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ABSTRACT

We model different nonlinear systems, analyze their nonlinear aspects and discuss their

applications.

First, we present a semi-analytical, geometrically-exact, unsteady potential flow model is

developed for airfoils undergoing large amplitude maneuvers. Towards this objective, the

classical unsteady theory of Theodorsen is revisited by relaxing some of the major assump-

tions such as (1) flat wake, (2) small angle of attack, (3) small disturbances to the mean

flow components, and (4) time-invariant free-stream. The kinematics of the wake vortices is

simulated numerically while the wake and bound circulation distribution and, consequently,

the associated pressure distribution are determined analytically. The steady and unsteady

behaviors of the developed model are validated against experimental and computational re-

sults. The model is then used to determine the lift frequency response at different mean

angles of attack.

Second, we investigate the nonlinear characteristics of an autoparametric vibration system.

This system consists of a base structure and a cantilever beam with a tip mass. The dynamic

equations for the system are derived using the extended Hamilton’s principle. The method

of multiple scales is then used to analytically determine the stability and bifurcation of

the system. The effects of the amplitude and frequency of the external force, the damping

coefficient and frequency of the attached cantilever beam and the tip mass on the nonlinear

responses of the system are determined. As an application, the concept of energy harvesting

based on the autoparametric vibration system consisting of a base structure subjected to the

external force and a cantilever beam with a tip mass is evaluated. Piezoelectric sheets are

attached to the cantilever beam to convert the vibrations of the base structure into electrical

energy. The coupled nonlinear distributed-parameter model is developed and analyzed. The

effects of the electrical load resistance on the global frequency and damping ratio of the

cantilever beam are analyzed by linearizion of the governing equations and perturbation

method. Nonlinear analysis is performed to investigate the impacts of external force and

load resistance on the response of the harvester.

Finally, the concept of harvesting energy from ambient and galloping vibrations of a bluff

body is investigated. A piezoelectric transducer is attached to the transverse degree of free-

dom of the body in order to convert the vibration energy to electrical power. A coupled

nonlinear distributed-parameter model is developed that takes into consideration the gal-

loping force and moment nonlinearities and the base excitation effects. The aerodynamic

loads are modeled using the quasi-steady approximation. Linear analysis is performed to



determine the effects of the electrical load resistance and wind speed on the global damping

and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis

is performed to investigate the impact of the base acceleration, wind speed, and electrical

load resistance on the performance of the harvester and the associated nonlinear phenomena.

Short- and open-circuit configurations for different wind speeds and base accelerations are

assessed.
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1
Introduction

1.1 Motivation

Nonlinear dynamics and phenomena are encountered in many disciplines, design and appli-

cations. These include fluid flows where nonlinear aspects such as flow separation and shock

formation cause significant variations in flow quantities. In structures, large deformations,

concentrated masses and material properties are significant sources of nonlinearities. Fluid-

structure interaction is another field where nonlinearities can be inherent to the system and

where nonlinear responses are of significant interest. This thesis is concerned with modeling

nonlinear phenomena associated with unsteady aerodynamics, internal resonance and the

galloping of structures. Applications related to theses areas are discussed and the effects of

nonlinearities are related.

The objective of this thesis is to consider a series of applications where nonlinearities cannot

be neglected, could be exploited or should be avoided. The first of these applications is to

establish the nonlinear unsteady flow model to extend Theodorsen’s work. The linearizion of

unsteady flow model becomes inaccurate in natural flows and engineering applications such

as rapidly maneuvering aircraft, flow over wind turbines, flapping-wing flight and swimming

fish. The second is to exploit the nonlinear aspects of autoparametric vibration systems to

control undesired motions and/or to create useful vibrations for engineering applications.

The third is to exploit energy harvesting from hybrid vibrations.

1.2 Nonlinear Unsteady Aerodynamics

In complicated engineering applications, such as rapidly maneuvering aircraft, flow over

wind turbines and flapping-wing flight, there is no effective analytical unsteady nonlinear

1
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flow model. Until now, the analytical unsteady aerodynamic models [1, 2, 3, 4, 5] are all

based on the assumptions of (1) small angle of attack, (2) flat wake, (3) small disturbances to

the mean flow components and (4) time-invariant free-stream. However, the angle of attack

is around 250 to 450 when insects flap their wings [6]. In this and other cases, a simplified

unsteady flow model with assumptions of small angle of attack, flat wake, small disturbance

to the mean flow components and time-invariant free-stream will not be valid.

Table 1.1: Taxonomy of the unsteady flow regimes

K < 0.1 K > 0.1, α < 20o K > 0.1, α > 20o

Two-Dimensional:
• Wagner [7] Challenges:

Quasi-steady • Theodorsen [8] • Unsteadiness
aerodynamics • Peters [10] • Nonlinearity and new phenomena

Three-Dimensional: • Efficiency (computational burden)
• Reissner [11]
• Unsteady vortex lattice [12]

Table 1 shows a taxonomy of the unsteady flow regimes. For a low reduced frequency

(k < 0.1), the quasi-steady assumption may be applicable. For a relatively high reduced

frequency, the unsteady flow characteristics cannot be neglected. If small-amplitude ma-

neuvers are to be investigated, then the attached flow assumption and, hence, linearization

of the flow dynamics may be justifiable. There are many unsteady, linear aerodynamic

theories that can be applied successfully and efficiently in this regime for both two- and

three-dimensional applications. Wagner [7] determined the time-response of the lift due to

a step input (indicial response problem). Theodorsen [8] determined the frequency response

of the lift (i.e., lift response due to harmonically oscillating input) and applied it to the

flutter problem of fixed-wing aircraft. However, if large-amplitude maneuvers are of interest,

the nonlinearity of the flow can no longer be neglected and non-conventional phenomena

and/or lift mechanisms emerge (e.g., leading edge vortex in flapping flight). In this regime,

the challenge is to capture both of the prominent unsteadiness and flow nonlinearity with a

feasible computational burden so as to perform optimization, sensitivity analysis, dynamics,

and control synthesis.

There have been few trials aiming at covering the gap discussed above. Ansari et al. [13, 14]

extended the work of Von Karman and Sears [9] to include the leading edge vortex effect on

flapping wings by shedding vortices from both leading and trailing edges. They derived two

nonlinear integral equations for the shed wake and leading edge vortices. The incompact

representation of Ansari’s model dictates a quite complicated numerical implementation.

This was the main reason for very high frequency components of the flow quantities when used

for a coupled aeroelastic flight dynamic simulation of flapping wings by Weihua and Cesnik

[15]. Weihua and Cesnik reported that their coupled aeroelastic-flight dynamic simulation

could not complete one cycle because of this issue. Brunton and Rowley [16] presented
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an empirical formula for the unsteady lift in a low Reynolds number (100) regime that is

based on Theodorsen’s model [8]. Ramesh et al. [17] developed an inviscid theoretical

approach to account for non-planar wakes. However, the developed model still considers

the induced velocities as small perturbations to the airfoil velocity; an assumption that

considerably influences the aerodynamic forces at high angles of attack with the low Reynolds

number.

In an earlier work [4, 18], Taha et al. extended the application of Duhamel’s superposition

principle, usually applied in linear unsteady aerodynamics, to account for non-conventional

lift mechanisms. The main objective was to capture the leading edge vortex effect on flap-

ping wings in an unsteady fashion. The developed model comprises two internal aero-

dynamic states for two-dimensional applications and four internal aerodynamic states for

three-dimensional applications using strip theory. The strength of the model of Taha et al.

is that its asymptotic steady behavior can match any arbitrarily given steady lift variation

with the angle of attack. However, its underpinning flow dynamics is the Wagner’s response.

That is, it assumes that the linearity of the flow dynamics still hold. Therefore, there is

still a need to develop similar efficient models while capturing the nonlinearity of the lift

evolution.

1.3 Autoparametric Vibration System

Autoparameteric vibration systems are characterized by a nonlinear internal coupling that

involves at least two modes. This coupling results in energy transfer from one mode of the

system to another. The secondary mode, which is unforced, draws the energy from a primary

mode and undergoes sustained oscillations. The primary mode is, as such, suppressed. For

engineering applications, an autoparameteric vibration system can be used to suppress the

oscillatory motion of the primary mode and/or create multi-directional actuations through

excitation of the second mode.

For control purposes, an autoparameteric vibration system can be designed to suppress vi-

brations resulting from resonance or near resonance excitations or oscillations due to a Hopf

bifurcation. Examples of such systems include civil structures (e.g., buildings, offshore rigs,

towers and bridges ). Such structures could undergo large-amplitude oscillations when the

main frequency of seismic, wave or wind forces is close to the natural frequency of civil

structure. Dynamic motions due to Hopf bifurcation include flutter of wings and bridges

and galloping of iced-transmission lines and towers. In such applications, a secondary sys-

tem can be added to draw energy from the structure’s motion and reduce its vibrations.

Haxton and Barr [19] devised an autoparametric vibration absorber by attaching a can-

tilever beam with a tip mass to a base structure that is subjected to external forcing. Their

experimental validation showed that such an absorber is very effective when it comes to
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reducing the vibrations of the base structure. Cartmell et al. [20] revised the system by

attaching a bar with a spring instead of the cantilever beam. In Cartmell’s system, the

relative placement of the mass along the bar could be modified to adapt the optimum nat-

ural frequency of the secondary mode to control the motion of the base structure. Other

designs of autoparametric vibration systems are based on attaching pendulums to the base

structure, such as spring-mass-damper system [21], beam-tip mass-pendulum system [22],

driven-Froude-pendulum system [23], multiple-pendulums systems [24, 25] and pendulum-

magnetorheological-damper-nonlinear-spring system [26]. Dai and Singh [23] analyzed the

dynamic behavior of the driven-Froude-pendulum system and found the system to undergo

periodic and quasiperiodic oscillations, and even chaotic motions. Vyas et al. [24, 25] noted a

large-amplitude resonant response of structures over a wide band of excitation frequencies by

attaching multiple pendulums of different natural frequencies to a single-degree-of-freedom

linear system. Kecik and Borowiec [26] found that the nonlinear spring can effectively sup-

press the autoparametric system and shrink the domains of unstable and chaotic responses.

Moreover, Taguchi et al. [27] used pendulum absorbers to suppress vibration of helicopter

rotor blades. Extensive work about autoparametric vibration systems has been done to show

their potential to effectively control a base structure that is subjected to resonant or near res-

onant excitation. However, assessment of their nonlinear aspects, such as, saturation, jumps,

hysteresis and chaos, which are important when considering other potential applications for

such systems, have not been investigated.

To date, most of the research on autoparametric vibration systems has aimed at control-

ling the motion of the main structure. Yet, this motion can be employed to create multi-

directional actuations. Alternatively, the energy from the oscillatory motion of the secondary

mode can be harvested and accumulated to operate self-powered devices including micro-

electromechanical systems (MEMS) or actuators [28, 29, 30], health monitoring and wireless

sensors [31, 32], or replacing small batteries that have a finite life span or would require hard

and expensive maintenance [33, 34, 35]. In return, harvesting the energy would reduce the

oscillation’s amplitude of the secondary system.

1.4 Vibration-based Energy Harvesting

Vibration-based energy harvesters have been proposed to operate self-powered devices in-

cluding microelectromechanical systems (MEMS) or actuators [28, 29, 30], health monitor-

ing and wireless sensors [31, 32], or replacing small batteries that have a finite life span or

would require hard and expensive maintenance [33, 34, 35]. Harvesting mechanical energy

through converting vibrations to electrical energy can be achieved using either electromag-

netic [36, 37], electrostatic [37, 38], or piezoelectric [38, 39, 40, 41, 42, 43]. Of these mech-

anisms, the piezoelectric transduction is most suitable for MEMS devices [28] and wireless
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sensors[31, 32], mostly because it can be effectively placed in small volumes and used to

harvest energy over a wide range of frequencies. Considerable researches have shown that

base excitations [32, 41, 42, 44, 45, 46] and aeroelastic vibrations [47, 48, 49, 50, 51, 52, 53,

54, 55, 56, 57, 58, 59, 60] can be effectively transformed into electric power sufficient for most

of commercially available wireless sensors.

Energy harvesting from cantilever beams subjected to a base excitation has been extensively

studied. Roundy et al. [32] showed the ability to generate a power output of 375 µWcm−3

from the base vibration of 2.5 ms−2 at 120 Hz. Erturk et al. [41, 42] proposed one theoretical

mode of the cantilever beam bounded with the piezoelectric material with experimental

validation. Moreover, Abdelkefi et al. [44, 45] established one nonlinear coupling mode and

discussed nonlinear effects of the parametrically excited vibration on piezoelectric energy

harvesters. Recently, Stanton et al. [46] investigated the concept of a bistable piezoelectric

inertial generator and found some interesting nonlinear phenomena: bifurcation and chaos.

However, the energy harvesting only from the base excitation cannot be used widely because

they can only harvest energy in the small range of environmentally vibrational frequencies

that are near the natural frequency of the structure.

Other researchers have focused on energy harvesting from wind. Energy harvesters from

the vortex-induced vibration [47, 48, 49] have been proposed. Few other studies [50, 51,

53, 54, 55, 56] have focused on generation of electric energy from aeroelastic vibration of

airfoil sections. However, they can only harvest the energy at relatively high wind speed and

the harvesting power is relatively low. Recently, energy harvesting from galloping motion

has proven to be much more effective. Sirohi et al. [52] proposed harvesting energy from

transverse galloping of a structure that has an equilateral triangle section and generates

more than 50 mW at a wind speed of 11.6 mph. Abdelkefi et al. [58] derived a nonlinear

distributed-parameter model for galloping-based piezoaeroelastic energy harvesters in which

their numerical results were validated by the experimental measurements of [52]. They also

reported that maximum levels of harvested power are accompanied by minimum transverse

displacement amplitudes for a band of load resistances. Abdelkefi et al. [57] investigated

the concept of exploiting galloping of square cylinders to harvest energy. Their focus was

on the effect of the Reynolds number on the aerodynamic force, the onset of galloping, and

the level of the harvested power. Their results showed that the electrical load resistance

and the Reynolds number play an important role in determining the level of the harvested

power and the onset of galloping. They also showed that the maximum levels of harvested

power are accompanied with minimum transverse displacements for both low- and high-

Reynolds number configurations. Moreover, Abdelkefi et al. [60] investigated the effects

of different cross sections on the energy harvester from galloping vibration and found that

different sections are better for harvesting energy over different regions of the flow speed.

Furthermore, because of the great effect of temperature on the property of piezoelectric

materials, Abdelkefi et al. [59] found that the same energy harvester will have different
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onset galloping wind speeds and levels of harvested power in different environments.

1.5 Outline of the Thesis

This thesis is organized as follows:

In Chapter 2, a semi-analytical, geometrically-exact, unsteady potential flow model is de-

veloped for airfoils undergoing large amplitude maneuvers. To realize this objective, the

classical unsteady theory of Theodorsen is revisited relaxing some of the major assump-

tions such as (1) flat wake, (2) small angle of attack, (3) small disturbances to the mean

flow components, and (4) time-invariant free-stream. The kinematics of the wake vortices is

simulated numerically while the wake and bound circulation distribution and, consequently,

the associated pressure distribution are determined analytically. The steady and unsteady

behaviors of the developed model are validated against experimental and computational re-

sults. The model is then used to determine the frequency response of the lift force at different

mean angles of attack. Both qualitative and quantitative discrepancies are found between

the obtained frequency response and that of Theodorsen at high angles of attack.

In Chapter 3, the nonlinear characteristics of an autoparametric vibration system are inves-

tigated. This system consists of a base structure and a cantilever beam with a tip mass. The

dynamic equations for the system are derived using the extended Hamilton’s principle. The

method of multiple scales is used to analytically determine the stability and bifurcation of

the system. The effects of the amplitude and frequency of the external force, the damping

coefficient and frequency of the attached cantilever beam and the tip mass on the nonlinear

responses of the system are determined. The results show that this system exhibits many

interesting nonlinear phenomena including saturation, jumps, hysteresis and different kinds

of bifurcations, such as saddle-node, supercritical pitchfork, subcritical pitchfork, reversed

saddle-node and reversed saddle-saddle bifurcations. Power spectra, phase portraits and

Poincare maps are employed to analyze the unstable behavior and the associated Hopf bi-

furcation and chaos. Depending on the application for such systems, the resulting responses

could be exploited or should be avoided.

In Chapter 4, the concept of harvesting energy from ambient and galloping vibrations of a

bluff body with a triangular cross-section geometry is investigated. A piezoelectric transducer

is attached to the transverse degree of freedom of the body in order to convert these vibrations

to electrical energy. A coupled nonlinear distributed-parameter model is developed that takes

into consideration the galloping force and moment nonlinearities and the base excitation

effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear

analysis is performed to determine the effects of the electrical load resistance and wind speed

on the global damping and frequency of the harvester as well as on the onset of instability.
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Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind

speed, and electrical load resistance on the performance of the harvester and the associated

nonlinear phenomena that take place. Short- and open-circuit configurations for different

wind speeds and base accelerations are assessed.

In Chapter 5, the concept of energy harvesting through autoparametric resonance is inves-

tigated. A system that consists of a base structure subjected to external forcing and a

cantilever beam with a tip mass is considered. The energy is harvested by attaching piezo-

electric sheets to the cantilever beam. A coupled nonlinear distributed-parameter model

is developed by extended Hamiton’s principle and the exact mode shapes of cantilevered

beam are established by Galerkin Method. The effects of the electrical load resistance on

the global frequency and damping ratio of the cantilever beam are analyzed by linearizion

of the governing equations and perturbation method. Nonlinear analysis is performed to in-

vestigate the impacts of external force and load resistance on the response of the harvester.

Moreover, the method of multiple scales is used to determine the stability and bifurcations

of the system as a function of the external force and load resistance.

Conclusions and future work are presented in Chapter 6.



2
Geometrical-Exact Unsteady Model for foils Undergoing

Large Amplitude Maneuvers

The objective is to develop a hybrid analytical-numerical approach to determine the lift

associated with unsteady aerodynamics that involve high angles of attack. For this purpose,

we revisit the classical model of Theodorsen [8] and relax the small angle of attack and

the flat wake assumptions to obtain a geometrically-exact unsteady aerodynamic theory

for two-dimensional applications. Due to the challenges encountered when relaxing these

assumptions, full analyticity of the model is not expected (e.g., the lift deficiency due to

wake cannot be analytically represented via some explicit expression such as Theodorsen’s

function). In contrast, the developed model is semi-analytic; that is, the vortex kinematics is

simulated numerically. But the wake and bound circulation distribution and, consequently,

the associated pressure distribution are computed analytically. Hence, there will be no need

to solve an algebraic system of equations to determine the bound circulation as usually

done in the implementation of discrete vortex models such as the unsteady vortex lattice

method. The developed model is applied to some canonical pitch motions such as the ones

introduced by Eldredge et al. [61]. The obtained results are validated against the numerical

and experimental results of Ramesh et al. [17].

2.1 Problem Formulation

We consider a two-dimensional flat plate undergoing horizontal, vertical, and rotational

motions, as shown in Fig. 2.1. The horizontal velocity U , the vertical velocity ḣ, and the

angular velocity α̇ of the flat plate are taken positive to the left, downward, and clockwise

directions, respectively. Two axis-systems are considered; the inertial frame X-Z and the

plate-fixed frame x-z. While the origins of the two systems (O and O′) are located at the

mid-chord point, the plate is rotating about the hinge point which lies at a distance ab along

8
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the x-axis ahead of the mid-chord point. Here, b denotes the half chord length.

Figure 2.1: A schematic diagram showing the flat plate motion and axis-systems. Note that
the translational motion of the plate is considered in the wind speed

In local coordinates (x-z system), the relative wind speed is expressed as:

q = (U cosα− ḣ sinα + u′)i + (U sinα + ḣ cosα + w′)k (2.1)

where α is the angle of attack and u′ and w′ represent the components of the induced

velocity (disturbance/perturbation velocity) in the x and z directions, respectively. As such,

the velocity potential is written as:

φ = (U cosα− ḣ sinα)x+ (U sinα + ḣ cosα)z + φ′ (2.2)

where φ′ is the disturbance velocity potential that satisfies the following expression: ∂φ′

∂x
= u′

and ∂φ′

∂z
= w′.

Based on the fact that the plat plate will not change shape during the movement,the non-

penetration boundary condition (i.e., the total flow velocity perpendicular to the plate is

zero) is expressed as [62]:

DF
Dt

= ∂F
∂t

+ (Ucosα− ḣ sinα + u′(x, 0))∂F
∂x

+ (U sinα + ḣ cosα + w′(x, 0))∂F
∂z

= 0 (2.3)

where F (x, z, t) = 0 is the equation of the surface of a body moving in a time-dependent

fashion which is given by F (x, z, t) = z − zsuf (x, t). Inspecting figure 2.1, we find the

geometrical relationships as ∂F
∂x

= 0, ∂F
∂z

= 1 and ∂F
∂t

= (x+ ab)α̇. To this end, the boundary
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condition Eq. (2.3) is simplified as:

w′(x, 0, t) = −U sinα− ḣ cosα− (x+ ab)α̇ (2.4)

(a)

ẑ

x̂
'O

θ

r

rq

q
θ

/2b

-planeη

(b)

Figure 2.2: Joukowski conformal mapping between (a) the plate (ξ-plane) and (b) the cylin-
der (η-plane).

Fig. 2.2 shows the conventional Joukowsking conformal mapping between the plate (ξ-plane)

and the cylinder (η-plane), see [62, 63] for example. The mapping is written as

ξ = η + b2

4η (2.5)

where, ξ = x + iz and η = x̂ + iẑ = reiθ. As such, the surface of flat plate in the ξ-plane

is transformed into the surface of the circle in the η-plane. The relationship is expressed as

x = b cos θ and z = 0. Moreover, the velocity vectors in the two planes are related via the

transformation relation

u′ − iw′ = q′x̂−iq
′
ẑ

dξ/dη
(2.6)

In this expression, the component dξ/dηr=b/2 is calculated from Eq. (2.5) as 2i sin θe−iθ.

Inspecting Fig. 2.2, we also note the following relationship q′x̂ − iq′ẑ = e−iθ(qr − iqθ). To

this end, the velocities u′(x, 0, t) and w′(x, 0, t) in the ξ-plane are expressed by the velocities

q′r(b/2, θ, t) and q′θ(b/2, θ, t) in the η-plan as

q′θ(b/2, θ, t) = −2u′(x, 0, t) sin θ

q′r(b/2, θ, t) = 2w′(x, 0, t) sin θ
(2.7)

Also, taking the datum of the disturbance velocity potential at the leading edge (i.e.,
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φ′(b/2, π, t) = 0), then the distribution of φ′ on the cylinder surface is written as

φ′(θ, t) = − b
2

∫ π

θ

qθ(b/2, β, t)dβ (2.8)

The aerodynamic loads are calculated by integrating the pressure distribution over the sur-

face, which can be determined using the following unsteady Bernoulli’s equation [62, 64]

∂φ

∂t
+
|q|2

2
+
p

ρ
= C(t) (2.9)

where p and ρ are respectively the pressure and density of the air, and C(t) is a spatially-

constant quantity, which can be calculated from the far field conditions as

C(t) = ∂((U cosα−ḣ sinα)x+(U sinα+ḣ cosα)z)
∂t

+ (U cosα−ḣ sinα)
2
+(U sinα+ḣ cosα)

2

2
+ p∞

ρ
.

Considering the expression of C(t) in the far field condition, velocity potential equation (2.2)

and the unsteady Bernoulli’s equation (2.9), we express the pressure distribution related to

the disturbance velocities and velocity potential via

p = p∞ − ρ
[
∂φ′

∂t
+ (U cosα− ḣ sinα)u′ + (U sinα + ḣ cosα)w′ +

1

2
(u′2 + w′2)

]
(2.10)

where p∞ is the free-stream pressure.

Integrating the pressure distribution to calculate the resultant aerodynamic loads may be

deficient because it does not account for the leading edge suction force. We use Blasius

theorem [12] to remedy this deficiency. According to Blasius theorem, the components (Fx
and Fz) of the aerodynamic loads acting on an immersed body are given by

Fx − iFz =
iρ

2

∮
(u− iw)2 dξ (2.11)

where u and w are the components of the fluid velocity vector in the body axes. Since the

perturbations u′ and w′ near the leading edge outweigh by far the other contributions, one

can write the components of the leading edge suction force as

Fx − iFz =
iρ

2

∫
LE

(u′ − iw′)2
dξ = −iρ

2

∫ π+

π−

(
−iq′θ(b/2, π, t)e−iθ

dξ/dη

)2

b sin θdθ (2.12)

Noting that dξ
dη
|r=b/2 = 2i sin θe−iθ and i

∫ π+

π−
1

sin θ
dθ = π, we determine the components of the

leading edge suction force as

Fx − iFz = −Fs = −πρb
8
qθ(b/2, π, t)

2 (2.13)
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where Fs is the suction force.

Next, we follow Theodorsen’s work [8] relaxing some of the simplifying assumptions such as

(1) flat wake, (2) small angle of attack, (3) small disturbances to the mean flow components,

and (4) time-invariant free-stream. Some of the applicable Theodorsen’s results will be stated

here without proof and emphasis will be given to the extended parts. Following Theodorsen’s

approach, we divide the problem into non-circulatory and circulatory contributions.

2.2 Non-circulatory Contributions

The non-circulatory contributions are included by considering a time-varying continuous

distribution of two-dimensional sources with strength H+(x, 0, t) and strength H−(x, 0, t) per

unit x-distance respectively on the upper and bottom sides of the plate [62]. The strength

H+(x, 0, t) and H−(x, 0, t) are given by [62]:

H+(x, 0, t) = −H−(x, 0, t) = 2w′(x, 0, t) (2.14)

Similarly, the local sources on the upper circle and bottom circle are derived from Eq. (2.7)

as [62]

H+(b/2, θ, t) = −H−(b/2, θ, t) = 4w′(x, 0, t)sinθ (2.15)

where H+(b/2, θ, t) and H−(b/2, θ, t) are the strengths of the source per unit length on the

upper circle and bottom circle, respectively. As such, velocity in the θ direction and the

disturbance velocity potential on the circle are calculated as [62]

q′θN(b/2, θ, t) = 2
π

∫ π
0

w′(x,0,t)sin2βdβ
(cosβ−cos θ)

φ
′(u)
N (b/2, θ, t) = −φ′(l)N (b/2, θ, t) = − b

π

∫ π
θ

∫ π
0

w′(x,0,t)sin2βdβdθ
(cosβ−cos θ)

(2.16)

where q′θN is the non-circulation angular velocity and φ
′(u)
N and φ

′(l)
N are the disturbance veloc-

ity potentials respectively on the upper and bottom circle in the non-circulation condition.

Substitute Eq. (2.4) into Eq. (2.16), we obtain the expression of the non-circulation velocity

potential of the upper circle as

φ
′(u)
N (b/2, θ, t) = − b

π

∫ π
θ

∫ π
0

(−U sinα−ḣ cosα−(x+ab)α̇)sin2βdβdθ
(cosβ−cos θ)

= b(U sinα + ḣ cosα)sinθ + (a+ 1
2
cosθ)b2α̇ sin θ

(2.17)
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Using the pressure distribution expression (Eq. (2.10)), we determine the expression of the

non-circulation pressure difference as:

p(u) − p(l) = −ρ[
∂φ
′(u)
N

∂t
− ∂φ

′(l)
N

∂t
+ (Ucosα− ḣ sinα)(u′(u) − u′(l))

+(U sinα + ḣcosα)(w′(u) − w′(l)) + 1
2
(u′(u)2

+ w′(u)2 − u′(l)2 − w′(l)2
)]

(2.18)

In this expression, the superscripts (u) and (l) denote the upper and lower surfaces of the

plate, respectively. Considering the expressions w′(u) = w′(l) = w′(x, 0, t), u′(u) =
∂φ
′(u)
N

∂x
=

∂(−φ′(l)N )

∂x
= −u′(l) and

∂φ
′(u)
N

∂t
= −∂φ

′(l)
N

∂t
, we simplify the non-circulatory distribution of the

pressure difference across the plate plate as

∆pN = p(u) − p(l) = −2ρ

[
∂φ
′(u)
N

∂t
+ (U cosα− ḣ sinα)

∂φ
′(u)
N

∂x

]
(2.19)

Considering the wind speed in x direction as ∂x
∂t

= U cosα − ḣ sinα, we derive the non-

circulation normal force from Eq. (2.19) as following:

NN = −
∫ b
−b ∆pNdx = 2ρ

∫ b
−b

∂φ
′(u)
N

∂t
+ (U cosα− ḣ sinα)

∂φ
′(u)
N

∂x
dx = 2ρ ∂

∂t
(
∫ b
−b φ

′(u)
N dx)

= 2ρ ∂
∂t

(
∫ π

0
[b(U sinα + ḣ cosα)sinθ + (a+ 1

2
cosθ)b2α̇ sin θ]b sin θdθ)

= πρb2 ∂
∂t

(U sinα + ḣ cosα + abα̇)

= πρb2(U̇ sinα + ḧ cosα + (U cosα− ḣ sinα)α̇ + abα̈)
(2.20)

Similarly, the non-circulation moment relative to the rotational point, as shown in Fig. 2.1,

is derived as

MhN =
∫ b
−b(p

(u) − p(l))(x+ ab)dx

= −2ρ(U cosα− ḣ sinα)
∫ b
−b

∂φ
′(u)
N

∂x
xdx− 2ρ

∫ b
−b

∂φ
′(u)
N

∂t
xdx− abNNC

= −2ρ(U cosα− ḣ sinα){
[
φ
′(u)
N x

]x=b

x=−b
−
∫ b
−b φ

′(u)
N dx} − 2ρ ∂

∂t
(
∫ b
−b φ

′(u)
N xdx)− abNNC

= −2ρ(U cosα− ḣ sinα){0− π
2
[b(U sinα + ḣ cosα) + ab2α̇]} − π

8
ρb4α̈

−ab[πρb2(U̇ sinα + ḧ cosα + (U cosα− ḣ sinα)α̇ + abα̈)]

= πρb2[1
2
(U2 − ḣ2)sin(2α) + Uḣ cos(2α)− ab(U̇ sinα + ḧ cosα)− (1

8
+ a2)b2α̈]

(2.21)

In this derivation, we use the fact that φ
′(u)
N vanishes both on the leading and trailing edge,

which can be found based on equation (2.17). In addition to allowing for a time-varying free

stream, equations (2.20) and (2.21) represent a geometrically-exact extension of Theodorsen’s

result [8]:

NN = πρb2
[
ḧ+ Uα̇ + abα̈

]
MhN = πρb2

[
U2α + Uḣ− abḧ− (1

8
+ a2)b2α̈

] (2.22)
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(a)

ẑ

x̂'O
jϕ jr

j−Γ

(b)

Figure 2.3: Comparison between the proposed formula, Polhamus, potential flow, and bench-
mark results for CL due to a stabilized LEV: (a) Plate’s wake and (b) Cylinder’s wake.

Equations (2.20) and (2.21) are consistent with the fact that the non-circulatory force is the

force required to accelerate a mass of air cylinder of radius b with the acceleration of the mid-

chord point. However, it should be noted that the acceleration term between the brackets

is not the inertial acceleration of the mid-chord point (i.e., not the acceleration with respect

to the still fluid), but rather the time rate of change of the velocity of the mid-chord point

with respect to the body axes. Also, it is noteworthy to mention that the non-circulatory

lift and drag forces are given by LN = NN cosα and DN = NN sinα, respectively.

2.3 Circulatory force

The Kutta condition dictates finite velocity at the trailing edge (θ = 0). To satisfy this

condition, equation (2.7) yields qθ(b/2, 0, t) = 0. However, Eq. (2.16) indicates the inability

to achieve this requirement for arbitrary motion of the plate which is represented by w′ via

the no-penetration boundary condition. Hence, an additional contribution (circulatory one)

to the tangential velocity is invoked such that both contributions could satisfy the Kutta

condition together; that is

qθN(b/2, 0, t) + qθC(b/2, 0, t) = 0

Thus, a circulation distribution is added to represent the wake of the flow past the flat plate

(circular cylinder), as shown in Fig. 2.3.

One circulation −Γj is chosen to analyze the circulation force of the plate. It is assumed that

the displacement and velocity of circulation −Γj in local coordinate are respectively xji+zjk

and ẋji + żjk, as shown in Fig. 2.3(a). According to the displacement relationship between
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the η plane and the ξ plane (Eq. (2.5)), the displacements xj and zj are given by:

xj = rj cosϕj + b2

4rj
cosϕj

zj = rj sinϕj − b2

4rj
sinϕj

(2.23)

where rj and ϕj are respectively the radius and angular displacements of circulation −Γj in

polar coordinate, as shown in Fig. 2.4. For each vortex −Γj in the cylinder’s wake, there

has to exist an image circulation Γj to maintain zero total circulation. Since one of the main

objectives of this work is to account for wake deformation, the position of the wake vortex

−Γj is considered arbitrarily free. In order to keep the no-penetration boundary condition

satisfied, the radial components of the velocities induced by Γj and −Γj must cancel each

other. Thus, if the wake vortex is arbitrarily located at ηj = rje
iϕj , then its image has to lie

inside the cylinder at b2

4rj
eiϕj , as shown in Fig. 2.4.

Figure 2.4: A schematic diagram showing a circulation Γi in the cylinder’s wake and its
image inside the cylinder along with their induced velocities on the cylinder.

Also, as shown in Fig. 2.4, the jth wake vortex −Γj and its image Γj induce velocity vectors

q− and q+, respectively, at an arbitrary point p on the cylinder. The tangential component

of the total velocity vector q+ + q− on the upper surfaces is given by

q
(u)
θj = − |q+| cos [θ1 − (θ − ϕj)] + |q−| cos [θ2 − (θ − ϕj)]

= −Γj
2π

{
r1 cos[θ1−(θ−ϕj)]

r12
− r2 cos[θ2−(θ−ϕj)]

r22

} (2.24)

where θ is changed from 0 on the trailing edge to π on the leading edge. According

to the cosine-law of two triangles and geometrical relationship in Fig. 2.4, the terms
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r1 cos [θ1 − (θ − ϕj)], r2 cos [θ2 − (θ − ϕj)], r1
2 and r2

2 in equation (2.24) are given by

r1 cos [θ1 − (θ − ϕj)] = b
2
− b2

4rj
cos(θ − ϕj)

r2 cos [θ2 − (θ − ϕj)] = b
2
− rj cos(θ − ϕj)

r2
1 = ( b2

4rj
)2 + ( b

2
)2 − b2

4rj
b cos(θ − ϕj)

r2
2 = r2

j + ( b
2
)2 − rjb cos(θ − ϕj)

(2.25)

Substitute Eq. (2.25) into Eq. (2.24), we simplify the expression of q
(u)
θj as

q
(u)
θj = −Γj

2π

{
b
2
− b2

4rj
cos(θ−ϕj)

( b
2

4rj
)
2
+( b

2
)
2− b2

4rj
b cos(θ−ϕj)

−
b
2
−rj cos(θ−ϕj)

r2j+( b
2

)
2−rjb cos(θ−ϕj)

}
= −Γj

πb

[
r2j−( b

2
)
2

( b
2

)
2
+r2j−rjb cos(θ−ϕj)

]
(2.26)

Similarly, the tangential velocity at the lower surface q
(l)
θj is calculated as

q
(l)
θj = −Γj

πb

[
r2
j − ( b

2
)
2

( b
2
)
2

+ r2
j − rjb cos(θ + ϕj)

]
(2.27)

where θ is changed from 0 on the trailing edge to π on the leading edge. Recalling the non-

circulatory contribution of qθ from Eq. (2.16) and discretizing the wake sheet of vorticity

into a finite number of point vortices, we write the Kutta condition as

2

π

∫ π

0

w′(b/2, β, t) sin2 βdβ

(cos β − 1)
+

N∑
j

Γj
πb

[
r2
j − ( b

2
)
2

r2
j − rjb cosϕj + ( b

2
)
2

]
= 0 (2.28)

where N is the total number of discrete wake vortices. Substituting by w′ from the no-

penetration boundary condition, Eq. (2.4), and carrying out the integration in the left hand

side, we write

N∑
j

Γj
2πb

[
r2
j − ( b

2
)
2

r2
j − rjb cosϕj + ( b

2
)
2

]
= −U sinα− ḣ cosα− (

1

2
+ a)bα̇ = w3/4 (2.29)

where w3/4 is the component of the plate velocity relative to the air normal to the plate surface

at the three-quarter chord point. Equation (2.29) will be used to determine the strength

−Γj of the newly shed wake vortex at each time step in the numerical implementation, as

will be shown later.

After solving for the wake vortex distribution at each time step, the circulatory loads are

determined by using the unsteady Bernoulli’s equation. Using Eq. (2.8), we determine the

disturbance velocity potential on the cylinder due to the jth vortex −Γj and its image Γj as
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follows:

φ
′(u)
Cj (θ, t) = −Γj

π

 tan−1
(
rj−b/2
rj+b/2

tan
ϕj
2

)
− tan−1

(
rj−b/2
rj+b/2

cot
θ−ϕj

2

)
− π, θ < ϕj, ϕj > 0

tan−1
(
rj−b/2
rj+b/2

tan
ϕj
2

)
− tan−1

(
rj−b/2
rj+b/2

cot
θ−ϕj

2

)
, otherwise

φ
′(l)
Cj (θ, t) = −Γj

π

 tan−1
(
rj−b/2
rj+b/2

tan
ϕj
2

)
+ tan−1

(
rj−b/2
rj+b/2

cot
θ+ϕj

2

)
− π, θ < ϕj, ϕj > 0

tan−1
(
rj−b/2
rj+b/2

tan
ϕj
2

)
+ tan−1

(
rj−b/2
rj+b/2

cot
θ+ϕj

2

)
, otherwise

(2.30)

where φ
′(u)
Cj (θ, t) and φ

′(l)
Cj (θ, t) are disturbance velocity potential on the upper and lower circle

due to the jth circulation −Γj and its image Γj, respectively.

Then, the circulation pressure difference due to the jth circulation −Γj and its image Γj can

be derived from the pressure distribution expression (Eq. (2.10)) as

∆pj = p
(u)
j − p

(l)
j = −ρ[

∂(φ
′(u)
j −φ′(u)j )

∂t
+ (U cosα− ḣ sinα)(u

′(u)
j − u′(l)j )

+(U sinα + ḣ cosα)(w
′(u)
j − w′(l)j ) + 1

2
(u
′(u)
j

2
+ w

′(u)
j

2
− u′(l)j

2
− w′(l)j

2
)]

(2.31)

where w
′(u)
j = w

′(l)
j = 0 which are caused by the symmetric of −Γj and Γj. As such, Eq.

(2.31) is simplified as

∆pj = −ρ[
∂(φ

′(u)
j − φ′(u)

j )

∂t
+ (U cosα− ḣ sinα)(u

′(u)
j − u′(l)j ) +

1

2
(u
′(u)
j

2
− u′(l)j

2
] (2.32)

where the horizontal velocity u
′(u)
j and u

′(l)
j is determined from the disturbance velocity

potential equation (2.30) as

u
′(u)
j =

∂φ
′(u)
j

∂x
= − 1

b sin θ

∂φ
′(u)
j

∂θ
= − 1

b sin θ
∂
∂θ

(
Γj
π
arctan(

rj−1/2b

rj−1/2b
)cot(

θ−ϕj
2

))

= 1
2 sin θ

Γj
πb

rj
2−(1/2b)2

rj2+(1/2b)2−rjb cos(θ−ϕj)

u
′(l)
j =

∂φ
′(l)
j

∂x
= − 1

b sin θ

∂φ
′(l)
j

∂θ
= − 1

b sin θ
∂
∂θ

(−Γj
π
arctan(

rj−1/2b

rj+1/2b
cot(

θ+ϕj
2

))

= − 1
2 sin θ

Γj
πb

rj
2−(1/2b)2

rj2+(1/2b)2−rjb cos(θ+ϕj)

(2.33)

In this expression, we use the fact that x = b cos θ on the surface of the flat plate which has

been discussed in Section 2.1.

Using Eq. (2.32), the circulational normal force due to the circulation −Γj and its image Γj
is given by

NCj = −
∫ b
−b ∆pjdx = ρ

∫ b
−b

∂(φ
′(u)
j −φ′(l)j )

∂t
dx

+ρ(U cosα− ḣ sinα)
∫ b
−b (u

′(u)
j − u′(l)j )dx+ ρ

2

∫ b
−b u

′(u)
j

2
− u′(l)j

2
dx

(2.34)
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where the term
∫ b
−b (u

′(u)
j − u′(l)j )dx is determined from Eq. (2.33) as∫ b

−b (u
′(u)
j − u′(l)j )dx

=
Γj
π

∫ π
0

[rj
2−(1/2b)2]

2 sin θ
( 1
rj2+(1/2b)2−rjb cos(θ−ϕj)

+ 1
rj2+(1/2b)2−rjb cos(θ+ϕj)

)b sin θdθ

= Γj

(2.35)

and the term
∫ b
−b u

(u)
j

2
− u′(l)j

2
dx is given by

∫ b
−b u

(u)
j

2
− u′(l)j

2
dx

=
Γ2
j

π2

∫ π
0

[rj
2−(1/2b)2]

2

4(sin θ)2
( 1

[rj2+(1/2b)2−rjb cos(θ−ϕj)]
2 − 1

[rj2+(1/2b)2−rjb cos(θ+ϕj)]
2 )b sin θdθ

=
Γ2
j brj

2sign(sinϕ)

2
√

2π

p4p2Im(p)−p1(p22+2p3−2p21)Re(p)

(p21−p22)[rj2−(1/2b)2]|p|2

(2.36)

where p1, p2, p3 and p4 are coefficients and given by p1 = rj
2 + (1/2b)2, p2 = −rjb cos(ϕj),

p3 = rj
2b2/2, p4 = (rj

2− (1/2b)2)rjb |sin(ϕj)| and p =
√
p2

2p3 + p2
1(p3 − p2

2) + ip1p2p4. In this

expression, Im and Re are the respective image and real parts of complex number, sign(x)

denotes the sign of x and i indicates
√
−1. Moreover, we derive the term

∂(φ
′(u)
j −∂φ(l)j )

∂t
form

equation (2.30) as

∂(φ
′(u)
j −∂φ(l)j )

∂t
=

Γj
π

∂
∂t

(arctan(
rj−1/2b

rj−1/2b
cot(

θ−ϕj
2

)) + arctan(
rj−1/2b

rj−1/2b
cot(

θ+ϕj
2

)))

=
Γj
π

∂
∂t

(arctan(
√

xj−b cosϕj
xj−b cosϕj

cot(
θ−ϕj

2
)) + arctan(

√
xj−b cosϕj
xj−b cosϕj

cot(
θ+ϕj

2
)))

=
Γj
π

(
M+N sin(θ−ϕj)
m+n cos(θ−ϕj) +

−M+N sin(θ+ϕj)

m+n cos(θ+ϕj)
)

(2.37)

where the coefficients M , N , m and n are given by M = [xj−(bcosϕj)
2]ϕ̇j, N = bxjϕ̇j sinϕj+

bẋj cosϕj, m = 2xj

√
x2
j − (bcosϕj)

2 and n = −2bcosϕj

√
x2
j − (bcosϕj)

2. In these ex-

pressions, the dot is the derivative with perspective to time t. As such, the expression∫ b
−b

∂(φ
′(u)
j −φ′(l)j )

∂t
dx is simplified as

∫ b
−b

∂(φ
′(u)
j −φ′(l)j )

∂t
dx =

Γj
π

∫ π
0

(
M+N sin(θ−ϕj)
m+n cos(θ−ϕj) +

−M+N sin(θ+ϕj)

m+n cos(θ+ϕj)
)b sinθdθ

= Γj
xj ẋj+b

2ϕ̇j sinϕj cosϕj√
x2j−(bcosϕj)

2
− Γjẋj

(2.38)

Substitute equations (2.35), (2.36) and (2.38) into equation (2.34), the circulational normal

force due to the circulation −Γj and its image Γj is turned out:

NCj = ρΓj(
xj ẋj+b

2ϕ̇ sinϕj cosϕj√
x2j−(bcosϕj)

2
− ẋj + U cosα− ḣ sinα)

+
ρΓ2
j brj

2sign(sinϕj)

4
√

2π

p4p2Im(p)−p1(p22+2p3−2p21)Re(p)

(p21−p22)[rj2−(1/2b)2]|p|2

(2.39)
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Similarly, the circulational moment caused by the circulation −Γj and its image Γj is given

by:

MhCj = −ρ(U cosα− ḣ sinα)
∫ b
−b

∂(φ
′(u)
j −φ(l)j )

∂x
xdx− ρ

∫ b
−b

∂(φ
(u)
j −φ

(l)
j )

∂t
xdx+

−ρ
2

∫ b
−b (u

′(u)
j

2
− u′(l)j

2
)xdx− abNCj

= −ρ(U cosα− ḣ sinα)

{[
(φ
′(u)
j − φ′(l)j )x

]x=b

x=−b
−
∫ b
−b (φ

′(u)
j − φ′(l)j )dx

}
+

−ρ
(∫ b
−b

∂(φ
′(u)
j −φ′(l)j )

∂t
xdx

)
− ρ

2

∫ b
−b

(
u
′(u)
j

2
− u′(l)j

2
)
xdx− abNCj

= −ρ(U cosα− ḣ sinα)Γj

(
xj −

√
x2
j − b2

)
cosϕj+

− ρΓj

(
4x2j+b

2−2b2cos2 ϕj−2x2j sec2 ϕj

2
√
x2j−b2cos2 ϕj

− (2− sec2 ϕj)xj

)
ẋj+

− ρΓj

(
xj secϕj

b2(cos 2ϕj+2)−2x2j sec2 ϕj

2
√
x2j−b2cos2 ϕj

+ x2
j sec3 ϕj − b2cosϕj

)
ϕ̇j sinϕj+

− ρΓ2
j
sgn(sinϕj)

4
√

2π

(−p41p2+p21p2(p22−2p3)+4p2p23)Re(p)−(p31p4−p1p4(p22+2p3))Im(p)

(p21−p22)|p|2
√
p21−2p3

− abNCj

(2.40)

where the coefficients p1, p2, p3 and p4 are the same as equation (2.36), NCj is the circulational

normal force of circulation −Γj and its image Γj, sign(x) denotes the sign of x, i indicates√
−1 and Re and Im are respectively the real and image parts of complex number. Moreover,

according to the displacement relationship between η and ξ coordinates (Eq. (2.23)), the

radius displacement rj and the angular velocity ϕ̇j of circulation −Γj in η plane is given

by

rj =
xj

2 cosϕj
+

zj
2 sinϕj

ϕ̇j =
zj żjsinϕj(cosϕj)

3−xj ẋj(sinϕj)3 cosϕj

x2j (sinϕj)
4+z2i (cosϕj)

4

(2.41)

where xj and zj are respectively the horizontal and vertical displacements of circulation

−Γj in the ξ plane , ẋj and żj are respectively the horizontal and vertical velocities of the

circulation −Γj in the ξ plane and ϕj is the angular displacement of the circulation −Γj in

the η plane. Also, sinϕj and cosϕj are given by:

sinϕj = sign(zj)

√
b2−x2j−z2j+

√
(x2j+z

2
i−b2)+4b2z2j

2b2

cosϕj = sign(xj)

√
x2j+z

2
j+b2−

√
(x2j+z

2
j+b2)

2−4b2x2j
2b2

(2.42)

where sign(x) is the sign of variable x.

The terms (that is proportional to Γ2
j) of Eqs. (2.39, 2.40) stem from the nonlinear term

u′2 in Bernoulli’s equation (2.10), which has been usually neglected in the previous studies.
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If we neglect this term, considered a small angle of attack, constant free stream, and a flat

wake (ϕj = 0), then the shedding velocity will be given by ẋj = U and, hence, Theodorsen’s

result [8] is recovered
NC = ρUΓ x√

x2−b2

MhC = − ρUΓb2

2
√
x2−b2 − abNC

(2.43)

Equations (2.39, 2.40) are more than a geometrically exact extension of Theodorsen’s result,

Eq. (2.43). In addition to accounting for the geometric nonlinearities, Eqs. (2.39, 2.40)

allow for a time-varying (non-uniform) free stream, non-flat wake deformation, shedding by

the local velocity ẋj rather the free stream one, and finally accounts for the higher order

perturbation u′2-effect.

As for the total suction force on the flat plate, we substitute the non-circulatory and circu-

latory contributions of q′θ into Eq. (2.13) to obtain

Fs =
πρb

8

[∑
j

−Γj
πb

(
r2
j − ( b

2
)
2

r2
j + rjb cos(ϕj) + ( b

2
)
2

)
− 2

(
U sinα + ḣ cosα + (a− 1/2)bα̇

)]2

(2.44)

2.4 Numerical Implementation

In this section, we show the implementation of the unsteady model developed in the previous

sections. The developed model is semi-analytical in the sense that closed form algebraic

equations are written for the aerodynamic loads, though the wake convection needs to be

performed numerically. As stated before, we discretize the wake sheet of vorticity into

a finite number of point vortices. As shown in Eqs. (2.39,2.40), the coordinates of the

discrete wake vortices and their velocities with respect to O′ are required to determine

the unsteady aerodynamic loads. The velocity of each wake vortex −Γj comprises three

components: (1) a component due to the undisturbed flow, (2) a circulatory component due

to the other separated vortices and their images, and (3) a non-circulatory component due

to the source/sink distribution over the cylinder/plate. All the components are transformed

to the inertial axes (X-Z system) where they are added together and marched forward to

predict the location of each point vortex in the next time step.

The first contribution to the components of the convection velocity of a wake vortex −Γj
that is due to the undisturbed flow, as shown in Fig. 2.1, is written as

Ẋ
(1)
j (t) = U(t) , Ż

(1)
j (t) = ḣ(t) (2.45)

Figure 2.5 (a) shows the induced velocity on a wake vortex −Γj due to another wake vortex
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−Γk and its image. Then, the components of the total induced velocity on a wake vortex

−Γj due to the other wake vortices and their images are given by

q
(2)
rj =

N∑
k=1,k 6=j

[
q+
jk sin δ1jk − q−jk sin δ2jk

]
=

N∑
k=1,k 6=j

{
−Γk sin(ϕj−ϕk)

2π

[
rj

r2j−2rjrk cos(ϕj−ϕk)+rk2
−

b2

4rk

r2j−2rj
b2

4rk
cos(ϕj−ϕk)+

(
b2

4rk

)2
]}

q
(2)
θj =

N∑
k=1,k 6=j

[
q−jk cos δ2jk − q+

jk cos δ1jk
]

=
N∑

k=1,k 6=j

{
− Γk

4πrj

[
r2j−

(
b2

4rk

)2
r2j−2rj

b2

4rk
cos(ϕj−ϕk)+

(
b2

4rk

)2 − r2j−rk2

r2j−2rjrk cos(ϕj−ϕk)+rk2

]}
(2.46)

Similarly, Fig. 2.5 (b) shows the induced velocity on a wake vortex −Γj due to an element

of the source/sink distribution. Hence, the non-circulatory components of the total induced

velocity on a wake vortex −Γj are given by

q
(3)
rj =

π∫
0

dq+
Hj cos δ3j − dq−Hj cos δ4j

= − b2

2rj2

(
U sinα + ḣ cosα + abα̇

)
sinϕj − b4α̇

8rj3
sin(2ϕj)

q
(3)
θj = −

π∫
0

dq+
Hj sin δ3j + dq−Hj sin δ4j

= b2

2rj2

(
U sinα + ḣ cosα + abα̇

)
cosϕj + b4α̇

8rj3
cos(2ϕj)

(2.47)

According to the transformation between the plate domain (ξ-plane) and the cylinder domain

(η-plane), as presented in Eq. (2.6), the components of the above induced velocity vectors

q(2) and q(3) in the ξ-plane are written as

ẋ
(p)
j =

q
(p)
rj (1− b2

4rj
2 ) cosϕj−q

(p)
θj (1+ b2

4rj
2 ) sinϕj

1− b2

2rj
2 cos(2ϕj)+

(
b2

4rj
2

)2

ż
(p)
j =

q
(p)
rj (1+ b2

4rj
2 ) sinϕj+q

(p)
θj (1− b2

4rj
2 ) cosϕj

1− b2

2rj
2 cos(2ϕj)+

(
b2

4rj
2

)2

(2.48)

where p = 2, 3. These velocity components are then transformed to the inertial axes (X−Z)

as

Ẋ
(p)
j = ẋ

(p)
j cosα + ż

(p)
j sinα

Ż
(p)
j = −ẋ(p)

j sinα + ż
(p)
j cosα

(2.49)

Thus, the total velocity components of the wake vortex −Γj with respect to the plate’s center
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(a) (b)

Figure 2.5: A schematic for circulation Γi effected by (a) other circulation Γk and its image
circulation and (b) sources on the η-plane

O′ in the inertial frame are determined as

Ẋj−O′(t) = Ẋ
(1)
j (t) + Ẋ

(2)
j (t) + Ẋ

(3)
j (t) + abα̇(t) sinα(t)

Żj−O′(t) = Ż
(1)
j (t) + Ż

(2)
j (t) + Ż

(3)
j (t) + abα̇(t) cosα(t)

(2.50)

We use a simple first-order Euler scheme to predict the new position of the wake vortex

as

Xj(t+ ∆t) = Xj(t) + Ẋj(t)∆t

Zj(t+ ∆t) = Zj(t) + Żj(t)∆t
(2.51)

Finally, the velocities (ẋ and ż) and positions (x and z) in the body frame, as required in

Eqs. (2.39,2.40), can be calculated from their inertial counterparts according to the inverse

of Eq.(2.49).

As for the aerodynamic loads, the non-circulatory contributions are given directly in equa-

tions (2.20) and (2.21). After determining the positions and the velocities of the wake vor-

tices, the circulatory loads induced by each wake vortex can be determined from Eqs. (2.39,

2.40). Finally, the total suction force is determined from Eq. (2.44). Thus, the horizontal
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and vertical components of the resultant force are given by

FX =

(
NN +

N∑
j

NCj

)
sinα− FS cosα

FZ =

(
NN +

N∑
j

NCj

)
cosα + FS sinα

(2.52)

2.5 Validation and Analysis

Although the model is mainly developed for unsteady applications, it is of interest to validate

its asymptotic steady behavior first in the following subsection, while the unsteady behavior

will be validated in the next subsection.

2.5.a Steady Behavior

The asymptotic steady behavior of the developed model is validated against the wind tunnel

experimental results of Brandon [65] on the F-18 wing experiencing high angles of attack

(5◦ − 75◦). We divide the wing into 100 segments, apply the developed aerodynamic model

on each segment, and integrate over the span to obtain the total lift force L. Then, we

use

CL =
AR

2

(
1 +

√(
AR
2

)2
+ 1

) L
1
2
ρU2S

(2.53)

to account for the induced downwash due to the three dimensional effects in a simple way

through the Extended Lifting Line Theory (see [66]). In this equation, AR denotes the aspect

ratio of the wing. Figure 2.6 shows a comparison between the lift coefficient using Eq. (2.53),

with the lift L determined from the proposed model, and the experimental data given in Ref.

[65]. Two model predictions are presented in Fig. 2.6; with and without considering the

leading edge (LE) suction force. Figure 2.6 also shows the static lift coefficient using the

conventional extended lifting line theory; that is

CL =
πAR

1 +

√(
πAR
a0

)2

+ 1

sinα

The plots show that the variation of the static lift coefficient with the angle of attack (CL-α

curve) using the proposed model accounting for the LE suction force exactly matches that

of the classical wing theory. This matching indicates that both have the same nonlinearity
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Figure 2.6: Comparison between the static lift coefficient using the proposed model (with
and without suction force), the static wing theory and the experimental data [65]

(sinα), that is induced by the no-penetration boundary condition. Moreover, since both

of these curves closely match the experimental data up to α = 20◦, we can conclude that

the nonlinearity induced by the no-penetration boundary condition is the dominant one in

this range of the angle of attack (as well as the flow remains attached). At large angles of

attack, the separation effects are more pronounced. Consequently, the contribution of the LE

suction force is expected to diminish as shown by Dickinson and Gotz [67] and Usherwood

and Ellington [68]. Therefore, within the framework of potential flow, we account for the

flow separation by neglecting the LE suction force. The fact that the predicted CL-α curve,

ignoring the LE suction force, closely matches the experimental data shows that the effects

of the geometric nonlinearities may dominate other separation effects. Although the F-18

wing section (NACA 65A005) is a typical cambered, thick airfoil with a rounded LE, it is

envisaged that the high sweep angle of the wing helps stabilizing a LE vortex, consequently,

eliminates abrupt stall from taking place and leads to a smooth lift-curve. This may explain

the good matching between the F-18 wing experimental data and the potential flow results

when ignoring the LE suction (clearly, the LE suction force and the LE vortex cannot coexist

[69]).

Since the developed model is two-dimensional, it is still of interest to validate its steady

behavior versus two dimensional experimental results. We choose the experimental results

of Dickinson and Gotz [67] for validation. Their experimental setup consisted of a two

dimensional flat plate undergoing an impulsive start from rest to some specific forward speed

through almost a constant acceleration at a constant angle of attack. They covered a wide

range of positive angles of attack at low Reynolds numbers (between 79-236). Dickinson and
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Gotz found that for large angles of attack, a strong leading edge vortex (LEV) forms with

a large diameter (of the order of a chord length). After about four chord lengths (4c), the

vortex becomes extended rearwards and eventually shed. As this vortex is shed, a vortex of

opposite sign is formed at the trailing edge. This alternating pattern continues, forming Von

Karman street, which is similar to the numerical results of Wang [70]. Dickinson and Gotz

provided two polar plots for the measured lift and drag coefficients at 2c and 7c referring

to them as ”early” and ”late” measurements, respectively. The ”late” data correspond to

the inception of the Von Karman street and the load oscillations while the ”early” ones

correspond to the steady loads reached after the transient response.
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Figure 2.7: Comparison between the two-dimensional static lift and drag coefficient using the
proposed model (with and without suction force) and the experimental results of Dickinson
and Gotz [67].

Fig. 2.7 shows a comparison between the lift and drag coefficients as determined by the

proposed model and the ”early” results of Dickinon and Gotz [67]. The results show that

the developed model ignoring the LE suction gives a satisfactory trend for the lift and drag

variation in comparison to the experimental data of Dickinson and Gotz. It is important to

note that, in contrast to the previous validation case, the experiment of Dickinson and Gotz

is performed at low Reynolds numbers. This explains the deviation of the experimental data

for the lift coefficient from the current results even at small angles of attack. As expected,

considering the LE suction force in a potential flow framework predicts no drag, as shown in

Fig. 2.7 (b). The difference between the potential flow results for drag and the experimental

data at zero angle of attack is attributed to the skin friction drag that is not captured within

the potential flow framework.
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2.5.b Unsteady Behavior

The unsteady predictions of the proposed model are validated against the computational and

experimental results of Ramesh et al. [17]. They solved the two-dimensional Navier-Stokes

equations on a flat plate undergoing large amplitude canonical pitch maneuvers that are

presented in Ref. [61] and shown here in Fig. 2.8. The plate is pitching around the mid

point uniformly from 0◦ up to a specific angle of attack (25◦ and 45◦), retains this angle for

a while, and then returns back uniformly to 0◦ with a total maneuver non-dimensional time

of six.

0 1 2 3 4 5 6 7
0

10

20

30

40

50

Relative time (tU/c)

Li
ft 

co
ef

fic
ie

nt
 C

L

 

 

25o amplitude

45o amplitude

Figure 2.8: Canonical pitch maneuvers [61].

Figures 2.9 and 2.10 show comparisons of the time variations of the resulted lift coefficients

among the proposed model (with and without considering the LE suction force), the com-

putational results and experimental data of Ramesh at el. [17], and the classical unsteady

model of Leishman and Nguyen [71] for the 25◦ and 45◦ maneuvers, respectively. Noting that

the Reynolds number of the experiment and simulation of Ramesh et al. [17] is 10,000 where

delayed stall is evidenced [67], considerable flow separation is not expected to occur during

the relatively small angle of attack maneuver (25◦). Hence, it is expected that the role of

the LE suction force would be significant in this maneuver. This explains the agreement be-

tween the experimental data and the lift curve predicted by the proposed model (accounting

for the LE suction) as well as that of the classical unsteady theory, as shown in Figure 2.9

for the 25◦ maneuver. However, when the maneuver amplitude becomes larger, separation

effects become more pronounced. Hence, the LE suction is not expected to play a role. As

shown in Fig. 2.10, the lift curves predicted by the proposed model (accounting for the LE

suction) as well as the classical unsteady theory deviate considerably from the experimental

data, particularly at the times where the large angles of attack are encountered (Ut
c

= 3−4).

On the other hand, the lift curve of the proposed model, neglecting the LE suction, closely

matches the experimental data.
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Figure 2.9: A comparison for the unsteady lift evolution among the proposed models (with
and without considering the leading edge suction force), the computational results and ex-
perimental data of Ramesh et al. [17], and the classical unsteady model of Leishman and
Nguyen [71], for the 25o-maneuver.

Table 2.1: Error metrics quantifying the deviations from the experimental results of Ramesh
et al. [17] of the results of the proposed model with and without including the LE suction
force, the computational results of Ramesh et al. [17], and the results of the classical unsteady
model of Leishman and Nguyen [71].

αmax Simulation Method erms =

√
(CL−Cexp)

2

max(Cexp)
× 100 e =

|CL−Cexp|
max(Cexp)

× 100

Proposed model without LE suction 14.50 11.47
25o Proposed model with LE suction 12.06 10.11

Computational results [17] 16.28 12.26
Classical unsteady model [71] 12.50 10.78
Proposed model without LE suction 13.16 10.91

45o Proposed model with LE suction 23.05 19.72
Computational results [17] 16.52 14.16
Classical unsteady model [71] 30.63 25.99

For each of the two considered maneuvers, we provide a quantitative comparison among

the models discussed above. We consider the experimental data of Ramesh at el. [17] as a

benchmark and calculate the deviation of each of the other results with respect to it, as shown

in Table 2.1. Two error metrics are calculated. These are the root mean squared error in the

lift coefficient in percent of the maximum lift coefficient erms =

√
(CL−Cexp)2

max(Cexp)
× 100, and the

mean value of the deviation in the lift coefficient in percent of the maximum lift coefficient

e = |CL−Cexp|
max(Cexp)

. We use the over bar to denote an average quantity. Because low Reynolds

number (10,000) is encountered, the associated delayed stall indicates that the flow will
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Figure 2.10: A comparison for the unsteady lift evolution among the proposed models (with
and without considering the leading edge suction force), the computational results and ex-
perimental data of Ramesh et al. [17], and the classical unsteady model of Leishman and
Nguyen [71], for the 45o-maneuver.

remain attached during the relatively small angle of attack maneuver (25◦). Thus, in such

a maneuver, the two error metrics of the proposed model (considering the LE suction) and

the classical unsteady theory are comparable to that of the computational results. But when

considerable separation effects are encountered in the large amplitude maneuver, the two

error metrics of the proposed model (considering the LE suction) and the classical unsteady

theory are too large in comparison to the that of the proposed model, without considering

the LE suction, and that of the computational results. It is noteworthy to mention that in

addition to the efficiency of the proposed model (in terms of computational cost and number

of degrees of freedom), it resulted in the minimum error metrics in comparison to all of the

other models for the high angle of attack case. That is, the proposed unsteady aerodynamic

model is efficient enough to be used in multi-disciplinary analyses (e.g., dynamics, control,

and optimization) and also rich enough to cover the gaps that the classical unsteady theory

cannot cover.

The capability of the developed model to capture the effects of unsteady free stream is

validated against the predictions of Isaac’s theory [72], Greenberg’s theory [73], and Peters

finite state theory [74] for the case of a sinusoidal variation of the free stream. The unsteady

free stream is written as

U(t) = U0[1 + µ sin(ωt)] = U0[1 + µ sin Ψ]

where α is kept constant. Figure 2.11 shows a comparison of the normalized lift L
2πρbU2

0α
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Figure 2.11: A comparison for the normalized lift (unsteady to quasi-steady ratio) among
the proposed models (with and without considering the leading edge suction force), Isaac’s
theory [72], Greenberg’s theory [73], and Peters finite state theory [74] for a sinusoidally
varying free stream.

(unsteady to quasi-steady ratio), for the case µ = 0.8 and k = 0.2, as obtained by the

proposed model and the results of the models discussed above. The simulation is performed

at α = 5◦ (in the linear range) in order to have a meaningful comparison with the linear

theories. The plots show that whether the LE suction effects are included or not, the

unsteady lift can be satisfactorily predicted by the proposed model for the case of a small

angle of attack where the linear theory is applicable (mainly because of the absence of

separation).

2.5.c Oscillation motions of different methods

In this section, Classical Theodorsen’s method [62] and Taha’s unsteady aerodynamic model

[4] are chosen to compare with the proposed model. Here, the only pitch motion is considered

and the dynamic attack model is chosen as α = A1 + A1 cosωt. A1 is the amplitude of the

attack angle and four different values is chosen: 5o, 10o, 15o and 20o. In Taha’s unsteady

aerodynamic model, when the suction force is considered, the quasi-steady lift coefficient

is chosen as CL,s(α) = 2πsinα, which is shown in Fig. 2.6. Moreover, the wind speed U ,

the chord length c and frequency of attack angle ω are chosen as 10m/s, 1m and 10rad/s,

respectively. Therefore, the time history of lift coefficients for the four different cases are

shown in Fig. 2.12.

Inspecting Fig. 2.12, we note that the time history of the lift coefficient of proposed model is

almost same as that of Classical Theodorsen’s and Taha’s methods when the angle of attack is

α = 5+5 cosωt. This is expected that Classical Theodorsen’s and Taha’s methods are derived
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Figure 2.12: The lift coefficient varied by time history with there different methods (proposed
model considering suction force, Taha’s model considering suction force [4] and Theodorsen’s
method [62]) in different amplitude of attack angle: (a) α = 5+5 cosωt, (b) α = 10+10 cosωt,
(c) α = 15 + 15 cosωt and (d) α = 20 + 20 cosωt

from the assumption of small angle of attack. Classical Theodorsen’s and Taha’s methods

become inaccurate as the amplitude of angle of attack is increased to α = 20 + 20 cosωt

and the amplitude of lift force becomes 20% larger than the proposed model. Therefore, it

is necessary to adopt our proposed geometrically-exact model to consider the unsteady flow

especially when the angle of attack is relatively large.
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2.5.d Pressure distribution
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Figure 2.13: Upper and low pressure distributions along the flat plane with different attack
angles: (a)α = 10o, (b) α = 30o, (c) α = 45o and (d) α = 70o

In this section, we will do some further discussion about the upper and lower pressures

along the chord line with different attack angles. First, based on Eq. (2.10), the pressure

distribution can be expressed as:

Cp = p−p∞
1/2ρU2

=
∂φ′
∂t

+(U cosα−ḣ sinα)u′+(U sinα+ḣ cosα)w′+ 1
2

(u′2+w′2)

1/2ρU2

(2.54)
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where the disturbance velocity potential φ′ is the sum of the noncirculational and circula-

tional effects shown in Eq. (2.17) and Eq. (2.30), the disturbance vertical velocity w′ is

caculated by Eq. (2.4) and the disturbance horizontal velocity u′ is the sum of the noncircu-

lational effects and circulational effects which is calculated from Eq. (2.16), Eq. (2.26), Eq.

(2.27) and Eq. (2.48).

Based on the above derivation, the upper and low pressure distributions along the chord

line with the different angles of attack are plotted in Fig. 2.13. Inspecting Fig. 2.13(a),

we note that the pressure on the lower surface is almost positive and the pressure on the

upper surface is negative along the chords of the plat plane when the attack angle is small

(α = 10o). However, as the attack angle is increased, the pressure of the lower surface in

the leading part becomes negative and the pressure of the upper surface in the trailing part

becomes positive. When the attack angle is 70o, pressure of the lower surface in the first

quarter of the chord is negative and the upper surface in last quarter of chord becomes

positive, as shown in Fig. 2.13(d). To this end, it can be concluded that the attack angle

have strong effect on the pressure distribution along the chord.

2.5.e Frequency Response at Different Angles of Attack

Having validated the proposed model for a high angle of attack maneuver, it is interesting

to investigate how the frequency response (Theodorsen’s main result) changes as the angle

of attack increases. Theodorsen’s model is based on a linear approximation for the flow

dynamics, which results in a frequency response that is independent on the operating condi-

tion and/or the amplitude of the aerodynamic input (airfoil motion). The developed model

accounts for the geometric and nonplanar-wake nonlinearities. As such, it will not result

in a single frequency response. Rather, a different frequency response (i.e., linearized flow

dynamics) will be obtained at different operating conditions (angles of attack). In this sec-

tion, we determine the frequency response of the circulatory normal force at different angles

of attack, namely 5◦, 20◦, and 40◦. At each value of these angles of attack, the following

plunging maneuver is simulated:

h(t) = H̄b sinωt

where H̄ is the amplitude of oscillation normalized by the half-chord length (b) and ω is the

frequency of oscillation. That is, the effective angle of attack is given by

αeff ≈ α0 +
ḣ

U
= α0 + kH̄ cosωt

where α0 is the mean/steady angle of attack (5o, 20o and 40o) and k is the reduced frequency.

For each value of α0, we simulate the above plunging maneuver at various frequencies to

determine the frequency response at this value of α0. For each frequency, the value of H̄
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is adjusted such that the amplitude of the oscillating angle of attack (kH̄) is 5◦; that is,

we simulate small angle maneuvers around different mean values of αeff to determine the

frequency response of the linearized aerodynamic system around the considered α0.

For each combination of α0 and k, the above plunging maneuver is simulated and the steady

state time history of the non-circulatory normal force is obtained. We then simulate the same

maneuver (i.e., same αeff ) at almost steady conditions (at very small value of k). Thus, the

magnitude of the frequency response at this combination of α0 and k is simply the ratio of

the unsteady amplitude to the almost steady one and its argument (phase) is the phase shift

between the two signals far out in time.

Figure 2.14 shows the magnitude, phase, and polar lots of the calculated frequency response

at the considered three values of α0 along with that of Theodorsen. For α0 = 5◦, the obtained

frequency response closely matches that of the Theodorsen function. If α0 is increased to

20◦, good matching is still being seen with a bit of discrepancy at large reduced frequencies.

A noteworthy observation is the large deviation at α0 = 40◦, not only quantitatively but

also qualitatively. The magnitude of Theodorsen’s frequency response does not go below
1
2
. In fact, it asymptotically reaches such a value as k goes to infinity. However, Fig. 2.14

(a) shows that the magnitude of the frequency response decreases for large values of α0 and

approaches 0.35 as k goes to infinity. Moreover, unlike the phase of the Theodorsen function,

which asymptotically reaches zero (in phase) as k goes to infinity, the phase angle of the

frequency response decreases considerably at large angles of attack so that it asymptotically

reaches −180◦ (out of phase) as k goes to infinity. This observation is worth discussing.

Note that because the phase of the Theodorsen function approaches zero at high reduced

frequencies (i.e., the input and output signals are exactly in phase), it invokes modeling

the high-frequency, oscillatory flows with quasi-steady means with some magnitude drop

[18]. However, the obtained frequency response (which accounts for the nonlinear wake

deformation) refutes this concept because the phase shift approaches −180◦ rather (i.e., the

input and output signals are completely out of phase).

2.5.f Model Validity, Limitations and Extensions

Although the developed model provides an efficient, satisfactory means of predicting the

unsteady aerodynamic loads due to large amplitude maneuvers, it is still lying within the

framework of potential flow and, hence, cannot capture specific physical aspects. These

include viscous friction, LE separation, and dynamic stall. One important extension is

to study the appropriate conditions for switching between including and ignoring the LE

suction. Recently, there have been relevant efforts in Refs. [75, 76]. Ramesh et al. [75]

introduced a new criterion for LE separation based on LE suction. Note that according to



Zhimiao Yan 2.Geometrical-Exact Unsteady Model 34

10
−3

10
−2

10
−1

10
0

10
1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

|C
(k

)|

 

 

Theodorsen method

Proposed model around: 5o

Proposed model around: 20o

Proposed model around: 40o

(a)

10
−3

10
−2

10
−1

10
0

10
1

−3

−2.5

−2

−1.5

−1

−0.5

0

k

an
gl

e(
C

(k
))

 

 

Theodorsen method

Proposed model around: 5o

Proposed model around: 20o

Proposed model around: 40o

(b)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

 

 

Theodorsen method

Proposed model around: 5o

Proposed model around: 20o

Proposed model around: 40o

C(k)

(c)

Figure 2.14: Magnitude and phase plots along with the polar plot for the obtained frequency
response at different angles of attack along with that of Theodorsen: (a) magnitude of the
frequency response, (b) phase angle of the frequency response and (c) polar plot of the
frequency response

Garrick [77], the flow velocity at the LE, VLE, can be written as

VLE = lim
x→LE

S√
x
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where S = limx→LE
1
2
γ(x, t)

√
x is a measure of the LE suction force and γ is the bound

vorticity distribution that is written in Fourier series as

γ(θ, t) = 2U

[
A0(t)

1 + cos θ

sin θ
+
∞∑
n=1

An(t) sin(nθ)

]

where x = c
2
(1 − cos θ). All the Fourier series terms vanish at the LE except the A0-

term, which is infinite at the LE (having 1√
x

singularity). Thus, S is finite and equal to

S =
√
cUA0(t), where c is the chord length and U is the free stream velocity. As such, the

A0 parameter is a measure of the flow velocity at the LE and the LE suction force. Since

the LE separation is related to the flow conditions at the LE, Ramesh et al. [75] proposed

the A0 parameter to be a measure for LE separation and called it ”Leading Edge Suction

Parameter(LESP)”. If A0 exceeds a certain limit (LESPcr) (that depends on the airfoil type

and the Reynolds number), a LE vortex is shed. They determine the strength of the newly

shed LE vortex such that A0 = LESPcr.

Morris and Rusak [76] also studied the onset of steady LE stall on thin airfoils using the

method of matched asymptotic expansion. In their formulation, the problem outer region is

the flow around most of the airfoil chord and is modeled using thin airfoil theory. The inner

region is the flow in the vicinity of the LE and is determined by solving the incompressible

viscous Navier Stokes equation on a semi-infinite parabola. The two solutions are then made

to asymptotically match each other. They showed the existence of a critical angle of attack

(that depends on Reynolds number) that is responsible for the inception of LE stall. It should

be noted that A0 = 1
2

sinα for steady conditions. Thus, the LESP criterion of Ramesh et

al. [75] is equivalent to the angle of attack criterion of Morris and Rusak [76]. However, for

unsteady cases, the LESP criterion is more representative than the angle of attack criterion

because it accounts for the effective angle of attack over the whole airfoil surface.

For the high Reynolds number of Brandon’s experiment on the F-18 wing [65], the critical

steady angle of attack αcr ∼ 15◦ according to Morris and Rusak [76]. This is consistent

with our results of the F-18 wing (shown in Fig. 2.6); including the suction force closely

matches the experimental results up to αcr ∼ 15◦ at which separation occurs. Above 15◦,

since separation occurs, ignoring the LE suction closely matches the experimental results.

On the other hand, considering the unsteady validation cases (shown in Figs. 2.9 and

2.10), LESPcr ∼ 0.18 [75], which corresponds to an angle of attack of αcr ∼ 21.1◦. This

is also consistent with our results since including the LE suction gives satisfactory results

for the 25◦-maneuver which most of the time lies below the critical condition. On the

other hand, during the 45◦-maneuver, considerable separation occurs (and consequently LE

suction is diminished). As such, ignoring the LE suction yields very comparable results to

the computational and experimental data.

Another straightforward extension to the developed model is to allow for the emanation of
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a vortex sheet from the LE. The strength of the LE vorticity can be determined to satisfy

the Kutta condition at the LE in the same way it is satisfied here at the TE. That is, the

following two equations will be solved simultaneously to determine the strengths of the shed

vorticity at both edges:

q′θN(r = b/2, θ = 0, t) + q′θTE(r = b/2, θ = 0, t) + q′θLE(r = b/2, θ = 0, t) = 0

q′θN(r = b/2, θ = π, t) + q′θTE(r = b/2, θ = π, t) + q′θLE(r = b/2, θ = π, t) = 0

where the subscripts N , TE, and LE refers to the non-circulatory, trailing edge wake, and

leading edge wake contributions, respectively. This extension will be more suitable to capture

the LE separation effects in comparison to the mere manipulation of the LE suction force

inclusion.

2.6 Conclusions

We developed a hybrid analytical-numerical approach to determine the lift coefficient asso-

ciated with unsteady aerodynamics that involve high angles of attack. For this purpose, we

revisited the classical Theodorsen’s frequency response model and relaxed the major simpli-

fying assumptions that led to limited region of applicability of Theodorsen’s model such as

(1) flat wake, (2) small angle of attack, (3) small disturbances to the mean flow components,

and (4) time-invariant free-stream. By relaxing these assumptions, we managed to develop

a geometrically-exact potential flow model. In the developed model, the vortex kinemat-

ics were determined numerically. However, unlike the discrete vortex models, the circulation

distribution and the associated aerodynamic loads were determined analytically after solving

for the vortex kinematics.

The asymptotic steady behavior of the developed model was validated against two-dimensional

experimental data and on the F-18 wing showing a good matching up to 75◦ angle of attack.

The unsteady behavior of the developed model was validated against some experimental

and computational results of canonical large-amplitude pitch maneuvers. The model also

showed a good agreement with the experimental results in comparison to the classical un-

steady theory without requiring high computational burden. The developed model was then

used to determine the lift frequency response at various angles of attack. For small angles

of attack, the obtained frequency response closely matches that of Theodorsen function.

However, for high angles of attack (40◦), both qualitative and quantitative discrepancies are

observed between the obtained frequency response and that of Theodorsen. The obtained

frequency response at the high angle of attack approaches 0.2 magnitude and −180◦ phase at

large values for the reduced frequency, which is in contrast to the 1
2

magnitude and 0◦ phase

approached by Theodorsen frequency response. The developed model is efficient enough to

be used in multi-disciplinary applications (e.g., dynamics and control) and also rich enough
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to cover some gaps that the classical theory of Theodorsen cannot cover.



3
Autoparametric Vibration Systems

Autoparameteric vibration systems have been proposed to control structures’ vibrations by

exploiting an internal resonance with an introduced second degree of freedom. We revisit

the model proposed by Haxton and Barr [19] of a base structure and a cantilever beam with

a tip mass. Assessment of other nonlinear aspects of this system, such as, saturation, jumps,

hysteresis and chaos, is important when considering other potential applications for such

systems, such as multi-directional actuation or energy harvesting. To this end, we perform

a detailed analysis of an autoparametric system to show the effects of different parameters,

such as the amplitude and frequency of the excitation force, the damping coefficient and

frequency of the attached cantilever beam and tip mass, on the nonlinear response of the

system.

3.1 Modeling of autoparametric vibration system

The autoparametric absorber system considered here is similar to the one considered by

Haxton and Barr [19] and consists of a base structure and a beam with a tip mass. The base

structure of this system is subjected to an external force F (t), as shown in figure 3.1. This

structure undergoes a vertical displacement xd and has a stiffness k2 and damping coefficient

c2. One local coordinate x − y is chosen to be fixed on the top of the base structure. The

horizontal motion of the cantilever beam is denoted by y(s), where s represents coordinate

along the cantilevered beam.

To establish the governing equation, we use the extended Hamilton’s principle [78] which is

written as ∫ t2

t1

(δT − δV + δWnc)dt = 0 (3.1)

38
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Figure 3.1: Schematic diagram of autoparametric absorber system

where, T , V and Wnc are respectively the kinetic energy, potential energy and virtual work

due to the nonconservative forces. Inspecting figure 3.1, the kinetic energy T and potential

energy V are respectively expressed as

T = 1
2
Mẋ2

d + 1
2
m[ẋd + d

dt
(−l + x(l))]2 + 1

2

∫ l
0
ρ[ẋd + d

dt
(−s+ x(s))]2ds

+1
2
mẏ(l)2 + 1

2
Jẏ′(l)2 + 1

2

∫ l
0
ρẏ(s)2ds

and

V =
∫ l

0
1
2
EI(θ′(s))2ds+

∫ l
0
ρg(xd + x(s)− s)ds+mg(xd + x(l)− l) +Mgxd + 1

2
k2x

2
d

(3.2)

where, m and M are the tip mass and mass of the base structure, respectively, l is the

length of the cantilever beam, J is the rotational inertia of the tip mass relative to tip of

the cantilever beam, ρ is the mass of the beam per unit length, EI is the stiffness of the

cantilever beam, x(s) and y(s) are the vertical and horizontal displacements of the cantilever

beam in the local coordinate x − y, θ(s) is the rotational angle of the cantilever beam and

ẋ and x′ are the derivatives of the variable x with time t and distance s, respectively.

Inspecting figure 3.1, we note the following geometrical relationship between y(s), x(s) and

θ(s): y(s) =
∫ s

0
sin(θ(η))dη and x(s) =

∫ s
0

cos(θ(η))dη. Therefore, the component of θ′(s)
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and x(s) are written as

θ′(s) = y′′(s)√
1−y′(s)2

≈ y′′(s)(1 + 1
2
y′(s)2)

and

x(s) =
∫ s

0

√
1− y′(η)2dη ≈

∫ s
0

(1− y′(η)2

2
)dη

(3.3)

Assuming that the value y′(s) is much smaller than one, substituting Eq. (3.3) into Eq.

(3.2), and keeping up to fourth-order terms, we simplify the kinetic energy T and potential

energy V to

T = 1
2
Mẋ2

d + 1
2
m[ẋd − d

dt
(
∫ l

0
y′(η)2

2
dη)]2 + 1

2

∫ l
0 ρ[ẋd − d

dt
(
∫ s

0
y′(η)2

2
dη)]2ds

+1
2
mẏ(l)2 + 1

2
Jẏ′(l)2 + 1

2

∫ l
0
ρẏ(s)2ds

and

V =
∫ l

0
1
2
EI(y′′(s)2 + y′′(s)2y′(s)2)ds+

∫ l
0
ρg(xd − (l − s)y

′(s)2

2
)ds

+mg(xd −
∫ l

0
y′(s)2

2
ds) +Mgxd + 1

2
k2x

2
d

(3.4)

Moreover, inspecting figure 3.1, the virtual work due to nonconservative forces is given

by

δWnc =

∫ l

0

Fd1δy(s)ds+ Fd2δxd(s) + F (t)δxd(s) (3.5)

where, F (t) is the external force acting on the base structure, as shown in figure 3.1, and

assumed to be F (t) = FcosΩt, Fd1 is the damping force of the cantilever beam whose

expression is Fd1 = −c1ẏ(s) and Fd2 is the damping force of base structure and written as

Fd2 = −c2ẋd.

Substituting the expressions of the kinetic energy T , potential energy V and virtual work

Wnc due to nonconservative forces into equation (3.1), we obtain the dynamic equation of

autoparametric vibration system as

ρÿ + c1ẏ + EI(yIV + y′2yIV + 4y′y′′y′′′ + y′′3) +Ny′′

+[−ρg − ρẍd + ρ
∫ s

0
d2

dt2
(y
′2

2
)dη −mẍdδ(s− l) +m

∫ l
0
d2

dt2
(y
′2

2
)dηδ(s− l)]y′ = 0

and

(M +m+m)ẍd + c2ẋd + k2xd −m
∫ l

0
d2

dt2
(y
′2

2
)ds−

∫ l
0
ρ
∫ s

0
d2

dt2
(y
′2

2
)dηds

+(M +m+m)g = F cos(Ωt)

(3.6)

where, m is the total mass of the cantilever beam and calculated as m =
∫ l

0
ρds and δ(x)

is the Dirac delta function. The expression of N is N = ρg(l − s) + mg + mẍd + ρẍd(l −
s) − m

∫ l
0
d2

dt2
(y
′2

2
)dη−

∫ l
s
ρ
∫ ξ

0
d2

dt2
(y
′2

2
)dηdξ. Moreover, inspecting figure 3.1, we note that:

y(0, t) = 0, y′(0, t) = 0, y(l, t) 6= 0 and y′(l, t) 6= 0. Similarly, upon substituting the kinetic

energy T , potential energy V and virtual work Wnc due to nonconservative forces into the



Zhimiao Yan 3. Autoparametric Vibration Systems 41

extended Hamilton’s equation (3.1), the boundary conditions of the systems are written

as

y(0, t) = 0, y′(0, t) = 0,

EI(y′′(l, t) + y′(l, t)2y′′(l, t)) + Jÿ′(l, t) = 0,

EI(y′′′(l, t) + y′(l, t)y′′(l, t)2 + y′(l, t)2y′′′(l, t)) +mgy′(l, t)−mÿ(l, t) = 0

(3.7)

3.2 Representative reduced-order model

To characterize the nonlinear performance of the autoparametric vibration system, we solve

the vibration problem for the distributed-parameter system. To this end, we discretize the

motion of the cantilever beam using the Galerkin approach and determine its exact mode

shapes. We consider first the free vibration of the cantilever beam, which leads naturally to

the eigenvalue problem. Therefore, we drop the damping and nonlinear coupling terms in

the first equation of (3.6) to obtain

ρÿ + EIyIV +mgy′′ + ρg(l − s)y′′ − ρgy′ = 0 (3.8)

Next, we separate the horizontal displacement y(x, t) into spatial and time variables as

y(x, t) =
∞∑
i=1

φi(x)qdi(t) (3.9)

where, qdi(t) and φi(x) are the modal coordinates and shapes of the cantilever beam with

the tip mass, respectively. The modal shape is expressed as [79]

φi(x) = Ai sin βix+Bi cos βix+ Ci sinh βix+Di cosh βix (3.10)

where Ai, Bi, Ci and Di are the coefficients and are determined by the boundary equation

(3.7). To determine the orthogonality conditions of the modal shapes, we use the linearized

boundary conditions. These conditions are:

φi(0) = 0, φ′i(0) = 0,

EIφ′′i (l)− ω2
i Jφ

′
i(l) = 0,

EIφ′′′i (l) +mgφ′i(l) + ω2
imφi(l) = 0

(3.11)

Using the linearized dynamic equation and linearized boundary conditions, the eigenfunc-

tions are normalized by the following expression:∫ l
0
ρφb(s)φr(s)ds+mφb(l)φr(l) + Jφb

′(l)φr
′(l) = δbr∫ l

0
EIφb

′′(s)φr
′′(s)ds−

∫ l
0
mgφb

′(s)φr
′(s)ds−

∫ l
0
ρg(l − s)φb′(s)φr ′(s)ds = δbrω

2
r

(3.12)
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where b and r are used to represent the vibration modes, ωr is the rth natural frequency of

the cantilever beam, and δbr is the Kronecker delta, defined as unity when b is equal to r

and zero otherwise.

Considering Eq. (3.9), Eq. (3.12) and the first mode shape of the cantilever beam, we rewrite

the governing equations (3.6) of the autoparametric vibration system as

q̈d + η1q̇d + ω2
1qd + η2q

3
d + η3qd(q̇

2
d + qdq̈d)− η4ẍdqd = 0

and

(M +m+m)ẍd + c2ẋd + k2xd − η4(q̇2
d + qdq̈d) + (M +m+m)g = F cos(Ωt)

(3.13)

where, qd(t) is the first modal coordinate and φ(s) is the first modal shape. The coefficients

η1, η2, η3 and η4 are expressed as η1 =
∫ l

0
c1φ

2ds, η2 =
∫ l

0
EI(φφ′2φIV + 4φφ′φ′′φ′′′ + φφ′′3)ds,

η3 = m
(∫ l

0
φ′2ds

)2

+
∫ l

0
ρ(
∫ s

0
φ′(η)2dη)2ds and η4 = m

∫ l
0
φ′2ds +

∫ l
0
ρ
∫ s

0
φ′(η)2dηds. In the

considered system, the mass of the beam is very small compared to the tip mass m [19]. Thus,

we neglect the terms considering the effect of the mass of beam ρ in the expressions of ηi.

The coefficients η3 and η4 can then be simplified to η3 = m
(∫ l

0
φ′2ds

)2

and η4 = m
∫ l

0
φ′2ds.

Furthermore, to nondimensionalize the governing equation, we choose the static displacement

of the system X0 = (M+m+m)g
k2

as the basic variable. The governing equation (3.13) is then

simplified to:
q̈ + 2εµ1q̇ + ω2

1q + δ1ε
2q3 +Rε2q(q̇2 + qq̈)− εẍq = 0

and

ẍ+ 2εµ2ẋ+ ω2
2x− ε(q̇2 + qq̈) = F0 cos(Ωt)

(3.14)

where the new nondimensional displacements q and x are given by q = qd√
m+M+mX0

and

x = xd+X0

X0
, ω2 is the natural frequency of base structure and is given by ω2 =

√
k2

m+M+m
,

µ1 and µ2 are respective damping coefficients of attached beam and base structure and the

expressions of these two values are: µ1 = η1
2ε

and µ2 = c2
2ε(m+M+m)

, the ratio of the mass R is
M+m+m

m
, small nondimensional coefficient ε is X0η4, the coefficient δ1 is (M+m+m)η2

η24
and the

nondinemensional amplitude of force F0 is F
(M+m+m)X0

.

3.3 Approximate solution

We use the method of mutiple sacles [80, 81] to determine an approximate solution of the

governing equations and assess the system’s stability and bifurcation points. So, we define

new time variables as:

Tn = εnt, n = 0, 1, 2 (3.15)
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where T0 is a fast-time scale, and T1 and T2 are slow-time scales. Because the original

independent time scale t has been replaced by the new independent time scales T0, T1 and

T2, the derivatives with respect to t are changed to:

d
dt

= D0 + εD1 + ε2D1 + ϑ(ε3)
d2

dt2
= D2

0 + 2εD0D1 + ε2(D1 + 2D0D2) + ϑ(ε3)
(3.16)

where Di = ∂/∂Ti and ϑ(ε3) indicates order 3 of ε or higher. Then, we write q = u1 and

x = u2, follow Nayfeh [80] and write the solutions as

uj(t; ε) = uj0(T0, T1, T2) + εuj1(T0, T1, T2) + ε2uj2(T0, T1, T2) + ϑ(ε3) (3.17)

where ujk are functions that depend on Tn and do not depend explicitly on ε, and j = 1, 2. To

analyze the autoparametric vibration system, we assume the amplitude of the external force

to be F0 = εf . Then, we substitute equations (3.15), (3.16) and (3.17) into nondimensional

governing equation (3.14) and equate the terms with coefficients of equal ε powers to obtain

the following set of equations

ε0 order
D2

0u10 + ω2
1u10 = 0

D2
0u20 + ω2

2u20 = 0
(3.18)

ε1 order
D2

0u11 + ω2
1u11 = −2D0D1u10 − 2µ1D0u10 + u10D

2
0u20

D2
0u21 + ω2

2u21 = −2D0D1u20 − 2µ2D0u20 + u10D
2
0u10 + (D0u10)2

+1
2
feiT0Ω + 1

2
fe−iT0Ω

(3.19)

ε2 order

D2
0u12 + ω2

1u12 = −2D0D1u11 − 2µ1D0u11 −D2
1u10 − 2D0D2u10 − 2µ1D1u10

−Ru10(D0u10)2 + u10D
2
0u21 + 2u10D0D1u20 −Ru2

10D
2
0u10 − δ1u

3
10 + u11D

2
0u20

D2
0u22 + ω2

2u22 = −2D0D1u21 − 2µ2D0u21 −D2
1u20 − 2D0D2u20 − 2µ2D1u20

+2D0u10D0u11 + 2D0u10D1u10 + 2u10D0D1u10 + u11D
2
0u10 + u10D

2
0u11

(3.20)

The solution of equation (3.18) is of the form as:

uj0 = Aj(T1, T2)eiωjT0 + cc (3.21)

where i =
√
−1, A1 and A2 are complex amplitudes of the displacements of cantilever beam

and base structure depending on the slow time scales, respectively, cc stands for the complex

conjugate, and j = 1, 2. Moreover, to determine the values of A1 and A2, we express

the nearness of Ω to ω2 and of ω1 to 1
2
ω2 by using the detuning parameters σ1 and σ2 as
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follows:
Ω = ω2 + εσ1

ω1 = 1
2
ω2 + εσ2

(3.22)

Based on the above frequency relationship of ω1, ω2 and Ω and substituting equation (3.21)

into the ε1 order equation (3.19), we obtain D1A1 and D1A2 from the secular terms as

D1A1 = −µ1A1 + iω2
2

2ω1
A2A1e

−2iσ2T1

D1A2 = −µ2A2 + iω2
1

ω2
A2

1e
2iσ2T1 − if

4ω2
eiσ1T1

(3.23)

Moreover, u11 and u21 are determined by eliminating the secular terms, which yields:

u11 = ω2

2ω1+ω2
A1A2ei(ω1+ω2)T0 +B1(T1, T2)eiω1T0 + cc

u21 = B2(T1, T2)eiω2T0 + cc
(3.24)

where B1 and B2 are complex amplitudes of the displacements of the cantilever beam, u11,

and base structure, u21, depending on the slow time scales, respectively. Then, substituting

equations (3.21) and (3.24) into ε2 order equation (3.20), we obtain the following expressions

for D2A1 and D2A2

D2A1 = −D1B1 − µ1B1 + i
2ω1
D2

1A1 + iµ1
ω1
D1A1 + i(3δ1−2Rω2

1)

2ω1
A2

1A1 + ω2

ω1
A1D1A2e

−2iσ2T1

+ iω2
2

2ω1
A1B2e

−2iσ2T1 + iω3
2

2ω1(2ω1+ω2)
A1A2A2 + iω2

2

2ω1
A2B1e

−2iσ2T1

D2A2 = −D1B2 − µ2B2 + 2ω1

ω2
A1D1A1e

2iσ2T1 + i
2ω2
D2

1A2 + iµ2
ω2
D1A2 +

2iω2
1

ω2
A1B1e

2iσ2T1

+ iω2
2

2(2ω1+ω2)
A1A2A1

(3.25)

To determine the time variations of the complex amplitudes A1 and A2, we write the above

equations in the form of complex-valued modulation equations that are given by

2iω1Ȧ1 = 2iω1(εD1A1 + ε2D2A1)

2iω2Ȧ2 = 2iω2(εD1A2 + ε2D2A2)
(3.26)

where the dot indicates the derivative with respect to time t. To derive equations (3.26)

from a Lagrangian, we write B1 and B2 in equation (3.25) as

B1 = (λ1 + iλ2)D1A1

B2 = (λ3 + iλ4)D1A2
(3.27)

where, λj are real values and i =
√
−1. Substituting equations (3.23), (3.25) and (3.27)

into equation (3.26) and letting µ1 = µ2 = f = 0 (non-conservative force), we simplify the
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complex-valued modulation equation (3.26) to

2iω1Ȧ1 = b1A
2
1A1 + b2e

−2iσ2T1A2A1 + b3A1A2A2

2iω2Ȧ2 = b4e
2iσ2T1A2

1 + b5A1A2A1
(3.28)

To satisfy the Lagrangian condition, the coefficients pi should have the following relation-

ships: b2 = 2b4 and b3 = b5. Based on the above two expressions, the coefficients λi are

determined as λ1 = 0, λ2 = 1
2ω1+ω2

, λ3 = 0 and λ4 =
8ω4

1−4ω3
1ω2−8ω2

1ω
2
2−2ω1ω3

2+ω4
2

16ω4
1ω2+8ω3

1ω
2
2

. Substituting

equations (3.23), (3.25) and (3.27) and the expressions of coefficients λi into equation (3.26),

we obtain complex-valued modulation equations

Ȧ1 = (m11 + im12)A1 + (m21 + im22)A2A1e
−2iεσ2t + (m31 + im32)A2

1A1

+(m41 + im42)A1A2A2 + (m51 + im52)fA1e
iε(σ1−2σ2)t

and

Ȧ2 = (n11 + in12)A2 + (n21 + in22)feiεσ1t + (n31 + in32)A2
1e

2iεσ2t

+(n41 + in42)A1A2A1

(3.29)

where the coefficients mjk and njk are given by

m11 = −εµ1, m12 = − ε2µ21
2ω1

, m21 = − ε2ω2(16µ1ω3
1ω2+µ2(24ω4

1+20ω3
1ω2+4ω2

1ω
2
2+2ω1ω3

2−ω4
2))

16ω4
1(2ω1+ω2)

, m22 =

εω2
2(4ω2

1+4ω1ω2−ω2
2)

4ω2
1(2ω1+ω2)

, m31 = 0, m32 =
ε2(−8(−3+4R)ω4

1−4(−5+4R)ω3
1ω2+4ω2

1ω
2
2+2ω1ω3

2−ω4
2+24δ1ω1(2ω1+ω2))

16ω2
1(2ω1+ω2)

,

m41 = 0, m42 =
ε2ω3

2(4ω2
1−2ω1ω2+ω2

2)
8ω3

1(2ω1+ω2)
, m51 = 0, m52 = − ε2(24ω4

1+20ω3
1ω2+4ω2

1ω
2
2+2ω1ω3

2−ω4
2)

64ω4
1(2ω1+ω2)

, n11 =

−εµ2, n12 = − ε2µ22
2ω2

, n21 = ε2µ2
8ω2

2 , n22 =
ε(−16ω4

1+8ω3
1(Ω−2ω2)+8ω2

1(Ω−ω2)ω2+2ω1(Ω−ω2)ω2
2+ω3

2(−Ω+ω2))
32ω3

1ω2(2ω1+ω2)
,

n31 = − ε2(µ1ω3
2(−2ω1+ω2)+2µ2ω3

1(2ω1+ω2))
4ω1ω2

2(2ω1+ω2)
, n32 =

εω2(4ω2
1+4ω1ω2−ω2

2)
8ω1(2ω1+ω2)

, n41 = 0 and n42 =
ε2ω2

2(4ω2
1−2ω1ω2+ω2

2)
8ω2

1(2ω1+ω2)
.

When we assume µ1 = µ2 = f = 0 (non-conservative force), the complex-valued modulation

equations without the effect of non-conservative force are given by

2iω1Ȧ1 = −2ω1m32A
2
1A1 − 2ω1m22e

−2iσ2T1A2A1 − 2ω1m42A1A2A2

and

2iω2Ȧ2 = −2ω2n32e
2iσ2T1A2

1 − 2ω2n42A1A2A1

(3.30)

These equations are derivable from the Lagrangian

L = 2iω1(A1A1 − A1Ȧ1) + 2iω2(A2A2 − A2Ȧ2) +
εω2

2(−4ω2
1−4ω1ω2+ω2

2)
4ω1(2ω1+ω2)

(A2A
2

1e
−2iσ2T1 + A2

1A2e
2iσ2T1)

− ε2ω3
2(4ω2

1−2ω1ω2+ω2
2)

4ω2
1(2ω1+ω2)

A1A2A1A2 +
ε2(8(−3+4R)ω4

1+4(−5+4R)ω3
1ω2−4ω2

1ω
2
2−2ω1ω3

2+ω4
2−24δ1ω1(2ω1+ω2))

16ω1(2ω1+ω2)
A2

1A
2

1

(3.31)

From the above two equation, we can find that n32 = ω1

2ω2
m22 and n42 = ω1

ω2
m42.

A1 and A2 are complex-valued quantities. So, we choose the polar form to express these two
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variables as:

Aj = 1
2
aj(t)e

iαj(t) for j = 1, 2 (3.32)

In this expression, aj and αj are the amplitudes and phases of Aj. In fact, a1 and a2 are

also the amplitudes of q and x shown in nondimenional governing equation (3.14), respec-

tively. Substituting equation (3.32) into the complex-valued modulation equations (3.29) and

separating the real and imaginary parts, we obtain the following averaged equation:

ȧ1 = m11a1 + 1
2
m21a1a2 cos γ1 + 1

2
m22a1a2 sin γ1 + 1

4
m31a

3
1 + 1

4
m41a1a

2
2

+m51fa1 cos(γ1 − γ2) +m52fa1 sin(γ1 − γ2)

a1α̇1 = m12a1 − 1
2
m21a1a2 sin γ1 + 1

2
m22a1a2 cos γ1 + 1

4
m32a

3
1 + 1

4
m42a1a

2
2

−m51fa1 sin(γ1 − γ2) +m52fa1 cos(γ1 − γ2)

and

ȧ2 = n11a2 + 2n21f cos γ2 − 2n22f sin γ2 + 1
2
n31a

2
1 cos γ1

−1
2
n32a

2
1 sin γ1 + 1

4
n41a

2
1a2

a2α̇2 = n12a2 + 2n21f sin γ2 + 2n22f cos γ2 + 1
2
n31a

2
1 sin γ1

+1
2
n32a

2
1 cos γ1 + 1

4
n42a

2
1a2

(3.33)

where γ1 = 2α1−α2 +2εσ2t and γ2 = εσ1t−α2. The equilibrium solutions of equation (3.33)

are obtained by setting ȧ1 = ȧ2 = 0 and γ̇1 = γ̇2 = 0. Based on the relationship between γi
and αi discussed above, α̇1 and α̇2 can be calculated as: α̇1 = ε(σ1

2
− σ2) and α̇2 = εσ1. The

fixed point of the autoparametric vibration system can be determined:

0 = m11a1 + 1
2
m21a1a2 cos γ1 + 1

2
m22a1a2 sin γ1 + 1

4
m31a

3
1 + 1

4
m41a1a

2
2

+m51fa1 cos(γ1 − γ2) +m52fa1 sin(γ1 − γ2)

ε(σ1
2
− σ2)a1 = m12a1 − 1

2
m21a1a2 sin γ1 + 1

2
m22a1a2 cos γ1 + 1

4
m32a

3
1 + 1

4
m42a1a

2
2

−m51fa1 sin(γ1 − γ2) +m52fa1 cos(γ1 − γ2)

and

0 = n11a2 + 2n21f cos γ2 − 2n22f sin γ2 + 1
2
n31a

2
1 cos γ1

−1
2
n32a

2
1 sin γ1 + 1

4
n41a

2
1a2

εσ1a2 = n12a2 + 2n21f sin γ2 + 2n22f cos γ2 + 1
2
n31a

2
1 sin γ1

+1
2
n32a

2
1 cos γ1 + 1

4
n42a

2
1a2

(3.34)

3.4 Stability and bifurcation

Inspecting the first two equations in (3.34), we note that all terms contain the variable a1.

As such, a1 = 0 yield the fixed-point equations that are identities [82, 83]. Subsequently, the

polar form cannot be used to analyze the system’s stability. To analyze the stability of the

equilibrium points, we use the Cartesian form:

Aj = 1
2
(pj(t)− iqj(t))e

iθj(t) for j = 1, 2 (3.35)
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In this expression, the variables pj and qj are functions of a1, a2, γ1 and γ2 which are

determined from equations (3.22), (3.32), (3.35) and the definitions of γ1 and γ2 as [83]

p1 = a1 cos γ2−γ1
2

q1 = a1 sin γ2−γ1
2

p2 = a2 cos γ2

q2 = a2 sin γ2

(3.36)

Substituting equation (3.35) into the complex-valued modulation equation (3.29) and sepa-

rating the real and imaginary parts, we obtain the Cartesian form of the modulation equa-

tions as

ṗ1 = 1
2
ε(2σ2 − σ1)q1 +m11p1 +m12q1 + 1

2
m21(p1p2 + q1q2) + 1

2
m22(p1q2 − p2q1) + 1

4
m31(p3

1 + p1q
2
1)

+1
4
m32(p2

1q1 + q3
1) + 1

4
m41(p1p

2
2 + p1q

2
2) + 1

4
m42(p2

2q1 + q1q
2
2) +m51fp1 −m52fq1

q̇1 = −1
2
ε(2σ2 − σ1)q1 +m11q1 −m12p1 + 1

2
m21(p1q2 − p2q1)− 1

2
m22(p1p2 + q1q2) + 1

4
m31(p2

1q1 + q3
1)

−1
4
m32(p3

1 + p1q
2
1) + 1

4
m41(p2

2q1 + q1q
2
2)− 1

4
m42(p1p

2
2 + p1q

2
2)−m51fq1 −m52fp1

and

ṗ2 = −εσ1q2 + n11p2 + n12q2 + 2n21f + 1
2
n31(p2

1 − q2
1) + n32p1q1 + 1

4
n41(p2

1p2 + p2q
2
1)

+1
4
n42(p2

1q2 + q2
1q2)

q̇2 = εσ1p2 + n11q2 − n12p2 − 2n22f + n31p1q1 − 1
2
n32(p2

1 − q2
1) + 1

4
n41(p2

1q2 + q2
1q2)

−1
4
n42(p2

1p2 + p2q
2
1)

(3.37)

In this equation, we have made use of 2θ1− θ2 + 2εσ2t = 2nπ, εσ1t− θ2 = 2mπ, θ̇1 = εσ1−2σ2
2

and θ̇2 = εσ1 [83], where, m and n are integers.

Inspecting equation (3.34), we identify two types of solutions: (1) a1 = 0 and a2 6= 0 and

(2) a1 6= 0 and a2 6= 0. The stability of these fixed points can be analyzed by the Jacobian

matrix of the Cartesian form of the modulation equations (3.37). If the four eigenvalues λi
have negative real parts, then the fixed point is stable. Otherwise, the equilibrium point will

form a saddle point. Note that the Cartesian form of the equilibrium point (p1, p2, p3, p4)

is needed to determine the Jacobian matrix of Cartesian form of the modulation equations

(3.37), which can be obtained using Eq. (3.36). Four types of motions are identified. The

first type is a1 = 0 and a2 6= 0. This solution corresponds to the case where the attached

cantilever beam moves with the base structure (the base structure and the cantilever beam

basically form a rigid body). The second type is obtained when a1 6= 0 and a2 6= 0. In this

case, the cantilever beam undergoes a horizontal motion in addition to that induced by the

base structure. Because part of the energy has been transfered to the horizontal motion of

the beam, the amplitude of vertical motion of the base structure is reduced. This solution

is desired to control the vertical motion of the base structure. It can also be used to obtain

actuation in the horizontal direction from a vertical excitation. In a third type of motion,

both fixed points are stable. Both masses could undergo different motions depending on the
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initial conditions. The system exhibits interesting nonlinear phenomena, such as jumps and

hysteresis. In the fourth type, none of the fixed points is stable and the system may undergo

Hopf bifurcations and could become chaotic.

3.5 Results and discussion

Next, we perform numerical integration to determine the response of the system under differ-

ent excitation conditions. We also use the above solution to unravel the physics associated

with the determined solutions. Particularly, we are interested in evaluating the effects of

different parameters on the motions of the base structure and the attached beam. Analyzing

the different responses is important for enabling the use of such systems in different appli-

cations. For example, some parameters, such as the amplitude F and frequency Ω of the

external force, are determined by the environmental vibration source. Other parameters (e.g.

tip mass) can be adjusted to control the motion of the base structure. Moreover, if energy is

to be harvested from the vibration by attaching piezoelectric sheets to the cantilever beam,

the coupled mechanical damping coefficient µ1 and natural frequency ω1 of the cantilever

beam will be strongly affected by the external load resistance [79, 84].

3.5.a Effect of amplitude of the external force

In figure 3.2, we show amplitudes of the displacements of the base structure and the cantilever

beam as a function of the non-dimensional external force f for different values of σ2 when the

other non-dimensional parameters are fixed as follows: ε = 0.005, ω2 = 45.35rad/s, R = 6.2,

δ1 = −Rω2
1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2 and εσ1 = 0.25. The solid lines correspond

to sinks (stable solutions) and the dashed lines indicate saddles (unstable solutions). The

plots in figure 3.2(a,b) show the system’s response for the case of εσ2 = 0.125. These plots

show that, when f is small, the system’s response is similar to that of a linear vibrational

system. In this case, the base structure and attached beam form a rigid body and the

vertical displacement of the system a2 increases linearly as f is increased. However, when

f exceeds a certain threshold, the nonlinear response becomes prevalent and the horizontal

motion of the tip mass is initiated. As f is increased further, a2 remains almost constant

and a1 increases monotonically. This phenomenon, known as modal saturation [85], shows

that the increased energy due to the external forcing of the base structure is absorbed by the

attached beam which is very useful to control the vibration of base structures. Furthermore,

beyond a critical value of f , a supercritical pitchfork bifurcation appears as shown in figure

3.2(a). Through validation with the numerical integration of the non-dimensional governing

equations (3.14), we determine that the first-order perturbation solution is not accurate

because it does not account for the effects of the cubic terms of the governing equations
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Figure 3.2: Force-response curves ( (a, c, e) amplitude of displacement of base structure and
(b, d, f) amplitude of horizontal displacement of the tip mass attached cantilever beam) for
different ε = 0.005, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2

and εσ1 = 0.25: (a, b), εσ2 = 0.125, (b,c) εσ2 = −0.25 and (c,d) εσ2 = 0.45. ID denotes
initial displacements. The dashed lines are used to denote unstable solutions and the solid
line are used to denote stable solution. Different types of motions are identified depending
on the forcing amplitude and detuning between the frequencies of the base structure and
beam-tip mass system.
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(3.14). The second order solution gives results that agree well with the numerical results but

shows a deviation from a perfect saturation phenomenon.

When εσ2 = −0.25, the response of the system is similar to that of the case εσ2 = 0.125

except that there exists multiple stable solutions in the range between f = 70.1 and f = 89.5.

The system’s response exhibits some special nonlinear phenomena, including jumps and

hysteresis, as shown in figure 3.2(c,d). The plot in figure 3.2(c) shows that, as f increases,

a2 first increases linearly until f = 89.5. At that level, it undergoes a jump and increases

slightly as the forcing amplitude f is increased. However, as f is reduced, a2 remains

constant until f = 70.1. At that point, the amplitude of a2 drops to the level obtained

when f was increased and decreases further as f is decreased. This phenomenon is also

demonstrated by the numerical integration of Eq. (3.14) with different initial displacements.

Similar nonlinear phenomena, jumps and hysteresis, are noted in figure 3.2(d). Moreover,

saddle-node and subcritical pitchfork bifurcations appear at the critical points near f = 70.1

and f = 89.5, respectively, as shown in figure 3.2(c).

As the detuning is increased to εσ2 = 0.45, the nonlinear response is initiated at higher

f values than the case of εσ2 = 0.125. Only a2 is nonzero and increases linearly as f is

increased up to f = 80, as shown in figure 3.2(e, f). As f is increased further, a1 increases

while a2 decreases slightly due to the effect of the cubic nonlinearity. However, as f reaches

the value of 100, there are no more stable equilibrium points for both a1 and a2. In this

situation, the system’s response undergoes a Hopf bifurcation and becomes chaotic, which

will be discussed in section 3.5.f. In summary, the system’s response is highly dependent

on the forcing amplitude and detuning parameters which is discussed further in the next

section.

3.5.b Effect of frequency of the external force

Next, we analyze the effects of the excitation frequency on the nonlinear response of the

autoparametric vibration system by varying the detuning parameter σ1. We do so by con-

sidering different cases of detuning between the primary and secondary systems, namely,

εσ2: 0, 0.5, −0.5, 1 and −1. The results are presented in figures 3.3, 3.4 and 3.5. In these

cases, the other parameters are fixed to ε = 0.005, f = 400, ω2 = 45.35rad/s, R = 6.2,

δ1 = −Rω2
1, εµ1 = 0.0035ω1 and εµ2 = 0.0035ω2.

Figure 3.3 shows the frequency response of the system for the case of εσ2 = 0. Compared

with numerical simulation, the first-order perturbation solution does not give an accurate

representation of the nonlinear responses because the nonlinear cubic effects are neglected.

Including these effects, the second-order perturbation method leads to more accurate re-

sponses that are validated with the numerical integration. Three kinds of motions are

discerned from the plots. These are (1) the linear motion of rigid body (a1 = 0) when
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Figure 3.3: Frequency-response curves for ε = 0.005, f = 400, ω2 = 45.35rad/s, R =
6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2 and εσ2 = 0 (no detuning between
base structure and beam-tip mass system): (a) Vertical displacement of base structure and
(b) Horizontal displacement of the tip mass attached cantilever beam. ID denotes initial
displacements. The dashed lines are used to denote unstable solutions and the solid line are
used to denote stable solution. Depending on the values of εσ1 which represents the detuning
between the frequencies of the excitations and base structure, the system exhibits different
responses that include rigid-body like motions and energy transfer to the secondary mode.
This transfer is highly dependent on the initial displacements. The method of multiple scales
shows a small basin of attraction away from resonance when the system is activated with a
large initial condition.

εσ1 < −4.8 and εσ1 > 1.3, (2) a regime where both motions are different than zero for

−0.98 < εσ1 < 1.005, and (3) a regime where the motions depend on the initial conditions

when −4.8 < εσ1 < −0.98 and 1.005 < εσ1 < 1.3. Inspecting figure 3.3(a), as εσ1 is in-

creased, the response of a2 increases (’rigid-body’ motion) until εσ1 = −0.98. At that point,

there is a jump up in the amplitude of a1 (as noted from the green dots), indicating energy

transfer from the base to the beam. As εσ1 is increased further, a2 decreases to a minimum

value when εσ1 = −0.65, then increases as εσ1 is increased to 1.3. At that level, it jumps

back down indicating a recovery of the ’rigid-body’ motion. Approaching from the high

frequency range, as εσ1 is decreased, a2 increases (’rigid-body’ motion) until εσ1 = 1.005

(as noted from the green points), then it jumps up. It then decreases and increases again

until εσ1 = −4.8 with a minimum near εσ1 = −0.65. As εσ1 is decreased to values less than

−4.8, the ’rigid-body’ motion is recovered. We note that the response of a1 has the same

jumps and hysteresis in figure 3.3(b). It is important to note here that, as we consider the

numerical integration of the governing equation (3.14), the numerical results using small ini-
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Figure 3.4: Frequency-response curves for different values of σ2 for ε = 0.005, f = 400,
ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1 and εµ2 = 0.0035ω2 ((a ,b) εσ2 = 0.5
and (c, d) εσ2 = −0.5): amplitude of (a, c) vertical displacements of the base structure and
(b, d) horizontal displacements of the tip mass attached the cantilever beam. ID denotes
initial displacements. The dashed lines are used to denote unstable solutions and the solid
line are used to denote stable solution. The plots show qualitatively similar responses for
the cases εσ2 = 0 and εσ2 = −0.5. However, the case εσ2 = 0.5 shows an additional unstable
regime.

tial displacements exactly match those obtained with the method of multiple scales. On the

other hand, numerical simulations using large initial displacements fail to show the interac-
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Figure 3.5: Frequency-response curves at different values of σ2 for ε = 0.005, f = 400,
ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1 and εµ2 = 0.0035ω2 ((a ,b) εσ2 = 1
and (c, d) εσ2 = −1): amplitude of (a, c) vertical displacements of the tip mass attached
the base structure and (b, d) horizontal displacements of the cantilever beam. ID denotes
initial displacements. The dashed lines are used to denote unstable solutions and the solid
line are used to denote stable solution. The plots show similar qualitative responses to the
cases considered in figure 3.4.

tion between the base structure and the cantilever beam when |σ1| is relatively large because

the basin of attraction of the fixed point a1 6= 0 is narrow. The system exhibits asymmetric

responses for the jump and hysteresis as discussed above (i.e. −4.8 < εσ1 < −0.98 and
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1.005 < εσ1 < 1.3). This asymmetric response is mainly due to the effect of cubic terms

for the different responses between first-order (symmetric) and second-order perturbations

(asymmetric). In addition to the jumps and hysteresis in the range of −4.8 < εσ1 < −0.98

and 1.005 < εσ1 < 1.3, there are some interesting characteristics for engineering applications,

such as, energy harvesting from the vibration system. If the system is activated with large

initial displacements, the amplitude of the horizontal displacement of the tip mass increases

even if the external frequency is away from the natural frequency of the base structure (away

from the resonance), as shown in figure 3.3(b). This phenomenon shows the possibility for

energy harvesting even if the resonance requirement is not met. However, this needs to be

investigated from a global perspective because adding the harvester and electric load affects

the global system’s parameters. For validation of control purposes, this system exhibits a

minimum displacement of the base structure when εσ1 = −0.65 (i.e., the external frequency

is very close to the natural frequency). Moreover, The amplitudes of a2 are much smaller

than the ones obtained from linear analysis when −1.8 < εσ1 < 0.55. Therefore, if the

natural frequency of the attached beam is tuned to be close to 1/2 of the natural frequency

of the base structure (σ2 ≈ 0), this autoparametric vibration system will be very effective in

suppressing the oscillatory motion of the base structure. Besides good control of base struc-

ture near resonance, a relatively large displacement of the cantilevered beam is obtained

which can be employed to other engineering applications. In the rest of this Chapter, we will

present results from the second order solution only. The reason is that it has been shown

above that the first-order solution is deficient.

In figures 3.4 and 3.5, we present the frequency response curves as εσ1 is varied for the cases

of εσ2 = 0.5, −0.5 and 1 −1, respectively. We note that there exists the same jumps and

hysteresis when σ2 < 0 with different amplitudes and regimes as the case σ2 = 0 discussed

above. However, the jumps and hysteresis for the positive value of σ1 disappear for the

positive values of εσ2; i.e. εσ2 = 0.5 and εσ2 = 1. Particularly, we note the fourth type

of response is in the case εσ2 = 0.5. That is, there are no stable fixed points in the range

−0.79 < εσ1 < 0.175. The details of this response will be discussed in section 3.5.f. Besides

this difference, we also find that the values of εσ1 corresponding to the minimum a2 are

changed to 0.35 when εσ2 = 0.5 and −1.65 when εσ2 = −0.5. It is concluded that the

minimum value of a2 occurs when εσ1 = 2εσ2 − 0.65. As the natural frequency of the

secondary system moves away from 1/2 of frequency of base structure, we find the similar

relation εσ1 = 2εσ2 − 0.65 at which the minimum value of a2 occurs, that is, εσ1 = 1.35

when εσ2 = 1 and εσ1 = −2.65 and σ2 = −1. It is also noted that the range of εσ1 for

which both kinds of fixed points are unstable increases as |εσ2| is increased. Moreover,

for 0.8 < εσ1 < 1.1 when εσ2 = 1 and −1.15 < εσ1 < −0.9 when εσ2 = −1, the fixed

point of nonlinear interaction between the base structure and attached cantilever beam

disappears and the unstable linear rigid-body motion is stabilized. This phenomenon is also

demonstrated by numerical integration of the governing equations (3.14), as shown in figure

3.5.
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3.5.c Effect of frequency of cantilever beam
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Figure 3.6: Frequency-response curves when σ2 is varied when ε = 0.005, f = 400, ω2 =
45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2 and εσ1 = 0: (a) Vertical
displacement of base structure and (b) Horizontal displacement of the tip mass attached
cantilever beam. The dashed lines are used to denote unstable solutions and the solid line
are used to denote stable solution. The plots show rigid body-like motion for large absolute
values of εσ2 and effective control over the range where εσ2 is negative and unstable motions
for positive values of εσ2.

To better understand how to tune the parameters of the autoparametric vibration system,

it is necessary to study the effects of varying the frequency of the cantilever beam on the

nonlinear response of the system. According to equation (3.22), the variation of the frequency

of the cantilever beam can be expressed by the parameter εσ2. Therefore, we analyze the

effects of the parameter εσ2 on the nonlinear characteristics of system for different values at

εσ1, namely, 0, 0.5, −0.5, 1 and −1, as shown in figures 3.6, 3.7 and 3.8. In these cases, the

other parameters are fixed to: ε = 0.005, f = 400, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2
1,

εµ1 = 0.0035ω1 and εµ2 = 0.0035ω2.

The variation of the displacement amplitudes for the base structure and tip mass with εσ2,

for the cases of εσ1 = 0, are plotted in figure 3.6. We note that the system behaves as

a linear oscillator with the base structure and attached beam forming a rigid body and

moving vertically (a1 = 0) over the ranges εσ2 < −3.55 and εσ2 > 2.95. Increasing εσ2 from

−3.55 to 0.25, the resonant amplitude of base structure a2 decreases from 27.79 to 0.778 and

the displacement of the tip mass a1 increases from 0 to 12.27. Under these conditions, an

autoparametric vibration system is useful to control of the base structure or obtain multiple
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Figure 3.7: Frequency-response curves when σ2 is varied for two different values of σ1 when
other parameters are ε = 0.005, f = 400, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 =
0.0035ω1 and εµ2 = 0.0035ω2 ((a ,b) εσ1 = 0.5 and (c, d) εσ1 = −0.5): amplitude of (a, c)
vertical displacement of base structure and (b, d) horizontal displacement of the cantilever
beam. ID denotes initial displacements. The dashed lines are used to denote unstable
solutions and the solid line are used to denote stable solution. The plots show stable and
unstable solutions with hysteresis.

actuation. Of interest is the notion that as σ2 is increased further, both fixed points become

unstable up to the point where the system recovers its rigid-body-like motion.

Figure 3.7 shows that the responses of the system as a function of the non-dimensional fre-
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Figure 3.8: Frequency-response curves when σ2 is varied for two different values of σ1 when
other parameters are ε = 0.005, f = 400, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 =
0.0035ω1 and εµ2 = 0.0035ω2 ((a ,b) εσ1 = 1 and (c, d) εσ1 = −1): amplitude of (a, c) vertical
displacement of base structure and (b, d) horizontal displacement of the cantilevered beam.
ID denotes initial displacements. The dashed lines are used to denote unstable solutions and
the solid line are used to denote stable solution.

quency of cantilever beam εσ2 for εσ1 = 0.5 and −0.5. The plots show that a saddle-node

bifurcation occurs at εσ2 = −2.07 for εσ1 = 0.5. Moreover, both equilibrium solutions are

stable and jumps and hysteresis appear between εσ2 = −2.07 and −0.74. This is also demon-

strated from the numerical simulation with large and small initial displacements presented in
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figure 3.7(a,b). Similarly to the case of εσ1 = 0, the two fixed points become unstable when

0.75 < εσ2 < 1.155. However, this unstable range is much smaller than that for εσ1 = 0.

In the case of εσ1 = −0.5, the frequency response curve exhibits a reversed response to the

one sustained for the case εσ1 = 0.5. However, except for two unstable equilibrium solutions

on left side of the minimum value of a2, both equilibrium points become unstable on the

right side of the minimum value of a2 similar to the case of εσ1 = 0. Figure 3.8 shows

the frequency response of the autoparametric vibration system for larger values of εσ1 (1

and −1). The nonlinear phenomenon of the two coexisting unstable fixed points disappears

when εσ1 = 1. For the case of εσ1 = −1, the range of two coexisting unstable fixed points

disappears on the left side of the minimum value of a2 and decreases on the right side of the

minimum value of a2 compared with case of εσ1 = −0.5. As expected, the minimum value of

a2 occurs when εσ1 = 2εσ2− 0.65 for all cases. The corresponding a2 values are about same

for all cases. On the other hand, the maximum a1 values are higher as |εσ1| is increased and

is highly dependent on the initial conditions.

3.5.d Effect of damping of the cantilever beam
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Figure 3.9: Response variations as a function of the damping ratio of cantilevered beam for
different amplitudes of the external force (f = 200, 400, 600 and 800) when ε = 0.005, ω2 =
45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2 and εσ1 = εσ2 = 0.25:
(a) vertical displacement of base structure and (b) horizontal displacement of the cantilever
beam.

Next, we investigate the effects of the damping ratio of the cantilever beam on the nonlinear

responses of the autoparametric vibration system for four different amplitudes of the external
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force (f = 200, 400, 600, and 800). The other parameters are fixed as follows: ε = 0.005,

ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2
1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2 and εσ1 = εσ2 =

0.25. Figure 3.9 shows the response variations of the steady state amplitudes as a function

of the damping ratio of the cantilever beam, εµ1/ω1, for the different values of f . The plots

show that a2 increases as the external force is increased when the damping ratio εµ1/ω1

is relatively small. However, This increase becomes become smaller as the damping ratio

εµ1/ω1 is increased. It is also noted that a2 increases and a1 decreases as the damping ratio

of the cantilever beam is increased when f = 400, 600 and 800. For large damping ratios

(εµ1/ω1 > 0.036) and small external force (f = 200), a2 remains constant and a1 is equal to 0

as εµ1/ω1 varies. Clearly, the damping ratio could be optimized depending on the amplitude

of the excitation force and allowed response amplitude.

3.5.e Effects of tip mass m

The ratio of the tip mass to the mass of the base structure is an important design parameter

for the autoparametric vibration system. For example, in many cases, a minimum tip mass

would be favorable. As such, we analyze the effects of varying the tip mass m on the

nonlinear characteristics of the system with different external forces and damping ratios of

the cantilever beam, as shown in figure 3.10. The other parameters are chosen as following:

ε = 0.005, k = 2500, M = 1, m = 0.1m, δ1 = −Rω2
1, εµ2 = 0.0035ω2 and εσ1 = εσ2 =

0.25.

Inspecting figure 3.10(a), we note that for all the values of f , the amplitude of the dis-

placement of the base structure decreases as m is increased. The extent of this dependence

decreases as m is increased. Figure 3.10(b) shows that the amplitude of the tip mass a1 is

almost independent on the tip mass m for m between 0.1 and 0.35. As the damping ratio

εµ1/ω1 is increased to 0.0335, we note a similar effect for the tip mass m on the displace-

ments of the base structure a2. The effective range of the tip mass variation decreases to

m = 0.15, as shown in figures 3.10(c). Moreover, inspecting 3.10(c) for f = 200, the effects

of nonlinear interaction between the cantilever beam and base structure increases as the tip

mass is increased. For a large damping ratio µ1 (εµ1/ω1 = 0.0435), the effective range for

the tip mass variation on the response of the system becomes smaller, as shown in figures

3.10(e). It is of interest to note that for f = 200, the displacement of the base structure

increases linearly as the tip mass is increased for the cases of εµ1/ω1 = 0.0335. This indicates

that better control can be obtained with a smaller mass when f is small and εµ1/ω1 is above

a specific value. From the above discussion, it is noted that the larger the external force is

and the smaller the damping ratio of the cantilever beam is, the stronger is the effect of the

tip mass m on the nonlinear response.
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Figure 3.10: Response amplitudes of the base structure (a, c, e) and of of the cantilever
beam (b, d, f) as a function of the tip mass m for different values of the external force and
damping ratio of the cantilever beam when ε = 0.005, k = 2500, M = 1, m = 0.196M ,
m = 0.1m, δ1 = −Rω2

1, εµ2 = 0.0035ω2 and εσ1 = εσ2 = 0.25: (a, b) εµ1 = 0.0035ω1, (c, d)
εµ1 = 0.0335ω1 and εµ1 = 0.0435ω1.
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3.5.f Hopf-bifurcation and chaos

To characterize the unstable responses of the system, we focus on the response variations

with εσ1 when the other parameters are set to ε = 0.005, f = 400, ω2 = 45.35rad/s,

R = 6.2, δ1 = −Rω2
1, εµ1 = 0.0035ω1, εµ2 = 0.0035ω2 and εσ2 = 0.5. Inspecting figure 3.4,

it is noted that both fixed points are unstable when −0.79 < εσ1 < 0.175. Power spectra,

phase portraits and Poincare sections are used to characterize these responses.

Figures 3.11(a, b, c) show the time history, power spectra, phase portrait and Poincare

section of displacement of the base structure for εσ1 = −0.8. All of the results indicate that

the displacement of the base structure is periodic. That is, the motion of the base structure

is period-1 response. As εσ1 is increased to −0.785, figure 3.11 (d) shows that time series

has three dominant frequencies as they appear in power spectrum, indicating quasi-periodic

responses. Figure 3.11 (f) shows that the Poincare map become one elliptical circle and the

system become two-torus motion. Comparing figure 3.11 (f) with figure 3.11 (c), we note

that a supercritical hopf-bifurcation takes place between εσ1 = −0.8 and −0.785 because the

fixed point of a2 is changed from stable to unstable in this range of εσ1. As εσ1 is increased

further to −0.5, the maximum amplitude is much larger than those of εσ1 = −0.8 and

−0.785 as deduced from the time history and portrait map, which are shown in figures 3.11

(g, h). Inspecting the power spectra (figure 3.11 (g)), we find more frequencies than those

in cases of εσ1 = −0.8 and −0.785. Moreover, the attractor is increased to two circles in the

Poincare section, as shown in figure 3.11 (i). This indicates that the system has undergone

a second Hopf bifurcation.

As εσ1 is increased to −0.4325, the Poincare section shows four circles and the number of

frequencies in the corresponding power spectrum is more than in the case of εσ1 = −0.5, as

shown in figures 3.12(a,b,c). Moreover, the ellipse of attractor gets distorted and the two sides

of attractor bench to the left, as shown in figure 3.12(c). This can be considered as a sign for

a transition to a chaotic response, as observed by Nayfeh [86]. As εσ1 is increased slightly

to −0.432, the torus in Poincare map is destroyed, as illustrated in figure 3.12 (f). The

time history and power spectra in figure 3.12 (d) show that the displacement time variation

becomes random and subharmonics of the modulation frequency in the power spectrum

are noted. This can be considered as an indication of a period-multiplying bifurcation

[86]. Therefore, chaos has emerged as a result of the destruction of the torus when εσ1 =

−0.432. As εσ1 is increased to −0.3975, the time history exhibits varying amplitudes as

shown in figure 3.12(g) with almost no dominant frequency in the corresponding power

spectrum (figure 3.12 (g)). Figure 3.12 (i) shows that the points in Poincare section become

more random which indicates that the displacement of the base structure has become more

chaotic.

As εσ1 is increased to −0.3905, dominant frequencies reappear in the power spectrum. The

time history is much more regular than the one in the case of εσ1 = −0.3975, as shown in
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figure 3.13 (a). Inspecting figure 3.13 (c), one circle appears in Poincare section. As εσ1

is increased slightly to −0.39, the time history is changed back to a periodic motion and

subharmonics of the modulation frequencies disappear. Moreover, the attractor shown in

Poincare map forms a one-circle shape, as shown in figure 3.12 (f). Therefore, the motion

of the system changes from being chaotic to a periodic motion with multiple frequencies.

As εσ1 is increased further to 0.15, the maximum displacement is reduced to 2.5, as shown

in time history and phase portrait in figures 3.13(g,h). It is also noted that the number of

dominant frequencies becomes three in the power spectrum and the shape of the attractor

becomes elliptic. If we increase εσ1 further, the motion of the interaction between the base

structure and the cantilevered beam will become stable again.

3.6 Conclusion

Nonlinear characterizations of the autoparametric vibration system were analyzed. The gov-

erning equations were derived using the extended Hamilton’s principle and non-dimensionalized.

Then, the method of multiple scales was used to solve for the equilibrium points. The

Cartesian form of the modulation equations was then used to determine the stability and

bifurcation of these equilibrium points. We identified four types of motion that include (1)

only a1 = 0 and a2 6= 0 is stable where the attached cantilevered beam move with the same

motion as the base structure and the system behaves as a rigid body; (2) only a1 6= 0 and

a2 6= 0 is stable where the strong nonlinear interaction between the base structure and the

attached beam occurs; (3) both fixed points are stable where the system undergoes differ-

ent motions depending on the initial conditions and the system may have some interesting

nonlinear phenomena, such as, jumps and hysteresis; and (4) none of fixed point is stable

where the system may undergo Hopf bifurcations and even become chaotic. Furthermore,

the effects of different parameters, such as the amplitude and frequency of external force,

the damping coefficient and frequency of the attached cantilever beam and the tip mass, on

the nonlinear responses of the system are analyzed.

We find that the saturation phenomenon occurs as the external force is increased above a cer-

tain threshold and is very helpful to control the vibration of the base structure, particularly

when the base structure undergoes resonance or near resonance and the frequency of the

cantilevered beam is close to 1/2 of the natural frequency of the base structure. Moreover,

there exists jumps and hysteresis for a specific range of parameters. Some interesting bifurca-

tions, such as saddle-node, supercritical pitchfork, subcritical pitchfork, reversed saddle-node

and reversed saddle-saddle bifurcations, are also observed. we also find that the tip mass

has a considerable effect on the nonlinear response of the system, particularly when the

damping ratio of the cantilever beam is small and the external force is large. Finally, time

history, power spectra, phase portrait and Poincare section were used to analyze the sys-
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tem’s responses. The results show that responses characterized by Hopf bifurcations and

chaos.
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Figure 3.11: (a,d,g) Time histories and power spectra, (b,e,h) phase portraits, and (c,f,i)
Poincare sections of the vertical displacement of base structure for different εσ1 when other
parameters are ε = 0.005, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 =
0.0035ω2 and εσ2 = 0.5: (a, b, c) εσ1 = −0.8, (b, e, f) εσ1 = −0.785 and (g, h, i) εσ1 = −0.5.
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Ȧ
2

(h)

−10 0 10

−600

−400

−200

0

200

400

600

A2

Ȧ
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Figure 3.12: (a,d,g) Time histories and power spectra, (b,e,h) phase portraits, and (c,f,i)
Poincare sections of the vertical displacement of base structure for different εσ1 when other
parameters are ε = 0.005, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 =
0.0035ω2 and εσ2 = 0.5: (a, b, c) εσ1 = −0.4325, (b, e, f) εσ1 = −0.432 and (g, h, i)
εσ1 = −0.3975.



Zhimiao Yan 3. Autoparametric Vibration Systems 66

1000 1100 1200 1300 1400
−20

−10

0

10

20

t(s)

A
2

5 6 7 8 9

10
1

10
−1

10
−3

10
−5

Frequency (Hz)

A
2

(a)

−10 0 10

−600

−400

−200

0

200

400

600

A2

Ȧ
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Ȧ
2

(c)

1000 1100 1200 1300 1400
−20

−10

0

10

20

t(s)

A
2

5 6 7 8 9

10
1

10
−1

10
−3

10
−5

Frequency (Hz)

A
2

(d)

−10 −5 0 5 10
−600

−400

−200

0

200

400

600

A2

Ȧ
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Figure 3.13: (a,d,g) Time histories and power spectra, (b,e,h) phase portraits, and (c,f,i)
Poincare sections of the vertical displacement of base structure for different εσ1 when other
parameters are ε = 0.005, ω2 = 45.35rad/s, R = 6.2, δ1 = −Rω2

1, εµ1 = 0.0035ω1, εµ2 =
0.0035ω2 and εσ2 = 0.5 :(a, b, c) εσ1 = −0.3905, (b, e, f) εσ1 = −0.39 and (g, h, i)
εσ1 = 0.15.



4
Piezoelectric energy harvesting from hybrid vibrations

Galloping-based piezoaeroelastic systems have been studied recently by Abdelkefi et al [58,

59, 60, 87]. The system consists of galloping structure that is mounted on the tip of a

vibration beam. As such, it is plausible to design a harvester that can generate energy from

both ambient and galloping vibrations. Yet, the system’s response to both types of vibrations

under different conditions may not be a simple superposition of individual responses to both

type of vibrations. We investigate the concept of harvesting energy from hybrid (ambient

and galloping) vibrations and determine the effects of the load resistance, wind speed, and

base acceleration on the performance of the harvester. The harvester consists of a cantilever

beam with a triangular cross-section geometry tip mass attached to its end.

4.1 Representation of the hybrid energy harvester

Figure 4.1: A schematic of the piezoaeroelastic energy harvester

The energy harvester under investigation consists of a triangular cross-section tip mass at-

tached to a multi-layered cantilever beam. This energy harvester is subjected to two types

of excitations, namely, base and galloping, as shown in figure 4.1. The cantilever beam is

composed of one aluminum and two piezoelectric layers. The two piezoelectric sheets are

bonded on both sides of the aluminum layer and connected in parallel with opposite polarity

67
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Table 4.1: Physical and geometric properties of the cantilever beam and the tip body

Es Aluminum Young’s Modulus (GN/m2) 70
Ep Piezoelectric material Young’s Modulus (GN/m2) 62
ρs Aluminum density (kg/m3) 2700
ρp Piezoelectric material density (kg/m3) 7800
L Length of the beam (mm) 90
b1 Width of the aluminum layer (mm) 38
b2 Width of the piezoelectric layer (mm) 36.2
hs Aluminum layer thickness (mm) 0.635
hp Piezoelectric layer thickness (mm) 0.267
Mt Tip mass (g) 65
Lstruc Length of the tip body (mm) 235
bstruc Width of the tip body (mm) 30
d31 Strain coefficient of piezoelectric layer (pC/N) −320
εs33 Permittivity component at constant strain (nF/m) 27.3

to an electrical load resistance. The geometric and material properties of the system are

presented in table 4.1.

To establish the governing equation of the piezoelectric energy harvesting from hybrid vibra-

tions, it is assumed that the multi-layered cantilever beam is Euler-Bernoulli beam. Also,

the extended Hamilton’s principle [78] is introduced as following:∫ t2

t1

(δT − δV + δWnc)dt = 0 (4.1)

Where, T , V and Wnc are respectively the kinetic energy, potential energy and virtual work

due to the nonconservative forces and δx is the derivation of the x. Inspecting Figure 4.1,

we express kinetic energy T as:

T =
1

2

∫ L

0

m

(
∂v(x, t)

∂t

)2

dx+
1

2
Mt

(
∂v(L, t)

∂t
+ Lc

∂2v(L, t)

∂x∂t

)2

+
1

2
Ic(
∂2v(L, t)

∂x∂t
)2 (4.2)

In this expression, Mt, Lc and Ic are respectively the tip mass, distance from the center of

the tip mass to the tip of the cantilever beam and rotational inertia of the tip mass relative

to the center of the tip mass, L is the length of the cantilever beam, m is the mass of the

beam per unit length and is given by m=b1ρshs + 2b2ρphp. In the expression of m, ρs and

ρp are the respective densities of the aluminum and piezoelectric layers and hs and hp are

the respective thicknesses of these layers. As such, the term of kinetic energy
∫ t2
t1
δTdt in
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Hamilton’s equation 4.1 is calculated as∫ t2
t1
δTdt =

∫ L
0

∫ t2
t1
m∂v(x,t)

∂t
∂δv(x,t)

∂t
dtdx+

∫ t2
t1
Ic
∂2v(L,t)
∂x∂t

∂2δv(L,t)
∂x∂t

dtdx

+
∫ t2
t1
Mt

(
∂v(L,t)
∂t

+ Lc
∂2v(L,t)
∂x∂t

)(
∂δv(L,t)

∂t
+ Lc

∂2δv(L,t)
∂x∂t

)
dt

= −
∫ L

0

∫ t2
t1
m∂2v(x,t)

∂t2
δv(x, t)dtdx−

∫ t2
t1
Mt

(
∂2v(L,t)
∂t2

+ Lc
∂3v(L,t)
∂x∂t2

)
δv(L, t)dtdx

−
∫ t2
t1

(
MtLc

∂2v(L,t)
∂t2

+ It
∂3v(L,t)
∂x∂t2

)
∂δv(L,t)
∂x

dt

(4.3)

where It is the rotational inertia of the tip mass relative to the tip of the cantilever beam

and is given by It = MtL
2
c + Ic. In the derivation, we use the properties of the virtual kinetic

energy: δv(x, t) = 0 and ∂δv(L,t)
∂x

= 0 at t = t1, t2. The potential energy V is give by:

V =
1

2

∫ L

0

EI

(
∂2v(x, t)

∂x2

)2

dx (4.4)

where EI is the stiffness of the cantilever beam and is given by

EI= 1
12
b1Eshs

3 + 2
3
b2Ep[(hp + hs

2
)
3 − hs

3

8
]. In this formulation, Es and Ep are the respective

Young’s Modulus of the aluminum and piezoelectric layers and b1 and b2 are the beam widths

of repetitive multiple layers. To this end, the term of potential energy
∫ t2
t1
δV dt in Hamilton’s

equation 4.1 is calculated as∫ t2
t1
δV dt =

∫ t2
t1

∫ L
0
EI ∂

2v(x,t)
∂x2

∂2

∂x2
(δv(x, t))dxdt

=
∫ t2
t1
EI
(
∂2v(L,t)
∂x2

)
∂
∂x

(δv(L, t))dt−
∫ t2
t1
EI
(
∂2v(0,t)
∂x2

)
∂
∂x

(δv(0, t))dt

−
∫ t2
t1
EI
(
∂3v(L,t)
∂x3

)
δv(L, t)dt+

∫ t2
t1
EI
(
∂3v(0,t)
∂x3

)
δv(0, t)dt+

∫ t2
t1

∫ L
0
EI ∂

4v(x,t)
∂x4

δv(x, t)dxdt

(4.5)

In the system of energy harvesting, nonconservative forces are separated into following three

parts: damping force, electronic force and galloping force. As such, the virtual work due to

the nonconservative forces is given by:

Wnc = Wele +Wdamp +Wgallop (4.6)

where Wele, Wdamp and Wgallop are the virtual works due to the respective electric, damping

and galloping forces. According to Ref. [42], the virtual works due to electric force Wele is

given by:

Wele =

∫ L

0

−Mele
∂2v(x, t)

∂x2
dx (4.7)

where Mele is the moment due to the electric effect and is expressed as following when the
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upper and lower layer are parallelly connected [42]:

Mele = b2[
∫ −hs/2
−hp−hs/2−e31(−V (t)

hp
)ydy +

∫ hp+hs/2

hs/2
−e31(V (t)

hp
)ydy](H(x)−H(x− L))

= ϑpV (t)(H(x)−H(x− L))
(4.8)

where V (t) is the voltage of the piezoelectric layer, H(x) is the step function, e31 = Epd31 is

the piezoelectric stress coefficient and ϑp is the piezoelectric coupling term which is given by

ϑp = −b2e31(hp +hs). Incepting figure 4.1, the virtual work due to the damping force Wdamp

and due to the galloping force Wgallop are given by:

Wdamp =
∫ L

0

∮
Fddvdx

Wgallop = Ftipv(L, t) +Mtip
∂v(L,t)
∂x

(4.9)

where Ftip and Mtip are the respective galloping force and moment relative to the tip of the

cantilever beam, Fd is the damping force whose expression is Fd = −csI ∂
5vrel(x,t)
∂4x∂t

− ca ∂vrel(x,t)∂t

[42]. In the expression of Fd, cs and ca are the respective viscous strain and air damping

coefficients, vrel(x, t) is the relative displacement to the base of the cantilever beam. Based on

equations (4.6), (4.7) and (4.9), the virtual work due to nonconservative forces is calculated

as ∫ t2
t1
δWncdt =

∫ t2
t1

∫ L
0
−ϑpV (t)(∂δ(x)

∂x
− ∂δ(x−L)

∂x
)δv(x, t)dxdt+

∫ t2
t1
Ftipδv(x, t)dt

+
∫ t2
t1
Mtip

∂δv(x,t)
∂x

dt+
∫ t2
t1

∫ L
0

(−csI ∂
5vrel(x,t)
∂4x∂t

− ca ∂vrel(x,t)∂t
)δv(x, t)dxdt

(4.10)

Substitute equations (4.3), (4.5) and (4.10) into equation (4.1) and using the fact that

v(x, t) = vrel(x, t) + vb(t) (vb(t) is the base displacement), Hamilton’s equation is translated

into:∫ t2
t1
δT − δV + δWncdt

= −
∫ t2
t1

∫ L
0

[EI ∂
4vrel(x,t)
∂x4

+ csI
∂5vrel(x,t)
∂4x∂t

+ ca
∂vrel(x,t)

∂t
+m∂2vrel(x,t)

∂t2
+m∂2vb(t)

∂t2

+ϑpV (t)(∂δ(x)
∂x
− ∂δ(x−L)

∂x
) + (Mt

∂2vb(t)
∂t2
− Ftip)δ(x− L)− (MtLc

∂2vb(t)
∂2t
−Mtip)

∂δ(x−L)
∂x

]δv(x, t)dxdt

−
∫ t2
t1
EI
(
∂3vrel(0,t)

∂x3

)
δv(0, t)dt+

∫ t2
t1
EI
(
∂2vrel(0,t)

∂x2

)
∂
∂x

(δv(0, t))dt

−
∫ t2
t1

(Mt(
(
∂2vrel(L,t)

∂t2
+ Lc

∂3vrel(L,t)
∂x∂t2

)
)− EI

(
∂3vrel(L,t)

∂x3

)
)δv(L, t)dt

−
∫ t2
t1

(MtLc
∂2vrel(L,t)

∂t2
+ It

∂3vrel(L,t)
∂x∂t2

+ EI
(
∂2v(L,t)
∂x2

)
) ∂
∂x

(δv(L, t))dt = 0

(4.11)

Based on the extended Hamilton’s equation (4.11), the governing equation of the electrome-

chanical systems is written as

EI ∂
4vrel(x,t)
∂x4

+ csI
∂5vrel(x,t)
∂x4∂t

+ ca
∂vrel(x,t)

∂t
+m∂2vrel(x,t)

∂t2
+ (dδ(x)

dx
− dδ(x−L)

dx
)ϑpV (t)

= Ftipδ(x− L)−Mtip
dδ(x−L)

dx
−Mtδ(x− L)∂

2vb(t)
∂t2

+MtLc
∂2vb(t)
∂t2

dδ(x−L)
dx

−m∂2vb(t)
∂t2

(4.12)
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Inspecting Figure 4.1 we find the boundary geometry of the cantilever beam as v(0, t) = 0,
∂
∂x

(v(0, t)) = 0, v(L, t) 6= 0 and ∂
∂x

(v(L, t)) 6= 0. Similarly, based on the extended Hamilton’s

equation (4.11), the boundary conditions of the electromechanical systems is given by:

v(0, t) = 0; ∂
∂x

(v(0, t)) = 0;

Mt

(
∂2vrel(L,t)

∂t2
+ Lc

∂3vrel(L,t)
∂x∂t2

)
− EI

(
∂3vrel(L,t)

∂x3

)
= 0

MtLc
∂2vrel(L,t)

∂t2
+ It

∂3vrel(L,t)
∂x∂t2

+ EI
(
∂2v(L,t)
∂x2

)
= 0

(4.13)

To relate the mechanical and electrical variables, the Gauss law [88] is used as following:

d

dt

∫
A

D.n dA =
d

dt

∫
A

D2 dA =
V

R
(4.14)

where D is the electric displacement vector and n is the normal vector to the plane of the

beam. The electric displacement component D2 is given by the following relation [42]:

D2(x, t) = e31ε11(x, t) + εs33E2 (4.15)

where ε11 is the axial strain component in the aluminum and piezoelectric layers and is

given by ε11(x, y, t) = −y ∂
2vrel(x,t)
∂x2

, and εs33 is the permitting component at constant strain.

Substituting equation (5.9) into equation (5.8), we obtain the equation governing the strain-

voltage relation:

− e31(hp + hs)b2

∫ L

0

∂3vrel(x, t)

∂t∂x2
dx− 2εs33b2L

hp

dV (t)

dt
=
V (t)

R
(4.16)

4.2 Galerkin discretization

Characterization of the different physical aspects of the harvester is best obtained by per-

forming linear stability and nonlinear analyses. We discretized the motion of the system by

using the Galerkin procedure, which requires the exact mode shapes of the structure. As

such, the relative transverse displacement, vrel(x, t), is expressed in the following form:

vrel(x, t) = φi(x)qi(t) (4.17)

where qi(t) are the modal coordinates and φi(x) are the mode shapes of a cantilever beam-

mass system. These mode shapes are determined by dropping the damping, forcing, and

polarization from equation (4.12) as [58]:

φ(x) = A sin βx+B cos βx+ C sinh βx+D cosh βx (4.18)
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where the relation between β and ω is given by ω = β2
√

EI
m

.

To obtain the relation between the different coefficients in (4.18), we use the associated

boundary conditions of the system, see in equation (4.13), and then normalize the eigen-

functions (orthogonality conditions). These conditions are, respectively, given by:

φi(0) = 0;φ′i(0) = 0;

EIφ′′i (L)− ω2MtLcφi(L)− ω2Itφ
′
i(L) = 0;

EIφ′′′i (L) + ω2MtLcφ
′
i(L) + ω2Mtφi(L) = 0

(4.19)

and ∫ L
0
φs(x)mφr(x)dx+ φs(L)Mtφr(L) + φs

′(L)Itφr
′(L)

+φs(L)MtLcφr
′(L) + φr(L)MtLcφs

′(L) = δrs∫ L
0
φs
′′(x)EIφr

′′(x)dx = δrsω
2
r

(4.20)

Where, s and r are used to represent the vibration modes and δrs is the Kronecker delta,

defined as unity when s is equal to r and zero otherwise.

Substituting equation (4.17) into equations (4.12) and (4.16) and considering the first mode,

we obtain the following coupled equations:

q̈(t) + 2ξωq̇(t) + ω2q(t) + θpV (t) = f(t) (4.21)

V (t)

R
+ CpV̇ (t)− θpq̇(t) = 0 (4.22)

where ξ is the mechanical damping coefficient, f(t) is the first mode of the external force

due to galloping and base excitation which is given by: f(t) = φ(L)Ftip + φ′(L)Mtip −
Mtφ(L)∂

2vb(t)
∂t2
−φ′(L)MtLc

∂2vb(t)
∂t2
− ∂2vb(t)

∂t2

∫ L
0
φ(x)mdx, ω is the fundamental natural frequency

of the structure, and the coefficients θp and Cp are the respective piezoelectric coupling term

and capacitance of the harvester which are given by θp = φ′(L)ϑp and Cp =
2εs33b2L

hp
.

4.3 Determination of the aerodynamic galloping force

The use of the quasi-steady hypothesis to evaluate the aerodynamic loads has been justified

by the fact that the characteristic time scale of the oscillations is much larger than the

characteristic time scale of the flow motion [89, 90]. As such, the lift force FL and the drag

force FD per unit length are written as

FL = 1
2
ρairU

2bstrucCL
FD = 1

2
ρairU

2bstrucCD
(4.23)
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where ρair is the density of air, U is the incoming wind speed, bstruc is the width of the bluff

body at the tip, and CL and CD are, respectively, the lift and drag coefficients. The tip force

and moment are determined by integrating the aerodynamic loads over the whole length of

the galloping structure as

Ftip = −
Lstruc∫

0

(FL cosα + FD sinα)ds

Mtip = −
Lstruc∫

0

s(FL cosα + FD sinα)ds

(4.24)

where Lstruc is the length of the prismatic structure and s is the length coordinate along

the tip body. These coefficients depend on the angle of attack, α, as well as the Reynolds

number. The angle of attack is expressed as: α = tan−1(
v̇rel(L,t)+sv̇

′
rel(L,t)+v̇b(t)

U
).

The total aerodynamic force per unit length, Fy, applied to the prismatic structure in the

direction normal to the incoming flow is directly related to the lift and drag forces and is

given by:

Fy =
1

2
ρairU

2bstrucCy = −1

2
ρairU

2bstruc[CL cos(α) + CD sin(α)] (4.25)

where Cy is the total aerodynamic force coefficient in the direction normal to the incoming

flow. Barrero-Gil et al [90] showed that, for applications where the Reynolds number is

relatively high, the total aerodynamic force coefficient can be expressed by a polynomial

function of tan(α) in the form:

Cy = a1 tanα + a3(tanα)3 (4.26)

where a1 and a3 are empirical coefficients obtained by polynomial fitting of Cy vs tan(α). A

positive value for a1 indicates that the structure is susceptible to galloping [91]. As for the

nonlinear coefficient a3, it is always negative because Cy always has a maximum value, which

decreases as a function of the angle of attack. Both of the linear and nonlinear coefficients

depend on the geometry of the cross-section. Here, we consider isosceles triangles with

δ = 30o. The empirical values of a1 and a3, as determined by Barrero-Gil et al [90], are 2.9

and -6.2, resepctively. Using the above equations, the aerodynamic force and moment at the

tip are expressed as:

Ftip = 1
2
ρairU

2bstruc
Lstruc∫

0

a1(
v̇rel(L,t)+sv̇

′
rel(L,t)+v̇b(L,t)

U
) + a3(

v̇rel(L,t)+sv̇
′
rel(L,t)+v̇b(L,t)

U
)
3
ds

Mtip = 1
2
ρairU

2bstruc
Lstruc∫

0

s(a1(
v̇rel(L,t)+sv̇

′
rel(L,t)+v̇b(L,t)

U
) + a3(

v̇rel(L,t)+sv̇
′
rel(L,t)+v̇b(L,t)

U
)
3
)ds

(4.27)
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4.4 Linear analysis

Substituting the discretized form into equation (4.27), the external force due to galloping

and base citation is given as following:

f(t) = φ(L)Ftip + φ′(L)Mtip − ∂2vb(t)
∂t2

(Mtφ(L) + φ′(L)MtLc +
∫ L

0
φ(x)mdx)

= 1
2
ρairU

2bstruc

[
k1

q̇
U

+ k2
v̇b
U

+ k3( q̇
U

)
3

+ k4
v̇b
U

( q̇
U

)
2

+ k5( v̇b
U

)
2
( q̇
U

) + k6( v̇b
U

)
3
]

+ k7v̈b
(4.28)

where k1, k2, k3, k4, k5, k6 and k7 are given by:

k1 = a1(φ2(L)Lstruc + φ(L)φ′(L)L2
struc + 1

3
φ′2(L)L3

struc)

k2 = a1(φ(L)Lstruc + 1
2
φ′(L)L2

struc)

k3 = a3(φ(L)
Lstruc∫

0

(φ(L) + sφ′(L))3ds+ φ′(L)
Lstruc∫

0

s(φ(L) + sφ′(L))3ds)

k4 = 3a3(φ(L)
Lstruc∫

0

(φ(L) + sφ′(L))2ds+ φ′(L)
Lstruc∫

0

s(φ(L) + sφ′(L))2ds)

k5 = 3a3(φ2(L)Lstruc + φ(L)φ′(L)L2
struc + 1

3
φ′2(L)L3

struc)

k6 = a3(φ(L)Lstruc + 1
2
φ′(L)L2

struc)

k7 = −(Mtφ(L) + φ′(L)MtLc +
∫ L

0
φ(x)mdx)

(4.29)

Introduce the following state variables:

X =

 X1

X2

X3

 =

 q

q̇

V

 (4.30)

The equations of motion are rewritten as

Ẋ1 = X2 (4.31)

Ẋ2 = −(2ξω − ρairUbstruck1
2

)X2 − ω2X1 − χX3 + ρairUbstruck2
2

v̇b
+ρairbstruc

2U
(k3X

3
2 + k4v̇bX

2
2 + k5v̇

2
bX2 + k6v̇

3
b ) + k7v̈b

(4.32)

Ẋ3 = − 1

RCp
X3 +

χ

Cp
X2 (4.33)

Clearly, these equations have the form

Ẋ = B(U)X + G(U, v̇b) + N(X,X,X) + C(X, v̇b) + Fb(v̇b) (4.34)
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where B =

 0 1 0

−ω2
n −

(
2ξω − ρairUbstruck1

2

)
−χ

0 χ
Cp

− 1
RCp

; G =

 0
1
2
ρairUbstruck2v̇b

0

; C =

 0
ρairbstruc

2U
(k4v̇bX

2
2 + k5v̇

2
bX2 + k6v̇

3
b )

0

; N =

 0
ρairbstruc

2U
k3X

3
2

0

;

Fb =

 0

k7v̈b
0



4.4.a Effects of the load resistance and wind speed on the global

frequency and electromechanical damping

The effects of the electrical load resistance on the natural frequency and damping of the

hybrid harvester, and consequently on the onset of galloping, are determined from a linear

analysis of the coupled electromechanical problem. Inspecting the governing equations of

motion (4.34), we note that the matrix B gives a clear idea about the effects of the wind

speed and load resistance on the overall damping and frequency of the system.

There are there eigenvalues of matrix B λi, i = 1, 2, 3. The first two eigenvalues are similar

to those of a pure galloping problem in the absence of the piezoelectricity effect. These two

eigenvalues are complex conjugates (λ2 = λ1). The real part of these eigenvalues represents

the electromechanical damping element (the damping coefficient times the global frequency

of the system) and the positive imaginary part corresponds to the global frequency of the

coupled system. The third eigenvalue λ3 is the result of the electromechanical coupling and is

always real and negative [44, 45]. It is noted that the stability of the trivial solution depends

only on the real part of the first two eigenvalues because λ3 is always real and negative. The

speed Ug for which the real part of the first two eigenvalues is zero corresponds to the onset

of instability or galloping and self-excited oscillations takes place for higher values of the

wind speeds.

Figure 4.2 shows the variation of global frequency and the coupling damping ratio as a

function of load resistance When U = 0m/s. It follows from Figure 4.2(a) that when the

load resistance is smaller than 104Ω or larger than 5×105Ω, the global frequency almost keeps

constant. On the other hand, the global frequency increases from 40.7rad/s to 44.2rad/s as

the load resistance is increased from 104Ω to 5 × 105Ω. When R = 102Ω, we refer to this

global frequency as the short global frequency. In contrast, when R = 108Ω, we refer to

this global frequency as the open global frequency. Turning to the coupled damping, Figure

4.2(b) shows that that the coupled damping ratio of the system is smaller in the range

of load resistances between 102 and 103Ω and between 106 and 108Ω. In the intermediate
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Figure 4.2: (a) global frequency varied by load resistance When U = 0m/s, (b) electrome-
chanical damping varied by load resistance When U = 0m/s
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Figure 4.3: (a) the real part of the first two eigenvalues varied by wind speed with different
load resistances, (b) the onset galloping wind speed varied by load resistance

range of load resistances (104Ω < R < 105Ω), maximum values of the coupled damping are

obtained. The coupled damping ratio reaches its maximum value for a load resistance value

of 3× 104Ω.

To determine the effects of the load resistance on the onset of instability, we plot in figure

4.3(a) and (b) the variations of the the real part of the first two eigenvalues as a function

of the wind speed and the variations of the onset speed of galloping as a function of the

load resistance, respectively. It follows from Figure 4.3(a) that for a specific value of the

wind speed, the real part of the the first two eigenvalues changes sign from negative to

positive (onset of instability). It is also noted that the load resistance significantly affects

the onset of instability. This is clearer in Figure 4.3(b) which shows that the onset speed



Zhimiao Yan 4. Energy harvesting from hybrid vibrations 77

3 6 9 12

40.69

40.7

40.71

40.72

U (m/s)

F
re

qu
en

cy
 (

ra
d/

s)

 

 

(a)

0 3 6 9 12

40.95

40.96

40.97

U (m/s)

F
re

qu
en

cy
 (

ra
d/

s)

 

 

(b)

0 3 6 9 12

43.91

43.92

43.93

U (m/s)

F
re

qu
en

cy
 (

ra
d/

s)

 

 

(c)

3 6 9 12

44.2

44.25

U (m/s)

F
re

qu
en

cy
 (

ra
d/

s)

 

 

(d)

Figure 4.4: the global frequency varied by wind speed with different load resistances: (a)
R = 103Ω, (b) R = 104Ω, (c) R = 105Ω, (d) R = 103Ω

of galloping strongly depends on the value of the load resistance. In the lower and higher

ranges of the load resistances (102Ω < R < 5× 103Ω and 5× 105Ω < R < 108Ω), the effect

of the load resistance on the onset speed of galloping is negligible. On the other hand, in

the intermediate range of load resistances, the onset speed of galloping changes significantly

when varying the load resistance. This is expected, because the global damping of the system

is higher in this intermediate range of load resistance, as shown in figure 4.2(b).

The curves plotted in figure 4.4 show the variations of global frequencies as a function of

wind speed for different load resistances. This analysis is helpful in determining the effects

of varying the wind speed on the global frequency of the harvester. It follows from this figure

that, for different load resistance values, the wind speed does not have much effect on the

global frequency of the harvester. On the other hand, the variation of the global frequency as

a function of the wind speed has a different tendency, depending on the associated electrical

load resistance. In fact, When R = 103Ω and R = 106Ω, the associated global frequencies

decrease as wind speed is increased; However, when R = 104Ω and R = 105Ω, there is a
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specific value of the wind speed at which the associated global frequency is maximum.

4.5 Nonlinear analysis

4.5.a Analytical explanations and nonlinear phenomena

Before we perform nonlinear analysis of the governing equations of motion, we try to elab-

orate on a possible nonlinear phenomenon that can arise when there are hybrid (base and

galloping) excitations. To simplify the analysis, we assume that the external forcing terms

(equation 4.28) that contain v̇b/U are relatively small compared to the pure galloping forc-

ing term. This assumption allows us to neglect the coupled terms in equation (4.28). Due

to the fact that the base excitation is a forced excitation and the galloping excitation is

a self-excitation, the governing equations of motion of the harvester can be simplified and

rewritten as the equation of motion of a self-sustaining system with harmonic excitation

[92]. One example of such a system is the forced Rayleigh equation, which includes the

self-excitation and the forced excitation and is written as

ü+ ω2
0u = ε(u− 1

3
u̇3) +K cos Ωt (4.35)

Where, ω0 is the equal to global frequency of the system, Ω is the frequency of the base

excitation, K is constant and ε is the small parameter (for the galloping case). According to

Equation (4.32), it is noted that ε have the same sign as ρairUbstruck1
2

− 2ξω, which is positive

when the wind speed is larger than the onset speed of galloping. Also, when v̈b is assumed

to be a cos Ωt, K can be calculated as k εk7a

| ρairUbstruck12
−2ξω| . Here, k is the constant depending

on the relationship between u and q.

Away from the possible resonances (primary, subharmonic of order 1/3, and superharmonic

of order 3), the solution of equation (4.35) is given by [92]:

u =

 4η

ω2
0 +

[
(4η/a2

0
)− ω2

0

]
exp(−εηt)


1/2

cos(ω0t+ β) +
K

Ω2 − ω2
0

cos Ωt+O(ε) (4.36)

Where, a0 is the initial amplitude and η = 1− 1
2
Ω2K2(ω2

0 − Ω2)−2.

Inspecting equation (4.36), we note that the response of the harvester is composed of a

homogeneous solution, which is the free-oscillation term due to galloping excitation, and

a particular solution, which is a forced-oscillation term due to harmonic direct excitation.

Based on this analysis. we conclude that the harvester mainly oscillates due to the presence

of both excitations, with two harmonic frequencies, namely are ω0 and Ω (not at resonance).
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Thus, the response of the harvester is generally aperiodic, becoming periodic only when the

excitation frequency matches the global frequency of the harvester.

Inspecting the free-oscillation term (homogeneous solution) in equation (4.36), we note that

its amplitude depends on the value of η = 1 − 1
2
Ω2K2(ω2

0 − Ω2)−2, which depends directly

on the values of K and Ω. Therefore, the values of the forcing (acceleration) and frequency

excitations significantly affect the value of η and hence the oscillations due to galloping

excitation. When η < 0 (i.e. K >
√

2Ω−1 |ω2
0 − Ω2|), the free-oscillation term, which is

due to the galloping excitation, decays with time and only the forced-oscillation takes place

(periodic motion). The phenomenon associated with the increase of the forcing excitation

accompanies by a decay of the free-oscillations, which is due to galloping excitation, called

quenching [92]. For small values of the forcing excitation K, then η > 0 and the steady-

state response of the harvester contains both the global frequency (ω0 ) and the excitation

frequency (Ω). The free-oscillation term which is due to galloping excitation is expected to

dominate when the excitation frequency is away from the global frequency. This process

of unlocking between both excitations is called pulling-out. On the other hand, when the

excitation frequency is almost equal to the global frequency of the harvester, the response of

the harvester changes significantly and the free-oscillation term which is due to galloping is

entrained or locked onto the forced term which is due to direct excitation. Consequently, a

synchronization of the response at the excitation frequency takes place [92]. The frequency

of external excitation when K =
√

2Ω−1 |ω2
0 − Ω2| is called pull-out frequency.

4.5.b Quenching phenomenon

We investigate whether the external force decreases the galloping effect when the external

frequency comes near to the global frequency (quenching phenomena), as discovered from the

simplified theoretical derivation in the section 4.5.a. The frequency response curves of the

voltage when electrical load resistance, wind speed and amplitude of base acceleration are

set equal to, respectively, 103Ω, 5m/s and 0.7g are plotted in figure 4.5. The plots show that

the square root mean value of the voltage first decreases then increases as the base excitation

approaches the global frequency. To prove the existence of quenching phenomenon, we plot

the time history and power spectra of voltages when the external frequencies are Ω = 3
4
ω0,

19
20
ω0, 0.954ω0, 1.043ω0, 23

22
ω0 and 3

2
ω0 in figure 4.6. When the external frequency is far away

from the global frequency, such as Ω = 3
4
ω0, the amplitude of voltage is mainly caused by

the galloping effect. As the external frequency comes close to ω0, the effect of the base

excitation increases and the galloping effect decreases. For example, the amplitude of the

voltage due to the base excitation is around ten times of galloping effect when Ω = 19
20
ω0. As

the external frequency increases a little further to 0.954ω0, the galloping effect disappears.

As such, the quenching phenomenon happens between Ω = 19
20
ω0 and 0.954ω0. Moreover,

inspecting figure 4.5, we note that the quenching phenomenon appears when the square root
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Figure 4.5: Frequency response curves for mean value of harvested voltage when electrical
load resistance, wind speed and amplitude of base acceleration are set equal to 103Ω, 5m/s
and 0.7g, respectively.

mean value of the voltage arrives at the minimum value. As the frequency leaves away from

the global frequency, the effect of galloping reappears when Ω = 23
22
ω0. When the external

frequency increases further, the galloping effect become dominant for the energy harvesting.

Therefore, we can conclude that the base excitation will decrease the galloping effect and

even make it disappear (quenching phenomenon) when the external frequency comes close

to the global frequency.

4.5.c Effects of the load resistance, wind speed, and base acceler-

ation on the harvester’s performance

We first investigated the effects of the base excitations on the frequency-response curves

of the harvester for different wind speeds and when the electrical load resistances are set

equal to R = 103Ω and R = 104Ω, see in figure 4.7 and 4.8, respectively. Inspecting the

curves in figure 4.7, it is noted that the system becomes galloping except the wind speed is

0m/s, This is expected for the reason that the onset wind speed of galloping excitation at

that wind speed is smaller than 3m/s as shown in figure 4.3(b). Also, from comparison of

different base excitations, we note that the base excitation does not affect the onset wind

speed of galloping that can be explained by the fact that the matrix B does not contain
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Figure 4.6: Time history and power spectra of the generated voltage for different excitation
frequencies (Ω) when the load resistance, wind speed and amplitude of base acceleration are
equal to 103Ω, 5m/s and 0.7g, respectively: (a) Ω = 3

4
ω0, (b) Ω = 19

20
ω0, (c) Ω = 0.954ω0,

(d) Ω = 1.043ω0, (e) Ω = 23
22
ω0 and (f) Ω = 3

2
ω0

elements depending on base excitation. Furthermore, we note that the galloping effect is
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Figure 4.7: Frequency response curves for the tip displacement (a,c,e) and harvested power
(b,d,f) when the load resistance is set equal to 103Ω and for different base excitations and
wind speeds. (a), (b) a = 0.1g, (c), (d) a = 0.3g and (e), (f) a = 0.7g

more important as the wind speed is increased. This is clearer in the off-synchronization

regions. In the synchronization or resonance region, the system can harvest energy from
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Figure 4.8: Frequency response curves for the tip displacement (a,c,e) and harvested power
(b,d,f) when the load resistance is set equal to 104Ω and for different base excitations and
wind speeds. (a), (b) a = 0.1g, (c), (d) a = 0.3g and (e), (f) a = 0.7g

both free- and forced-oscillation contributions. Inspecting figure 4.7(c) and 4.7(d), we find

that the pulling-out frequency becomes nearer to the global frequency as the wind speed
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increases. That can be explained by the facts that K decreases as wind speed U increases

(K = k εk7a

| ρairUbstruck12
−2ξω|) and thus the difference between pull-out frequency and global fre-

quency decreases (K =
√

2Ω−1 |ω2
0 − Ω2|). In addition, the quenching phenomenon becomes

more pronounced when the forcing excitation or base acceleration value increases. For ex-

ample, comparing Figure 4.7(a), (c) with (e), it is noted that the difference between pull-out

frequency and global frequency become larger as the base acceleration a is increased. That

is because K increases as base acceleration a is increased (K = k εk7a

| ρairUbstruck12
−2ξω|). For the

case when the load resistance is equal to R = 104Ω, as shown in Figure 4.8. The tendency-

response curves is changed for the cases when the wind speed is larger than 11m/s. At

smaller wind speed, the tendency of the frequency-response curves is similar to a base exci-

tation case without galloping. At wind speeds values higher than 11m/s, there is a galloping

oscillation contribution which is clearer in the off-resonance regions. This result can be ex-

plained by the fact that onset speed of galloping is around 10m/s when the load resistance

is set equal to 104Ω shown in Figure 4.2. The result is same for different values of the base

accelerations when the external frequency is away from the resonance. However, when the

value of the base acceleration is increased, the range of the excitation frequency near res-

onance affected by the external force increases. Furthermore, at a = 0.7g, more power is

generated at U = 0m/s than at U = 3m/s. and is closer to the power levels generated at

U = 5m/s. Furthermore, an increase in the value of base acceleration results in significant

effects associated with quenching phenomenon.

The plotted curves in figure 4.9 show the frequency-response curves for tip displacement

and harvested power for different load resistances and there distinct values of wind speed

when the base acceleration is equal to 0.3g. Inspecting these curves, we can note that the

range of higher harvested power depends on the considered value of the load resistance.

This is particularly clear when the wind speed is set equal to zero (without galloping effect).

Furthermore, the plots show minimum values of the tip displacement are obtained when the

load resistance is set equal to 104Ω or 105Ω. This result is explained by the high values

of the global damping shown in Figure 4.2(b). On the other hand, it is noted that these

two values of the load resistance gives a wider range of excitation frequencies at which the

system can harvest more energy. At U = 5m/s, the frequency-response curves when the load

resistance is equal to 102Ω, 103Ω, 106Ω and 107Ω are effected by the galloping excitation.

this is expected for the reason that the associated onset speed of galloping is smaller than

5m/s as shown in Figure 4.3(b). Inspecting figures 4.9(b) and (d), it is noted that the

existence of the galloping effect (U = 5m/s) decreases the level of the harvested power in

the resonance region when the load resistance is equal to 102Ω, 103Ω, 106Ω and 107Ω. The

highest levels of harvested power at resonance are observed for the base excitation cases

(without galloping). The interesting result is that maximum levels of harvested power are

accompanied by minimum displacement values when the load resistances is set equal to

104Ω or 105Ω. At U = 13m/s, all frequency-response curves are affected by this wind speed



Zhimiao Yan 4. Energy harvesting from hybrid vibrations 85

36 38 40 42 44 46

1

10

30

50

70

Ω (rad/s)

D
is

pl
ac

em
en

t (
m

m
)

 

 

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(a)

36 38 40 42 44 46
0

0.1

0.2

0.3

Ω (rad/s)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(b)

36 38 40 42 44 46
0

5

10

15

20

25

Ω (rad/s)

D
is

pl
ac

em
en

t (
m

m
)

 

 

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(c)

36 38 40 42 44 46
0

0.1

0.2

0.25

Ω (rad/s)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(d)

36 38 40 42 44 46
0

10

20

30

40

Ω (rad/s)

D
is

pl
ac

em
en

t (
m

m
)

 

 

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(e)

36 38 40 42 44 46
0

0.4

0.8

1.2

1.6

2

Ω (rad/s)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

R=102Ω

R=103Ω

R=104Ω

R=105Ω

R=106Ω

R=107Ω

(f)

Figure 4.9: Frequency response curves for the tip displacement (a,c,e) and harvested power
(b,d,f) when the base acceleration is set equal to 0.3g and for different load resistances and
wind speeds. (a), (b) U = 0m/s, (c), (d) U = 5m/s and (e), (f) U = 13m/s.

because the onset speed of galloping for all considered load resistances is smaller than 13m/s,

as shown in Figure 4.9(e) and (f). Furthermore, minimum values of the tip displacement are
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Figure 4.10: Frequency response curves for the tip displacement (a,c,e) and harvested power
(b,d,f) when the load resistance is set equal to 103Ω and for different base excitations and
wind speeds. (a), (b) U = 0m/s, (c), (d) U = 5m/s and (e), (f) U = 13m/s.

associated with maximum levels of harvested power when 104Ω and 105Ω. It is also noted

that the quenching phenomenon is more pronounced when R = 104Ω and R = 105Ω. For
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Figure 4.11: Frequency response curves for the tip displacement (a,c,e) and harvested power
(b,d,f) when the load resistance is set equal to 104Ω and for different base excitations and
wind speeds. (a), (b) U = 0m/s, (c), (d) U = 5m/s and (e), (f) U = 13m/s.

example, the differences between pull-out frequency and global frequency are much larger

when R = 104Ω and R = 105Ω than that when R = 102Ω and R = 107Ω. That is because
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ρairUbstruck1
2

− 2ξω is relative smaller due to the relative larger coupled damping ratios when

R = 104Ω and R = 105Ω as shown in Figure 4.2(b). Thus, K is larger according to the

expressing of K and then the differences between pull-out frequency and global frequency

are much larger when R = 104Ω and R = 105Ω.

The curves plotted in figures 4.10 and 4.11 show the frequency-response curves for the tip

displacement and harvested power for different wind speeds and base excitations for the

load resistances are 103Ω and 104Ω, respectively. Inspecting these curves, we note that

the tip displacement and harvested power increase as acceleration of the base excitation

is increased. It follows from figure 4.10 that the harvester with R = 103Ω is affected by

galloping for different base excitations when U = 5m/s and U = 13m/s. In additional, At

these wind speeds, the existence of the galloping effect decreases the level of the harvested

power and displacement at the resonance region. On the other hand, it increases the level

of the harvested power and displacement at the off-resonance region. It is also noted that

the effect of the base excitation first decreases and then increases the level of the harvested

power and displacement as the external frequency of the base excitation comes nearer to the

system. Moreover, the differences between pull-out frequency and global frequency, show in

Figure 4.10(c)-(f), increase as base accelerations is increased. Inspecting plotted curves in

figure 4.11, we note that the galloping effect takes place only at U = 13m/s when the load

resistance is set equal to 104Ω. Furthermore, at U = 5m/s, the effect of wind speed decreases

the level of displacement and harvested power when the external acceleration is set equal to

1g. However, it increases the level of displacement and harvested power when the external

acceleration is set equal to 0.1g, 0.3g or 0.7g. The quenching phenomenon is clearer when

increasing the value of the forcing excitation when both the free- and forced-oscillations are

present.

The short- and open-circuit configurations of the tip displacement and harvested power

for different wind speed values, namely, U = 0, 5 and 13m/s, have different responses, as

shown in figure 4.12. These configuration are defined by setting the excitation frequency

equal to the short- and open-circuit global frequencies, which are 40.7rad/s and 44.2rad/s,

respectively. For the short-circuit configuration, maximum values of the tip displacement

are obtained in the low range of load resistance. At higher values of the load resistance,

a significant decrease in the tip displacement values is observed. This is due to the fact

that, when increasing the load resistance, the global frequency increases, as shown in Figure

4.2(a), and then the harvester is not at resonance for these load resistances. For the open-

circuit configuration, an inverse tendency is obtained. Furthermore, there is a range of load

resistances when minimum values of the tip displacement are accompanied by maximum

levels of the harvested power for both the short- and open-circuit configuration. At U = 5 and

13m/s, the tendencies of the short- and open-circuit configurations change significantly. We

note that high values of the tip displacement are obtained in the low and high range of load

resistances. The appearance of new branches in the short- and open-circuit configurations
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Figure 4.12: response varied by load resistance in the short-circle (the frequency of the
base excitation is equal to the global frequency when R is very small) and open-circle (the
frequency of the base excitation is equal to the global frequency when R is very large)
situations for different wind speeds when a = 0.3g: (a) displacement and (b) harvested
power

for the tip displacement are due to the presence of the galloping oscillations. The associated

range of the load resistances of these new branches is smaller when U = 5m/s than that

when U = 13m/s. Furthermore, in the intermediate range of load resistances, minimum

values of the tip displacement are always obtained. This is due to the associated maximum

global damping values in this range; hence, no galloping effect takes place. For the harvested

power, it follows from figure 4.12(b) that new peaks of maximum levels of harvested power

take place for both circuit configurations. The range of load resistances when the harvested

power is maximum for both the short- and open-configurations is totally different than the

range of load resistances when the tip displacement is maximized.

4.6 Conclusion

We have investigated the concept of harvesting energy from hybrid vibrations, namely, base

and galloping of a bluff body with a triangular cross-section geometry. In order to convert

the associated oscillations to usable electrical power, a piezoelectric transducer is attached to

the transverse degree of freedom of the prismatic mass. A nonlinear distributed-parameter

model that takes into consideration the galloping force and moment nonlinearities and the

base excitation effect is derived based on extended Hamilton’s principle. The galloping force

and moment are modeled based on a quasi-steady approximation. The Galerkin procedure

is introduced to discretize the governing equations of motion. The effects of the load resis-

tance, wind speed on the overall damping, global frequency, and onset of instability were
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investigated through a linear analysis of the coupled equations of motion. Then, a nonlinear

analysis was performed to investigate the effects of the base acceleration, wind speed, and

electrical load resistance on the performance of the harvester and the associated nonlinear

phenomena that take place. The linear analysis shows that the load resistance has great ef-

fect on the electromechanical damping and global frequency. Moreover, during the nonlinear

analysis of the effect of load resistance, wind speed and base acceleration on the harvester’s

performance, some interesting nonlinear phenomena, such as quenching and pull-out fre-

quency, were investigated. The results also turned out as following: (1) the acceleration of

the base vibration has no effect on the onset wind speed; (2)the interaction of galloping effect

and base excitation have significant effect on the energy harvester’s performance; (3) as the

wind speed decreases, the acceleration increases or global damping increases, the difference

between pull-out frequency and global frequency increases (the quenching phenomena of the

system are more obvious). Furthermore, the existence of both types of excitations leads to

the presence of new peaks in the maximum levels of harvested power of both short- and

open-circuit configurations. The range of load resistances over which the harvested power

is maximum for both the short- and open-circuit configurations is totally different from the

range of load resistances over which tip displacement is maximized.



5
Energy Harvesting Through Autoparametric Resonance

We present a nonlinear distributed-parameter model for harvesting energy from an autopara-

metric vibration system. The system consists of a base structure subjected to an external

force and a cantilever beam with a tip mass. The model is used to analyze the effects of

the amplitude and frequency of the external force and load resistance on the nonlinear re-

sponses of the harvester. The analysis is then used to determine the optimum load resistance

not only to control the motion of the base structure but also to harvest energy. Details of

the proposed harvester’s design and derivation of the governing equations are presented. A

reduced-order model is derived using the exact mode shapes of the cantilever beam. The

method of multiple scales is used to obtain an approximate analytical solution to the de-

rived nonlinear set of differential equations. Solutions to different approximate orders are

compared and validated. These solutions are used to analyze the stability and bifurcation

of the system. Four kinds of generated motions are discussed. Approximate expressions

of the global frequency and coupling damping ratio of the cantilever beam are derived and

proved by the numerical simulation of the linearized governing equation. Nonlinear analysis

is performed to determine effects of the external force and load resistance on the response

of the harvester over a wide range of operating regimes.

5.1 Modeling of an autoparametric energy harvester

The energy harvesting system under investigation is based on the autoparametric vibration

absorber which is similar to the one considered by Haxton and Barr [19]. This system

consists of a base structure subjected to an external force F (t) and a cantilever beam with

a tip mass Mt, as shown in figure 5.1. The cantilever beam is composed of one steel and

two piezoelectric layers. The two piezoelectric sheets are bonded to both sides of the steel

layer and connected in parallel with opposite polarity to an electrical load resistance. The
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Figure 5.1: Schematic diagram of an autoparametric energy harvester

base structure M undergoes a vertical displacement xd and has a stiffness kd and damping

coefficient cd. One local coordinate x− y is fixed on top of the base structure. The attached

cantilever beam with the length L mainly moves in the horizontal direction y(s) where s is

the coordinate axis along the beam.

To derive the governing equation of the above system, we use the extended Hamilton’s

principle [78]: ∫ t2

t1

(δT − δV + δWnc)dt = 0 (5.1)

where, T , V and Wnc are respectively the kinetic energy, potential energy and virtual work

due to nonconservative forces. The kinetic energy T and potential energy V are expressed
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Table 5.1: Physical and geometric properties of the energy harvester

Es Steel Young’s Modulus (GN/m2) 200
Ep Piezoelectric material Young’s Modulus (GN/m2) 62
ρs Steel density (kg/m3) 7800
ρp Piezoelectric material density (kg/m3) 7800
L Length of the beam (mm) 200
b1 Width of the steel layer (mm) 38
b2 Width of the piezoelectric layer (mm) 36.2
hs Steel layer thickness (mm) 0.7
hp Piezoelectric layer thickness (mm) 0.267
Mt Tip mass (kg) 0.26
M Mass of base structure (kg) 1
It Rotational modulus of inertia of the tip body (m3) 4.33 ∗ 10−5

d31 Strain coefficient of piezoelectric layer (pC/N) −320
εs33 Permittivity component at constant strain (nF/m) 27.3

as [93]

T = 1
2
M(∂xd(t)

∂t
)2 + 1

2
Mt[

∂xd(t)
∂t
− d

dt
(
∫ L

0
1
2
(∂y(η,t)

∂η
)
2
dη)]2 + 1

2
Mt(

∂y(L,t)
∂t

)2 + 1
2
It(

∂2y(L,t)
∂t∂s

)2

+1
2

∫ L
0 m[∂xd(t)

∂t
− d

dt
(
∫ s

0
1
2
(∂y(η,t)

∂η
)
2
dη)]2ds + 1

2

∫ L
0
m(∂y(s,t)

∂t
)
2
ds

and

V =
∫ L

0
1
2
EI[(∂

2y(s,t)
∂s2

)
2

+ (∂
2y(s,t)
∂s2

)
2
(∂y(s,t)

∂s
)
2
]ds+

∫ L
0
mg(xd(t)− (L−s)

2
(∂y(s,t)

∂s
)
2
)ds

+Mtg(xd(t)−
∫ L

0
1
2
(∂y(s,t)

∂s
)
2
ds) +Mgxd(t) + 1

2
kdxd(t)

2

(5.2)

where Mt and M are respectively the tip mass and mass of the base structure, L is the

length of the cantilever beam, It is the rotational inertia of the tip mass relative to tip of the

cantilever beam, m is the mass of the beam per unit length and is given by: m=b1ρshs +

2b2ρphp and EI is the stiffness of the cantilever beam and is given by: EI= 1
12
b1Eshs

3 +
2
3
b2Ep[(hp + hs

2
)
3− hs

3

8
]. In the expressions of m and EI, ρs and ρp are the respective densities

of the steel and piezoelectric layers, hs and hp are the respective thicknesses of these layers,

b1 and b2 are the respective widths of multiple layers and Es and Ep are the Young’s Modulus

of the steel and piezoelectric layers, respectively. The values of all these parameters, as used

in this work, are shown in Table 5.1.

In this system, the nonconservative forces includes the damping force, external force and

electric force. Thus, the virtual work due to nonconservative forces in Hamilton’s equation

(5.1) is written as

Wnc = Wele +Wdamp +Wext (5.3)

where Wele, Wdamp and Wext represent the virtual work due to the electronic, damping and
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external forces, respectively. The virtual work due to electric force Wele is given by [42]

Wele =

∫ L

0

−Mele
∂2y(s, t)

∂s2
ds (5.4)

where Mele is the moment due to the electric effect. For the case where the upper and lower

layers are parallelly connected, it is expressed as

Mele = b2[
∫ −hs/2
−hp−hs/2−e31(−V (t)

hp
)zdz +

∫ hp+hs/2

hs/2
e31(−V (t)

hp
)zdz](H(s)−H(s− L))

= ϑpV (t)(H(s)−H(s− L))
(5.5)

where V (t) is the voltage of the piezoelectric layer, H(s) is the step function, e31 = Epd31

is the piezoelectric stress coefficient and ϑp is the piezoelectric coupling term which is given

by ϑp = −b2e31(hp + hs). Moreover, the virtual work due to the damping force Wdamp and

the external force Wext are expressed as

Wdamp =
∮
Fd1(t)dxd +

∫ L
0

∮
Fd2(s, t)dyds

Wext = F (t)xd(t)
(5.6)

where F (t) is the external force acting on the base structure, as shown in figure 5.1, and is

assumed to be of the form F (t) = FcosΩt, Fd1 is the damping force of the base structure

and written as Fd1 = −cd ∂xd(t)
∂t

and Fd2 is the damping force of the cantilever beam whose

expression [58] is: Fd2 = −ca ∂y(s,t)
∂t
− csI

∂5y(s,t)
∂s4∂t

. In these expressions of nonconservative

forces, cd is the damping coefficient of the base structure, cs and ca are respectively the

viscous strain and air damping coefficients of the cantilevered beam and F and Ω are the

amplitude and frequency of the external force, respectively.

Substituting the expressions for the kinetic energy T , potential energy V and virtual work

Wnc due to nonconservative forces into extended Hamilton’s equation (5.1), the governing

equations of the electromechanical system are written as

(Mt +M +M)∂
2xd(t)
∂t2

+ cd
∂xd(t)
∂t

+ kdxd(t)−Mt

∫ L
0

d2

dt2
[1
2
(∂y(s,t)

∂s
)
2
]ds−

∫ L
0
m
∫ s

0
d2

dt2
[1
2
(∂y(η,t)

∂η
)
2
]dηds

+(Mt +M +M)g = F cos(Ωt)

m∂2y(s,t)
∂t2

+ EI[∂
4y(s,t)
∂s4

+ (∂y(s,t)
∂s

)2 ∂
4y(s,t)
∂s4

+ 4∂y(s,t)
∂s

∂2y(s,t)
∂s2

∂3y(s,t)
∂s3

+ (∂
2y(s,t)
∂s2

)3]

+csI
∂5y(s,t)
∂s4∂t

+ ca
∂y(s,t)
∂t

+ [−mg −m∂2xd(t)
∂t2

+m
∫ s

0
d2

dt2
[1
2
(∂y(η,t)

∂η
)
2
]dη −Mt

∂2xd(t)
∂t2

δ(s− L)

+Mt

∫ s
0

d2

dt2
[1
2
(∂y(η,t)

∂η
)
2
]dηδ(s− L)]∂y(s,t)

∂s
+N ∂2y(s,t)

∂s2
+ ϑpV (t)

(
∂δ(s)
∂s
− ∂δ(s−L)

∂s

)
= 0

(5.7)

where M is the total mass of the multi-layered cantilever beam and calculated as M =∫ L
0
mdx, and N is representative axial force and given by N = mg(L−s)+Mtg+Mt

∂2xd(t)
∂t2

+

m∂2xd(t)
∂t2

(L− s)−Mt

∫ L
0

d2

dt2
[1
2
(∂y(η,t)

∂η
)
2
]dη−

∫ L
s
m
∫ ξ

0
d2

dt2
[1
2
(∂y(η,t)

∂η
)
2
]dηdξ.
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To relate the mechanical and electrical variables, we use the Gauss law [88] which is expressed

as
d

dt

∫
A

D.n dA =
d

dt

∫
A

D2 dA =
V

R
(5.8)

where D is the electric displacement vector and n is the normal vector of the plane of the

beam. The electric displacement component D2 is given by the following relation [42]:

D2(s, t) = e31ε11(s, t) + εs33E2 (5.9)

where ε11 is the axial strain component in the steel and piezoelectric layers and is given

by ε11(s, y, t) = −z ∂
2y(s,t)
∂s2

, εs33 is the permitting component at constant strain. Substituting

Equation (5.9) into (5.8), we obtain the equation governing the strain-voltage relation:

− e31(hp + hs)b2

∫ L

0

∂3y(s, t)

∂t∂s2
ds− 2εs33b2L

hp

dV (t)

dt
=
V (t)

R
(5.10)

5.2 Representative reduced-order model

To characterize the linear and nonlinear responses of the energy harvester and investigate

the effects of different parameters on its performance, we use distributed-parameter repre-

sentation. To this end, we discretize the motions of the cantilever beam using the Galerkin

Method and determine the exact mode shapes. We consider first the free vibrations of the

cantilever beam, which leads to the eigenvalue problem. Therefore, we drop the damping,

polarization and nonlinear coupling terms in the second expression in equation (5.7) and

separate the horizontal displacement y(s, t) into spatial and time variables as follows:

y(s, t) =
∞∑
i=1

φi(s)qi(t) (5.11)

where qi(t) and φi(s) are the modal coordinates and shapes of the cantilever beam attached

by the tip mass, respectively. The modal shapes are expressed as [79]

φi(s) = Ai sin βis+Bi cos βis+ Ci sinh βis+Di cosh βis (5.12)

where Ai, Bi, Ci and Di are coefficients to be determined from the boundary conditions.

According to Ref [93], the linearized boundary conditions are written as

y(0, t) = 0; ∂y(0,t)
∂s

= 0;

EI ∂
3y(L,t)
∂s3

+Mtg
∂y(L,t)
∂s
−Mt

∂2y(L,t)
∂t2

= 0;

EI ∂
2y(L,t)
∂s2

+ It
∂3y(L,t)
∂s∂t2

= 0

(5.13)
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Substituting equation (5.11) into equation (5.13), we obtain the simplified boundary condi-

tions
φi(0) = 0, φ′i(0) = 0,

EIφ′′i (L)− ω2
i Itφ

′
i(L) = 0,

EIφ′′′i (L) +Mtgφ
′
i(L) + ω2

iMtφi(L) = 0

(5.14)

where the ′ is used to indicate the derivative with respect to s. Furthermore, based on the

linearized dynamic equations and boundary conditions, the eigenfunctions are normalized

by the following expression [93]:∫ L
0
mφp(s)φr(s)ds+Mtφp(L)φr(L) + Itφp

′(L)φr
′(L) = δpr∫ L

0
EIφp

′′(s)φr
′′(s)ds−

∫ L
0
Mtgφp

′(s)φr
′(s)ds−

∫ L
0
mg(L− s)φp′(s)φr ′(s)ds = δprω

2
r

(5.15)

where p and r are used to represent the vibration modes, ωr is the rth natural frequency of

the cantilever beam, and δpr is the Kronecker delta, defined as unity when p is equal to r

and zero otherwise.

Substituting equation (5.11) into equations (5.7) and (5.10) and considering the first mode,

the governing equations are reduced to

ẍ(t) + 2ξxωxẋ(t) + ω2
xx(t)− η1

M+Mt+M

(
q̇(t)2 + q(t)q̈(t)

)
= F0 cos Ωt;

q̈(t) + 2ξ1ω1q̇(t) + (ω2
1 − η1ẍ(t))q(t) + η2q(t)

3 + η3q(t)
(
q̇(t)2 + q(t)q̈(t)

)
+ θpV (t) = 0;

V (t)
R

+ CpV̇ (t)− θpq̇(t) = 0
(5.16)

where the dot is used to indicate the derivative with respect to time t, x is a new variable

whose expression is x = xd+x0 where x0 is the static vertical displacement of the system and

is given by (M+m+m)g
kd

, ξx and ξ1 are respectively the mechanical damping coefficients of base

structure and cantilever beam, ωx is the natural frequency of the base structure and is given

by ωx =
√

kd
Mt+M+M

, ω1 is the first natural frequency of the beam which can be determined

from equation (5.15), the coefficients θp and Cp are respectively the piezoelectric coupling

term and capacitance of the harvester which are given by θp = φ′(L)ϑp and Cp =
2εs33b2L

hp
,

F0 is the nondimensionalized external force and is written by F0 = F
Mt+M+M

and η1, η2

and η3 are the nondimensionalized coefficients whose expressions are η1 = Mt

∫ L
0
φ′2ds +∫ L

0
m
∫ s

0
φ′2dηds, η2 =

∫ L
0
EI(φφ′2φIV + 4φφ′φ′′φ′′′ + φφ′′3)ds and η3 = Mt

(∫ L
0
φ′2ds

)2

+∫ L
0
m(
∫ s

0
φ′2dη)2ds.
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5.3 Approximate solution

We use the method of mutiple sacles [80, 81] to determine an approximate solution of the

governing equations. Particularly, we are interested in analytical solutions for the power

as a function of the different parameters. Furthermore, the approximate solution can be

used to assess the system’s stability and bifurcation points and, as such, gives details on

the limitations and operation range of this harvester. To simplify the representation of the

physical system, we introduce new variables u1 = q√
M+Mt+Mx0

, u2 = x
x0

and u3 = V and

rewrite the governing equations as

ü1 + ω2
1u1 + 2εµ1u̇1 − εu1ü2 + ε2δ1u

3
1 + ε2δ2u1(u̇2

1 + u1ü1) + εδ3u3 = 0;

ü2 + ω2
2u2 + 2εµ2u̇2 − ε(u̇2

1 + u1ü1) = F0 cos Ωt;

Rδ5u̇3 −Rδ4u̇1 + u3 = 0

(5.17)

where the new coefficients are given by: ω2 = ωx, ε = η1x0, µ1 = ξ1ω1

ε
, µ2 = ξxωx

ε
, δ1 =

η2(M+Mt+M̄)

η21
, δ2 = η3(M+Mt+M̄)

η21
, δ3 = θp

η1
√
M+Mt+M̄x20

, δ4 = θp
√
M +Mt + M̄x0 and δ5 = Cp.

Next, we define new time variables as:

Tn = εnt, n = 0, 1, 2 (5.18)

where T0 is a fast-time scale, and T1 and T2 are slow-time scales. Because the original

independent time scale t has been replaced by the new independent time scales T0, T1 and

T2, the derivatives with respect to t are changed to:

d
dt

= D0 + εD1 + ε2D1 + ϑ(ε3)
d2

dt2
= D2

0 + 2εD0D1 + ε2(D1 + 2D0D2) + ϑ(ε3)
(5.19)

where Di = ∂/∂Ti and ϑ(ε3) indicates order 3 of ε or higher. Following Nayfeh [80], we

rewrite the solutions u1, u2 and u3 as

uj(t; ε) = uj0(T0, T1, T2) + εuj1(T0, T1, T2) + ε2uj2(T0, T1, T2) + ϑ(ε3) (5.20)

where ujk are functions that depend on Tn and do not depend explicitly on ε, and j = 1, 2, 3

signify respectively the displacement of the beam, the displacement of the base structure

and the generated voltage. To analyze the autoparametric vibration system, we assume

the amplitude of the external force to be F0 = εf . Then, we substitute equations (5.18),

(5.19) and (5.20) into nondimensional governing equation (5.17) and equate the terms with

coefficients of equal ε powers to obtain the following set of equations
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ε0 order
D2

0u10 + ω2
1u10 = 0;

D2
0u20 + ω2

2u20 = 0;

−Rδ4D0u10 +Rδ5D0u30 + u30 = 0

(5.21)

ε1 order

D2
0u11 + ω2

1u11 = −2D0D1u10 − 2µ1D0u10 + u10D
2
0u20 − δ3u30;

D2
0u21 + ω2

2u21 = (D0u10)2 − 2D0D1u20 − 2µ2D0u20 + u1,0D
2
0u10 + 1

2
e−iT0Ωf + 1

2
eiT0Ωf ;

−Rδ4D0u11 +Rδ5D0u31 + u31 = Rδ4D1u10 −Rδ5D1u30

(5.22)

ε2 order

D2
0u12 + ω2

1u12 = −2D0D1u11 −D2
1u10 − 2D0D2u10 − 2µ1D0u11 − 2µ1D1u10 + u1,0D

2
0u21

+2u10D0D1u20 − δ2u1,0(D0u10)2 − δ2u
2
10D

2
0u10 − δ1u

3
10 + u11D

2
0u20 − δ3u31;

D2
0u22 + ω2

2u22 = 2D0u10D0u11 + 2D0u10D1u10 − 2D0D1u21 −D2
1u20 − 2D0D2u20

−2µ2D0u21 − 2µ2D1u20 + u10D
2
0u11 + 2u10D0D1u10 + u11D

2
0u10;

−Rδ4D0u12 +Rδ5D0u32 + u32 = Rδ4D1u11 +Rδ4D2u10 −Rδ5D1u31 −Rδ5D2u30

(5.23)

The solutions of the first two expressions in equation (5.21) are of the form

uj0 = Aj(T1, T2)eiωjT0 + cc (5.24)

where i =
√
−1, A1 and A2 are complex values of the displacements of cantilever beam and

base structure depending on the slow time scales, respectively, cc stands for the complex

conjugate, and j = 1, 2. Using equation (5.24), we can determine the solution of the third

expression in equation (5.21) as

u30 =
Rδ4ω1

−i +Rδ5ω1

A1(T1,T2)eiω1T0 + cc (5.25)

To determine the values of A1 and A2, we express the nearness of Ω to ω2 and of ω1 to 1
2
ω2

by using the detuning parameters σ1 and σ2 as follows:

Ω = ω2 + εσ1

ω1 = 1
2
ω2 + εσ2

(5.26)

Using the above frequency relationship of ω1, ω2 and Ω and substituting equations (5.24) and

(5.25) into the first two equations of (5.22), we determine the expressions of D1A1 and D1A2

from the secular terms. Moreover, u11 and u21 are determined by eliminating the secular



Zhimiao Yan 5. Energy Harvesting Through Autoparametric Resonance 99

terms, which yields:

u11 = ω2

2ω1+ω2
A1A2ei(ω1+ω2)T0 +B1(T1, T2)eiω1T0 + cc

u21 = B2(T1, T2)eiω2T0 + cc
(5.27)

where B1 and B2 are complex values of the displacements of the cantilever beam, u11, and

base structure, u21, depending on the slow time scales, respectively. The solution of u31

is obtained by substituting equations (5.24), (5.25) and (5.27) into the third equation of

(5.22). Using the solutions of u10, u11, u20, u21, u30 and u31 and detuning equation (5.26),

we determine the expressions for D2A1 and D2A2 from the secular terms of the first two

equations of (5.23). We write these expressions in the form of complex-valued modulation

equations that are given by

2iω1Ȧ1 = 2iω1(εD1A1 + ε2D2A1)

2iω2Ȧ2 = 2iω2(εD1A2 + ε2D2A2)
(5.28)

where the dot indicates the derivative with respect to time t. To satisfy equations (5.28)

deriving from a Lagrangian [93], we determine the expressions of B1 and B2 as

B1 = i
2ω1+ω2

D1A1

B2 =
8ω4

1−4ω3
1ω2−8ω2

1ω
2
2−2ω1ω3

2+ω4
2

16ω4
1ω2+8ω3

1ω
2
2

iD1A2
(5.29)

We then obtain complex-valued modulation equation as

Ȧ1 = (m11 + im12)A1 + (m21 + im22)A2A1e
−2iεσ2t + (m31 + im32)A2

1A1

+(m41 + im42)A1A2A2 + (m51 + im52)fA1e
iε(σ1−2σ2)t

Ȧ2 = (n11 + in12)A2 + (n21 + in22)feiεσ1t + (n31 + in32)A2
1e

2iεσ2t

+(n41 + in42)A1A2A1

(5.30)

where the coefficients mjk and njk are given by

m11 =
ε
(
εR3δ23δ

2
4δ5(−1+R2δ25ω

2
1)−2µ1(1+R2δ25ω

2
1)

3
−Rδ3δ4(1+R2δ25ω

2
1)(1+2Rεδ5µ1+R2δ25ω

2
1)
)

2(1+R2δ25ω
2
1)

3 ,

m12 = −
ε
(

4εµ21(1+R2δ25ω
2
1)

3
+R2εδ23δ

2
4(1−6R2δ25ω

2
1+R4δ45ω

4
1)−4Rδ3δ4

(
Rδ5(ω1+R2δ25ω

3
1)

2
+εµ1(−1+R4δ45ω

4
1)
))

8ω1(1+R2δ25ω
2
1)

3 ,

m21 = 1

16ω4
1(1+R2δ25ω

2
1)(1+R2δ25(ω1−ω2)2)(2ω1+ω2)

ε2ω2(−µ2 (1 +R2δ2
5ω

2
1)
(
1 +R2δ2

5(ω1 − ω2)2)
(24ω4

1 + 20ω3
1ω2 + 4ω2

1ω
2
2 + 2ω1ω

3
2 − ω4

2)− 4ω2
1ω2(4µ1ω1 (1 +R2δ2

5ω
2
1)
(
1 +R2δ2

5(ω1 − ω2)2)
+Rδ3δ4 (2R2δ2

5ω
3
1 − 2R2δ2

5ω
2
1ω2 −R2δ2

5ω
3
2 + ω1 (2 +R2δ2

5ω
2
2))))

,

m22 = − 1

4ω2
1(1+R2δ25ω

2
1)(1+R2δ25(ω1−ω2)2)(2ω1+ω2)

εω2
2(−4R4δ4

5ω
6
1 + 4R4δ4

5ω
5
1ω2 − 2R4δ3

5ω
3
1ω2 (2εδ3δ4 + 3δ5ω

2
2)

+ω2
2 (1−R2εδ3δ4δ5 +R2δ2

5ω
2
2)− 2ω1ω2 (2 +R2εδ3δ4δ5 + 3R2δ2

5ω
2
2) +R2δ2

5ω
4
1 (−8 + 2R2εδ3δ4δ5 + 5R2δ2

5ω
2
2)

+ω2
1 (−4 + 6R2δ2

5ω
2
2 +R4δ4

5ω
4
2 + 2R2εδ3δ4δ5 (1 +R2δ2

5ω
2
2)))

,

m31 = 0,
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m32 =
ε2(−8(−3+4δ2)ω4

1−4(−5+4δ2)ω3
1ω2+4ω2

1ω
2
2+2ω1ω3

2−ω4
2+24δ1ω1(2ω1+ω2))

16ω2
1(2ω1+ω2)

,

m41 = 0,

m42 =
ε2ω3

2(4ω2
1−2ω1ω2+ω2

2)
8ω3

1(2ω1+ω2)
,

m51 = 0,

m52 = − ε2(24ω4
1+20ω3

1ω2+4ω2
1ω

2
2+2ω1ω3

2−ω4
2)

64ω4
1(2ω1+ω2)

,

n11 = −εµ2,

n12 = − ε2µ22
2ω2

,

n21 = ε2µ2
8ω2

2
,

n22 =
ε(−16ω4

1+8ω3
1(Ω−2ω2)+8ω2

1(Ω−ω2)ω2+2ω1(Ω−ω2)ω2
2+ω3

2(−Ω+ω2))
32ω3

1ω2(2ω1+ω2)
,

n31 = − ε2(−(Rδ3δ4+2µ1(1+R2δ25ω
2
1))(2ω1−ω2)ω3

2+4µ2ω3
1(1+R2δ25ω

2
1)(2ω1+ω2))

8ω1(1+R2δ25ω
2
1)ω2

2(2ω1+ω2)
,

n32 =
εω2(4R2δ25ω

4
1+(4+εR2δ3δ4δ5)ω1ω2+4R2δ25ω

3
1ω2−ω2

2−ω2
1(−4+2εR2δ3δ4δ5+R2δ25ω

2
2))

8ω1(1+R2δ25ω
2
1)(2ω1+ω2)

,

n41 = 0,

and

n42 =
ε2ω2

2(4ω2
1−2ω1ω2+ω2

2)
8ω2

1(2ω1+ω2)
.

Next, we choose the polar form to express these two variables as:

Aj = 1
2
aj(t)e

iαj(t) for j = 1, 2 (5.31)

In this expression, aj and αj are the amplitudes and phases of Aj. In fact, a1 and a2 are also

the amplitudes of u1 and u2 shown in nondimenional governing equation (5.17), respectively.

Substituting equation (5.31) into complex-valued modulation equation (5.30) and separating

the real and imaginary parts, we obtain the following averaged equation:

ȧ1 = m11a1 + 1
2
m21a1a2 cos γ1 + 1

2
m22a1a2 sin γ1 + 1

4
m31a

3
1 + 1

4
m41a1a

2
2

+m51fa1 cos(γ1 − γ2) +m52fa1 sin(γ1 − γ2)

a1α̇1 = m12a1 − 1
2
m21a1a2 sin γ1 + 1

2
m22a1a2 cos γ1 + 1

4
m32a

3
1 + 1

4
m42a1a

2
2

−m51fa1 sin(γ1 − γ2) +m52fa1 cos(γ1 − γ2)

ȧ2 = n11a2 + 2n21f cos γ2 − 2n22f sin γ2 + 1
2
n31a

2
1 cos γ1

−1
2
n32a

2
1 sin γ1 + 1

4
n41a

2
1a2

a2α̇2 = n12a2 + 2n21f sin γ2 + 2n22f cos γ2 + 1
2
n31a

2
1 sin γ1

+1
2
n32a

2
1 cos γ1 + 1

4
n42a

2
1a2

(5.32)

where γ1 = 2α1−α2 +2εσ2t and γ2 = εσ1t−α2. The equilibrium solutions of equation (5.32)

are obtained by setting ȧ1 = ȧ2 = 0 and γ̇1 = γ̇2 = 0. Based on the relationship between γi
and αi discussed above, α̇1 and α̇2 can be calculated as: α̇1 = ε(σ1

2
− σ2) and α̇2 = εσ1. The
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fixed point of the autoparametric vibration system are determined from:

0 = m11a1 + 1
2
m21a1a2 cos γ1 + 1

2
m22a1a2 sin γ1 + 1

4
m31a

3
1 + 1

4
m41a1a

2
2

+m51fa1 cos(γ1 − γ2) +m52fa1 sin(γ1 − γ2)

ε(σ1
2
− σ2)a1 = m12a1 − 1

2
m21a1a2 sin γ1 + 1

2
m22a1a2 cos γ1 + 1

4
m32a

3
1 + 1

4
m42a1a

2
2

−m51fa1 sin(γ1 − γ2) +m52fa1 cos(γ1 − γ2)

0 = n11a2 + 2n21f cos γ2 − 2n22f sin γ2 + 1
2
n31a

2
1 cos γ1

−1
2
n32a

2
1 sin γ1 + 1

4
n41a

2
1a2

εσ1a2 = n12a2 + 2n21f sin γ2 + 2n22f cos γ2 + 1
2
n31a

2
1 sin γ1

+1
2
n32a

2
1 cos γ1 + 1

4
n42a

2
1a2

(5.33)

5.4 Stability and bifurcation

Inspecting the first two equations in (5.33), we note that all terms contain the variable a1.

As such, a1 = 0 yield the fixed-point equations that are identities [82, 83]. Subsequently, the

polar form cannot be used to analyze the system’s stability. To analyze the stability of the

equilibrium points, we use the Cartesian form:

Aj = 1
2
(pj(t)− iqj(t))e

iθj(t) for j = 1, 2 (5.34)

In this expression, the variables pj and qj are functions of a1, a2, γ1 and γ2 which are

determined from equations (5.26), (5.31), (5.34) and the definitions of γ1 and γ2 as [83]

p1 = a1 cos γ2−γ1
2

q1 = a1 sin γ2−γ1
2

p2 = a2 cos γ2

q2 = a2 sin γ2

(5.35)

Substituting equation (5.34) into the complex-valued modulation equation (5.30) and sepa-

rating the real and imaginary parts, we obtain the Cartesian form of the modulation equa-
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tions

ṗ1 = 1
2
ε(2σ2 − σ1)q1 +m11p1 +m12q1 + 1

2
m21(p1p2 + q1q2) + 1

2
m22(p1q2 − p2q1) + 1

4
m31(p3

1 + p1q
2
1)

+1
4
m32(p2

1q1 + q3
1) + 1

4
m41(p1p

2
2 + p1q

2
2) + 1

4
m42(p2

2q1 + q1q
2
2) +m51fp1 −m52fq1

q̇1 = −1
2
ε(2σ2 − σ1)q1 +m11q1 −m12p1 + 1

2
m21(p1q2 − p2q1)− 1

2
m22(p1p2 + q1q2) + 1

4
m31(p2

1q1 + q3
1)

−1
4
m32(p3

1 + p1q
2
1) + 1

4
m41(p2

2q1 + q1q
2
2)− 1

4
m42(p1p

2
2 + p1q

2
2)−m51fq1 − n52fp1

and

ṗ2 = −εσ1q2 + n11p2 + n12q2 + 2n21f + 1
2
n31(p2

1 − q2
1) + n32p1q1 + 1

4
n41(p2

1p2 + p2q
2
1)

+1
4
n42(p2

1q2 + q2
1q2)

q̇2 = εσ1p2 + n11q2 − n12p2 − 2n22f + n31p1q1 − 1
2
n32(p2

1 − q2
1) + 1

4
n41(p2

1q2 + q2
1q2)

−1
4
n42(p2

1p2 + p2q
2
1)

(5.36)

In this equation, we have made use of 2θ1− θ2 + 2εσ2t = 2nπ, εσ1t− θ2 = 2mπ, θ̇1 = εσ1−2σ2
2

and θ̇2 = εσ1 [83], where, m and n are integers.

Inspecting equation (5.33), we differentiate two kinds of solutions: (1) a1 = 0 and a2 6= 0 and

(2) a1 6= 0 and a2 6= 0. The stability of these fixed points can be analyzed by the Jacobian

matrix of the Cartesian form of the modulation equations (5.36). If the four eigenvalues λi
have negative real parts, then the fixed point is stable. Otherwise, the equilibrium point will

form a saddle point. Note that the Cartesian form of the equilibrium point (p1, p2, p3, p4)

is needed to determine the Jacobian matrix of Cartesian form of the modulation equations

(5.36), which can be obtained using Eq. (5.35). Four types of motions are identified. The

first is a1 = 0 and a2 6= 0. This solution corresponds to the case where the attached

cantilever beam moves with the base structure (the base structure and the cantilever beam

form a rigid body). The second is a1 6= 0 and a2 6= 0. In this case, the cantilever beam

undergoes a horizontal motion in addition to that induced by the base structure. Because

part of the energy has been transfered to the horizontal motion of the beam, the amplitude

of vertical motion of the base structure is reduced. This solution is desired to control the

vertical motion of the base structure. Simultaneously, we obtain a horizontal motion of the

tip mass. This solution can also be used to obtain actuation in the horizontal direction

from a vertical excitation. In a third type of motion, both fixed points are stable. Both

masses undergo different motions depending on the initial conditions. The system exhibits

interesting nonlinear phenomena, such as jumps and hysteresis. In the fourth type, none of

the fixed points is stable and the system may undergo Hopf bifurcations and could become

chaotic.

5.5 Linear analysis

By harvesting energy from any system, one is essentially adding damping. As such, it

is important to perform a global analysis of the system whereby the effects of the load
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resistance and energy harvesting on its performance are considered. First, we determine the

effects of the electrical load resistance on the global frequency and damping ratio from a

linear analysis of the coupled electromechanical problem. Introducing the following state

variables

X =


X1

X2

X3

X4

X5

 =


x

ẋ

q

q̇

V

 (5.37)

we rewrite the governing equations (5.16) as

Ẋ1 = X2

Ẋ2 = −ω2
xX1 − 2ξxωxX2 + η1

M+Mt+M
(X2

4 +X3Ẋ4) + F0cosΩt

Ẋ3 = X4

Ẋ4 = −ω2
1X3 − 2ξ1ω1X4 + η1Ẋ2X3 − η2X

3
3 − η3X3(X2

4 +X3Ẋ4)− θpX5

Ẋ5 = θp
Cp
X4 − 1

RCp
X5

(5.38)

These governing equations have the form

Ẋ = B(R)X + N(X, Ẋ) + Fb (5.39)

where B(R) is the linear matrix of the state variables, N(X, Ẋ) is the nonlinear matrix of

the state variables and Fb is the matrix of the external forces. The detail expressions of

these three matrices are as following:

B =


0 1 0 0 0

−ω2
x −2ξxωx 0 0 0

0 0 0 1 0

0 0 −ω2
1 −2ξ1ω1 −θp

0 0 0 θp
Cp

− 1
RCp



N =


0

η1
M+Mt+M

(X2
4 +X3Ẋ4)

0

η1Ẋ2X3 − η2X
3
3 − η3X3(X2

4 +X3Ẋ4)

0



Fb =


0

F0 cos Ωt

0

0

0


The linear matrix B shows the effects of the load resistance on the overall damping and
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Figure 5.2: Variation of the (a) global frequency and (b)coupling damping ratio of the
cantilever beam as a function of the load resistance R
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Figure 5.3: Variation of the derivations of (a) global frequency and (b)coupling damping
ratio of the cantilevered beam with respective to R as a function of the load resistance R

global frequency of the proposed energy harvester. This matrix has a set of five eigenvalues

λi, i = 1, 2, 3, 4, 5. The first two eigenvalues correspond to the global frequency and damping

coefficient of base structure which are similar to autoparametric vibration system without

piezoelectric effects. They are independent of the load resistance and can be determined

from the first two lines of linear matrix B. The third and fourth eigenvalues are complex
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conjugates (λ3 = λ4). The real part and positive imaginary part of these two eigenvalues rep-

resent respectively the electromechanical damping coefficient and the global frequency of the

cantilever beam, respectively. The fifth eigenvalue λ5 corresponds to the electromechanical

coupling and is always real and negative [58, 79].

To better understand the physical cause for the effect of the electronic load resistance and

energy harvesting on the global frequency and damping ratio of the cantilever beam, we

linearize the first equation of (5.17) as

ü1 + ω2
1u1 + 2εµ1u̇1 + εδ3u3 = 0 (5.40)

Using equations (5.24) and (5.25) and assuming that u3 ≈ u30 and u1 ≈ u10, we obtain the

relationship between u3 and u1 as

u3 ≈ R2δ4δ5ω2
1

1+(Rδ5ω1)2
u1 + Rδ4

1+(Rδ5ω1)2
u̇1 (5.41)

Substituting equation (5.41) into equation (5.40), we can determine the global frequency and

damping ratio of the cantilever beam depending on electronic load resistance R as

ω1 =
√

1 + εR2δ3δ4δ5
1+(Rδ5ω1)2

ω1

ξ1 = ξ1 + εRδ3δ4
2ω1+2R2δ25ω

3
1

(5.42)

where ω1 and ξ1 are the approximate global frequency and damping ratio of the cantilever

beam, respectively.

Figure 5.2 shows the variation of the global frequency and the coupled damping ratio of the

cantilever beam as a function of the load resistance. The plots show that the approximate

global frequency and damping ratio derived by first-order perturbation solution match those

obtained with the numerical results using the linear matrix B. We also note that the global

frequency increases monotonically from 24.86rad/s to 26.14rad/s as the load resistance R

is increased from 103ohm to 3 × 105ohm. However, the global frequency of the cantilever

beam is constant for R < 103ohm and R > 3× 105ohm. That is because ∂ω1

∂R
is always larger

than zero and the large value is mainly between 103ohm and 105ohm, as shown in figure 5.3

(a). In a similar fashion, the global damping ratio is almost constant when R < 103ohm

or R > 106ohm. However, this ratio first increases then decreases as the load resistance R

is increased from 103ohm to 106ohm. For R = 2.7 × 104Ω, the coupling damping ratio is

maximum with a value of 0.02884 which is about 10 times of the value of the mechanical

damping ratio. The plot in figure 5.3 (b) demonstrates this result through the fact that
∂ξ1
∂R

= 0 when the electronic load resistance is around 2.7 × 104Ω. The load resistance

corresponding to the largest coupling damping ratio can also be calculated by the expression

R = 1
δ5ω1

.
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5.6 Numerical simulation

According to Yan et al. [93], the autoparametric vibration system without the piezoelectric

sheets exhibits many interesting nonlinear phenomena including saturation, jumps, hysteresis

and different kinds of bifurcations. These phenomena are observed over different ranges for

the amplitude and frequency of the external force and the damping coefficient and frequency

of the attached cantilever beam. Next, we consider the system’s nonlinearities and assess

the effects of amplitude and frequency of the external force and load resistance on the ability

to harvest energy through autoparametric resonance.

5.6.a Effects of the amplitude of external force

We first analyze the effects of the amplitude of external force on the nonlinear response of

the energy harvester. We consider different load resistances for three cases of frequencies

of the external forcing and natural frequencies of the base structure. These are (1) ω1 =

50rad/s and Ω = 49rad/s, (2) ω1 = 51rad/s and Ω = 51rad/s and (3) ω1 = 52rad/s and

Ω = 53rad/s. All other parameters are fixed as shown in Table 5.1.

Figure 5.4 shows the variations of the root-mean-square (rms) values of the displacements of

the base structure and tip mass and harvested voltage and power as functions of the external

force amplitude. The plots show these variations for different values of load resistances and

small and large initial displacements when the excitation frequency, Ω, is 49 rad/s and

the natural frequency of the base structure is 50 rad/s. The solid lines correspond to the

responses of the energy harvester for the case of small initial displacements. The dashed

lines correspond to responses for the case of relatively large initial displacements. For all

cases, we note a hysteresis whereby the horizontal motion of the tip mass and levels energy

harvested are initiated with smaller external forces when the system is subjected to large

initial conditions.

A comparison of the effects of the load resistance shows that the energy can be harvested at

low amplitudes of the external forcing when R = 103ohm. However, the level of harvested

power is significantly larger when R = 104ohm and 105ohm at the relatively higher forcing

amplitudes. In the case of R = 103ohm, the energy harvester, when activated by a large

initial displacement, can generate energy at excitation amplitudes, F0, that are as low as

0.1. This value changes to 0.25 for small initial displacements. Of particular interest is

a comparison of the systems responses in terms of energy harvesting and control of the

displacement of the base. The open circuit configuration (no energy harvesting) yields the

smallest displacement over a broad range of excitation amplitudes except for the range

between 1.2 and 1.3 where the base displacement is quite large. The case of R = 103ohm

shows a significant control of the base displacement that matches that of the open circuit
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Figure 5.4: Variation of the root mean square (rms) values for (a) displacement of base
structure, (b)displacement of tip mass, (c)harvested voltage and (d) harvested power as a
function of the external force f with different load resistances and initial displacements when
ω1 = 50rad/s and Ω = 49rad/s

configuration over the whole range and does not show the large response of the excitation

amplitude between 1.2 and 1.3. This shows that the energy harvesting is actually helpful

in the control of the displacement of the base structure over a broader range than that of

the open circuit configuration. For the case of R = 104ohm, the system yields the highest

level of energy harvesting over a broad range of excitation amplitudes. However, the base

displacement is much larger than that of the open circuit and R = 103ohm configurations.
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Figure 5.5: Time histories for displacement of base structure with the small initial displace-
ment when ω1 = 50rad/s and Ω = 49rad/s: (a) f=1.2 and R = 103ohm, (b) f=1.3 and
R = 103ohm, (c) f=1.3 and R = 104ohm and (d) f=1.3 and open circuit

These results show that the system can be configured depending on its purpose. Particularly,

the load resistance can be varied to harvest a relatively high level of energy, to have a

minimum base displacement over a broad range of excitation frequencies or to balance the

level of harvested energy with the displacement of the base structure.

The system’s nonlinearities also show different types of responses. Figure 5.5 shows time

histories of the displacement of the base structure for different excitation amplitudes and

load resistances. A comparison of the plots in figures 5.5 (a) and 5.5 (b) shows that the

system’s response changes from having one period to having multiple periods as the excitation

amplitude is increased from F0 = 1.2 to F0 = 1.3 for the case of R = 103ohm. This indicates

the system undergoes bifurcations as the amplitude of the forcing changes. A comparison of

the plots in figure 5.5 (b), 5.5 (c) and 5.5 (d) shows that the response changes in terms of its

period content when the load resistance is varied or for the case of open circuit. Again, this

indicates the system undergoes some bifurcations as the load resistance is changed.

Figure 5.6 shows the variations of the rms values of the displacements of the base structure

and tip mass and harvested voltage and power as functions of the external forcing amplitude

for the case of perfect resonance between the excitation and natural frequency of the base

structure, i. e. Ω = ω1 = 51rad/s. The plots do not exhibit the hysteresis response observed

in the case of Ω = 49rad/s and ω1 = 50rad/s. The initial displacements do not impact the
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Figure 5.6: Variation of the root mean square (rms) values for (a) displacement of base
structure, (b)displacement of tip mass, (c)harvested voltage and (d) harvested power as
a function of the external force f with different load resistances when ω1 = 51rad/s and
Ω = 51rad/s

response of the harvester or masses. The plots also show that the activation of the motion

and energy harvesting takes place at very small values of forcing amplitudes. Still, the plots

show that the harvested energy is larger for R = 104ohm than for R = 103ohm or 105ohm.

Of interest is the fact that although the level of harvested power is larger in the case of

R = 104ohm, the displacement of the base is minimum for the case when R = 105ohm at

high excitation amplitudes. In the range slightly below f = 0.5, this displacement is actually
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Figure 5.7: Variation of the root mean square (rms) values for (a) displacement of base
structure, (b)displacement of tip mass, (c)harvested voltage and (d) harvested power as
a function of the external force f with different load resistances when ω1 = 52rad/s and
Ω = 53rad/s

larger than in the cases of R = 103ohm and 104ohm. These results show the importance of

performing a global analysis of the coupled system.

Figure 5.7 shows the same variations as in figures 5.4 and 5.6 but for a different case of

excitation and base natural frequency, namely the case of Ω = 53rad/s and ω1 = 52rad/s.

The plots show a hysteresis similar to the one observed in figure 5.4; indicating that this

hysteresis is associated with the detuning of the different frequencies. As for the effects
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of the load resistance and displacement, we observe the same trends observed in the other

conditions. To harvest the highest level of energy, it is better to choose a load resistance of

104ohm than 103ohm and 105ohm. This is expected because the highest coupled damping

is near that value. The case of R = 105ohm leads to the lowest response amplitude of the

base structure over a broad range of F0. As such, if the system is to be used for control

and energy harvesting, it may be better to use R = 105ohm than R = 104ohm because it

provides a more effective control except for a small region in the case of perfect resonance.

Both figures 5.6 and 5.7 show that smaller base and tip mass displacements are obtained

when harvesting energy in comparison to the case of the open circuit. As such, it can be

concluded that harvesting energy from this system can effectively help in the control of both

base and tip mass motions.

5.6.b Effects of the external frequency

The above results have shown that the external frequency impacts the responses of the masses

and level of harvested energy. Next, we examine frequency-response curves of the displace-

ments of the base structure and tip mass, harvested voltage and harvested power.

The plots in figure 5.8 show the response of the energy harvester when F0 = 1 and ω1 =

50rad/s. Compared with the energy harvesting from direct base excitation [42], the au-

toparametric vibration system has a broader range over which energy can be harvested. This

is especially true if the system is activated by the large initial displacements. For instance,

energy can be harvested over the range of excitation frequency between Ω = 47.5rad/s to

52.9rad/s when R = 105ohm. Moreover, the rms value of harvested energy remains large

even if the excitation frequency is shifted from the natural frequency of the base structure

(away from the resonance). The plots also show that higher power levels are harvested when

R = 104ohm than when R = 103ohm or 105ohm. When control for the motion of the base

structure is of interest, the small load resistance (i. e. R = 103ohm) is a better choice when

the external frequency is relatively small while the large load resistance, such as R = 105ohm,

is more suitable for the larger external frequency. This is due to the fact that the natural

global frequency is a function of the load resistance which affects the efficiency of the energy

transfer to the beam.

5.6.c Effects of the load resistance

We determine the effects of the load resistance on nonlinear responses of the energy harvester

for different external forces and initial displacements. We consider three cases of excitations.

These are: (1) ω1 = 50rad/s and Ω = 49rad/s, (2) ω1 = 51rad/s and Ω = 51rad/s and (3)

ω1 = 52rad/s and Ω = 53rad/s.
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Figure 5.8: Frequency-response curves of the root mean square (rms) values for (a) displace-
ment of base strucutre, (b)displacement of tip mass, (c)harvested voltage and (d) harvested
power with different load resistances and different initial displacements when F0 = 1 and
ω1 = 50rad/s

Figure 5.9 shows that variations of the displacements of the base structure and tip mass,

harvested voltage and harvested power as the functions of the load resistance when ω1 =

50rad/s and Ω = 49rad/s. The external forces F0 are chosen as 0.5, 1 and 1.5. When the

external force is 0.5 with the small initial displacement, we note that there is no energy

harvesting when R ≥ 2 × 104ohm. This is because the motion of the cantilever beam is

relatively easily activated when the ratio of frequencies between the cantilever beam and base
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Figure 5.9: Variation of the root mean square (rms) values for (a) displacement of base
strucutre, (b)displacement of tip mass, (c)harvested voltage and (d) harvested power as a
function of the load resistance R with different external forces f and initial displacements
when ω1 = 50rad/s and Ω = 49rad/s

structure is around 1/2 [93] and the global frequency of the cantilever beam corresponding

to the low load resistance (R ≤ 2 × 104ohm) is near 1/2 of natural frequency of the base

structure, as shown in figure 5.2 (a). In this case, the small load resistance, such as R =

103ohm, is good choice to control the motion of the base structure. However, large power can

be harvested when the load resistance is large, such as 104ohm. Moreover, the autoparametric

vibration system damping ratio of cantilever beam. As expected, the range of the load
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Figure 5.10: Variation of the root mean square (rms) values for (a) displacement of base
strucutre, (b)displacement of tip mass, (c)harvested voltage and (d) harvested power as a
function of the load resistance R with different external forces f and initial displacements
when ω1 = 51rad/s and Ω = 51rad/s

resistance in which the system can harvest energy increases as the external force is increased

because the onset external force to activate the horizontal motion of cantilever beam increases

as the damping ratio of the cantilever beam is increased [93]. Considering the case of F0 = 1,

we note that the autoparametric vibration absorber with the small initial displacements can

harvest energy when R < 6×104ohm or R > 2×105ohm. If the system is activated by large

initial displacements, electric power can be harvested with all load resistances. For the case
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Figure 5.11: Variation of the root mean square (rms) values for (a) displacement of base
strucutre, (b)displacement of tip mass, (c)harvested voltage and (d) harvested power as a
function of the load resistance R with different external forces f and initial displacements
when ω1 = 52rad/s and Ω = 53rad/s

of F0 = 1.5, the system can harvester energy in all the range of load resistance with small

initial displacements.

Figure 5.10 presents the effect of the load resistance on the nonlinear responses of the energy

harvester when ω1 = 51rad/s and Ω = 51rad/s. It is noted that the system can harvest

energy in all the range of the load resistance with the different external forces and initial

displacements. The square root mean value of the displacement of the base structure first
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decreases then increases as the load resistance is increased. However, the system becomes

unstable when the load resistance is large. When the external force is small, such as F0 = 0.5,

the minimum displacement of the base structure and the maximum harvested power are

obtained at the same load resistance (around 5×104ohm). As the external force is increased

to 1, the rms displacement of the base structure reaches the minimum value of 1.6mm

with the load resistance R = 1.1 × 105ohm. This displacement is even smaller than the

minimum value for the case of F0 = 0.5. As the external force is increased further to 1.5,

the smallest minimum displacement of the base structure are obtained compared with the

above two cases. As such, the energy harvesting can better control the motion of the base

structure especially when the external force become larger. However, the displacement of

the tip mass is almost independent of the load resistance in all there cases when the system

is stable. We also note that the large initial condition makes the system more unstable when

105ohm < R < 106ohm.

The variations of the performances of the system as the function of the load resistance when

ω1 = 52rad/s and Ω = 53rad/s are shown in figure 5.11. We note that the motion of the

system are stable with all the load resistances and external forces. In all external forces,

the energy harvesting is useful to control both the motions of the base structure and tip

mass with the large load resistance. This phenomenon is also useful in the design of an

energy harvester with the condition that the natural frequency of the base structure is a

little larger than the excitation frequency. Moreover, the load resistance around 5× 104ohm

is the optimum load resistance for both control of the base structure and energy harvesting

when the external force is relatively large, such as F0 = 1 and 1.5.

5.7 Approximate analysis

Based on the above discussion, we find that load resistance, external frequency and external

force significantly impact the performance of the energy harvester. In this section, we want

to determine the stability of the system. Before performing nonlinear analysis, we need to

determine the expressions for the amplitudes for the base displacement, displacement of the

tip mass and harvested power. Assuming u1 ≈ u10, u2 ≈ u20 and u3 ≈ u30 and using definite

expressions of u1, u2 and u3 and equations (5.24) and (5.25), we obtain those amplitudes

as
dbas = x0a2

dtip =
√
M +Mt +Mx0a1φ(L)

P =
Rδ24ω

2
1a

2
1

1+(Rδ5ω1)2

(5.43)

where dbas, dtip and P are the respective amplitudes of the base displacement, displacement

of the tip mass and harvested power. Comparing the expressions of amplitude of harvested

power and global coupling damping ratio (equation(5.42)), we find that the harvested power
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is proportional to the net growth of global coupling damping ratio from mechanical damping

ratio.

5.7.a Effect of the amplitude of external force

We first analyze the effects of the amplitude of external force on the nonlinear response of

the energy harvester. We do so with different load resistances by considering three different

cases of the external frequencies and natural frequencies of the base structure: (1) ω1 =

51rad/s and Ω = 51rad/s, (2) ω1 = 51rad/s and Ω = 50rad/s and (3) ω1 = 51rad/s and

Ω = 52rad/s. All other parameters are shown in table 5.1. The results are presented in

figures 5.12, 5.13 and 5.14.

In the figure 5.12, we show the base displacement, displacement of the tip mass and har-

vested power as a function of the external force when the system is under resonance. The

solid lines correspond to sinks (stable solutions) and the dashed lines indicate the saddles

(unstable solutions). The nonlinear interaction between base structure and cantilever beam

start at F = 0N and the displacement of the base structure is much smaller than that

without cantilever beam (the dashed line). This indicates that this system is very effective

to both control the motion of the base structure and harvest electric power when the base

structure is under resonance. Compared with the numerical simulation of governing equa-

tion (5.7), the perturbation method is relatively accurate to represent the system’s responses.

The plots show no differences for the base displacement and displacement of the tip mass

between the case of R = 103ohm and open circuit (without energy harvesting) because the

global frequency and damping ratio of the cantilever beam for these two cases are almost

same, as shown in figure 5.2. When the electric load resistance is increased to 104ohm, the

displacements of the base structure and tip mass do not change while the harvested power

becomes ten times the value obtained for the case R = 103ohm. This can be explained

by the fact that harvested power is proportional to the net growth of global damping ra-

tio from the mechanical damping, as discussed at the beginning in this section, and the

net growth of coupling damping corresponding to R = 104ohm is increased to ten times

of that of R = 103ohm, as shown in figure 5.2 (b). When the load resistance is increased

to 105ohm, the base displacement becomes much smaller but the system becomes unstable

when the external force F is between 0.235N and 1.4N . In this situation, the system with

R = 105ohm is very effective to control base structure and harvest relatively high energy

when the external force is large. However, R = 105ohm is not good to control motions

of system when the external force is small. That is because the system undergoes a Hopf

bifurcation and becomes chaotic in the unstable range of external force which enlarges the

amplitude of base displacement much larger than that shown in dash line [93, 94]. When the

load resistance is increased further to 106ohm, the unstable range becomes larger while the

base displacement become smaller when the external force is large. However, the harvested



Zhimiao Yan 5. Energy Harvesting Through Autoparametric Resonance 118

0 1 2 3
0

5

10

15

F (N)

B
as

e 
di

sp
la

ce
m

en
t (

m
m

)
 

 

Numerical simulation
Perturbation solution

(a)

0 1 2 3
0

10

20

30

40

50

60

F (N)

T
ip

 d
is

pl
ac

em
en

t (
m

m
)

 

 

Numerical simulation
Perturbation solution

(b)

0 1 2 3
0

0.01

0.02

0.03

0.04

0.05

F (N)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

Numerical simulation
Perturbation solution

(c)

0 1 2 3
0

5

10

15

F (N)

B
as

e 
di

sp
la

ce
m

en
t (

m
m

)

 

 

Numerical simulation
Perturbation solution

(d)

0 1 2 3
0

10

20

30

40

50

60

F (N)

T
ip

 d
is

pl
ac

em
en

t (
m

m
)

 

 

Numerical simulation
Perturbation solution

(e)

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

F (N)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

Numerical simulation
Perturbation solution

(f)

0 1 2 3
0

2

4

6

8

10

F (N)

B
as

e 
di

sp
la

ce
m

en
t (

m
m

)

 

 

Numerical simulation
Perturbation solution

(g)

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F (N)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

Numerical simulation
Perturbation solution

(h)

0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

F

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

Numerical simulation
Perturbation solution

(i)

0 1 2 3
0

2

4

6

8

10

F (N)

B
as

e 
di

sp
la

ce
m

en
t (

m
m

)

 

 

Numerical simulation
Perturbation solution

(j)

0 1 2 3
0

10

20

30

40

50

60

F (N)

T
ip

 d
is

pl
ac

em
en

t (
m

m
)

 

 

Numerical simulation
Perturbation solution

(k)

0 1 2 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

F (N)

H
ar

ve
st

ed
 p

ow
er

 (
W

)

 

 

Numerical simulation
Perturbation solution

(l)

0 1 2 3
0

5

10

15

F (N)

B
as

e 
di

sp
la

ce
m

en
t (

m
m

)

 

 

Numerical simulation
Perturbation solution

(m)

0 1 2 3
0

10

20

30

40

50

60

F (N)

T
ip

 d
is

pl
ac

em
en

t (
m

m
)

 

 

Numerical simulation
Perturbation solution

(n)

Figure 5.12: Variation of (a, d, g, j, m) displacement of base structure, (b, e, h, k, n)
displacement of tip mass, and (c, f, i, l) harvested power as a function of the external force
F with different load resistances when ω1 = 51rad/s and Ω = 51rad/s. The dashed lines
are used to denote unstable solutions and the solid line are used to denote stable solution:
(a, b, c) R=103 ohm, (d, e, f) R=104 ohm, (g, h, i) R=105 ohm, (j, k, l) R=106 ohm and
(m, n) open circuit.
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Figure 5.13: Variation of (a, d, g, j, m) displacement of base structure, (b, e, h, k, n)
displacement of tip mass, and (c, f, i, l) harvested power as a function of the external force
F with different load resistances when ω1 = 51rad/s and Ω = 50rad/s. The dashed lines
are used to denote unstable solutions and the solid line are used to denote stable solution:
(a, b, c) R=103 ohm, (d, e, f) R=104 ohm, (g, h, i) R=105 ohm, (j, k, l) R=106 ohm and
(m, n) open circuit. ID denotes initial displacements.
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Figure 5.14: Variation of (a, d, g, j, m) displacement of base structure, (b, e, h, k, n)
displacement of tip mass, and (c, f, i, l) harvested power as a function of the external force
F with different load resistances when ω1 = 51rad/s and Ω = 52rad/s. The dashed lines
are used to denote unstable solutions and the solid line are used to denote stable solution:
(a, b, c) R=103 ohm, (d, e, f) R=104 ohm, (g, h, i) R=105 ohm, (j, k, l) R=106 ohm and
(m, n) open circuit. ID denotes initial displacements.
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power is much smaller than the case of R = 105ohm for the reason that the net damping

ratio decreases as the load resistance is increased from 105ohm to 106ohm.

As the external frequency is moved away from the natural frequency of the base structure,

the responses of the system as a function of the external force are plotted in figures 5.13

(Ω = 50rad/s) and 5.14 (Ω = 52rad/s). Similar to the case of resonance, the displacements

of the base structure and tip mass of 103ohm are almost same as those of open circuit in

both cases. Comparing the responses between 103ohm and 104ohm or between 105ohm and

106ohm, we note that the increasing coupling damping ratio increases the harvested power

but delays the onset of energy transfer. Moreover, the increased global frequency due to the

effect of the electronic load resistance changes the form of bifurcations. That is, as the load

resistance is increased, the supercritical bifurcation is shifted to a subcritical bifurcation when

external frequency is 50rad/s and the subcritical bifurcation is transformed into supercritical

bifurcation when external frequency is 52rad/s. Therefore, the energy harvesting can be used

to avoid subcritical responses. The plots in figure 5.13 also show that the amplitude of the

base structure excited by large initial conditions decreases as the external force is increased

when F ≤ 1.2N for the case of R = 105ohm and when F ≤ 1N for the case of R = 106ohm.

However, the system becomes unstable as the external force become larger. For the purpose

of harvesting energy, it is better to choose the external load resistance as 105ohm when the

external force is small and 104ohm when the external force is relatively large. When the

external force is larger than the natural frequency (Ω = 52rad/s), the energy harvester with

the large load resistance, such as, 105ohm, can both effectively control the motion of the base

structure and harvest relatively high energy, as shown in figure 5.14. As discussed above,

the external frequency has great effect on response of the system, which will be discussed in

the next section.

5.7.b Effect of the external frequency

We analyze the effects of the excitation frequency on the nonlinear response of the energy

harvester based on autoparametric vibration system with different load resistances when

ω1 = 51rad/s and F = 1.5N , as shown in figure 5.15. All other parameters are presented

in table 5.1. The plots show that this system can harvest relatively large electric power in

broadband near resonance. However, compared with the results of numerical simulation,

the harvested energy is highly dependent on initial displacements when the external force is

smaller than the natural frequency of the base structure. When the electronic load resistance

is increased, the unsteady motion of the system near resonance is increased. For the purpose

of harvesting large electronic power near resonance, it is better to choose the load resistance

corresponding to large damping ratio, such as R = 104ohm and 105ohm. For wide range

of energy harvesting, the load resistance corresponding to small damping ratio is a better

option.
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Figure 5.15: Variation of (a, d, g, j, m) displacement of base structure, (b, e, h, k, n)
displacement of tip mass, and (c, f, i, l) harvested power as a function of the external
frequency Ω with different load resistances when ω1 = 51rad/s and F = 1.5N . The dashed
lines are used to denote unstable solutions and the solid line are used to denote stable
solution: (a, b, c) R=103 ohm, (d, e, f) R=104 ohm, (g, h, i) R=105 ohm, (j, k, l) R=105

ohm and (m, n) open circuit. ID denotes initial displacements.
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5.7.c Effect of the load resistance
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Figure 5.16: Variation of (a, d, g) displacement of base structure, (b, e, h) displacement of
tip mass, and (c, f, i) harvested power as a function of the load resistance R with external
force when ω1 = 51rad/s and Ω = 51rad/s. The dashed lines are used to denote unstable
solutions and the solid line are used to denote stable solution: (a, b, c) F=0.5 N, (d, e, f)
F=1 N and (g, h, i) F=1.5 N

As discussed in the above two sections, we note that load resistance has great effect on the

nonlinear performances of the proposed energy harvester because both the global damping
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Figure 5.17: Variation of (a, d, g) displacement of base structure, (b, e, h) displacement of
tip mass, and (c, f, i) harvested power as a function of the load resistance R with external
force when ω1 = 51rad/s and Ω = 50rad/s. The dashed lines are used to denote unstable
solutions and the solid line are used to denote stable solution: (a, b, c) F=0.5 N, (d, e, f)
F=1 N and (g, h, i) F=1.5 N. ID denotes initial displacements.

ratio and frequency of the cantilever beam are strongly dependent on the electric load re-

sistance, as shown in figure 5.2. Next, we analyze the effects of the load resistances on the

nonlinear response of the energy harvester by varying load resistance with different external
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Figure 5.18: Variation of (a, d, g) displacement of base structure, (b, e, h) displacement of
tip mass, and (c, f, i) harvested power as a function of the load resistance R with external
force when ω1 = 51rad/s and Ω = 52rad/s. The dashed lines are used to denote unstable
solutions and the solid line are used to denote stable solution: (a, b, c) F=0.5 N, (d, e, f)
F=1 N and (g, h, i) F=1.5 N. ID denotes initial displacements.

forces, such as, F = 0.5N , 1N and 1.5N , when ω1 = 51rad/s. The responses of the en-

ergy harvester with different external frequencies (Ω = 51rad/s, 50rad/s and 52rad/s) are

plotted in figures 5.16, 5.17 and 5.18. All other parameters are shown in table 5.1.
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The plots in figure 5.16 show that the electric power can be harvested with all load resistances

when the system is under resonance. The system becomes unstable when the load resistance

is increased in all there cases but the large external force decreases the unstable motion. In

the stable range of load resistance, the displacement of the tip mass is almost kept constant

while the base displacement decreases and harvested power first increases then decreases as

the load resistance is increased. Therefore, there exists one optimum load resistance not

only to harvest relatively large electronic power but also to control the motion of the base

structure. One of interesting phenomena is that the smallest base displacement decreases as

the external force is increased. In all, the system can be better controlled when the energy

harvesting option is added to autoparametric vibration system.

When the external frequency is moved away from the natural frequency, the responses of

the system as a function of the load resistance are plotted in figure 5.17 (Ω = 50rad/s) and

figure 5.18 (Ω = 51rad/s). For the case of the external frequency smaller than the natural

frequency of the base structure, the plots in figure 5.17 show that the base displacement is

increased as the load resistance is increased when F = 0.5N . When the load resistance is

around 9×104ohm, one reversed saddle-note bifurcation appears. The system excited by the

large initial displacements can harvested the largest power at the point of this bifurcation.

The harvested power and base displacement decreases but the tip displacement of cantilever

beam increases as the load resistance is increased after point saddle-note bifurcation. As

the external force is increased to 1N , the electric power can be harvested with all load

resistance. Similarly, there appears one reversed saddle-note bifurcation when 6 × 104ohm.

Beyond the bifurcation point, the base displacement activated with large initial displacements

is smaller than that of small initial condition (no energy harvesting) which is proved by

the numerical simulation. Therefore, it is better to excite the system with large initial

displacements when the load resistance is relatively large because we can not only obtain

small base displacement but also harvest electric power. When the external force is increased

to 1.5N , the system become unstable when the load resistance is larger than 5× 104ohm. In

the stable range, the large external force enables the base displacement more independent on

the load resistance and thus the load resistance corresponding to large coupling damping ratio

becomes the optimum load resistance for both purposes of control and energy harvesting.

Figure 5.18 shows the response of the system when the external frequency is larger than

the natural frequency of the base structure. For the case of F = 0.5N , the responses of the

system are strongly dependent on the initial displacement when the load resistance is smaller

than 5.5 × 103ohm. Both displacements of the base structure and the tip mass decreases

and the harvested power increases as the load resistance is increased until point of saddle-

note bifurcation when the system is activated by large initial displacements. When the

load resistance is increased further, the nonlinear interaction between the base displacement

and cantilever beam disappear until 5 × 104ohm at which point a supercritical pitchfork

bifurcation takes place. After that point, the base displacement decreases and harvested

power first increases then decreases as the load resistance increases. When the external force
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is increased to 1N and 1.5N , we can harvest energy with all load resistance. In these two

cases, both displacements of the base structure and tip mass decrease as the electric load is

increased. Therefore, the added energy harvesting are very effective to control the motion

of the system when the external frequency is larger than the natural frequency of the base

structure.

5.8 Conclusion

We investigated the concept of an energy harvester based on autoparametric vibration ab-

sorber consisting of a base structure subjected to an external force and a cantilever beam with

a tip mass. To convert vibrations of the base structure into electrical power, two piezoelectric

sheets were bonded to both sides of cantilever beam and connected in parallel with opposite

polarity with a load resistance. The coupled nonlinear distributed-parameter model is devel-

oped based on the extended Hamilton’s principle to characterize the nonlinear interactions

between the cantilever beam and base structure. Using the Galerkin approach, we discreted

the motions of the cantilever beam and determined its exact mode shapes. Then, approxi-

mate analysis of the non-dimensional equation based on the method of multiple scales shows

that there exists four types of motions. Approximate expressions of the global frequency and

coupling damping ratio of the cantilever beam were derived based on the results form first

order of method of multiple scales. The expressions indicate the global coupling damping

and frequency are strongly dependent on the electrical load resistance which is proved by

numerical results of linearized governing equation equation. Moreover, the expressions of

amplitude of the base displacement, displacements of the tip mass and harvested power are

presented to compare the responses of the system calculated from method of multiple scale

with those from the numerical simulation of governing equations. The results show that

method of multiple scale is relative accurate in determining the nonlinear responses of the

system near resonance. Comparing the expressions of harvested power and the global damp-

ing ratio of cantilever beam, we also find that the harvested power is proportional to the net

growth of the global damping and square of the displacement of the tip mass. Finally, the

effects of different parameters, such as the amplitude and frequency of external force and

electrical load resistance, on the nonlinear responses of the system are analyzed. The results

show that: (1) the electrical load resistance shifts the forms of bifurcations near the reso-

nances, (2) the motions of the system can be better controlled by adding energy harvesting

to autoparametric vibration system and (3) there exists one optimum load resistance not

only to effectively control the motion of the system but also to harvest largest power in some

cases. Besides these, we find some forms of bifurcations, such as, saddle-node bifurcations,

supercritical pitchfork bifurcations and Hopf bifurcations.



6
Conclusion and Future Work

6.1 Conclusion

In this dissertation, we performed nonlinear modeling and analysis of the unsteady aerody-

namics, dynamics and fluid structure interactions.

6.1.a Unsteady aerodynamics

We developed a hybrid analytical-numerical approach to determine the lift coefficient asso-

ciated with unsteady aerodynamics that involve high angles of attack. For this purpose, we

revisited the classical Theodorsen’s frequency response model and relaxed the major simpli-

fying assumptions that led to limited region of applicability of Theodorsen’s model such as

(1) at wake, (2) small angle of attack, (3) small disturbances to the mean flow components,

and (4) time-invariant free-stream. By relaxing these assumptions, we managed to develop

a geometrically-exact potential flow model. In the developed model, the vortex kinemat-

ics were determined numerically. However, unlike the discrete vortex models, the circulation

distribution and the associated aerodynamic loads were determined analytically after solving

for the vortex kinematics.

The asymptotic steady behavior of the developed model was validated against two-dimensional

experimental data and on the F-18 wing and the unsteady behavior of the developed model

was validated against some experimental and computational results of canonical large-amplitude

pitch maneuvers. The model also showed a good agreement with the experimental results in

comparison to the classical unsteady theory without requiring high computational burden.

The developed model was then used to determine the lift frequency response at various an-

gles of attack. For small angles of attack, the obtained frequency response closely matches

that of Theodorsen function. However, for high angles of attack (40◦), both qualitative and

128
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quantitative discrepancies are observed between the obtained frequency response and that of

Theodorsen. In all, the developed model is efficient enough to be used in multi-disciplinary

applications (e.g., dynamics and control) and also rich enough to cover some gaps that the

classical theory of Theodorsen cannot cover.

6.1.b Autoparametric vibrations system and its application

The governing equations of autoparametric vibrations system were derived using the ex-

tended Hamilton’s principle and non-dimensionalized. The method of multiple scales was

used to solve for the equilibrium points and the Cartesian form of the modulation equations

was then used to determine the stability and bifurcation of these equilibrium points. The

effects of different parameters, such as the amplitude and frequency of external force, the

damping coefficient and frequency of the attached cantilever beam and the tip mass, on the

nonlinear responses of the system were analyzed. We find that the saturation phenomenon

occurs as the external force is increased above a certain threshold and is very helpful to

control the vibration of the base structure, particularly when the base structure undergoes

resonance or near resonance and the frequency of the cantilevered beam is close to 1/2 of

the natural frequency of the base structure. Moreover, there exists jumps and hysteresis

for a specific range of parameters. Some interesting bifurcations, such as saddle-node, su-

percritical pitchfork, subcritical pitchfork, reversed saddle-node and reversed saddle-saddle

bifurcations, are also observed. we also find that the tip mass has a considerable effect on

the nonlinear response of the system, particularly when the damping ratio of the cantilever

beam is small and the external force is large. Finally, time history, power spectra, phase

portrait and Poincare section were used to analyze the system’s responses. The results show

that responses characterized by Hopf bifurcations and chaos.

We also investigated the concept of an energy harvester based on autoparametric vibration

absorber consisting of a base structure subjected to the external force and a cantilever beam

with a tip mass. To convert vibrations of the base structure into electrical power, two piezo-

electric sheets were bonded to both sides of cantilever beam and connected in parallel with

opposite polarity with a load resistance. The coupled nonlinear distributed-parameter model

was developed based on the extended Hamilton’s principle to characterize the nonlinear in-

teraction between the cantilever beam and base structure. Using the Galerkin approach, we

discretized the motions of the cantilever beam and determined its exact mode shapes. The

approximate analysis of the non-dimensional equation based on the method of multiple scales

showed that there exists four types of motions. Approximate expressions of the global fre-

quency and coupled damping ratio of the cantilever beam were derived based on the results

from the first order of method of multiple scales. The expressions indicate that the global

coupling damping and frequency are strongly dependent of the electrical load resistance

which was also proved by numerical results of linearized governing equation equation. More-
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over, the expressions of amplitude of the base displacement, displacement of the tip mass

and harvested power are presented to compare the responses of the system calculated from

method of multiple scale with those from the numerical simulation of governing equations.

The results show that the method of multiple scale is relatively accurate in presenting the

nonlinear responses of the system near resonance. Comparing the expressions of harvested

power and the global damping ratio of cantilever beam, we also find that the harvested power

is proportional to the net growth of the global damping and square of the displacement of the

tip mass. Finally, the effects of different parameters, such as the amplitude and frequency of

external force and electrical load resistance, on the nonlinear responses of the system were

analyzed. The results show that: (1) the electrical load resistance shifts the forms of bifurca-

tions near the resonances, (2) the motions of the system can be better controlled by adding

energy harvesting to autoparametric vibration system and (3) there exists one optimum load

resistance not only to effectively control the motion of the system but also to harvest largest

power in some cases. Besides these, we find some forms of bifurcations, such as, saddle-node

bifurcations, supercritical pitchfork bifurcations and Hopf bifurcations.

6.1.c Energy harvesting from the galloping and base excitation

We have investigated the concept of harvesting energy from hybrid vibrations, namely, base

and galloping of a bluff body with a triangular cross-section geometry. In order to convert

the associated oscillations to usable electrical power, a piezoelectric transducer is attached to

the transverse degree of freedom of the prismatic mass. A nonlinear distributed-parameter

model that takes into consideration the galloping force and moment nonlinearities and the

base excitation effect was derived based on extended Hamilton’s principle. The galloping

force and moment are modeled based on a quasi-steady approximation. The Galerkin pro-

cedure is introduced to discretize the governing equations of motion. The effects of the load

resistance, wind speed on the overall damping, global frequency, and onset of instability were

investigated through a linear analysis of the coupled equations of motion. Then, a nonlinear

analysis was performed to investigate the effects of the base acceleration, wind speed, and

electrical load resistance on the performance of the harvester and the associated nonlinear

phenomena that take place. The linear analysis shows that the load resistance has great ef-

fect on the electromechanical damping and global frequency. Moreover, during the nonlinear

analysis of the effect of load resistance, wind speed and base acceleration on the harvester’s

performance, some interesting nonlinear phenomena, such as quenching and pull-out fre-

quency, were investigated. The results also turn out as following: (1) the acceleration of the

base vibration has no effect on the onset wind speed; (2)the interaction of galloping effect

and base excitation have significant effect on the energy harvester’s performance; (3) as the

wind speed decreases, the acceleration increases or global damping increases, the difference

between pull-out frequency and global frequency increases (the quenching phenomena of the
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system are more obvious). Furthermore, the existence of both types of excitations leads to

the presence of new peaks in the maximum levels of harvested power of both short- and

open-circuit configurations. The range of load resistances over which the harvested power

is maximum for both the short- and open-circuit configurations is totally different from the

range of load resistances over which tip displacement is maximized.

6.2 Future work

For unsteady aerodynamics, the assumption of potential flow does not capture specific phys-

ical aspects associated with large amplitude maneuvers. These include viscous friction, LE

separation, and dynamic stall. One important extension is to study the appropriate condi-

tions for switching between including and ignoring the LE suction. Another straightforward

extension to the developed model is to allow for the emanation of a vortex sheet from the

LE. The strength of the LE vorticity can be determined to satisfy the Kutta condition at the

LE in the same way it is satisfied here at the TE. That is, the following two equations will be

solved simultaneously to determine the strengths of the shed vorticity at both edges:

q′θN(r = b/2, θ = 0, t) + q′θTE(r = b/2, θ = 0, t) + q′θLE(r = b/2, θ = 0, t) = 0

q′θN(r = b/2, θ = π, t) + q′θTE(r = b/2, θ = π, t) + q′θLE(r = b/2, θ = π, t) = 0

where the subscripts N , TE, and LE refers to the non-circulatory, trailing edge wake, and

leading edge wake contributions, respectively. This extension will be more suitable to capture

the LE separation effects in comparison to the mere manipulation of the LE suction force

inclusion.
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