was processed as follows: (1) Spots with aberrant morphology, or those with 

intensities below the threshold of detection were discarded. (2) Within indi-

vidual experiments, spot pairs (fragments printed in duplicate side by side) were 
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excluded from further analysis if the variation (= I
1
 - I

2
/I

1
 + I

2
) between them 

was greater than three standard deviations of the error distribution of the data 

points. (3) The six replicate experiments were normalized with one another to 

scale the Cy5 intensity spreads to a common range. A resampled variance was 

calculated for each experiment and the distributions were scaled to have equal 

variances. Different scale factors were calculated for each block of spots on the 

Figure 3.5. A) Fluorescence micrograph of hybridized chromosome 22 array. B) De-
termination of intensity cutoff in determining positive hybridizing fragments. There 
is a clear leveling of consistency after 200 intensity units. The plot demonstrates that 
fragments with an intensity >200 were present with that intensity or higher in 5 out 6 
replicate experiments. Fragments that hybridized in 4 or less of the 6 replicate experi-
ments and with an intensity ≥ 200 were summed to give a false-positive rate of 5%. 
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slide to correct for intensity variations dependent on slide location (Goryachev 

et al. 2001, Yang et al. 2002). (4) The final Cy5 intensity for each chromosome 

22 fragment was obtained as the mean for duplicate spots within an experiment 

and the median value across replicate experiments. The number of experiments 

in which each fragment exhibited statistically significant hybridization was also 

recorded. (5) The number of fragments that hybridized in 1..n replicate experi-

ments was calculated, and only those fragments that hybridized in five or more 

replicates were retained for further analysis. Here, fragments that hybridized in 

fewer than five experiments were considered to be false positives. 

Figure 3.5B plots the percentage of fragments that hybridized in five or more 

experiments against different Cy5 intensities. The Cy5 intensity cutoff of 200 

fluorescence units for positive hybridized fragments was determined empiri-

cally from the plot, on which a sharp rise in the proportion of fragments in five 

or more experiments can be observed; at this intensity a total of 2,504 positive 

hybridized fragments with a false-positive rate of 5% were identified. Figure 3.6 

depicts the transcriptional activity and density of hybridizing chromosome 22 

sequence fragments in relation to Sanger Centre annotated genes, and Table 3.1 

summarizes the annotation distribution of these fragments.

Detection of annotated genes. To compare these results with known fea-

tures of chromosome 22, annotated genes corresponding to the version 2.3 data 

release from the Sanger Centre were aligned to the sequence coordinates of the 

21,024 microarray fragments. The genes in the Sanger Centre collection fall into 

three categories: (1) known genes, which are well-characterized genes with a 

Annotated feature Total Exon-containing Intron-containing

Gene 946 (11.9%) 428 (15.8%) 518 (9.8%)

Related gene 135 (11.4%) 66 (13.6%) 69 (9.9%)

Predicted gene 87 (9.9%) 50 (15.2%) 37 (6.8%)

Unannotated 1,302 (12.2%)

Table 3.1. Distribution of positive hybridizing fragments and their respective gene an-
notations from the Sanger 2.3 data release. Parentheses indicate the percentage of total 
microarray fragments in the annotation category that showed positive hybridization. An 
equal magnitude of transcription was observed in previously unannotated regions.
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sequenced full-length cDNA; (2) related genes, which are homologous to other 

known genes; and (3) predicted genes, which are posited by homology to EST 

clusters. For the 339 known genes in the Sanger annotation data, at least one 

exon was found to hybridize in 206 (60.8%) cases (Table 3.2). In addition to 

detecting expression of the known genes, 40.2% and 35.8% of the related and 

predicted genes were found to be expressed, respectively (Table 3.2). This result 

demonstrates that a majority of the chromosome 22 genes can be detected using 

a single tissue type, and that this approach can globally detect known, related, 

and predicted genes simultaneously.

Detection of novel transcribed sequences in unannotated regions 

of chromosome 22. Hybridization of cDNA probes to known and predicted 

exons was accompanied by an equal amount of hybridization to previously unan-

notated sequences. A total of 1,302 (12.2%) of 10,693 fragments lacking prior 

annotation were observed to be expressed in placental tissue (Table 3.1). This 

amount is similar to the 946 (11.8%) of the 7,967 microarray fragments inter-

secting known genes. Figure 3.6, box A, illustrates a large amount of transcrip-

tional activity in a region of chromosome 22 that was previously unannotated. 

Positions with spikes in the density plot and low frequency of red bars indicate 

regions of novel transcriptional activity. Box B shows a peak in transcriptional 

activity corresponding to known gene annotations. Viewed together, these re-

sults indicate that there are as many transcribed sequences in unannotated re-

gions as in annotated regions.

Annotated feature Identified Total Identified/Total (%)

Gene 206 339 60.8

Related gene 45 112 40.2

Predicted gene 35 109 35.8

Table 3.2. Genes in the three Sanger 2.3 annotation categories that were represented 
by at least one hybridizing exon. A total of 60.8% of known genes were detected using 
only one tissue type, as well as detecting expression from a large fraction, 40.2% and 
35.8%, of the related and predicted genes, respectively. This success rate is similar not 
only to other studies using microarrays to annotate human chromosome 22, but also to 
studies using ESTs.
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Figure 3.6. Transcriptional activity over chromosome 22 as measured in placental 
RNA. Dark blue bars indicate regions that are represented on the DNA microarray. Red 
bars indicate the positions of Sanger Centre release 2.3 annotated genes. The magnitude 
of the density plot represents the number of positive hybridizing fragments divided by 
the total number of fragments in a 100-kb window. (A) A high level of transcriptional 
activity in a previously unannotated region of chromosome 22. (B) A peak in transcrip-
tional activity corresponding to known gene annotations. Coordinates are given from 
centromere to telomere (starting at band 22q11.1).
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RNA Blot Verification of Novel Transcribed Sequences

To confirm that the unannotated transcribed sequences (defined here as tran-

scriptionally-active regions, or TARs) are expressed as mRNA, 118 RNA blots 

of placental poly(A)+ RNA were probed with randomly selected TAR sequences. 

Northern blots of triple-selected poly(A)+ placental RNA were obtained from 

Ambion. Five blots were cut into a total of 50 single-lane strips. Each strip was 

pre-hybridized in ULTRAhyb buffer (Ambion) for 2 hours and then hybridized 

to radiolabeled probes prepared from novel TAR sequences using Strip-EZ label-

ing reagents (Ambion). Hybridizations were carried out for 16 hours at 42°C. 

Strips were washed twice in Northern Max (Ambion) high-stringency buffer 

followed by three washes in Northern Max low-stringency buffer. Single-lane 

filters were stripped according to the Strip-EZ protocol.

Three fragments containing exons of known genes were also used to probe 

the RNA blots as a control; all three identified transcripts of the appropriate size. 

Thirty (25%) unannotated fragments hybridized to mRNA transcripts ranging 

in size from 600 nt to >10kb. Several probes hybridized with multiple isoforms, 

perhaps indicating the presence of alternate splice products. Interestingly, two 

Figure 3.7. Northern blot analysis of 118 fragments that were expressed in previously 
unannotated regions of chromosome 22. Thirty (25.4%) showed discrete bands. Ten are 
shown above and labeled with the corresponding chromosomal location of the probe 
used in the Northern hybridization. Bar indicates two probes separated by ~30kb in 
genomic space that hybridize to the same 6-kb transcript.
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probes separated by 30kb in genomic space hybridized to the same 6-kb tran-

script, further indicating that this region encodes a novel gene (Figure 3.7).

To ensure that transcripts were not homologous to coding sequence else-

where in the genome, all probes producing transcripts were searched using 

BLASTN (Altschul et al. 1990). The results indicated that 26/30 matched only the 

chromosome 22 genomic sequences and 4 probes have potential homology (E < 

1e-5) to other genomic coding sequences. Thus, most of the transcribed sequenc-

es identified by the RNA blot analysis are derived solely from chromosome 22. 

The lower than expected success rate of the RNA blot analysis (30/118) was also 

noted in a similar study (Kapranov et al. 2002); it is speculated that many novel 

TARs are expressed in low copy number, explaining why most have eluded prior 

detection using less sensitive methods.

Differential Hybridization Mapping

To precisely map the expressed regions as well as determine the DNA strand 

of the hybridizing sequence, a novel strategy termed differential hybridization 

mapping (DHM; Kumar et al. 2002) was used. Briefly, a 60-nt oligomer and its 

complement were selected from regions within the hybridizing PCR fragments, 

spotted on the array, and probed with labeled poly(A)+ placental cDNAs. The 

cDNA will hybridize to the oligonucleotide that the message derived from and 

not to its complement. Thus, differential hybridization of the two oligonucleo-

tides maps the expression to one strand.

Prediction of potential exons. To find potential exons in the 1,302 unanno-

tated TARs, their sequences were analyzed using four commonly used gene pre-

diction methods: Genscan (Burge & Karlin 1997), GrailEXP (Guigó et al. 1992), 

GeneID (Xu & Uberbacher 1997), and by homology to known genes. Candidate 

sequences were searched against the non-redundant sequence database (NRDB) 

and Ensembl protein sequence databases using TBLASTX with six-frame transla-

tion (Altschul et al. 1997). 

The matches then were filtered for repetitive sequences with the RepeatMas-

ker program. To eliminate overlapping results, homology matches were filtered 
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such that lower-scoring matches that overlapped with a higher-scoring match by 

more than 40nt were discarded. The three gene prediction programs Genscan, 

GrailEXP and GeneID were also applied to each amplicon sequence. 

For each resulting set of exon predictions, a non-redundant list was made 

such that better-scoring predictions were chosen in preference to those with 

lower scores. GrailEXP makes predictions using a large database of ESTs, cDNAs, 

and mRNAs; these predictions are chosen in preference to any other prediction. 

The remaining exon predictions were chosen in the following order of prefer-

ence: (1) Genscan with exon probability ³ 0.1, (2) GrailEXP, (3) GeneID, (4) 

Genscan with exon probability < 0.1. Any additional potential exons produced 

from the homology searches detailed above were also included. The final non-

redundant collection of exon predictions was then used to derive 60-nt probes 

by selecting unique internal sequences from each predicted exon region using 

the Primer3 software.

For the top 381 exon predictions, a 60-mer oligonucleotide was selected 

to represent a unique sequence from each predicted exon and its complement. 

In this way, oligonucleotide selection is expected to be biased toward potential 

coding sequences. Oligonucleotides were synthesized by Illumina, resuspended 

in 50% DMSO at 50µM and printed and hybridized as described above. The 

oligonucleotide pairs were spotted on a separate area of the chromosome 22 

array and probed with labeled poly(A)+ placental cDNAs. 

Differential hybridization analysis. DHM oligonucleotide arrays were 

scanned and processed using the same method as for the chromosome 22 arrays. 

When one of the oligonucleotides in the pair hybridized and the complement 

did not, they were considered to hybridize differentially to one strand. Those 

pairs exhibiting differential expression on the same strand in three of four repli-

cate experiments were scored as positive expressed sequences. To identify posi-

tive hybridized oligonucleotides, Cy5 fluorescence signals for oligonucleotide 

pairs (strand and antistrand) were compared to each other, providing a mea-

sure of pairwise differences in hybridization (= I
strand

 - I
antistrand

/I
strand

 + I
antistrand

). 

Oligonucleotides that had no detectable signal or that were filtered from the 

data set were assigned an intensity value of zero. The distribution of the pairwise 
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differences approximated a normal distribution, and a set of 119 outlier pairs 

was selected as being differentially hybridized (P < 0.001). For each pair, the 

oligonucleotide with the higher Cy5 signal was identified as exhibiting positive 

hybridization.

Significant differential hybridization was observed in 53 of the 381 pairs, in-

dicating that the hybridizing region and strand could be identified in many cases. 

As a control, multiple oligonucleotides were included to map a region that con-

tains an exon sequence on one strand representing a gene known to be expressed 

in placental tissue, and an intron sequence on the opposite strand. As expected, 

only the exon strand hybridized to the poly(A)+ RNA (Figure 3.8C). Presum-

ably, in the cases that did not exhibit differential hybridization the expressed re-

gion was not represented by the 60-mer oligonucleotides or both strands were 

transcribed. In summary, the RNA blot analysis and oligonucleotide DHM data 

independently verified that a significant number of the unannotated hybridizing 

regions are expressed as mature mRNA transcripts.

Novel Transcription within Annotated Introns

Analysis of the hybridizing fragments that intersect annotated introns revealed 

the unexpected finding that many introns contain transcribed sequences. In fact, 

of the 5,264 fragments located entirely within annotated introns, 518 (9.8%) 

were found to be expressed in five of six experiments. There are three possible 

explanations for this observation: (1) a novel transcribed sequence is encoded 

on the strand opposite the intron; (2) there is an unannotated exon located 

within the intron that had not been discovered previously; or (3) expressed in-

tron sequences were detected.

To distinguish among these possibilities, the DHM technique was used as de-

scribed above. For this, 119 60-mer oligonucleotides representing various intron 

regions and their complementary sequences were spotted onto a microarray 

and probed with labeled poly(A)+ placental cDNAs. Of the 119 oligonucleotide 

pairs, 23 (19.3%) showed significant differential hybridization. Expression from 

the same strand as the intron was detected in 13 cases, indicating that sequences 

from within the introns are transcribed. In five of these cases, an exon was pre-
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Figure 3.8. Differential hybridization mapping within positive PCR fragment sequenc-
es. (A) Hybridization to multiple 60-nt oligonucleotides positioned opposite an intron 
sequence annotated on the antisense strand. (B) Hybridization to oligonucleotides rep-
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dicted to lie within the intron; one example is presented in Figure 3.8B. In ten 

cases, transcription originated from the opposite strand of the intron, suggesting 

that a novel transcribed sequence overlaps with the intron. In total, nearly half 

of the hybridizing fragments that intersect intron regions were shown to contain 

expressed sequences antisense to their respective introns.

To further investigate this observation, DHM was used with multiple oligo-

nucleotide probe pairs to completely cover a subset of the hybridizing fragments 

located within annotated introns. In one case, six oligonucleotide pairs from 

a 1.3-kb region showed differential hybridization to the strand antisense to an 

annotated intron (Figure 3.8A). In another example, two positive 60-nt probes 

hybridized within a 400-bp region opposite a known intron. In these cases, the 

regions that are transcribed on the opposite strand of introns are not short in 

length because multiple probes detect expression throughout the segment. In 

summary, novel transcribed sequences were identified hybridizing to regions 

both internal to annotated introns and to the strand opposite introns.

Assessment of Evolutionary Conservation

Many of the positive hybridizing fragments whose sequences lie outside those of 

known genes are likely to correspond to novel exons. It follows that a percent-

age of these are likely to be homologous to other mammalian genes, providing 

supporting evidence of putative coding regions. To assess the degree of sequence 

conservation with other mammalian sequences, a homology comparison of un-

annotated TARs with the mouse genome was performed using BLASTN and BLASTP 

using published criteria. 

Positive fragments intersecting genes known to be mouse orthologs were 

identified as follows. A comprehensive set of annotated human genes on 

chromosome 22 with established homology to mouse genes was compiled using 

five data sets obtained from the NCBI [National Center for Biotechnology Infor-

mation, Human/Mouse Homology Maps (May 2002); http://www.ncbi.nlm.

nih.gov/Homology]. These consist of human-mouse orthologs identified by ho-

mology between the genetic map represented in the Mouse Genome Database 

(MGD; Blake et al. 2002) and the Whitehead/MRC radiation hybrid map (Hudson 
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5' 3'

. . .. . .

5' 3'

. . .. . .

PCR fragment
Intron sequence

3042029130419050

Sanger locus  dJ439F8.C22.1, intron 3 (20225 bp)

 10 20 30 40 50 60 70 80

PGQPPERSLMSERPR*FEGRQRRCIGS..........GLHRPRLWG*G............PAVHPASMLSPPPSL.NAQP

PGQPYGSQTPQRYPMTMQGRAQSAMGSLSYAQQIPPYGQQGPSAYGQQGQTPYYNQQSPHPQQQPPYAQQPPSQTPHAQP

90 100 110 120 130 140 150  160

SSQPRRPALHPASTRSPPPSLDTQPSTQPR......HSAHREVTGRKESSSAAIFKPVK....VDLSGRSPLGTRLIQQA

SYQQQPQTQQPQLQSSQPP.YSQQPSQPPHQQSPTPYPSQQSTTQQHPQSQPPYSQPQAQSPYQQQQPQQPASSSLSQQA

170 180 190 200 210 220

...QPHP.KIKIK**SLNKTPSHQARGANSESTQ.KAAPGLAESRIPGGPHTQRPHLATSPGLSPELS

AYPQPQPQQSQQTAYSQQRFPPPQELSQDSFGSQASSAPSMTSSK..GGQEDMNLSLQSRPSSLPDLS

H.  sapiens chromosome 22q translated genomic sequence (3852759 - 3853083)
M.  musculus SWI/SNF related, matrix associated, actin dependent regulator of chromatin (NP_291044.1)

38537783852439

Sanger locus  Em:AC005663.C22.1 (ARVCF), intron 18 (19641 bp)

H.  sapiens chromosome 22q translated genomic sequence (3852759 - 3853083)
M.  musculus presynaptic cytomatrix protein (NP_031593.1)

10 20 30 40 50 60 70 80

GHMVQNGSEDGVG...GRIKSGLTARDQAWVAGG.RGRDPEWEGAKGVSEAGEAEGPLDA*SSGRKGFRLETEPPAPSAC

GPLPPGGSGLGPGPGAGKPPSALAGGGQLPVAGAARAAGPPTPGLGPVPGPGPGPGP......GSVPRRLDPKEPLGSQR

90 100 110 120 130 140 150 160

EAER*DRCKPHCLLQRTLP*PSRTRGQSHFPSHHLPCTGRGRTRTQH*EVSLRKEAVLPALGDNSLSPESPKTLGKGAPH

TTSPTPKQASATAPGRESPRETRAQGPSGQEAESPRRTLQVDSRTQR...SGRSPSVSPDRGSTPTSPYSVPQIAP.LPS

170

CTLLPPSTSEE

STLCPICKTSD

1933802819336778

10 20 30 40 50 60 70 80

AGVP.PQGLE.......RKS*ESENGQQGTRQGSWRQEGWSGQ.....PRAPPRNMGHP.CQGTQGQVAEEAFQVLSVGD

AGVKGPQGLQGVKGHPGKRGILGDPGRQG.KPGPKGDVGASGEQGIPGPPGPQGIRGYPGMAGPKGEMGPRGYKGMVGSI

90 100 110 120 130 40 150 160

EALTPTRLTDPRGGRGRKLGLSCPGLWEAPVLFQAPQPSNVTTLPS.QGRDRE.....MAHAAVWVQKPRQSPRCRMNEW

GAAGPPGEEGPRGPPGEAGEKGDVGSQGARGPQGITGPKGITGPPGIDGKDGTPGIPGMKGSAGQVGRPG.SP.......

170 180 190  

E*GGGALTVGPPMTPGPRQGPGCTMDGSEAGGPLVVGPP

...GHQGLAGVPGQPGTKGGPGDKGEPGQQGLPGVSGPP

H.  sapiens chromosome 22q translated genomic sequence (19336846 - 19337045)
M.  musculus procollagen, type IX, alpha 2 (NP_031767.1)

C

B

A
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et al. 2001) with the NCBI Build 28/UCSC HG10 human genome assembly (UCSC 

Human Genome Project Working Draft, December 2001 assembly; http://ge-

nome.cse.ucsc.edu). 

Each homologous gene found on chromosome 22 was cross-referenced with 

Sanger-annotated genes, and the positive fragments that intersect them were 

identified. To assess the degree of sequence similarity between the remaining 

positive microarray fragments and mouse sequences, the fragment sequences 

were queried against the draft mouse genome (NCBI Mouse Genome Release 

27) using BLASTN for nucleotide-nucleotide comparisons (Altschul et al. 1990), 

and to the RefSeq repository of mouse protein sequences (Pruitt & Maglott 

2001) using BLASTX for six-frame translational nucleotide-protein comparisons. 

In each case a threshold e-value of 0.0001 was used to select significant matches, 

with the additional restriction that only matches exceeding 200nt were consid-

ered significant for the mouse genomic DNA comparison.

Of the 1,231 positive microarray fragments intersecting Sanger-annotated 

genes, 541 (~44%) intersect an ortholog in the mouse genome. Interestingly, 

90 (7%) positive fragments that do not intersect with annotated genes poten-

tially encode proteins that are homologous to mouse proteins (82) or genomic 

sequence (8), although the occurrence of stop codons in some reading frames 

may contribute to nonsense-mediated decay if so translated. For instance, an 

unannotated fragment was found to share a significant degree of sequence simi-

larity with a mouse procollagen protein, as depicted in Figure 3.9A. Of the 90 

DNA fragments that contain internal sequences similar to mouse proteins, 25 

are located in introns, and many are on the antisense strand of the annotated 

introns (Figures 3.9B and C). Thus, it appears that a large fraction of the novel 

TARs are evolutionarily conserved and may encode functional proteins or non-

coding RNAs.

Figure 3.9 ( previous). Mouse protein homology within translated PCR fragment se-
quences. (A) Homology match between mouse sequence and a positive microarray 
fragment whose sequence coordinates lie outside annotated genes. (B,C) Examples 
of mouse protein matches to human genomic sequences that are opposite annotated 
introns. In both cases the homology match is antisense to the intron. 
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Comparison to Other Methods

Detection of annotated and predicted genes. Transcription was ob-

served in a single tissue type from many known and predicted genes that have 

been identified previously. This includes the majority (60.8%) of all the known 

genes on the chromosome. In addition, 40.2% and 35.8% of the related and 

predicted genes were detected, respectively. This success rate is similar to that 

of other studies (de Souza et al. 2000, Shoemaker et al. 2001). However, those 

studies used the earlier annotation data accompanying the original chromosome 

22 sequence, which contained many more related and predicted genes. In con-

trast, the study described here used the latest Sanger 2.3 annotation, in which 

many related and predicted genes have now been classified as known (98 and 50, 

respectively, relative to the initial Sanger Centre data release for chromosome 

22). Nonetheless, microarray analysis was able to verify the few remaining pre-

dicted and related genes, demonstrating the sensitivity of this approach.

Transcription in unannotated regions. In addition to the annotated re-

gions, transcription was detected in many chromosome 22 regions that have 

not been detected previously. There are probably two reasons for this. First, the 

unannotated TARs may be expressed at low abundance. Only 25% of the 118 

hybridizing fragments from unannotated regions detected discrete transcripts 

using RNA blot analysis. Those fragments that did not detect mRNAs using RNA 

blot analysis may therefore encode low-abundance transcripts. The second rea-

son novel TARs may have been detected is that the use of a chromosome-wide 

tiling array interrogates most of the unique sequences of the chromosome, and 

is thus more comprehensive than most other methods.

Several hypotheses may explain the biological functions of the novel tran-

scribed regions. It is likely that in many cases these encode low-abundance pro-

teins of new genes. It is also possible that the transcribed regions correspond 

to previously missed exons of known genes. A third possibility is that they may 

function as non-coding RNAs (i.e., siRNAs, snoRNAs, hnRNAs, or other small 

RNAs); in this capacity they might serve in a structural, catalytic or regulatory 

capacity. For instance, if the novel coding segments produce antisense transcripts, 
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they might control the levels, export, or translation of genes encoded on the op-

posite strand. Regardless of their functions, these newly discovered expression 

regions are clearly an important source of new biological information, as many 

of them are conserved among mammals.

The microarray approach is comprehensive. A variety of other stud-

ies have been used to annotate chromosome 22. SAGE, ESTs, and ORESTES have 

identified a number of coding segments on the chromosome (Saccone et al. 

1996, Deloukas et al. 1998, de Souza et al. 2000, Liang et al. 2000, Caron et al. 

2001). However, these studies are biased toward detecting the most abundant 

transcripts, and they are often limited by the short stretches of DNA that are 

sequenced. The microarray approach is more suitable for expression profiling 

because several different tissue types can be analyzed in parallel to determine 

tissue-specific abundance. Also, this approach can be used to elucidate other 

annotation features, whereas the previously mentioned techniques cannot; for 

example, identification of transcription factor binding sites via hybridization of 

chromatin immunoprecipitated DNA.

Two independent microarray studies have also investigated the transcrip-

tional activity of the chromosome. Shoemaker et al. (2001) synthesized oligo-

nucleotide probes to represent many predicted exons from Genscan. Although 

the method was able to detect transcripts for 185 (57%) of the 325 Genscan-

predicted genes, their study did not examine the majority of non-repetitive se-

quence on chromosome 22. Although a limited tiling survey examined a 113-kb 

region to investigate exon-intron boundaries, the microarray was designed pri-

marily to detect annotated and predicted genes. The approach described here is 

more comprehensive and universally applicable to a wide range of experiments.

Mapping of Affymetrix probes. An independent study by Kapranov et al. 

(2002) interrogated transcriptional activity using high-density oligonucleotide 

arrays containing 25-nt oligonucleotide probes spaced, on average, 10nt apart 

to cover most of the non-repetitive DNA of chromosomes 21 and 22. These 25-

nt probes were developed using the original chromosome 22 contig sequences, 

corresponding to the initial Sanger Centre data release (Dunham et al. 1999). 
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To relate the present transcription data to the results of this study, a proce-

dure was developed to map positive oligonucleotide sequences to the current 

assembly of chromosome 22 on which the microarray described here was con-

structed. The original contig sequences were obtained, and each was subdivided 

into 500-bp fragments. These subsequences were aligned with the current as-

sembly of chromosome 22q with BLASTN (Altschul et al. 1990), using a long 

word length of 400bp to obtain a single optimal match for each fragment. The 

center positions of the positive oligonucleotides were known relative to the 

original contig sequences; an offset could therefore be computed for each 25-

mer oligonucleotide with the offset shifting its coordinates according to the 

chromosomal location of the contig fragment on which the oligonucleotide was 

originally placed. Using this method, short oligonucleotide sequences could be 

accurately located on the updated chromosome assembly, while avoiding the 

many spurious homology matches that would result from comparing each 25-nt 

sequence with the entire chromosome directly. 

The experiment by Kapranov et al. prepared cRNA probes from 11 cell lines 

that were hybridized to the oligonucleotide arrays. This study also found that 

many unannotated regions of the chromosome are expressed as polyadenylated 

RNA; however, there are a number of differences between the two studies. First, 

they did not report that expression is observed from within annotated introns, 

nor did they assess the degree of homology between expressed sequences and 

those in other genomes to establish evidence for conserved regions. Second, 

cDNA probes from different sources were used. Kapranov et al. used probes 

from RNA isolated from 11 cancer cell lines, whereas the present study used 

normal placental poly(A)+ RNA. Third, double-stranded cDNA probes were 

generated from the RNA; thus, they could not determine which strand is tran-

scribed in the oligonucleotide hybridizations.

Although no microarray is entirely comprehensive, the PCR-based approach 

has several advantages. First, it contains large regions of contiguous sequence in-

formation, ensuring that no information is omitted. However, PCR-based arrays 

are of lower resolution, and the exact hybridizing region must be determined 

by other methods such as DHM. Despite the inherent differences in the two 

approaches, a thorough comparison of transcribed sequences reveals extensive 
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overlap between the two studies. Of the 2,504 hybridizing fragments identified 

in the present study, 10% (250) were not detected in the Affymetrix investiga-

tion, indicating that the two methodologies are complementary.

Another advantage of PCR-based microarrays is that they can be produced in 

an academic lab and at high throughput. Thus, the approach is easily amenable 

to serially hybridizing many tissue types to determine tissue-specific transcripts. 

This array is also a versatile tool for many other purposes such as identifying 

transcription-factor-binding sites in conjunction with chromatin immunopre-

cipitation methods (discussed in Chapter 5). Eventually, transcription maps de-

rived from tiling array experiments may also serve a comparative evolutionary 

function. Typically, whole genome sequences are compared to find similarities 

that have been preserved through evolution. Although this is a valid and useful 

approach, experimentally-derived transcription data may also be used to dis-

cover individual conserved transcripts between related species. The latter may 

be a useful way to determine functional differences across genomes as well as 

fine-resolution evolutionary changes in chromosomes.

Summary

This study embodied a multifaceted approach to provide a detailed transcrip-

tional map of human chromosome 22. A microarray containing most of the 

unique sequence was developed and subsequently hybridized to probes pre-

pared from human placental poly(A)+ RNA to identify transcriptionally active 

regions across the chromosome. In addition to detecting known and predicted 

coding regions, an equal level of transcription was measured in previously unan-

notated regions. Many of these novel coding segments were verified to produce 

bona fide messages via RNA blot analysis. A comparison of novel transcribed 

regions with mouse sequences revealed that many are evolutionarily conserved 

in mammals. These regions were defined at a higher resolution using differential 

hybridization mapping (DHM) with oligonucleotide arrays. DHM analysis verified 

that a significant fraction of expression originates within introns and antisense to 

introns. These studies indicate that a considerable portion of the human genome 

may be transcribed, often in unexpected places.                                                
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Elucidating the transcribed regions of the genome constitutes 

a fundamental aspect of human biology, yet this remains an outstand-

ing problem. To comprehensively identify these sequences, a series of 

high-density oligonucleotide tiling arrays were constructed representing sense 

and antisense strands of the entire non-repetitive sequence of the human ge-

nome. Transcribed sequences were located across the genome via hybridization 

to complementary DNA samples, reverse-transcribed from polyadenylated 

RNA obtained from human liver tissue. In addition to identifying many known 

and predicted genes, this experiment found 10,595 transcribed sequences not 

detected by other methods. A large fraction of these are located in intergenic 

regions distal from previously annotated genes and exhibit significant homology 

to other mammalian proteins. 

Introduction

The prevailing gene structures in many organisms consist primarily of coding se-

quences with few and short intervening regions, and thus their characterization 

is largely straightforward. In contrast, mammalian genes often contain many 

short exons interspersed with very large introns, making the identification of 

coding sequences difficult; a comprehensive and accurate map of human coding 

sequences therefore does not exist. Functional assays are expected to be essen-

tial for the identification of coding segments and verification of predicted genes. 

In principle, tiling microarrays offer the ability to comprehensively investi-

gate the transcribed regions of any species using an unbiased approach. Recently, 

various microarray technologies have been applied to assess genome-wide tran-

scription in bacterial and plant genomes (Selinger et al. 2000, Tjaden et al. 2002, 

Yamada et al. 2003), as well as transcription over human chromosomes 21 and 22 

(Kapranov et al. 2002, Rinn et al. 2003). Each of these methods identified many 

previously unannotated features, noting a high degree of novel transcription be-

yond that expected by existing gene annotation data. These studies clearly dem-

onstrated the merit of the microarray approach to the problem of large-scale 

transcript mapping; however, until now the large size of mammalian genomes 

has precluded the construction of genome-wide high-resolution tiling arrays. 

Global Identification of Transcribed 
Sequences in the Human Genome 4
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A Human Genome Tiling Array

Using maskless photolithographic DNA synthesis technology, 134 high-den-

sity oligonucleotide microarrays were constructed to represent 1.5Gb of non-

repetitive genomic DNA from each strand of the human genome. A total of 

51,874,388 36-nucleotide (nt) probes, positioned every 46nt on average, were 

selected to interrogate sense and antisense strands of the genome and synthe-

sized at a feature density of 390,000 probes per array (Figure 4.1). To measure 

global transcriptional activity, the arrays were hybridized to fluorescence-la-

beled cDNA reverse-transcribed from triple-selected polyadenylated [poly(A)+] 

liver tissue RNA pooled from several individuals. 

A pilot study was first performed to test the reproducibility of the platform. 

Multiple arrays were probed with cDNA samples derived from identical and 

independent labeling reactions, producing technical replicates having r2 corre-

lations between 0.90 and 0.95, indicating that the experiments are highly re-

producible. To further reduce the effect of potential variation across individual 

cDNA samples, pooled reverse transcription products of 20 separate labeling 

reactions were used to probe the genome.

Sequence processing. The template sequences used to design the microarrays 

were derived from NCBI Build 31/UCSC HG13 (UCSC Human Genome Project 

Working Draft, November 2002 assembly) of the human genome sequence as-

sembly (Lander et al. 2001, Venter et al. 2001). Each chromosome sequence was 

screened for repetitive elements and low-complexity DNA with RepeatMasker 

(Smit & Green, unpublished) in sensitive mode, in conjunction with the Rep-

Base collection of repetitive sequence elements (Jurka 2000). Additional low-

complexity sequence filtering was performed with the NSEG program (Wooton 

& Federhen 1996) using a minimum segment length of 21 nucleotides, trigger 

complexity of 1.4, and extension complexity of 1.6. 

Oligonucleotide probe selection. Following sequence processing, the re-

maining 1.5Gb of non-repetitive DNA was analyzed to identify optimal hybrid-

ization probes according to several criteria: 1) nucleotide frequency informa-
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tion, calculated to determine the uniqueness of every 36mer in the genome; 

this measure was used to select probes that occur less than five times on average 

to reduce the potential for cross-hybridization; 2) intra-oligo alignment scores, 

used to exclude sequences that could form a loop with a stem greater than seven 

bases; 3) other sequence-dependent factors such as length, extent of comple-

mentarity and overall base composition. A total of 51,874,388 36mer oligo-

nucleotide probes were selected to represent both sense and antisense strands 

of the non-repetitive DNA at an average resolution of 46nt (probes are spaced 

every 10nt on average). For DNA synthesis purposes, each selected probe was 

Figure 4.1. Fluorescence micrograph of high-density maskless photolithographic tiling 
arrays The arrays are designed to contain 396,000 36mer features in a 14 × 17.4 mm2 
area, where each feature occupies approximately 15µm. A parallel sample comprising 
end-labeled 24mer control oligos, shown in contrasting color, are hybridized to an 
embedded set of features (inset). These are used to align the array image in software, 
facilitating the automated extraction of experimental fluorescence data.
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designed not to use more than 75% of the maximum number of cycles required 

to synthesize an oligomer of that length. For 36mer oligonucleotides this cutoff 

was 108 cycles. Virtual masks describing the layout of each microarray design 

were developed with the ArrayScribe program (NimbleGen Systems).

Microarray construction. Glass slides were incubated in 10% sodium hy-

droxide and silanized in a 2% bis(2 hydroxyethyl)-aminopropyltriethoxysilane 

solution (v/v; United Chemical Technologies). High-density oligonucleotide ar-

rays were fabricated as described (Sing-Gasson et al. 1999, Nuwaysir et al. 2002, 

Albert et al. 2003). Briefly, 2-nitrophenyl propoxycarbonyl (NPPOC) photola-

bile DNA synthesis reagents (Hasan et al. 1997) were used in conjunction with 

Expedite DNA synthesizers (Applied Biosystems). Maskless Array Synthesis 

(MAS) units (NimbleGen Systems) were connected to the DNA synthesizers 

to manufacture custom arrays using photolabile phosophoramidites (NPPOC-

d-adenosine (N6-tac) β-cyanoethylphosphoramidite, NPPOC-d-cytidine (N4-

Isobutyryl) β-cyanoethylphosphoramidite, NPPOC-d-guanosine (N2-ipac) 

β-cyanoethylphosphoramidite, NPPOC-d-thymidine-β-cyanoethylphosphora-

midite) obtained from Proligo. After synthesis on the MAS was completed, the 

base-protecting groups were removed in a solution of ethylenediamine:ethanol 

(1:1 v/v) (Aldrich) for two hours. The arrays were rinsed with water, dried and 

stored desiccated until use.

Sample preparation and labeling. Triple-selected human liver tissue poly 

(A)+ RNA pooled from several individuals was obtained from Ambion. First-

strand cDNA was generated using M-MLV reverse transcriptase (RNase H–) with 

equimolar concentrations of oligo(dT) primers and random decamers. The reac-

tions were carried out at 42°C for 2 hours in the presence of amino allyl-dUTP 

to facilitate the secondary labeling of an amine-reactive fluorescent conjugate. 

Following reverse transcription the products were heated at 95°C for 5 minutes 

to denature the RNA:DNA hybrids and heat-inactivate the reverse transcriptase, 

after which the RNA template was hydrolyzed via incubation with NaOH at 

65°C for 15 minutes. Reverse transcription products from 20 separate reac-

tions were produced in this manner and pooled to reduce technical variability 
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between samples. The cDNAs were precipitated in ethanol:isopropanol (1:1 v/

v) and resuspended in 0.1M NaHCO
3
 to facilitate coupling of Alexa Fluor 555 

NHS esters (Molecular Probes) to the reactive groups of the amino allyl-dUTPs. 

Following incubation at room temperature for 1 hour, the labeled cDNAs were 

purified with CyScribe GFX glass fiber spin columns (Amersham Bioscience) and 

isopropanol-precipitated.

Microarray hybridization. Microarrays were probed with 2µg–3µg labeled 

cDNA in 320µL hybridization buffer (50mM MES, 0.5M NaCl, 10mM EDTA, 

and 0.005% (v/v) Tween-20) for 20 hours at 50°C. Hybridizations were per-

formed in disposable adhesive chambers (Grace BioLabs) in a hybridization oven 

with constant agitation. After hybridization, the arrays were washed on an or-

bital platform in non-stringent buffer (6× SSPE, 0.01% [v/v] Tween-20) for 

10 minutes at room temperature, then in stringent buffer (100mM MES, 0.1M 

NaCl, 0.01% Tween-20) for 30 minutes at 45°C. This was followed by a 5-min-

ute wash in non-stringent buffer and a 4-minute wash in 0.2× SSC. Microarrays 

were dried with compressed nitrogen gas. Images were acquired with an Axon 

4000B laser scanner at 5µm resolution and intensity data were extracted with 

NimbleScan software (NimbleGen Systems). A more detailed hybridization pro-

tocol is included as Appendix E.

Data Analysis

Detecting annotated genes. To correlate fluorescence intensity values with 

meaningful chromosomal features, the oligonucleotide probe coordinates were 

aligned with current gene annotation data, using the RefSeq (Pruitt et al. 2000) 

and Ensembl (Hubbard et al. 2002, Birney et al. 2004) databases. Alignment of 

the fluorescence intensities to the chromosomal coordinates of many known 

genes shows strong agreement between hybridization signals and annotated 

exons (Figure 4.2). 

To systematically determine the number of annotated genes detected with 

this approach, a simple statistical method was devised for scoring the observed 

transcriptional activity of annotated genes. Each probe is assigned a value of one 
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ALB (NM_000477), Chromosome 4 (+) 74509634 - 74526763

C3 (NM_000064), Chromosome 19 (-) 6746512 - 6789295

ORM1/AGP1 (NM_000607), Chromosome 9 (+) 108817583 - 108827702

ATP5A1 (NM_004046), Chromosome 18 (-) 43450645 - 43464794

Figure 4.2. Annotated genes aligned 
with microarray fluorescence intensities. 
Comparison of the gene structures with 
intensity data shows strong agreement 
with expected exon-intron boundaries. 
The upper two examples illustrate uni-
form representation across the entire 
gene, whereas the lower two examples 
show a slight 3´ bias inherent in reverse-
transcription labeling of RNA. Grey seg-
ments at the top of each graph indicate 
the coverage of oligonucleotide probes 
tiled across non-repetitive regions of 
each respective chromosome.

if its fluorescence intensity is greater than the median intensity of all probes on 

the array, and zero otherwise. For a given gene, the expected count of one’s 

within annotated exons follows a binomial distribution; an unusually high count 

of one’s therefore yields low P-values (sign test). Genes having P-values < 0.05 

were regarded as demonstrating positive hybridization. This measurement es-

sentially compares the fluorescence intensity of each probe within a gene against 

the median probe intensity across the entire microarray to determine whether 

they are significantly different. 

A total of 16,997 annotated genes from RefSeq, 35,823 genes from Ensembl, 

and 42,645 genes predicted by Genscan (Burge & Karlin 1997) were scored 

in this manner. Based on these criteria, transcription was detected from 64% 
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(10,895), 57% (20,509), and 35% (14,884) of genes in each data set, respec-

tively (Figure 4.3A). These results agree with the expectation that fewer genes 

should be experimentally detected from annotation data sets that include puta-

tive genes predicted by homology or ab initio methods, as opposed to a curated 

collection of characterized genes. Nonetheless, these results provide the first 

genome-wide experimental confirmation that many of the predicted genes are 

transcribed, suggesting that they are functional. A subset of 9,844 RefSeq genes 

with corresponding UniGene (Wheeler et al. 2003) annotations that indicate 

transcription in liver tissue was also examined; 70% (6,907) of these were de-

tected by tiling array analysis.

Mouse DNA sequence homologs

Mammalian protein homologs Non-homologous sequences

TARs (13,889)

Novel Poly (A) TARs (1,637)

Poly (A) TARs (3,628)

Novel TARs (8,958)

1,877

4,3497,663

395

1.041

1,442

1,233

1,427

6,298

259

369

1009

Genscan (42,645) Ensembl (35,823)

RefSeq:liver (9,844)RefSeq (16,997)

Genes from which transcription detected

Genes without significant expression signal

14,884

27,761
20,509

15,314

10,895

6,102

6,907

2,937

Figure 4.3. A) Proportion of genes detected from each of four annotation sources. The percentages 
of genes detected from each data set increase as the annotation shifts from solely ab initio predictions 
(Genscan) to fully characterized genes (RefSeq). B) Conservation between transcriptionally-active 
regions (TARs) and other mammalian sequences. Forty-one percent of TARs and 50% of poly(A)-as-
sociated TARs were found to be homologous, as were 29% and 39% of novel TARs from each category. 
A large number of TARs show significant similarity to known proteins (BLAST e-values 10–5), suggest-
ing that many of these may be functional elements. A subset of these exhibited sequence similarity to 
regions of the mouse genome when restricted to similar e-values (solid blue sections).

BA
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Sense to introns

Antisense to introns

<10 Kb from any gene

>10 Kb from any gene

TARs Poly(A)-associated TARs

Novel TARs Novel Poly(A) TARs

Exons

Introns

<1 Kb from a gene

1-10 Kb from any gene

>10 Kb from any gene

4,931

1,566

398

1,210

5,784

1,991

229
153

303

952

1,566
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Mapping unannotated transcripts. In addition to detecting known and 

predicted genes, a primary goal of this study was to identify regions of the ge-

nome exhibiting novel transcription. Transcribed sequences outside of previ-

ously annotated exons are expected to correspond primarily to (1) unannotated 

exons from alternatively spliced messages, (2) under-represented 3´- and 5´-

untranslated regions, (3) non–protein-coding RNA transcripts, and (4) novel 

transcripts coding for functional proteins. 

To scan for these sequences, aggregate transcription units were considered 

consisting of at least five consecutive probes exhibiting fluorescence intensities 

in the top 90th intensity percentile, and the genomic coordinates of which lay 

within a 250-nt window. These were compiled from throughout the genome 

and their locations compared relative to those of annotated gene components 

(Figure 4.4). 

A total of 13,889 transcription units, ranging in size from 209nt to 3,438nt, 

were identified in the genome by these criteria; 400 are expected under the null 

hypothesis of zero transcription. One-third (4,931) correspond to previously 

annotated exons; the remaining 8,958 are new transcribed sequences that are 

referred to as transcriptionally active regions, or TARs (see Chapter 3). A total of 

1,566 TARs are located within previously annotated introns on the same strand, 

raising the possibility that they correspond to previously unknown exons. How-

Figure 4.4. Distribution of 

TARs relative to annotated 
genes. Occupancy within 
gene components and prox-
imity to known genes are 

depicted for all TARs (upper 

charts) and for novel TARs 
that lie outside annotated 
exons (lower charts). Most 

of the novel TARs are locat-
ed more than 10kb from any 
previously annotated gene, 
suggesting that these corre-
spond to distinct transcribed 
sequences.
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ever, an equal number of TARs (1,529) lie on the antisense strand of introns, in-

dicating that many of the intronic TARs likely represent novel transcription units. 

Over half of all TARs were found to be distal to annotated genes (defined here as 

greater than 10kb from any gene), indicating the presence of an additional 5,784 

transcribed elements that are apparently unrelated to known genes. 

An independent set of criteria was used to identify TARs in which probe 

hybridization intensities were correlated with the presence of a polyadenylation 

signal 3´ of the active region. Transcription units of (exactly) five consecutive 

probes were considered with fluorescence intensities in the top 80th intensity 

percentile, appearing in windows of 250nt where the 3´ region contains or lies 

near a polyadenylation signal. These are required to appear downstream of the 

15th nucleotide of the 3´ oligonucleotide in the transcribed region; an additional 

51 (46 + 5) downstream nucleotides are included in the calculation to ensure 

full coverage of the sequence. Instances of “AATAAA” sequences are designated 

type I, and “ATTAAA” type II. 

An additional 3,628 TARs were identified using this method; 100 such in-

stances are expected to occur at random in the genome. Most (1,991) lie within 

annotated exons, whereas 952 are located more than 10kb from any annotated 

gene. Of the 1,371 type I and 674 type II poly(A) sequences identified within 

exons of known genes, 94% (1,289) of type I and 90% (607) of type II instances 

occur in the 3´ exon of the gene in question, a strong indication of the effective-

ness of this approach. The fraction of poly(A) TARs distinct from annotated exons 

(1,637), combined with the 8,948 novel TARs identified above, yields a total of 

10,585 new transcribed sequences throughout the genome. 

Confirmation of Novel Transcripts

To validate the transcription of identified TARs with an independent method, re-

verse transcription polymerase chain reaction (RT-PCR) assays were performed 

using human liver poly(A)+ RNA, targeting 48 poly(A)-associated and 48 non–

poly(A)-associated TARs. PCR primer pairs were designed for each region and 

the reactions were carried out with the RETROscript system (Ambion); 0.25µg 

poly(A)+ RNA was reverse transcribed for each sample. An identical aliquot of 
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each reaction mixture was used as a minus-reverse transcriptase control. PCR 

products were electrophoresed on 2.5% fine-resolution agarose gels; 90 of the 

96 (90%) displayed bands of the appropriate size in a single-pass assay with no 

detectable band in the negative control, and 10 of the positive amplicons pro-

duced multiple bands in addition to the targeted product (Figure 4.5).

As a further validation, the novel TARs were compared against data derived 

from the second phase of the Kapranov et al. (2002) transcript mapping experi-

ment on chromosomes 21 and 22. Over 41% of TARs match the transcribed frag-

ments, or “transfrags,” identified in their study. Because of the highly stringent 

selection of TARs described here, many low-abundance transcripts are not iden-

tified by these criteria and an appreciable false-negative rate is expected. 

Evidence of Coding Potential by Evolutionary Conservation

Novel TARs were then compared with other mammalian DNA sequences to as-

sess their potential for coding functional elements. BLAST (Altshul et al. 1990) 

searches revealed that many TARs are homologous to sequences in the mouse ge-

nome. Of the 8,958 novel TARs, 24% (2,185) produced BLAST alignments with 

e-values less than 10–5, with most of these (1,486) having e-values less than 10–20. 

This compares with 39% (5,419) of the initial set of 13,889 TARs (i.e., novel 

TARs and those corresponding to exons of known genes) that produced BLAST 
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Figure 4.5. RT-PCR validation of TAR sequences. A group of variable-length TARs (left) 
between 400bp and 650bp is shown opposite a group of approximately equal-length 
poly(A)-associated TARs (right). PCR products are loaded adjacent to their correspond-
ing negative control samples.
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scores with e-values less than 10–5; of these, total of 3,761 had e-values less than 

10–20. Similarly, 32% (532) of the 1,637 novel poly(A)-associated TARs yielded 

BLAST alignments with e-values less than 10–5, with 342 less than 10–20 (Figure 

4.3B). Of the initial set of 5,419 TARs and 1,515 poly(A)-associated TARs found 

to be homologous to sequences in the mouse genome, a respective 27% (1,488) 

and 21% (321) from each category are located more than 10kb from any previ-

ously annotated gene. 

In addition to assessing the degree of genome conservation, mouse proteins 

were aligned with TAR sequences that were translated in all possible reading 

frames (Table 4.1). A total of 16% (1,427) and 12% (1,091) of novel TARs pro-

duced BLAST matches less than 10–5 and 10–20, respectively, compared with 31% 

(4,329) and 24% (3,311) of the total number of TARs with matches below these 

e-values. Higher percentages of poly(A)-associated TARs were found to be ho-

mologous to mouse proteins: 23% (369) of the novel subset and 36% (1,307) of 

the total set of poly(A) TARs matched protein sequences with e-values less than 

Table 4.1. Distribution of TARs relative to annotated genes and conserved sequences. 
Many TARs (40%) correspond to known exons; however, a significant fraction (38%) 
are located more than 10kb from any previously annotated gene. BLAST results com-
pare TARs to mammalian protein sequences and to the mouse genome. A total of 6,934 
(40%) of all TARs are homologs to the mouse genome (e-value ≤ 10–5), with 5,656 
(32%) homologous to protein sequences (25 to 30% of TARs belong to both categories), 
providing evidence for possible functional roles in humans.

Total Exons Introns < 1 kb 1-10 kb > 10 kb

TARs 13,889 4,931 1,566 398 1,210 5,784

Poly(A)-associated TARs 3,628 1,991 229 153 303 952

  Type I (AATAAA) 2,393 1,371 137 105 187 593

  Type II (ATTAAA) 1,325 674 101 51 123 376

BLAST: mouse genome BLAST: mammalian proteins

1e–5 1e–10 1e–20 1e–5 1e–10 1e–20

TARs 5,419 4,747 3,761 4,349 4,008 3,311

Poly(A)-associated TARs 1,515 1,247 936 1,307 1,198 995

  Type I (AATAAA) 1,044 862 637 905 830 685

  Type II (ATTAAA) 517 423 328 436 401 340
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10–5, with 19% (305) and 27% (995) in each category having e-values less than 

10–20. Thus, although many TARs are expected to encode proteins, novel TARs 

generally exhibit a lesser degree of sequence conservation than those intersect-

ing known genes. This is particularly true for poly(A)-associated TARs owing to 

the higher degree of conservation of protein-coding sequences relative to 3´-

untranslated regions. 

To estimate the number of TARs potentially arising from the cross-hybridiza-

tion of mRNA transcripts to sequences elsewhere in the genome, 9,408 novel 

TARs that additionally do not lie antisense to annotated exons were compared 

to the library of human cDNA sequences in the Ensembl database. Only 11% 

Figure 4.6. (A) Density plot of RefSeq-
annotated exons across human chromo-
some 3 compared with the density of 
novel transcriptionally active regions 
(TARs). The distribution of novel TARs 
is similar to that of annotated exons, 
indicating that they are colocated with 
genes on a global scale. Units on the ab-
scissa are given in 1-Mb intervals. 

(B) Average distances to the nearest up-
stream CpG island for all RefSeq exons, 
novel TARs, novel poly(A)-associated 
TARs, and 1000 randomly selected loca-
tions in the genome. The distribution of 
novel TARs is similar to that of RefSeq 
exons, whereas the random locations 
are the most distant from CpG islands. 
As expected, poly(A)-associated TARs 
are located at intermediate distances 
because they correspond primarily to 
3´ exons.B
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(1,034) were found to share at least 95% identity over a stretch of 150nt. Of 

the remaining 8,374 nonhomologous novel TARs, 347 intersect the genomic 

coordinates of processed pseudogenes (Harrison et al. 2002, Zhang et al. 2003), 

providing evidence for possible pseudogenic transcription. 

Global Comparison to Chromosomal Features

Finally, the distribution of TARs was compared to the locations of known genes 

and CpG islands. A density plot relating TARs and RefSeq-annotated exons along 

chromosome 3 (Figure 4.6A) revealed that TARs are located in the same regions 

as known genes. The density of TARs is correlated with the distribution of Ref-

Seq-annotated genes along each chromosome (Pearson correlation coefficient 

r2 = 0.35, P < 0.002). Comparison of distances to the nearest upstream CpG 

island indicates that the relative locations of novel TARs distal to annotated genes 

are similar to those of RefSeq exons, whereas the distal poly(A)-associated TARs 

are located farther away, which is expected because most of these should cor-

respond to the 3´ ends of genes (Figure 4.6B). The distances of all distal TARs to 

CpG islands were found to be significantly less than those of randomly selected 

locations (P < 0.0001). 

Summary

These findings demonstrate that it is possible to use high-resolution oligonucleo-

tide microarrays for the comprehensive analysis of the human genome. Because 

many transcribed sequences are located in distinct intergenic regions distant 

from known genes, their precise mapping can only be accomplished using ge-

nomic tiling arrays in which nearly all of the non-repetitive DNA is available 

for hybridization to RNA transcripts. Several bacterial artificial chromosome 

(BAC) clone-based genomic tiling arrays have been developed for comparative 

genomic hybridization (CGH) studies in humans (Buckley et al. 2002, Iskanian et 

al. 2004); however, the identification of short transcription units requires inter-

rogating the genome sequence at a resolution of tens of base pairs, a measure-

ment that is not possible to obtain with BAC technology. 
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This analysis identified thousands of new transcribed regions throughout the 

human genome and confirmed the transcription of predicted genes on a global 

scale. These results provide a draft expression map for the entire genome, re-

vealing a much more extensive and diverse set of expressed sequences than was 

previously annotated. Conservation between many of the novel transcribed se-

quences and well-characterized mouse proteins provides strong evidence that 

a large number of them are likely to encode functional transcripts. Many con-

served transcribed sequences are located in regions distal to known genes, and 

a notable fraction of these are of sufficient length to encode proteins of 300 or 

more amino acids. The remainder may encode small proteins, untranslated exons, 

or RNAs whose functions have yet to be elucidated (Mattick 2003, Kampa et al. 

2004). These latter RNAs may serve alternate regulatory or structural roles and 

await detailed characterization.                                                                           
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The studies described thus far exploit the parallel nature of 

microarray experiments to address the problem of human genome an-

notation. Through the development of genomic DNA tiling arrays, large-

scale transcript mapping experiments can refine existing gene models and reveal 

the presence of thousands of novel transcribed sequences. A second emerging 

application of microarrays involves the identification of regulatory elements in 

genomic loci. This approach attempts to map the DNA sequences recognized by 

transcriptional regulators via hybridization of chromatin bound by the cognate 

proteins in vivo. Through the identification of transcription factor binding sites, 

tiling arrays can be applied to the study of gene regulation on a global scale. This 

study concludes by reviewing current results in this area, then demonstrating 

how transcription factor binding analysis can be linked with gene expression 

data to synthesize large-scale portraits of genetic function. In examining the 

complex integration of various genomic data, the focus will shift from human 

genetics to the yeast model Saccharomyces cerevisiae; here, the ability to perform 

such analyses is greatly enhanced by the existence of many experimental data 

sets. Ultimately, the approaches described at the end of the chapter will be ame-

nable to the human system as more comprehensive data becomes available.

Global Identification of Regulatory Elements

Transcription factors are regulatory proteins that bind DNA to modify chroma-

tin or recruit components of the transcriptional apparatus, ultimately manifest-

ing or repressing the expression of their target genes. Identifying the genes regu-

lated by an organism’s complement of transcription factor proteins is central to 

our understanding of diverse cellular processes. It is therefore highly desirable to 

attain a comprehensive inventory of the cis-regulatory sequences that constitute 

the promoter elements to which a given transcription factor binds. Although 

the in vitro DNA-binding sequences of many factors have been established to 

varying degrees of accuracy, in vivo binding can be affected by a multitude of 

complex determinants. These include variations in local chromatin structure 

and accessibility, interaction of transcriptional activators with remote enhancer 

Conclusion and Future Directions:  
Regulatory Pathway Discovery 5
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elements, and involvement of ancillary proteins. Thus, a given factor can bind 

to different locations in vivo to coordinate the transcription of different sets of 

genes, depending on the cellular conditions in which it is expressed.

Until recently, characterizing the interactions of DNA-binding proteins with 

the genome was possible only on a single-gene basis, primarily through in vivo 

footprinting studies. In concert with other experimental protocols, microarrays 

can now be used to study the behavior of transcriptional activators in a manner 

analogous to gene expression analysis. Since functional binding sites of transcrip-

tion factors are expected to occur primarily within intergenic regions, micro-

array-based analyses of gene regulation have emerged with the tandem develop-

ment of genomic tiling arrays. In shifting the selection of DNA sequences away 

from the exclusive representation of genes, tiling arrays facilitate the unbiased 

mapping of transcription factor binding sites on an unprecedented scale.

The most widely adopted procedure involves the hybridization of chromatin 

immunoprecipitated (ChIP) DNA to a genomic DNA tiling array, commonly 

referred to as ChIP-chip (Horak & Snyder 2002a, Lieb 2003). In this approach, 

protein-DNA interactions in cells expressing the factor of interest are fixed in 

situ with a crosslinking agent, typically formaldehyde (Solomon & Varshavsky 

1985). Nuclear extracts are isolated and the transcription factor-bound DNA is 

sonicated to reduce the size of the fragments to be analyzed. The factor is then 

immunoprecipitated, either with antibodies against the native protein or via an 

epitope tag fused to the transcription factor gene. The crosslinks are reversed 

with heat treatment and fluorescence-labeled samples are prepared following 

the purification of the immunoselected chromatin fragments (Figure 5.1). 

The labeled DNA is then hybridized to a microarray in parallel with a nega-

tive control sample. This can be derived from genomic DNA, or consist of an 

identical sample precipitated either in the absence of antisera or with pre-im-

mune sera. The resulting data can therefore be treated like those generated by 

a two-channel differential gene expression experiment, where fluorescence in-

tensity ratios are computed after normalizing the signals from the two channels  

(Figure 5.2A). The main analytical difference between a differential expression 

experiment and a ChIP-chip experiment is that in the latter case, statistical outli-

ers are expected to occur only in the fluorescence channel corresponding to the 
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immunoprecipitated sample (Figure 5.2B). A significant increase in fluorescence 

intensity therefore corresponds to the enrichment of a specific population of 

DNA fragments in excess of those represented in the control sample, and are 

assumed to have hybridized to chromatin fragments containing transcription 

factor-bound sequences.

Once identified, transcription factor-bound sequence fragments can be 

mapped to their genomic loci and their positions compared with existing gene 

Figure 5.1. ChIP-chip protocol for microarray-based chromatin profiling. Protein-
DNA interactions within cells expressing a transcription factor of interest are treated 
with formaldehyde to promote in vivo crosslinking. This is followed by lysis, shearing 
of the genomic DNA, and immunoselection of protein-DNA complexes from nuclear 
extracts using antibodies against the transcription factor. The immunoprecipitated DNA 
is purified, fluorescence-labeled, and hybridized to a tiling or intergenic microarray in 
parallel with a negative control sample. The control may be derived either from im-
munoprecipitations performed in the absence of antibodies or with control antibodies, 
from a deletion strain or cell line, or from genomic DNA.
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annotation (Figure 5.3A). The total number of DNA fragments enriched via 

immunoprecipitation is usually a superset of those involved in gene regulation. 

Some factors recognize highly specific promoter sequences and associate with 
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Figure 5.2. Scatter plots of chromatin-immunoprecipitated DNA versus a negative 
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in the first example, the enrichment of transcription factor-bound DNA produces an 
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chromatin infrequently, whereas others may bind constitutively to many sites 

throughout the genome. A number of transcription factors have been observed 

to bind to promoter regions in clusters, such that several binding events consti-

tute a fewer number of regulatory loci. Additionally, since the immunoprecipi-

tated chromatin fragments are double-stranded, either strand of the denatured 

sample becomes available to anneal with complementary array sequences. It is 

therefore impossible to distinguish on which strand the factor’s promoter se-

quence lies from this experiment alone. Instead, one must consider both strand 

orientations equally when analyzing the data, observing the proximity of binding 

sites to annotated genes to determine which are likely to be involved in regula-

tory function. 

Because transcription factor binding alone does not necessarily indicate the 

locations of functional promoters, evidence to support regulatory function must 

be accumulated by integrating other experimental data. Differential gene ex-

pression, easily observed through microarray analysis, can reveal which genes are 

affected in response to the stimuli under which a transcription factor is induced. 

This information is superimposed with binding site data to reveal where DNA 

binding occurs on the chromosome relative to the locations of differentially-

expressed genes (Figure 5.3B). Ultimately, careful consideration is required to 

interpret the results of these experiments in a biologically meaningful way.

The ChIP-chip approach was first explored in the yeast model. Ren et al. 

(2000) used a microarray of PCR products representing 6,361 yeast intergenic 

regions to map the genome-wide binding locations of Gal4 and Ste12. Their 

analysis revealed 3 novel gene targets in addition to those previously known 

to be regulated by Gal4, and 29 genes specifically regulated by Ste12. Shortly 

thereafter, Iyer et al. (2001) developed a similar approach, constructing a PCR-

product array of approximately 6,700 intergenic and promoter regions to map 

the genome-wide binding locations of the transcription factors SBF and MBF dur-

ing the G1/S transition of the mitotic cell cycle. They identified over 200 genes 

regulated by the factors, finding SBF and MBF to be implicated in cell wall biogen-

esis and DNA replication, respectively. Lieb et al. (2001) then used the ChIP-chip 

method to map the binding sites of Rap1, previously associated with telomere 

modification and mating-type transcriptional repression. As an essential gene, 
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Figure 5.3. A) Binding distribution of CREB over a segment of human chromosome 22 illustrating 
transcription factor binding within coding and intergenic regions as well as clusters of binding sites 
upstream of annotated genes (Euskirchen et al. 2004). Binding sites are marked as blue triangles 
across the chromosome; up-regulated, down-regulated, and non-differentially-expressed genes ap-
pear in red, green and yellow, respectively. B,C) Examples of NF-κB (B), Sp1, c-Myc and p53 (C) 
binding adjacent to differentially expressed genes on chromosome 22 (Martone et al. 2003, Cawley et 
al. 2004). Although some DNA binding sites are located in or near canonical promoter regions 5´ of 
annotated genes, others lie in gene-dense regions where a single regulatory element may control the 
expression of multiple targets (B) as well as novel transcribed sequences (C; unannotated transcrip-
tion units are labeled a–c).
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mutations to Rap1 that affect DNA binding are lethal and thus the regulatory 

characterization of the factor is recalcitrant to conventional genetic analyses. 

Binding site location analysis identified approximately 5% of yeast genes regu-

lated by Rap1, implicating the factor in key cellular processes such as protein 

biosynthesis and energy metabolism.

An advantage of these experiments is that since protein-DNA interactions 

are fixed in vivo, the experiment can be performed under varying cellular con-

ditions to assess regulatory activity in different environmental contexts. For ex-

ample, the Ren et al. study measured enrichment in transcription factor binding 

site occupancy in response to changes in carbon source and mating pheromone, 

relating the proximity of these sites to genes whose expression levels changed 

under similar conditions (i.e., genes whose promoters were bound by Gal4 and 

induced in galactose, and those bound by Ste12 and induced by α factor).

ChIP-chip analysis was first extended to a mammalian system by Horak et 

al. (2002b). Using a PCR product microarray representing the 75-kb human 

β-globin locus, the binding distribution of the hematopoietic lineage-specific 

transcription factor GATA-1 was measured in erythroleukemic K562 cells. Only 

a single region within the β-globin locus had been previously known to contain 

GATA-1 binding sites; however, the factor was observed to bind a region up-

stream of the γG gene in addition to confirming the results of previous observa-

tions. In a study focused on 5´ regulatory sequences, Ren et al. (2002) developed 

a promoter-proximal microarray containing PCR-amplified genomic loci directly 

upstream of 1,444 human genes. The array was used to identify ChIP-enriched 

sequences bound by the transcriptional activator E2F1 during the G1/S phase 

transition of the cell cycle, and the repressor E2F4 during quiescence.

Subsequent to these analyses, ChIP-chip has been used to survey transcrip-

tion factor binding over entire human chromosomes. Martone et al. (2003) 

mapped the binding distribution of NF-κB (p65) across chromosome 22 in HeLa 

cells induced in the presence of tumor necrosis factor (TNF-α). Using the same 

microarray platform, Euskirchen et al. (2004) investigated CREB binding in the 

cAMP-inducible JEG-3 choriocarcinoma cell line. Both studies revealed a wide 

distribution of binding sites across the chromosome relative to annotated genes 

(Figure 5.3A). Particularly interesting was the finding that many binding sites 



73Conclusion and future directions: regulatory pathway discovery

5chapte
rBertone | Microarray approaches to experimental genome annotation

66  —
79

are located proximal to 3´ ends of genes and within annotated introns, challeng-

ing the traditional view that transcription factors act exclusively in promoter 

regions directly upstream of transcriptional start sites. Using oligonucleotide 

arrays, Cawley et al. (2003) surveyed the binding of c-Myc, Sp1 and p53 in 

Jurkat and HCT-1116 cells over chromosomes 21 and 22. As was reported in the 

NF-κB and CREB studies, transcription factor binding was observed at many loca-

tions upstream of 5´ ends, proximal to 3´ ends, and internal to annotated genes 

(Figure 5.3C). Coincident binding of Myc and Sp1 was also found to occur at 

numerous locations, suggesting the possibility that some of their target genes 

are co-regulated by the two factors. 

Unlike the yeast experiments which employed an intergenic array to assess 

transcription factor binding, the human chromosome studies surveyed binding 

over all of the non-repetitive DNA in an unbiased fashion. The arrays were de-

signed to represent both coding and intergenic regions irrespective of existing 

gene annotation, as was the case for the previous chromosome-wide surveys 

of RNA transcription. In comparing the locations of enriched ChIP fragments 

to annotated genes as illustrated in Figure 5.3A, it becomes clear that a com-

plete representation of the genome sequence is required to fully characterize the 

binding distribution of a given transcription factor. Although ChIP-chip experi-

ments performed with arrays that represent promoter-proximal regions (Ren 

et al. 2002, Li et al. 2003, Gao et al. 2004, Odom et all. 2004) or CpG islands 

(Weinmann et al. 2002, Mao et al. 2003, Wells et al. 2003) can provide a wealth 

of valuable information about transcription factor association with canonical 

regulatory loci, the resulting data is likely to be incomplete. A given factor may 

bind alternate promoters, remote enhancers or other locations that are quite 

distant from transcriptional start sites. This is a particularly significant issue 

when such experiments are applied to mammalian genomes, which exhibit an 

unusually small percentage of annotated coding sequence relative to the amount 

of intergenic DNA. 

An alternative technique developed to analyze DNA binding in Drosophila is 

known as DNA adenine methyltransferase identification, or DamID (van Steensel 

& Henikoff 2000, van Steensel et al. 2001). In this approach, a transcription factor 

gene is fused to E. coli DNA adenine methyltransferase (Dam), which methylates 
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the N6 position of the adenine nucleotide in the sequence GATC. Methylation 

will occur at or around these sites in vivo, marking the locations of transcription 

factor binding. The genomic DNA is then subjected to DpnI endonuclease diges-

tion and unmethylated chromatin fragments are removed by incubating with 

DpnII. The remaining DNA is amplified, labeled and hybridized to a genomic 

DNA tiling array. Sun et al. (2003) used this technique to map the DNA bind-

ing locations of GAF and the heterochromatin protein HP1, using a PCR-product 

tiling array representing approximately 3Mb of chromosome 2 containing the 

Adh–cactus region as well as the 85-kb 82F locus on chromosome 3.

Synthesis of Transcriptional Regulatory Networks

Naturally, some targets of transcription factors are themselves genes that encode 

regulatory proteins. If the target genes of each successive transcription factor in 

a regulatory cascade are determined, these relationships can be linked to form a 

circuit whose topology describes their combined activity. Recently, graph theo-

retic methods have been applied to associate transcription factors with their tar-

get genes in complex regulatory networks. In this model a directed graph is pro-

duced having a scale-free topology, where transcription factors tend to localize 

in hubs of regulatory control (Shaw 2003). Some transcriptional regulators have 

been shown to modulate the expression of a disproportionately large number 

of genes, following power-law behavior with respect to the number of outgoing 

connections originating from a given factor (Babu et al. 2004). Conversely, the 

number of genes regulated by multiple factors has been shown to decrease expo-

nentially relative to the number of transcriptional regulators involved (Guelzim 

et al. 2002). Key transcription factors are therefore likely to be essential genes 

whose deletion would produce a lethal phenotype (Yu et al. 2004) and may con-

stitute points of vulnerability in complex regulatory systems. 

Lee et al. (2002) explored the construction of gene regulatory networks after 

performing ChIP-chip analysis on 106 yeast transcription factors to determine 

their genome-wide binding sites using an intergenic array. By observing com-

mon patterns in the data they were able to identify several basic regulatory mo-

tifs that describe transcription factor-target relationships (Figure 5.4A). These 
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include single-input, multi-input and autoregulatory motifs, feedforward loops, 

multicomponent loops, and regulatory chains. The binding site data produced 

by these experiments was later integrated with gene expression data by Bar-

Joseph et al. (2003) to identify 106 distinct regulatory modules, based on the 

classification of 68 transcription factors and 655 genes. In an extension of the 

study by Iyer et al., Horak et al. (2002c) investigated the gene targets of nine 

transcription factors regulated by SBF during the G1/S cell cycle transition using 

the ChIP-chip approach, using the data to build a transcription factor network 

(Figure 5.4B). Functional annotation linked to the transcription factor-target 

relationships revealed a complex regulatory cascade governing cell growth and 

differentiation.

Once derived from experimental data, transcription factor-target relation-

ships can be combined with gene expression profiles to analyze complex func-

tional pathways. Where transcription factor-target relationships are available, 

known associations can be incorporated from public databases such as TRANSFAC 

(Matys et al. 2003); others can be derived from experimental data or predicted 

by comparing gene expression profiles between transcription factors and puta-

tive target genes. For example, Qian et al. (2003) was able to use support vec-

tor machines (SVMs) to predict the regulatory targets of 36 yeast transcription 

factors based on gene expression data. A total of 3,419 regulated genes were 

predicted through observation of both co-expressed and time-shifted expres-

sion profiles. Yu et al. (2003) integrated yeast gene expression profiles with an 

extensive transcriptional regulatory network constructed from ChIP-chip and 

other experimentally-derived transcription factor binding data. They used the 

network to identify global expression patterns in the relationships between 

transcription factors and the genes they regulate, accounting for inverted and 

time-shifted behavior. Genes belonging to the same regulatory motif were often 

found to be co-expressed, exhibiting higher expression levels when multiple 

transcription factors were involved.

Gene regulatory networks are not static entities but dynamic structures that 

are expected to undergo significant topological changes in response to variations 

in cellular physiology. Luscombe et al. (2004) integrated gene expression and 

transcription factor binding data from a variety of sources to construct an elabo-



76Conclusion and future directions: regulatory pathway discovery

5chapte
rBertone | Microarray approaches to experimental genome annotation

66  —
79

rate network comprising 7,074 regulatory interactions in yeast. Examining the 

occurence of the motifs defined by Lee et al., they further analyzed expression 

profiles to determine which regulatory subnetworks are active under different 

environmental conditions such as the cell cycle, diauxic shift, sporulation, DNA 

damage and stress response (Figure 5.5A). During response to external stimuli, 

regulatory cascades were shown to be fairly simple and involve few feedback 

interactions. More complex circuitry was observed during the cell cycle and 

sporulation, which appear to require multiple regulatory stages involving highly 

interconnected transcription factor relationships (Figure 5.5B). The study also 
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Figure 5.4. A) Several common gene regulatory network motifs, identified through 
genome-wide investigation of transcription factor binding (after Lee et al. 2001). Tran-
scriptional regulators are represented as triangles and target genes as spheres. Depicted 
from left to right are the single-input motif (SIM), multiple-input motif (MIM), feed-
forward loop (FFL), and feedback loop (FBL). Not pictured are the autoregulatory motif 
and regulatory chain, which are derivative of the single-input motif. B) Transcription 
factor network describing a cascade of regulatory control downstream of the cell cycle 
regulators SBF and MBF during the G1/S transition (Horak et al. 2002c).
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characterized the influence of regulatory hubs in the system, finding that many 

hubs involve multi-functional transcription factors that regulate essential cellu-
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Figure 5.5. A) Complex transcriptional regulatory networks derived from yeast ChIP-
chip and gene expression data, illustrating the global static network as well as condi-
tion-specific sub-networks. Transcription factors and target genes appear as nodes on 
the outer perimeter of each graph, respectively. Edges denote regulatory interactions 
and are colored according to the number of cellular conditions in which they have been 
identified (Adapted from Luscombe et al. 2004). B) Detailed analysis of dynamic gene 
regulation during the multi-stage transcriptional program of sporulation (N. Luscombe, 
personal communication). The complete set of sporulation-associated interactions is 
represented in the upper leftmost graph (boxed), followed by a series of graphs high-
lighting the specific regulatory sub-networks activated in successive stages of the path-
way. Combinatorial transcription factor usage occurs in distinct subsections of the net-
work, as evidenced by differential gene expression patterns observed at each stage.
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lar processes. Despite their biochemical significance, the majority of regulatory 

hubs were observed to be transient in nature, influencing widespread transcrip-

tional activity in some conditions but not others. Through the examination of 

local and global regulatory pathways at several levels of complexity, this work 

presents a seminal perspective of the large-scale temporal dynamics of genetic 

control.

Summary

The limited feature density of early microarray platforms led to an initial fo-

cus on gene-based sequence representation and, consequently, on comparative 

gene expression profiling. As array fabrication technology continues to improve, 

the commensurate increase in feature density has enabled the construction of 

microarrays able to cover large regions of eukaryotic chromosomes, spanning 

intergenic as well as coding sequences. Novel applications of tiling arrays are 

constantly emerging for the large-scale characterization of chromosome dynam-

ics. White et al. (2004) recently used tiling arrays to measure DNA replication 

timing across human chromosome 22 during S phase of the cell cycle, through 

differential hybridization of early- and late-replicating chromatin from lympho-

blast and fibroblast cells. The study identified 24–26 regions of early and late 

DNA replication, ranging in size from 100kb to 2Mb and generally associated 

with defined cytological bands. A total of nine chromosomal regions exhibited 

differential replication timing between the two cell types. Additionally, a strong 

correlation was observed between early replication and the expression of novel 

transcribed regions having low coding potential. 

Unlike gene-directed approaches, tiling array experiments enable the discov-

ery of novel genetic elements. In particular, they are becoming increasingly im-

portant for the identification of previously unannotated transcribed sequences 

and the large-scale analysis of gene regulation via the unbiased interrogation of 

the genome. Various tiling array platforms have recently been adopted as pri-

mary discovery tools by the ENCODE Project Consortium, in an effort to provide 

an in-depth transcriptional and regulatory characterization of 44 select regions 

of the human genome (Feingold et al. 2004).
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Computational methods to relate gene expression with transcription factor 

binding can produce complex networks from which higher-order regulatory 

mechanisms may be derived. It is expected that our ability to elucidate function-

al relationships from high-throughput genomic data will be enhanced through 

the combination of these experimental and computational techniques. This inte-

grated approach represents a powerful analysis methodology, able to generate an 

unprecedented view of the transcriptional regulatory program of the cell.       
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Repeat sequences in eukaryotes are roughly classified as moderately and high-

ly repetitive. Moderately repetitive elements generally belong to one of three 

broad categories: retroelements, transposable elements, and functional genes, 

while highly repetitive elements comprise telomeres, satellites, minisatellites 

and microsatellites. 

Retroelements, or retroposons, comprise endogenous retroviral and non-

retroviral sequences that have been integrated into the genome and mobilize via 

an RNA intermediate. Those belonging to the viral family include Ty elements 

in Saccharomyces cerevisiae, the copia elements in Drosophila melanogaster, and long 

interspersed nucleotide elements (LINEs) in mammalian genomes. Most LINEs 

belong to the L1 family, and encode both an endonuclease and a reverse tran-

scriptase to mediate the copying and insertion of new L1 elements following 

transcription by RNA polymerase II. Interestingly, 89% of functional human 

genes contain at least one LINE element. 

Occasionally, endogenous mRNA transcripts may be reverse-transcribed and 

inserted elsewhere in the genome by the L1 proteins. These sequences usually 

exhibit the features of mature mRNA, including spliced intron-less sequences 

and poly(A) tails; for this reason they are referred to as processed pseudogenes.. 

Because they are integrated outside the genomic context of their original pro-

moters, pseudogenes are usually inactive.

The nonviral family is characterized by noncoding sequences that apparently 

originated as reverse-transcribed RNA, similar to the events that give rise to 

processed pseudogenes. One prominent category consists of short interspersed 

nucleotide elements (SINEs), which differ from LINEs in that they originate from 

the products of RNA polymerase III. A significant fraction of the moderately 

repetitive DNA in the human genome – accounting for approximately 21% of 

the total genomic DNA – consists of nonviral sequences belonging to the Alu 

family. Alu repeats consist of approximately 300bp sequences interspersed with 

nonrepetitive DNA, named after the restriction enzyme that cleaves the DNA at 

a single site 170bp into the sequence.

Transposable elements, or DNA transposons, are mobile sequences able to 

propagate themselves from one site in the genome to another. Transposons code 

for proteins that are able to mediate the copying of the sequence directly, without 

Repetitive Elements in Eukaryotic 
Genomes A
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the use of an RNA intermediate. Functional gene families may also occur in high 

copy number, organized as tandem arrays or dispersed throughout the genome. 

Typical examples of tandem arrays of functional genes are histone, rRNA and 

tRNA genes; dispersed gene families include the globins and immunoglobins.

Telomeric repeats and satellite sequences constitute highly repetitive DNA. 

Telomeres comprise 250–1,000 copies of short repeats at the ends of chromo-

somes appended enzymatically by telomerase, protecting the ends of chromo-

somes from degradation during replication. Satellite DNA is a generic descrip-

tion for tandem arrays of very highly repetitive sequences spanning up to several 

kilobases in length. They are typically located in heterochromatic regions and 

centromeres, appearing in clusters up to 1Mb in size. Minisatellites are tandem-

ly repeated arrays of moderately-sized (9bp to 100bp, but usually about 15bp) 

sequences, and generally have mean array lengths of 500bp to 30kb. They are 

found in euchromatic regions of the genomes of vertebrates, fungi and plants 

and are highly variable in array size. Microsatellites are moderately repetitive 

sequences, composed of arrays of short (2bp–6bp) repeats found in vertebrate, 

insect and plant genomes. Human chromosomes collectively contain at least 

30,000 microsatellite loci found in euchromatic regions of the genome.
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To see why this algorithm produces an optimal partitioning, we proceed by in-

duction on the length of the inspected sequence and assume that the algorithm 

has been correct prior to the ith element (i.e., the partitioning up to k is opti-

mal, and no decision can be made so far on the window between k+1 and i). We 

will show only one case of the proof; the rest is very similar. 

Without loss of generality assume that the last known region R, currently 

extending up to k, is an included region. Consider the case when D < –C, in 

which the algorithm will terminate R at i and start an excluded region at i+1. 

Suppose however that there is an optimal partitioning P with score s
P
 which 

extends R at least up to position i, contrary to what the algorithm yields. Define 

a new partitioning N, identical to P except for the window between k+1 and i, 

which in N is part of an excluded region, and let us compute its score s
N
. There 

are two possibilities: if in P the included region ends at i and an excluded region 

starts at i+1, then N has the same number of partitions as P, but one region 

boundary has been shifted from i in P to k in N. Hence s
N
 is equal to s

P
 plus the 

difference in the scores on the window between k+1 and i; these scores are ex-

actly V[I(k+1)..i] under the partitioning P and V[X(k+1)..i] under N, therefore:

sN = sP – V[I(k+1)..i] + V[X(k+1)..i] = s
P
 – D > s

P
 ,

since the difference D is negative by our assumption. The second possibility is 

that the included region starting in P extends after i; this means that in N this 

region is subdivided into two regions by the excluded region from k+1 to i, so 

N contains one more included region than P. Hence

s
N
 = s

P
 – V[I(k+1)..i] + V[X(k+1)..i] – 2C  > s

P

again by the assumption that D < –C. Thus, in both cases we have s
N
 > s

P
, which 

contradicts the assumption of optimality of the partitioning P.

Other partitionings which terminate the included region earlier than i can be 

shown similarly suboptimal by the following observation. Since by assumption 

the algorithm postponed the decision until i, the difference D must be between  

–C and 0 at all intermediate points. For the case when the algorithm postpones 

the partitioning decision, the proof of correctness is to construct two sequences 

sharing the same prefix up to i but requiring different optimal partitionings of 

the window from k+1 to i, which shows that indeed no decision guaranteeing 

optimality can be made at i. In other words, a partitioning solution not satisfying 

the tests in the algorithm cannot be optimal.                                                     

Proof of Optimality for the Linear-
time, Constant-space Algorithm B
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This part considers several variations of the following basic tiling problem: given 

a sequence of real numbers with two size bound parameters, we want to find a 

set of tiles of maximum total weight such that each tiles satisfies the size bounds. 

A solution to this problem is important to a number of computational biology 

applications such as selecting genomic DNA fragments for PCR-based amplicon 

microarrays (Chapter 2) and performing homology searches with long sequence 

queries. The goal is to design efficient algorithms with linear or near-linear time 

and space in the normal range of parameter values for these problems. For this 

purpose, the solution to a basic online interval maximum problem is introduced 

via a sliding window approach; it is then shown how this solution can be used in 

a non-trivial manner for many of the tiling problems introduced. NP-hardness 

results are also discussed. 

Problem Statements and New Algorithms

This section defines several tiling problems and describes algorithms for their 

solution. Typical parameter values are outlined for DNA microarray design and 

homology search applications.

Problem statements. Based on the applications discussed previously, several 

related tiling problems are introduced and formalized. The following notations 

are used: 

• [i, j) denotes the set of integers {i, i + 1,…, j − 1}; 

• [i, j]=[i, j + 1); 

• f[i, j) and f[i, j] denote the elements of an array f with indices in [i, j) and 

[i, j], respectively. 

The tiling problems presented here build upon the basic genome tiling algo-

rithm developed in Chapter 2, referred to as the genomic sequence tiling (GTile) 

problem and described as follows. The input consists of an array c[0, n) of real 

numbers and two integer size parameters l and u. A subarray B=c[i, j) is called 

a block of length j − i and weight w(B) = ∑k=i
j−1ck, the weight of a set of blocks 

is the sum of their weights and a block is called a tile if its length belongs to [l, 

Optimal Sequence Tiling C
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u]. The goal is to find a set of pairwise disjoint tiles with the maximum possible 

weight. The tiling problems of interest in this paper are variations, restrictions 

and generalizations of the GTile problem specified by a certain combinations of 

the following items: 

Compressed versus uncompressed input data:

This is motivated by a simple binary classification of the non-repetitive 

regions of the genome sequence from their repetitive or low-complex-

ity counterparts. Now all entries of c[0, n) is either x or −x for some 

fixed x > 0. Hence, the input sequence can be more efficiently repre-

sented by simply specifying beginnings and endings of blocks of identical 

values8. In other words, we can compress the input sequence c[0,n) to a 

sequence of integers (indices) S[0, m + 1) such that 

• S0 = 0, Sm = n + 1, S1 ≥ S0 and Si > Si−1 for all i ∈ [1, m]; 

• each element of c[S2j, S2j+1) is x for all j; 

• each element of c[S2j−1, S2j) is −x for all j. 

The input size m + 1 of such a compressed input data is typically sig-

nificantly smaller than n. As a result, we can get significantly faster al-

gorithms if we can design an algorithm for compressed inputs with a 

running time nearly linear in m. Furthermore, this also allows one to 

develop efficient hybrid approach to solving the tiling problems: first 

use a crude binary classification of the regions to quickly obtain an ini-

tial set of tiles and then refine the tiles taking into consideration the 

relative importances of the high-complexity elements.

Unbounded versus bounded number of tiles:

Another important item of interest is when the number of tiles that 

may be used is at most a given value t, which could be considerably 

smaller than the number of tiles used by a tiling with no restrictions 

on the number of tiles. This is motivated by the practical consideration 

that the capacity of a microarray as obtainable by current technology is 

bounded.
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Overlapping versus non-overlapping tiles:

To enhance searching sequence databases for sequence homology 

searches to allow for the case when potential matches can be found at 

tile boundaries, it may be useful to relax the condition of disjointness 

of tiles by allowing two tiles to share at most p elements for some given 

(usually small) p > 0. However, to ensure that we do not have too many 

overlaps, we need to penalize them by subtracting the weight of each 

overlapped region from the sum of weights of all tiles, where the weight 

of each overlapped region is the sum of the elements in it. In other 

words, if T is the set of tiles and ℜ is the set of elements of C that belong 

to more than one tile in T, then the weight is ∑T ∈ T w(T) − ∑ci ∈ ℜci.

One dimensional versus d-dimensional:

Generalization of the GTile problem in d dimensions has applications in 

database designs and related problems [,,,,]9. In this case, we are given 

a d-dimensional array C of size n1×n2×·×nd with 2d size parameters l1, 

l2,…, ld, u1, u2,…, ud, a tile is a rectangular subarray of C of size p1 × p2 

× … × pd satisfying li ≤ pi ≤ ui for all i, the weight of a tile is the sum 

of all the elements in the tile and the goal is again to find a set of tiles 

such that the sum of weights of the tiles is maximized.

Only those combinations of the above four items which are of importance in 

tiling applications are examined. To simplify exposition, unless otherwise stated 

explicitly, the GTile problem we consider is 1-dimensional with uncompressed in-

puts, unbounded number of tiles and no overlaps. In addition to the previously 

defined notations, unless otherwise stated, the following notations and variables 

are used with their designated meanings throughout the rest of the Appendix: n 

+ 1 is the number of elements of the (uncompressed) 1-dimensional input array 

c[i,j), n1 ≤ n2 ≤ … ≤ nd are the sizes of the dimensions for the d-dimensional 

input array, w(T) is the weight for a set of tiles T, t is the given number of tiles 

when the number of tiles is bounded and p is the maximum overlap between two 

tiles in 1-dimension. Finally, all logarithms are in base 2 unless stated otherwise 

explicitly. 
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Typical parameter values for microarray design and homology 

search.

n+1 (the DNA sequence length):

Although the sizes of sequenced eukaryotic genomes range from 12 

Mb (for the budding yeast Saccharomyces cerevisiae) to 3.4 Gb (H. sapi-

ens), these exist as separate chromosomes that are treated as individual 

sequence databases by the tiling algorithms. Eukaryotic chromosomes 

range in size from approximately 230 kb (S. cerevisiae chromosome I) to 

256 Mb (human chromosome 1), with the average human chromosome 

being 150 Mb in size.

l and u (lower and upper bounds for tile sizes):

In computing an optimal set of tiles for microarray design, tile sizes 

can range from 200 bp to 1.5 kb. Sequence fragments below 200 bp 

become difficult to recover when amplified in a high-throughput setting. 

An upper bound of 1.5 kb balances two factors: (1) obtaining maximal 

sequence coverage with a limited number of tiles, and (2) producing a 

set of tiles which are small enough to achieve sufficient array resolution. 

In practice the average tile size is 800 when l and u are set to 300 and 

1500, respectively. For some instances of the homology search problem 

it may be desirable to extend the upper bound from 1.5 kb to 2 kb, 

representing the typical size of processed eukaryotic messenger RNA 

transcripts.

p (maximum overlap between two tiles):

For microarray applications, tiles are disjoint; that is, the overlap pa-

rameter p is 0. However, searching sequence databases for homology 

matches can be enhanced by introducing a maximum overlap of p ≤ 

100 nucleotides for the case when potential matches can be made at tile 

boundaries.

t (maximum number of tiles, when the number of tiles is bounded):

In selecting tiles for microarray applications, t can be specified to limit 

the number of sequence fragments considered for PCR amplification. 
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For mammalian DNA where repeat content (and subsequent sequence 

fragmentation) is high, we can expect the non-repetitive sequence nu-

cleotides to cover n/2 sequence elements; the desired number of tiles 

to be computed will thus be [n/2] divided by [(u+l)/2] (the average of u 

and l). For homology search problems t is unbounded.

m (size of compressed input):

It is difficult to give an accurate estimate of the number of non-repetitive 

sequence fragments in the target sequence following repeat screening 

since it varies greatly with the organism. Typically, human chromosomes 

end up having between 2 to 3 times as many non-repetitive sequence 

fragments (before processing) as there are final tiles (after processing), 

that is, m is roughly between 2t and 3t. In other words, in practice m 

may be smaller than n by a factor of at least 600 or more.

Algorithm synopsis. Table C.1 summarizes the main algorithms; all of these 

are either new or direct improvements of any previously known algorithms. 

All of the methods use simple data structures such as a double-ended queues 

and are therefore easy to implement. The techniques used for many of these 

tiling problems in one dimension use the solution of an online interval maxi-

mum (OLIM) problem. Section 3 discusses the OLIM problem together with 

an efficient solution using a windowing scheme reminiscent of that in Datar et 

al. (2002). However, the main consideration in that study was the reduction of 

space because of the online nature of their problems; here the primary concern 

is time complexity since sequence processing is off-line in nature (and hence 

space for storing the entire input is always used). Moreover, the windowing 

scheme used here is somewhat different from that in Datar et al. since we need 

to maintain multiple windows of different sizes and data may not arrive at evenly 

spaced time intervals. 
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Computing the Online Interval Maximum via Sliding Window

This section describes an online interval maximum (OLIM) problem which is 

used to design many of the remaining algorithms. Datar et al. (2002) considered 

a restricted version of the OLIM problem in the context of maintaining stream 

statistics in the sliding window model and briefly mention a solution for this 

problem. The problem in its most general form can be stated as follows. 

Input: (1) a sequence a[0, n) of real values in increasing order where 

each value ai is an argument or a test (possibly both), (2) 2α real numbers 

l1, u1, l2, u2,…, lα, uα with 0 < l1 < u1 < l2 < u2 < … < lα < uα and (3) 

a real value function g defined on the arguments.

Output: for every test number ak compute the maximum bk of the α 

quantities bk,1, bk,2,…, bk,α, where bk,i is given by bk,i = max g(aj) : ak − ui 

≤ aj < ak − i and aj is an argument.

Algorithm version Time O() Space O() Approximation ratio Theorem
Basic n n Exact 2

Overlap is from sn n Exact 4
a s-subset of
[0, δ], δ < �

2

Compressed m �
u−� m �

u−� Exact 5
input

Number of min{n log n
� , nt} n Exact 7

tiles given

d-dimensional
��

u
�


ε
4( u

� )2ε2
Mε2 M

�
1− 1

ε

d 16
d-dimensional, tM + dM logε M M

�
Πd−1
i=1 (�1 + logni�)

−1
16

+dN logN
log logN

number of

tiles given M (2ε−1)d−1+1 dt M (2ε−1)d−1+1 dt


Πd−1
i=1


�1 + logni

ε �
−1

16

Table C.1. Tiling algorithm summary. The parameter ε > 1 is any arbitrary constant. An 

s-subset is a subset of s elements. For the d-dimensional case, M=Πi=1
dni(ui−li+1), N=max1 

≤ i ≤ dni and [u/l]=maxi[ui/li]. For biological applications p ≤ 100 < [l/2]  n, t ≅ [n/(u+l)], 

m  n and [l/(u−l)] < 6. The column labeled “Approximation Ratio” indicates whether the 

algorithm computes the optimal solution exactly or, for an approximation algorithm, the 

ratio of the total weight of our tiling to that of the optimum.
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Online limitations: read the elements of the sequence a[0, n) one at 

a time from left to right and compute bk (if ak is a test) before computing 

g(ak).

Theorem 1 The OLIM problem can be solved in O(n1β + nα) time using O(n1 + α) 

space, where n1 and n2 are respectively the numbers of arguments and tests in the input and 

β is the maximum time to compute g(x) for any x. 

Proof.  A queue Qi is maintained for each i ∈ [1,α]. When the pair (ak,g(ak)) is 

computed for each argument ak, it is stored in the abovementioned queues such 

that the following invariant is satisfied for each Qi: Qi stores a minimal set of argu-

ment-value pairs such that for some future test am that has not been read yet, it 

is possible to have bm,i=g(x) for some (x, g(x)) in Qi. After reading each ak, Qi can 

be maintained using the following two rules: 

Rule 1: Remove from Qi every (x, g(x)) such that x < ak − ui. The valid-

ity for this rule is obvious from the definition of bm,i and the fact that the 

sequence a[0, n) is in increasing order. 

Rule 2: Let p be the smallest index of an argument such that ak−ui ≤ ap < 

ak − li and (ap, g(ap)) ∉ Qi. Remove from Qi every (x,g(x)) such that g(x) 

≤ g(ap) and then insert (ap, g(ap)) in Qi. Rule 2 is valid because for m ≥ k 

if bm,i is computed as the maximum value of a set that contains a removed 

(x, g(x), then this set must also contain (ap, g(ap)). This is true because x 

< ap and therefore rule 1 would remove (x, g(x)) earlier. 

If all the needed insertions are performed to Qi using Rule 2, then the follow-

ing holds: if j < m and (aj, g(aj)) and (am, g(am)) are simultaneously present in 

Qi, then g(aj) > g(am). Consequently, the maximum of the g-values in Qi is con-

tained in the oldest pair in Qi. These observations allow each Qi to be maintained 

as a double-ended queue where front(Qi) stores the maximum of all the g-val-

ues of the elements in Qi (needed to compute bm,i, and to perform Rule 1), while 

tail(Qi) has the minimum g-value (needed to perform Rule 2). The following 

is a high-level pseudocode of the main parts of the proposed algorithm for Qi 

when reading ak assuming all the parameters have been appropriately intialized: 
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 (* windowing scheme for Q
i
 *)  

 (* notations *)  
 Let q be the least index of an argument of a that has 
been read  
  but has not considered for insertion to Qi yet;  
 for each argument ai, g(ai) is calculated once and stored;  
  
 (* algorithm for Qi *)  
 (* currently read number is ak *)  
  
 (* Execute Rule 1 *)  
 (x,g(x)) ← front(Qi);  
 while ((Qi ≠ ∅) and (x < ak−ui)  
  remove front(Qi)  
 endwhile;  
  
 (* Execute Rule 2 *)  
 while ((ap < ak−li))  
  (y,g(y))← tail(Qi)  
  while ((Qi ≠ ∅) and (g(y) ≤ g(ap))  
   remove tail(Qi)  
  endwhile;  
  add (ap,g(ap)) to Qi at its tail;  
  p ← p+1  
 endwhile;  
  
 (* calculate bk,i if necessary *)  
 if (ak is a test) then (z,g(z)) ← front(Qi); bk,i=g(z) 

For each queue Qi and each ak it is necessary to check if Qi must be updated using 

either of the two rules. This takes O(nα) time. Because each argument is inserted 

to and deleted from a queue exactly once, these updates takes O(n1α) total time. 

For every test the maximum of the maxima of the queues is computed; this takes 

O(n2α) time.                                                                                                        

Basic Genomic Sequence Tiling (GTile)

Theorem 2 The genomic sequence tiling (GTile) problem can be solved in O(n) time 

using O(n) space. 
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Proof.  Dynamic programming is used to reduce the GTile problem to OLIM. 

Subproblem k has c[0, k) as input. Let mk be the sum of weights of the tiles and 

c[dk, ek) be the last tile in an optimum solution of subproblem k. If mk = mk−1, 

then subproblem k has the same solution as subproblem k − 1, otherwise this 

solution consists of tile c[dk, k) and the tiles in the solution of subproblem dk. Let 

sk = w(c[0, k)), hence w(c[i, j)) = sj − si. It is trivial to compute sk for all k ∈ [0, 

n] in O(n) time and space. Obviously, mk = 0 for 0 ≤ k ≤ l. For k > l, mk and dk 

can be computed recursively as follows: 

 let i ∈ [k−u,k−l]∩[0,∞) be an index that maximizes vi=mi+sk−si;  

 if vi > mk−1, then mk=vi, dk=i and ek=k  

  else mk=mk−1, dk=dk−1 and ek=ek−1 

To complete the proposition on time and space complexity, it suffices to 

show how to compute mk for every k > l in a total of O(n) time and space. For 

each k we can first search for i ∈ [k−u,k−l]∩[0,∞) that maximizes yi=mi−si; then 

we know vi=yi+sk. This is the OLIM problem with input array a[0,n), ai=i, each 

ai is both an argument and a test, α = 1, l1=l+1, u1=u and g(ai)=mi−si. It is easy 

to recover an optimal tiling via the dk and ek values.                                          

GTile with Overlaps

This section consider the GTile problem when the overlap p between two tiles is 

an element of some s-subset A of [0, δ] with δ < [l/2]. The constraint δ < [(l)/2] 

holds for biological applications since typically p ≤ 100 and l ≅ 300. An impor-

tant consequence of this constraint is the following observation: 

Observation 3 No ci can belong to more than two tiles. 

Proof.  Suppose that some ci belongs to three tiles c[b1, e1), c[b2, e2) and c[b3, 

e3) with e1 ≤ e2 ≤ e3 and b3 < e1. Since each tile is of length at least l and the 

length of overlap between any two tiles is less than [l/2], b1 ≤ b2 ≤ b3. Now, 

e2−b2=(e2−e1)+(e1−b2) < (e2−b3)+(e1−b2) < [(l)/2]+[(l)/2]=l, hence the tile 

c[b2,e2) does not satisfy the size bounds.                                                             
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Using the above observation, we can prove the following result. 

Theorem 4 The GTile problem with overlaps as described above can be solved in O(sn) 

time using O(n) space. 

Proof.  Let A ⊆ [0,p] be the s-subset for this problem. Some of the notations in 

the proofs of Theorems 3 and 4 are reused here. Let mk′ be the sum of weights 

of the tiles and c[dk′, k) was the last tile in an optimum solution of subproblem k 

in which ck was the ending of the last tile. For k ≤ l, mk′ = 0. For k > l, mk′ and 

dk′ can be computed in the following manner: 

let i ∈ [k−u, k−l] ∩ [0,∞) be an index that  

  maximizes vi = mi + sk−si;  

 mk′ = vi, dk′ = i 

This can again be solved in O(n) time and space via the OLIM problem in the 

same manner as in Theorem 4. Let [hk, fk) be tile previous to the last tile [dk, k) 

in an optimum solution of subproblem k in which ck was the ending of the last 

tile. If the last tile was overlapped by the previous to last tile by a ∈ A elements 

in an optimum solution of subproblem k, then the total weight of the solution 

is (sk − sdk) + mdk+a′ − (sdk+a − sdk) = sk + mdk+a′ − sdk+a. Now, for each k > l, we 

can compute mk, dk, ek and fk in the following manner: 

(vi is the solution when the last tile [i, k) was not overlapped)  

 let i ∈ [k − u, k − l] ∩ [0, ∞) be an index that maximizes vi = mi + sk − si  

 

 (µj,a is the solution when the last tile [j,k) was overlapped by a elements)  

 (computation of µj,a takes O(s) time)  

 let j ∈ [k − u,k − l] ∩ [0, ∞) and a ∈ A be the indices that maximize µj,a = 

sk + mj+a′ − sj+a;  

 

 if mk−1 ≥ max{vi, µj,a} then mk = mk−1, dk = dk−1, ek = ek−1, fk = fk−1  

 else  

  if vi > µj,a then mk = vi, dk = i, ek = k, fk = ei 

  else mk = µj,a, dk = j, ek = k, fk = j + a 
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By Observation 5, the last three tiles in the solution of subproblem k cannot 

have a common element and hence the solution is correct. Obviously, it suffices 

to find that i ∈ [k−u, k−l] ∩ [0, ∞) that maximizes mi − si and that j ∈ [k − u + 

a, k − l + a] ∩ [0, ∞) that maximizes mj′ − sj. Each of them is can again be solved 

via OLIM problem. The tiles in an optimal solution can be recovered recursively 

via the di, ei and fi values.                                                                                    

GTile with Compressed Input

Theorem 5 The GTile problem with compressed input data can be solved in O(αm) 

time using O(αm) space where α = él/(u − l)ù. 

The remainder of this section outlines a proof the above theorem, reducing 

this problem to OLIM. A key idea in this reduction is to extend the definition of 

a tile to include unions of adjacent tiles. Then the problem can be redefined by 

requesting that tiles in an optimal solution are separated by entries that do not 

belong to any tile. Notice that the set of lengths that an extended tile may have 

is ∪i=1
∞[il, iu] = (∪i=1

α−1[il,iu]) ∪ [αl, ∞), where α is the smallest positive integer 

such that (α + 1)l ≤ αu + 1. The legal length of any tile in any solution can be of 

α different kinds: the ith kind (for 1 ≤ i < α) is [il, iu] and the αth kind is [αl, ∞). 

The following lemma shows how to further restrict the beginnings and endings 

of extended tiles. 

Lemma 6 There is an optimum solution for the GTile problem with compressed input in 

which the (extended) tiles are only of the following kinds: 

c[S2i, S2j+1), i.e., starting and ending with a full block of x’s;

c[S2i+1 − kl, S2i+1) or c[S2i+1 − ku, S2i+1) for some positive integer k ∈ [1, α], 

i.e., ending with a full block of x’s and the length of the tile is either a multiple 

of l or a multiple u;

c[0, kl) or c[0, ku) for some positive integer k ∈ [1, α]. 
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Proof.  If the length of a selected tile is neither a multiple of l nor a multiple of 

u, then it must be of type (i) since otherwise a tile of greater weight could be ob-

tained by moving one of the ends. Now suppose that the length of a selected tile 

is a multiple of l or u and it does not end at some S2i+1. If it ends with an x, the tile 

to the right can be shifted until it ends with the last x of this block of x’s, or it co-

alesces with another tile in the solution and then the shifting process is again ap-

plied to this coalesced tile. If it ends with a −x, it can be shifted to the right with 

similar results. This type of shifting produces tiles of type (ii) unless after shifting 

the tile to the ledt it ends at c0, producing tiles of type (iii). If the length of a tile 

of type (ii) or (iii) produced by the above shifting is greater than αu, then there 

are two possibilities: if the tile starts in a block of x's then we extend the tile until 

the begining of this block producing a tile of type (i); however if the tile ends in 

a block of −x's the tile can be reduced in size by moving its begining to the right 

until either the length is αu or the tile ends with a full block of x's, whichever oc-

curs earlier.                                                                                                         

In this algorithm, we first need to generate all possible beginnings and end-

ings for the extended tiles. This can be done in a straightforward manner: 

• Generate the monotonically increasing sequence of indices of all possible 

beginnings of tiles: S2i such that 2i ≤ m [type (i) and iii)] and S2i+1 − kL 

such that 0 < k ≤ α and L ∈ {l, u} [type (ii)]. The total number of such 

beginnings is at most [m/2] + αm. Duplicates are removed from the 

list. 

• Generate the monotonically increasing sequence of indices of all possible 

endings of tiles: S2j+1 such that 2j + 1 ≤ m [type (i) and ii)] and kL such 

that 0 < k ≤ α and L ∈ {l, u}. The total number of such endings is at 

most [m/2] + 2α. Duplicates are removed from the list. 

• These monotonically increasing sequences of beginnings and endings 

are then merged into one increasing sequence X of beginnings and end-

ings. 
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The above steps can be carried out in O(mα) time and space. As in Theorem 4, 

define si to be w(c[0, i)) for i ∈ {S0, S1,…, Sm}. It is easy to calculate all such si’s 

in O(m) time and space. The list X is then processed from left to right; the fol-

lowing is maintained when processing each element x of the list X: 

(a)

If x is a beginning, then we maintain mx, vx=mx−sx and previous(x)=c[dx,ex), 

where mx the maximum possible sum of entries of set of disjoint tiles 

of legal length that end before x and previous(x) is the last tile from such 

a solution. If z is the entry in X before x, then we need to set mx=mz, 

vx=mz−sx and previous(x)=previous(z); if x is the first element of X then 

we set mx=0 and vx=sx.

(b)

If x is an ending, then vz=y ∈ (∪i=1
α−1[x−il,x−iu])∪[x−αl,0]{vy}. We set 

mx=(sx−sz)+mz=sx+vz, vx=mx−sx and previous(x)=c[cx,dx)=c[z,x). Let x′ 
be the entry in X previous to x (if such an entry does not exist, then 

simply set mx′=−∞ in the following formula). Then, if mx < mx′ then 

we set mx=mx′.

It is clear that the only nontrivial step is the computation of mz in (b) above. 

This is however again the OLIM problem: the sequence a[0, n) is the sorted list 

of beginnings and endings X = (x1, x2,…), each beginning is an argument, an 

ending is a test, g(x) = vx for argument x, [li,ui] = [il+1, iu] for 1 ≤ i < α and 

[lα, uα] = [αl + 1, n]. The final solution has a total weight of mn; to recover the 

tiling we start with previous(mn) in the collection and recursively look at the pre-

vious values for the part of the optimal solution that ends before the beginning 

of previous(mn). 

Because we have O(mα) arguments, O(m+α) tests and α queues, a straight-

forward application of Theorem 3 shows that we use O(mα2) time and O(mα) 

space. However, the algorithm can be designed with O(mα) running time as 

explained below. 

For ease of counting in the analysis, assume that duplicates are not removed 

from the list of begining; this can only increase the running time. For analysis, 
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the beginings will be partitioned into two sets: Γ1 contains the O(m) beginings 

of type S2i+1 and Γ2 contains the remaining mα beginings. The endings are also 

partitioned into two sets: ∆1 contains the 2α endings of the form kL for 0 < k ≤ 

α and L ∈ {l, u} and ∆2 contains the remaining O(m) endings. 

First, let us calculate the total time that we will take to check if one of the α 

queues in the OLIM problem need to be updated. 

(a)

The mα beginings in Γ2 can be partitioned into groups of 2α beginings, 

where each such group of 2α beginings are of the form S2i+1−kL for 0 < 

k ≤ α, L ∈ {l, u} and a distinct S2i+1. However, notice that the two end-

ings S2i+1 − kL for a particular k need to be checked for insertion in only 

the queue Qk in the algorithm for the OLIM problem. With this minor 

modification in the code of the algorithm for the OLIM problem, the 

total time to check if all appropriate queues need to be updated for the 

beginings in Γ2 is O(mα).

(b)

For each begining in Γ1 and each ending in ∆2, we may need to check 

each of the α queues for update, hence the total time taken for these 

endings in O(mα).

(c)

For a pair of endings kL ∈ ∆1, we need to check only one possible entry 

v0 for insertion into its kth queue Qk; the remaining queues need not 

be checked for update for these pair of endings. Hence, the total time 

taken for the endings in ∆1 is O(α).

The total time taken for insertions and deletions of the beginings in the 

queues can now be calculated. Since each of the mα beginings in Γ2 can be 

inserted and/or deleted from at most one queue, the total time for all these 

insertions and deletions is O(mα). Each of the remaining O(m) beginings can be 

inserted or deleted from each of the α queues at most once, hence the total time 

taken for this part is also O(mα). 
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GTile with Bounded Number of Tiles

This section considers the case when the maximum number of tiles t is given. 

Theorem 7 The GTile problem with bounded number of tiles can be solved in 

O(min{nlogn,nt}) time using O(n) space. 

An algorithm with O(nt) time and space can be developed using the approach 

of Theorem 4, maintaining separate queues for each possible value of number of 

tiles. In the rest of this section, we will use a different approach to reduce the 

space to O(n) which is significant since t could be large. This section also de-

scribes another algorithm that runs in O(n log n) time using O(n) space, which 

is significant since typically for these applications log n  t. 

Sets and sequences of block ends. Recall that a block is contiguous subse-

quence c[p,q) of the given input sequence, a block of length at least l and at most 

u is a tile and the solution consists of a set of disjoint tiles. A set of blocks S can 

be uniquely characterized by the set of endpoints of its blocks by using the fol-

lowing two quantities (where the first component of an ordered pair is λ or ρ 

depending on whether the endpoint is the left or the right endpoint of the block, 

respectively): 

ends(c[a, b)) = {(λ, a), (ρ, b)};  ends(S) = 
TÎS


 ends(T). 

A block end e = (ρ, m) has side side(e)=ρ and position pos(e) = m. A set of 

ends E is consistent if E = ends(S) for some set of non-empty blocks S. A partial 

order  among the block ends is introduced as follows: e  f if pos(e) < pos(f) 

or if pos(e) = pos(f), side(e) = ρ and side(f) = λ. A set E of m + 1 ends ordered 

according to  is the sequence E→ = (e0, e1,…, em). 

The test for consistency of E is obvious: the number of endpoints m + 1 in 

E has to be even and the sequence side(e0), side(e1), …, side(em) has to be (λ, 

ρ,…, λ, ρ). The requirement that (ρ, k)  (λ, k) reflects the fact that empty 

blocks (i.e., blocks of the form c[k, k)) are not allowed. 
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In this subsection we will assume that S and T are sets of blocks with A = 

ends(S) and A′ = ends(T); hence both A and A′ are consistent. We also assume 

that B = A ⊕ A′ = (A − A′) ∪ (A′ − A), C = A ∪ A′ and B→ = (b0,…, b2k−1). 

If A ⊕ D is consistent, D is referred to as an alteration of S, and S ⊕ D 

is the set of blocks U such that ends(U) = A ⊕ D. Obviously, B is an al-

teration of S. We want to characterize the subsets of B that are altera-

tions as well. For every i ∈ [0, k) we say that b2i and b2i+1 are dyads in B.   

Lemma 8 Dyads in B are adjacent in C→. 

Proof.  For the sake of contradiction, suppose that in C→ entries b2i and b2i+1 

are separated by another entry, say a, not in B. Then a is preceded by an odd 

number of elements of B. Consequently, if a is preceded by an odd (respectively, 

even) number of elements of A, then it is preceded by an even (respectively, 

odd) number of elements of A ⊕ B. Thus if the consistency of A dictates that 

side(a) = λ (respectively, side(a) = ρ) then the consistency of A ⊕ B dictates 

that side(a) = ρ (respectively, side(a) = λ), a contradiction.                            

Lemma 9 Assume that D ⊂ B does not separate any pair of dyads of B (i.e., for each 

pair of dyads in B, D either has either both or none of them). Then A ⊕ D is consistent. 

Proof.  Each a ∈ A−D is preceded by an even number of elements of D, be-

cause if it is preceded by some b ∈ D then, by Lemma 7.1 and the fact that D 

does not separate any pair of dyads in B, it is also preceded by the dyad of b 

which is also in D. Thus the parities of the positions of a in A and A ⊕ D are the 

same. Because B − D also does not separate any pairs of dyads in B and A ⊕ D 

= A′ ⊕ (B − D), the same reasoning shows that for any d ∈ D − A ⊂ A′ − (B 

− D) the parities of the positions of d in A′ and A ⊕ D are the same. As a result, 

in the ordering of A ⊕ D every λ is on an even position and every ρ is on an odd 

position.                                                                                                              

Modifying a Set of Tiles. The assumptions of the previous subsection are 

now revised to assume that S and T are two sets of tiles (i.e., they satisfy the 

size bounds), and the notion of alteration is redefined as follows: D is an altera-
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tion of S if S ⊕ D is a set of tiles. Again, we want to characterize the alterations 

of S that are subsets of B. 

If g < h < i < j and c[g, i), c[h, j) ∈ S ∪ T we say that (λ, h) and (ρ, i) are 

adjuncts. The following lemma is required. 

Lemma 10 Two adjuncts must be adjacent in C→, they must both belong to B and they 

are not dyads. 

Proof.  Without loss of generality assume that c[g, i) ∈ S and c[h, j) ∈ T. Clear-

ly, (λ, g)  (λ, h)  (ρ, i)  (ρ, j). No block end in A is between (λ, g) and (ρ, i) 

and no block end in A′ is between (λ, h) and (ρ, j). This shows that (λ, h) and (ρ, 

i) are adjacent in C→ and that they are both in B. To see that they are not dyads, 

note that A ⊕ {(λ, h), (ρ, i)} cannot be consistent and use Lemma 7.1.          

Note that a pair of adjuncts is easy to recognize: it must be a pair of the form 

{b2i−1, b2i} = {(λ, g), (ρ, h)} where either b2i−1 ∈ A − A′ and e2i ∈ A′ − A, or b2i−1 

∈ A′ − A and b2i ∈ A − A′. Let GB be the graph with the vertex set as the set of 

block ends B and with two kinds of edges: between pairs of dyads and between 

pairs of adjuncts. By Lemmas 7.1 and 7.2 these sets of edges form two disjoint 

matchings of GB. The following lemma is crucial to this approach.

Lemma 11 If D ⊆ B is the set of vertices in a connected component of GB, then D is 

an alteration of S. 

Proof.  Because D does not separate any pair of dyads, by Lemma 7.1 U = S ⊕ 

D is a set of disjoint blocks. Suppose that c[g, h) ∈ U is not a tile (i.e., h − g ∉ [l, 

u]) we will then obtain a contradiction. Obviously c[g, h) ∉ S and c[g, h) ∉ T. 

Hence exactly one of (λ, g) and (ρ, h) is in A and the other one is in A′. Without 

loss of generality assume that c[g, i) ∈ S and c[j, h) ∈ T. We can exclude the 

cases when j ≤ g < i ≤ h or g ≤ j < h ≤ i because then h − g ∈ [l, u]. The case 

when g < j < i < h can also be excluded, because then the adjuncts (λ, j) and (ρ, 

i) are separated by D (because D contained (ρ, i) but did not contain (λ, j)) and 

hence D did not contain all the vertices in a connected component of GB. Simi-

larly, if j < g < h < i then the adjuncts (λ, g) and (ρ, h) are separated by D. Thus 



100Optimal sequence tiling algorithms

Cappend
ixBertone | Microarray approaches to experimental genome annotation

83   —
106

it remains to consider the case when g < i ≤ j < h. But then (ρ, i) ∈ D, (λ, j) ∉ 

D, (ρ, h) ∈ D. This contradicts the assumption that D is a connected component 

of GB.                                                                                                                  

Alterations that are vertices in a connected component of GB will be called 

atomic. Obviously any alteration can be expressed as a union of one or more 

disjoint atomic alterations and two disjoint atomic alterations can be applied in 

any order on a given set of tiles to obtain the same set of tiles. We will say that 

an atomic alteration is increasing, neutral or decreasing if |S ⊕ D| − |S| equals 1, 0 

or −1, respectively. 

Lemma 12 If D is an atomic alteration of S, then −1 ≤ |S ⊕ D| − |S| ≤ 1. 

Proof.  Except for its first and last elements, D is covered by disjoint pairs of ad-

juncts. Applying a pair of adjuncts removes one element of ends(S) and inserts 

another, thus leaving the total number of block ends unchanged. Hence the net 

change in the number of block ends can come only from the first and the last 

elements of D, and because the number of block ends changes by at most 2, the 

number of blocks changes by at most 1.                                                            

Computing St in O(nt) time using O(n) space. Let S0 = Æ and St+1 be a 

set of t + 1 tiles of maximum weight that can be obtained by applying a minimal 

alteration (i.e., an alteration that is not properly contained in another alteration) 

to St. 

Lemma 13 If St+1 = S ⊕ D then D is an atomic alteration. 

Proof.  Suppose that D is not an atomic alteration and thus it is a union of more 

than one disjoint atomic alterations. Disjoint atomic alternations can be applied 

in any order. If one of them, say D0, is neutral, then one of the following two 

cases occur: 

• D0 changes the weight of the set of tiles. Then w(St ⊕ D0) > w(St) or 

w(St + 1 ⊕ D0) > w(St+1), contradicting the definition of St or St+1. 
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• D0 does not change the weight of the set of tiles. Then we could apply D 

− D0 rather than D to get St+1 (i.e., D is not minimal). 

If D contains a decreasing atomic alteration D0, then it must also contains an 

increasing alteration, say D1, and we can use the neutral alteration D0 ∪ D1 to ob-

tain a contradiction similar to above. Hence every atomic alterations contained 

in D is increasing and thus D can contain only one such alteration.                   

Based on the above results, a simple version of the algorithm is as follows. 

S0 = ∅, w(S0) = 0

for p = 1 to t do

 compute Sp = Sp − 1 ⊕ D by finding the increasing atomic

 alteration D that produces maximum gain in total weight

 if w(Sp) ≤ w(Sp − 1) then

 output Sp − 1, exit (Sp is the best solution)

output St

The proposition on the time and space complexity of the above algorithm 

follows from the following lemma. 

Lemma 14 Given Sp−1, an atomic alteration D such that Sp = Sp−1 ⊕ D can be found 

O(n) time and space. 

Proof.  For simplicity, S will denote Sp−1. As in Theorem 4, sk = w(c[0, k)) is 

computed for all k ∈ [0, n] in O(n) time and space. For a possible tile end e let 

De={f ∈ D: f  e}. Note that De does not include e itself. This algorithm scans all 

possible tile ends in  order from left to right. In other words, the elements of 

c[0, n) are examined in left-to-right order, and each element will be first con-

sidered as a possible tile ending and then as a possible tile begining. When the 

tile end e is considered, we need to know what De could be. The following case 

analysis must be performed. The default value of the quantity A(i) defined below 

is −∞ for all i ∈ [0, n). 
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Case 1:

e=(λ, i). 

Case 1.1:

for some c[g, h) ∈ S we have g < i < h. 

It follows that De ≠ ∅ since otherwise D would not be an increasing 

atomic alteration and that E = De ∪ {(ρ, h)} is a neutral alteration. Let 

A(i) be the set of neutral atomic alterations that contain (ρ, h) as the 

only element that does not precede e and let 

A(i) = maxE∈ A(i) 
w(S ⊕ E) − w(S).

Because w(S) cannot be increased by a neutral atomic alteration, 

A(i) ≤ 0. Later when we need to consider e as a possible left end of a 

new tile, we will consider it with a priority of vi = A(i) − si. 

Case 2.1 shows how to compute the value of A(i) when the last new tile 

ends at i using the OLIM problem. Note that since any element is first 

considered as a possible ending and then a possible ending, Case 2 will 

occur before Case 1 for that element. Hence, we simply set A(i) to be 

the maximum of A(i − 1) and current A(i), and update vi accordingly 

if necessary.

Case 1.2:

Case 1.1 does not hold. Then e would have to be the first tile end in D 

and thus the left end of the leftmost new tile. We should now consider 

e as a possible left end with priority vi = −si. We should allow for e be-

ing the left end of an old tile (i.e., i = g for some c[g, h) ∈ S) which 

indicates an alteration where the leftmost new tile shares its left end 

with an old tile.

Case 2:

e = (ρ, i). 

Case 2.1:

for some c[g, h) ∈ S we have g < i < h. 

We consider e to be the right end of a new tile. The matching left end, 

(λ, j), must satisfy j ≤ g (i.e.,it must be to the left of c[g, h)). We choose 

j as the index of the matching left end that satisfies vj = maxi−u ≤ z ≤ 
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min{i−l,g}{vz}, and this allows the consideration of a new alteration to the 

set A(i); the total gain of this alteration is vj −w(c[g, h)) + si. Then, if 

this gain is greater than the current value of A(i), we replace A(i) with 

this new gain and update vi accordingly. Notice that computation of the 

vj’s can be done via the OLIM problem in the same manner as in the 

proof of Theorem 4.

Case 2.2:

Case 2.1 does not hold and c[g, h) is the last tile of S to the left of i. Then 

e would be the rightmost tile end of an increasing atomic alteration (or, 

if i = h, the right end of a tile whose left end is the rightmost element 

of the alteration). The matching left end (λ, q) is selected such that vq = 

maxi−u ≤ z ≤ i−l vz and the gain of this alteration is si + vq. Then, if this gain 

is greater than the current value of A(i), we replace A(i) with this new 

gain and update vi accordingly. Notice that the computation of the vq’s 

can again be done via the OLIM problem.                                            

Remark 1 The claim of Lemma 7.3 holds even if D is a neutral or decreasing altera-

tion (which produces a minimum total weight decrease) by using a very similar algorithm. 

Moreover we actually also compute, for each possible tile end e, the optimum alteration of 

the prescribed type in which all elements precede e. 

Computing St in O(n log[n/l]) time using O(n) space. The algorithm 

proceeds in phases. Before a phase, we computed a set of t disjoint tiles, say S, 

that has the largest weight under the constraint that each tile is contained in one 

of the blocks c[a0, a1), c[a1, a2), …, c[ak−1, ak). For this phase, some ai is selected 

such that, after the phase, S is replaced with some S ⊕ B that maximizes the 

sum of weights under the constraint that each tile in S ⊕ B is contained in c[a0, 

a1), c[a1, a2), c[ai−2 ,ai−1), c[ai−1, ai+1), c[ai+1, ai+2),…, c[ak−1, ak) (i.e., the new 

set of blocks is obtained from the old set of blocks by coalescing the two blocks 

c[ai−1, ai) and c[ai, ai+1) into one block c[ai−1, ai+1)). 

We can start with ai = il; each block is a tile of minimum length, thus the 

weight of each tile can be computed to select the tiles with t largest weights. Us-

Case 1:

e=(λ, i). 

Case 1.1:

for some c[g, h) ∈ S we have g < i < h. 

It follows that De ≠ ∅ since otherwise D would not be an increasing 

atomic alteration and that E = De ∪ {(ρ, h)} is a neutral alteration. Let 

A(i) be the set of neutral atomic alterations that contain (ρ, h) as the 

only element that does not precede e and let 

A(i) = maxE∈ A(i) 
w(S ⊕ E) − w(S).

Because w(S) cannot be increased by a neutral atomic alteration, 

A(i) ≤ 0. Later when we need to consider e as a possible left end of a 

new tile, we will consider it with a priority of vi = A(i) − si. 

Case 2.1 shows how to compute the value of A(i) when the last new tile 

ends at i using the OLIM problem. Note that since any element is first 

considered as a possible ending and then a possible ending, Case 2 will 

occur before Case 1 for that element. Hence, we simply set A(i) to be 

the maximum of A(i − 1) and current A(i), and update vi accordingly 

if necessary.

Case 1.2:

Case 1.1 does not hold. Then e would have to be the first tile end in D 

and thus the left end of the leftmost new tile. We should now consider 

e as a possible left end with priority vi = −si. We should allow for e be-

ing the left end of an old tile (i.e., i = g for some c[g, h) ∈ S) which 

indicates an alteration where the leftmost new tile shares its left end 

with an old tile.

Case 2:

e = (ρ, i). 

Case 2.1:

for some c[g, h) ∈ S we have g < i < h. 

We consider e to be the right end of a new tile. The matching left end, 

(λ, j), must satisfy j ≤ g (i.e.,it must be to the left of c[g, h)). We choose 

j as the index of the matching left end that satisfies vj = maxi−u ≤ z ≤ 
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ing any linear time algorithm for order statistics, the first phase can be complet-

ed in O(n) time and space. In Lemma 15 below we show that a single phase can 

be performed in O(M + log[n/l]) time and O(n) space, where M = maxi=1
k{ai − 

ai−1}. This will be sufficient to satisfy the proposition on the time and space com-

plexity of the complete algorithm by the following analysis. We first coalesce ad-

jacent pairs of blocks of length l into blocks of length 2l (unless there is only one 

block of length l remaining). This requires O(n/l) phases and each of them takes 

O(l) time, because during these phases the longest block has length 2l. Hence the 

total time and space complexity for these n/l phases is O(n). Repeating the same 

procedure for blocks of length 2l, 4l,..., it follows that that if all blocks but one 

have the maximum length then we can half the number of blocks in O(n) time 

and space, and again, all blocks but one will have the maximum length. Obvi-

ously, the current phase is complete when one block remains. Since each phase 

can be carried out independently of any other phase, the space complexity is 

O(n), and the total time complexity is O(∑i=1
log(n/l) ((2i+1l + log[n/l])  [n/(2il)])) 

= O(n log[n/l]). Hence it suffices to prove the following lemma.

Lemma 15 A single phase can be performed in O(M + log n) time and O(n) space. 

Proof.  For an increasing (respectively, decreasing, neutral) atomic alteration B, 

let B be called the best increasing (respectively, decreasing, neutral) atomic al-

teration if w(S ⊕ B) is maximized. The following data structures are maintained 

throughout all phases. For each block, we store that part of the current solution 

that is contained in that block, the best increasing atomic alteration of that part 

and the best decreasing one. Moreover, we will have two priority queues Q1 

and Q2 of blocks, in which the priority of a block is the gain in total weight of its 

best increasing and decreasing atomic alterations, respectively. These data struc-

tures can be initialized in O(n) time and space using Lemma 7.3 and Remark 7.3. 

Note that both Q1 and Q2 contain at most O(n/l) entries. 

We need to show how to find the desired alteration B which consists of an 

union of one or more atomic alterations. All possible structures of B are consid-

ered. If the new solution contains no tile c[g, h) such that g < ai < h, then B = 

∅. Otherwise, assume that such a tile exists. Under this assumption, the number 
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of end points of tiles contained in each of c[ai−1, ai) and c[a
i
, a

i+1
) changes from 

even to odd, which shows that B contains a pair of dyads b, b′ such that b  (ρ, 

ai) and (λ, ai)  b′. Let D be the atomic alteration such that {b, b′} ⊆ D ⊆ B. We 

have the following 3 cases. 

Case 1:

|S ⊕ D| − |S|

D is a neutral atomic alteration. Because |S ⊕ (B − D)| = |S|, we could 

alter S with B − D before the current phase, hence this alteration can-

not increase the weight, and therefore it is not needed. Thus in this 

case B = D. Hence, for this case, we need to find a best neutral atomic 

alteration in c[ai−1, ai+1) (i.e., one that yields the maximum increase of 

weight). Using Lemma 7.3 and Remark 7.3 such an alteration can be 

found in O(ai+1 − ai−1) time and space. Subsequently, in similar time and 

space we can find in c[ai−1, ai+1) a best increasing and decreasing atomic 

alterations and update Q1 and Q2 in O(log[n/l]) time.

Case 2:

D is an increasing atomic alteration. C = B − D does not contain a non-

empty atomic alteration F that does not change the size of S; otherwise 

since we could alter S with F before the current phase, F cannot in-

crease the weight of S and thus we do not need it. Hence C is a decreas-

ing atomic alteration. 

To find B, we consider two subcases. 

Case 2.1:

C is contained in a block different than c[ai−1, ai+1). We can find a best 

D using the algorithm from Lemma 7.3, in O(M) time and a best C 

from the priority queue Q2 in O(n/l) time, both using O(n) space. Sub-

sequently, we need to compute a best increasing and a best decreasing 

atomic alterations for both c[ai−1, ai+1) and the block that contains C 

(using Lemma 7.3 and Remark 7.3) and update Q1 and Q2 in a total of 

O(M + log[n/l]) time and O(n) space.
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Case 2.2:

C is contained in c[ai−1, ai). We first compute for each j ∈ [ai−1, i) the 

best decreasing atomic alteration contained in c[ai−1, j) and set X(j) to 

be its gain (i.e.,the increase in total weight produced by it (perhaps neg-

ative)). As noted in Remark 7.3, this can be done in O(M) time and O(n) 

space. Now, to find the best increasing atomic alteration D, we proceed 

as in Lemma 7.3 except that when we consider some (λ, k) to be the 

leftmost left end of a tile introduced by D we set its priority to be X(j) 

− sk. Hence such a D can again be found in O(M) time and O(n) space. At 

the end, we must update Q1 and Q2 as in Case 1 in O(log[n/l]) time.

Case 2.3:

C is contained in c[ai, ai+1). This case is mirror-symmetric of Case 2.2, 

so we can apply the same methods, except that we will be scanning the 

merged block from right to left.

Case 3:

D is a decreasing atomic alteration. Then C = B − D is an increasing 

atomic alteration by an argument very similar to that in Case 2. Case 3 

is then symmetric of Case 2 if we replace increasing (respectively, de-

creasing) by decreasing (respectively, increasing) in the remainder of 

Case 2.                                                                                                   
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A number of established methods can be applied to repeat-masked DNA sequenc-

es to approximate an optimal tiling solution. By treating a genome sequence as 

a vector of nucleotide “pixels”, we can use image segmentation techniques such 

as region growing and other relaxation processes to close small repetitive ele-

ments in the genomic sequence, thereby merging the adjacent high-complexity 

sequences into contiguous tiles. This approach can be expressed using standard 

binary morphological algebra (Serra 1980). We first assign all nrDNA and rp-

DNA elements from a target genome sequence S to sets A and B, respectively:

A a
a S

= Î
Î

nrDNA


 ,  B b
b S

= Î
Î

rpDNA


Given this conceptual distinction, we can operate on the sequence using bi-

nary morphological operations. In order to apply binary operations to repeat-

masked genomic DNA, it is necessary to first reduce the mixed nucleotide se-

quence to a bilevel representation. Thresholding assigns a new binary value b(x) 

to each nucleotide in the original “greylevel” sequence image, thereby generat-

ing a mask of the original sequence. Repeat and high-complexity nucleotides are 

assigned binary values by the following thresholding operation:

 b n
G g n Z

G g n Z

nr

rp

( )
, ( )

, ( )
=

>
£

ì
í
ïï
îïï

 

 

where b(x) is equal to one of two possible assignments [Gnr,Grp]. This segmenta-

tion method discretizes the initial greylevel value g of any nucleotide n accord-

ing to a predetermined threshold Z, thereby converting nrDNA and rpDNA 

sequence positions to the binary values prescribed by the parameters Gnr and 

Grp, respectively. 

The converted bilevel image can now be processed in several ways to yield an 

expansion of the nrDNA regions into the rpDNA regions. The nrDNA elements 

in set A can be transformed depending on how they relate to the “background” 

component of the sequence, comprising the rpDNA elements in B and referred 

to as the structuring element. The dilation of an input image A by a structuring 

element B is then described by:

Tiling Sequences with Binary 
Morphological Operations D
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A B A b
b B

Å = +( )
Î


where (A+b) indicates the translation of A by b. Essentially, this implies that in 

order to dilate set A by the structuring element B, B is first translated by all ele-

ments in A. The dual operation to dilation is erosion:

A B B a
a A

Å = +( )
Î


 , or  A B A BC C = Å( )

where Ac and Bc indicate the complements of A and B, respectively, and (B+a) 

represents the translation of B by a. The union of these translations constitutes 

AB. In cases where a the lengths of repetitive elements exceed the degree of 

dilation, an equal number of erosion operations will restore the repeat and the 

adjacent nrDNA regions will remain separate. However, if two dilated nrDNA 

regions meet, the repeat region will be closed and erosion will have no effect in 

that local area. This can be accomplished with a closing operation where we first 

dilate the nrDNA structuring element, then erode by the same amount. Closing 

comprises a dilation operation followed by erosion:

close( , ) ( )A B A B B= Å 

In this manner, rpDNA regions whose lengths are less than the number of 

dilation cycles are closed, and the adjacent nrDNA fragments are effectively 

merged into larger tiles. Although this approach describes a simple approxima-

tion to the tiling problem, it is dependent on the use of a threshold constant 

for dilation-erosion cycles which corresponds to a fixed maximum number of 

nucleotides that each repetitive element can span. 
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The solutions and protocols below correspond to the procedure used to probe 

the human genome arrays described in Chapter 4. Each microarray is designed 

to include a number of control features complementary to a common DNA 

sequence. When the arrays are hybridized, an end-labeled 24mer oligo is used 

to illuminate these features, forming a grid to which the scanned image will be 

aligned in software. An appropriate concentration of this control oligo must be 

spiked into the hybridization solution and should fluoresce in the same emission 

spectrum as the labeled DNA probe. Thus, a two-channel experiment must in-

clude two control oligos, each fluorescence-labeled to coincide with the excita-

tion and emission spectra used for the two experimental samples.

Fluor-5´ TTCCTCTCGCTGTAATGACCTCTA 3´

Hybridization solutions

Volumes appropriate for hybridizations in Secure-Seal adhesive modules 

(Grace BioLabs SA-200, adhesive seal tabs ST-200)

Pre-hybridization solution 400µl

2X MES hybridization buffer 200µl

Nuclease-free water 192µl

Herring or salmon sperm DNA, 10mg/ml 4µl

BSA, 50mg/ml 4µl

Hybridization solution 320µl

2X MES hybridization buffer 160µl

Cot-1 DNA, 1mg/ml 30µl

BSA, 50mg/ml 3µl

Labeled control oligo, 100nM 3µl

(multiple channel experiments require additional control oligos)

Labeled cDNA probe ≥ 2µg/sample

Water to 320µl

Microarray Hybridization Protocols E
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Volumes appropriate for hybridizations using standard coverslips and HybChambers 

(Gene Machines HYB-03 or HYB-04)

Pre-hybridization solution 300µl

2X MES hybridization buffer 100µl

Nuclease-free water 198µl

Herring or salmon sperm DNA, 10mg/ml 1µl

BSA, 50mg/ml 1µl

Hybridization solution 40µl

2X MES hybridization buffer 20µl

Cot-1 DNA, 1mg/ml 4µl

BSA, 50 mg/ml 1µl

Labeled control oligo, 100nM 1µl

(multiple channel experiments require additional control oligos)

Labeled cDNA probe ≥ 2µg/sample

Nuclease-free water to 40µl

References to water = Millipore or nuclease-free water. Do not use DEPC-

treated water.

buffer components

12X MES stock buffer 500ml 

(1.22M MES, 0.89M [Na+])

MES, free acid monohydrate 35.2g

MES, sodium salt 96.65g

Water to 500ml

Final pH should be 6.5 - 6.7

Store protected from light at 4°C
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2X MES hybridization buffer 250ml

(100mM MES, 1M [Na+], 20mM EDTA, 0.01% Tween-20)

12X MES stock buffer 41.5ml 

5M NaCl 88.5ml

0.5M EDTA 20.0ml

10% Tween-20 0.5ml

Water 99.5ml

Store protected from light at 4°C

Non-stringent wash buffer (NSWB) 1L

(6X SSPE, 1mM DTT, 0.01% Tween-20)

20X SSPE 300ml

10% Tween-20 1.0ml

1M DTT 1.0ml

Water to 1L

Store at room temperature

Stringent wash buffer (SWB) 1L

(100mM MES salt and free acid solution, 0.1M [Na+], 1mM DTT, 

0.01% Tween-20)

12X MES stock buffer 83.3ml

5M NaCl 5.2ml

10% Tween-20 1.0ml

1M DTT 1.0ml

Water to 1L

Store protected from light at 4°C.
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20X SSPE 1L

Combine:

NaCl 175.3g

NaH
2
PO

4
-H

2
O 27.6g

EDTA 7.4g

in 800 ml distilled water.

Boil until salt is fully dissolved.

Adjust the pH to 7.4 with 10M NaOH.

Adjust the volume to 1L with distilled water.

20X SSC 1L

Combine:

NaCl 175.3g

Sodium citrate 88.2g

in 800 ml distilled water.

Boil until salt is fully dissolved.

Adjust the pH to 7.0 with 1M HCl.

Adjust the volume to 1L with distilled water.

Filter all solutions with 0.2 μm vacuum filter units.
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Hybridization protocol 

(for Secure-Seal gasket hybridization modules)

1. Pipette 400µl of pre-hyb solution into hybridization module and incu-

bate at 45°C for 20 minutes.

2. Remove pre-hyb solution and replace with 320µl hybridization solu-

tion. A small air bubble will remain in the module and will agitate the 

solution during hybridization.

3. Carefully dry both input ports on hybridization module with Kim-

wipes. This will guarantee complete adhesion of the sealing tabs to the 

clean surface.

4. Using forceps, apply adhesive tabs to both input ports. The adhesive 

tabs should be laid completely flat so that a water-tight seal is formed.

5. Insert each array into a 50ml tube covered with aluminum foil. Place 

tubes into hybridization oven and enable wheel rotation.

6. Incubate for 16-20 hours at 50°C.

Following hybridization:

1. Heat SWB to 45°C.

2. Briefly disable the rotating wheel in the hybridization oven, remove 

one Falcon tube and enable rotation again. It is important to keep the 

arrays completely hydrated to prevent probe from drying on any part 

of the printed area. A small volume of liquid will have evaporated dur-

ing the hybridization cycle, so the arrays should be constantly agitated 

until the hybridization solution can be removed.

3. Using forceps, carefully remove both adhesive tabs. Minimize the 

exposure of arrays to ambient light.

4. Remove hybridization solution with 1000µl pipette and immediately 

replace with 400µl NSWB. Gently pipette up and down 1-2 times and 

discard NSWB, replacing with a fresh aliquot.

5. Return the array to its original foil-wrapped 50ml tube, oriented 

horizontally in a tube rack to prevent buffer from leaking out of the 

module.
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6. When all arrays have been processed, remove the adhesive hybrid-

ization modules from the slides and place each array into light-tight 

microscope slide box containing NSWB. 

7. Wash in NSWB by agitating on rotating platform for 10 minutes, chang-

ing the buffer once.

8. Replace buffer with 45°C SWB. Wash in SWB for 30 minutes, changing 

the buffer every 5 minutes.

9. Replace buffer with NSWB. Wash in NSWB for 5 minutes, changing the 

buffer twice.

10. Wash in 0.2X SSC for one minute to remove residual salt from NSWB. 

Repeat this step for a total of 4 washes.

Dry arrays with compressed nitrogen gas. Scan as soon as possible at ≤ 5 μm 

resolution.

Hybridization protocol 

(for HybChambers/slide coverslips)

1. Apply pre-hyb solution to arrays and incubate at 45°C for 15 minutes.

2. Remove pre-hyb solution, rinse with distilled water.

3. Apply hybridization solution, place coverslip onto array and seal in 

HybChamber.

4. Incubate in water bath for 16-20 hours at 50°C.

Following hybridization:

1. Heat SWB to 45°C.

2. Remove coverslips and immediately place arrays into light-tight micro-

scope slide box containing NSWB. 

3. Wash in NSWB by agitating on rotating platform for 10 minutes, chang-

ing the buffer once.

4. Replace buffer with 45°C SWB. Wash in SWB for 30 minutes, changing 

the buffer every 5 minutes.



115Oligonucleotide microarray hybridization protocols

Eappendi
xBertone | Microarray approaches to experimental genome annotation

109  —
115

5. Replace buffer with NSWB. Wash in NSWB for 5 minutes, changing the 

buffer twice.

6. Wash in 0.2X SSC for one minute to remove residual salt from NSWB. 

Repeat this step for a total of 4 washes.

Dry arrays with compressed nitrogen gas. Scan as soon as possible at ≤ 5 μm 

resolution.

  

Equipment and reagents

Gene Machines (www.genemachines.com)

HYB-04  HybChamber Mica tinted dual microarray 

  hybridization chambers

Grace BioLabs (www.gracebio.com)

SA-200  Secure-Seal gasketed hybridization chambers

ST-200  Adhesive seal tabs

Invitrogen (www.invitrogen.com)

15279011 Human Cot-1 DNA

Sigma-Aldrich (www.sigmaaldrich.com)

69896  2-Morpholinoethanesulfonic acid sodium salt

69892  4-Morpholineethanesulfonic acid monohydrate
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