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Abstract

Reaction-diffusion systems which include processes of the form A+A → A

or A+ A → ∅ are characterised by the appearance of ‘imaginary’ multiplica-

tive noise terms in an effective Langevin-type description. However, if ‘real’

as well as ‘imaginary’ noise is present, then competition between the two

could potentially lead to novel behaviour. We thus investigate the asymptotic

properties of the following two ‘mixed noise’ reaction-diffusion systems. The

first is a combination of the annihilation and scattering processes 2A → ∅,

2A → 2B, 2B → 2A, and 2B → ∅. We demonstrate (to all orders in pertur-

bation theory) that this system belongs to the same universality class as the

single species annihilation reaction 2A → ∅. Our second system consists of

competing annihilation and fission processes, 2A → ∅ and 2A → (n + 2)A,

a model which exhibits a transition between active and absorbing phases.

1

http://arxiv.org/abs/cond-mat/9701069v3


However, this transition and the active phase are not accessible to pertur-

bative methods, as the field theory describing these reactions is shown to be

non-renormalisable. This corresponds to the fact that there is no stationary

state in the active phase, where the particle density diverges at finite times.

We discuss the implications of our analysis for a recent study of another

active / absorbing transition in a system with multiplicative noise.

PACS Numbers: 02.50. -r, 05.40. +j, 82.20. -w.
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1 Introduction

Recently the effects of fluctuations in reaction-diffusion systems have attracted

considerable attention (for reviews, see Refs. [1, 2]). In sufficiently low spatial di-

mensions the presence of microscopic particle density fluctuations causes traditional

approaches, such as mean-field rate equations, to break down. This has led to the

introduction of field-theoretic methods, based on ‘Hamiltonian’ representations of

the associated classical master equation [3, 4, 5]. These methods allow fluctuations

to be handled in a systematic manner. The first system to be analysed in this way

was the single species annihilation reaction A + A → ∅, [6, 7] where it was shown

with renormalisation-group (RG) methods that for dimensions d < 2, the average

density n(t) decays to zero at large times according to the power law

n(t) ∼ Ed t−d/2 , (1)

with Ed denoting a universal amplitude (for uncorrelated initial conditions), while

n(t) ∼ E2 t−1 ln t in d = 2. Furthermore Peliti has demonstrated that the coag-

ulation reaction A + A → A belongs to the same universality class as the pure

annihilation process A + A → ∅ [6]. Physically the anomalously slow decay of

eq. (1) results from the anticorrelation of particles in low dimensions. Due to

the ‘reentrancy’ property of random walks for d ≤ 2, once two particles are in

close proximity they will then tend to react rather quickly. Hence at large times

the remaining (unreacted) particles are likely to be situated far from their nearest

neighbours (i.e. the particles become anticorrelated).

Markedly more complex behaviour may arise once particle production processes

are also permitted. For example, the ‘Branching and Annihilating Random Walk’

(BARW) system defined by the reactions 2A → ∅ and A → (m + 1)A, displays a
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dynamic phase transition between an ‘active’ (n(t) → ns > 0 for t → ∞) and an

‘inactive and absorbing’ state (n(t) → 0 for t → ∞), with a remarkable difference

between the cases of odd and even number of offspring m [8, 9]. For odd m and

d ≤ 2 the transition is basically characterised by the critical exponents of directed

percolation (DP) [10, 11, 12, 13], whereas for even m and d < d′
c ≈ 4/3 the phase

transition is described by a new universality class, with the density in the entire

absorbing phase decaying according to the power law in eq. (1) [8, 9, 14].

A powerful method for the analysis of such systems is provided by the RG

improved perturbation expansion [7, 15, 16]. However, once a field-theoretic action

for the system has been derived (from a microscopic master equation), it is also

possible to write down effective Langevin-type equations, where the form of the

noise can now be specified precisely, without any recourse to assumptions and

approximations [2]. The nature of the noise can look somewhat peculiar in this

representation, for example in the A + A → ∅ reaction we have the exact equation

for the field a(x, t):

∂ta(x, t) = D∇2a(x, t) − 2λ a(x, t)2 + a(x, t) η(x, t) , (2)

where D is the diffusion constant, λ the reaction rate, and

〈η(x, t)〉 = 0 , 〈η(x, t)η(x′, t′)〉 = −2λ δd(x − x′)δ(t − t′) . (3)

Hence the noise η is imaginary, a rather counterintuitive result. Recently Grin-

stein, Muñoz and Tu [17] have studied an equation superficially similar to that

given above, with the aim to model active / absorbing transitions in autocatalytic

chemical processes. In the special case of a scalar field with a quadratic nonlinear-

ity, their model is defined by the equation

∂ta(x, t) = D∇2a(x, t) − r a(x, t) − u a(x, t)2 + a(x, t) η(x, t) , (4)
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where

〈η(x, t)〉 = 0 , 〈η(x, t)η(x′, t′)〉 = 2ν δd(x − x′)δ(t − t′) . (5)

Notice that the noise in eq. (5) has the opposite sign to that considered previously

(i.e. the noise of Ref. [17] is real). However, this is an important point since

a positive sign in the noise correlator leads to divergences in the renormalised

parameters of the theory:

νR = Zν

uR = Zu
with Z =

1

1 − νId(r)
and Id(r) =

∫

ddk

(2π)d

1

r + Dk2
. (6)

Hence new singularities emerge when the denominator of Z vanishes. These diver-

gences have not been present in earlier field-theoretic studies of reaction-diffusion

systems. Certainly if the noise in the model of Ref. [17] were resulting from the

reaction A + A → ∅, its correlator should have a negative sign, as described above

(and hence no extra divergences would appear, rendering much of the interest-

ing behaviour in Ref. [17] obsolete). It is therefore not clear to us how the real

multiplicative noise of eqs. (4),(5) could be the only type generated — we believe

that internal, imaginary reaction noise should generically be present as well. Con-

sequently the physical mechanism behind the noise analysed in Ref. [17] remains

somewhat obscure.

One of the objects of this letter is to see if equations similar to that anal-

ysed by Grinstein, Muñoz and Tu (with real noise, and hence potentially novel

behaviour) can be derived consistently for certain reaction-diffusion systems using

field-theoretic methods. Potentially at least, in an emerging competition between

‘real’ and ‘imaginary’ noise contributions, the ‘real’ component might prevail in

certain circumstances, conceivably leading to the scenario discussed in Ref. [17].

However, our main finding here is that although we have analysed two systems
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where the noise correlator has both positive and negative components, we have

been unable to recover the new features discussed in Ref. [17]. In fact, in the first

of our model systems, a combination of two-particle annihilation and scattering

processes for the species A and B, the (‘imaginary’) reaction noise dominates the

long-time behaviour, which is described by the asymptotic power law (1). Neither

can the ‘imaginary’ noise terms be neglected in our second reaction-diffusion sys-

tem, namely combined annihilation and fission processes of a single species A. In

this system a perturbative RG analysis breaks down in the active phase and at

the dynamical phase transition separating it from the inactive state. Therefore al-

though we can only address the inactive phase, which is again governed by the pure

annihilation model, we believe this system cannot reproduce any of the features in

Ref. [17].

In the following Sec. 2, we present a more thorough discussion of how ‘imaginary’

noise terms emerge in processes dominated by two-particle annihilation reactions.

On the other hand, problems belonging to the directed-percolation (DP) univer-

sality class, as described by Reggeon field theory [10, 11, 12, 13], can be faithfully

represented by a simple Langevin equation for the local particle density with ‘real’

noise. In Sec. 3, we next present our scattering / annihilation model, which we first

analyse to one-loop order, and then to all orders in perturbation theory by solving

the coupled Bethe-Salpeter equations for the vertices. In Sec. 4, we proceed to dis-

cuss the annihilation / fission reaction system, and show that while its properties

in the inactive state may be analysed using field-theoretic methods, this is not the

case in the active phase or at the dynamic transition itself. Finally, we summarise

and discuss our results in the light of the recently proposed transition scenario for

‘real’ multiplicative noise problems [17].
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2 ‘Real’ vs ‘imaginary’ noise in reaction-diffusion

systems

Before turning to our investigation of models with competing ‘real’ and ‘imaginary’

noise terms, we briefly outline and review the general issue of how to systematically

include fluctuation effects in reaction-diffusion systems. Above the upper critical

dimension, a qualitatively correct analysis may be obtained from the associated

mean-field rate equations for the average particle densities. Below this dimension,

where fluctuations become important, it is tempting to apply a Langevin equa-

tion approach, motivated by the success of this technique in equilibrium critical

dynamics. However, one has to be aware that these typically irreversible reactions

constitute a dynamical system far away from thermal equilibrium. Thus there is

no fluctuation-dissipation theorem available which could serve as a guide to the

appropriate form of the Langevin noise correlations. One could of course just try

the simplest ansatz, namely some form of white noise multiplicatively coupled to a

certain power of the particle densities, in order to ensure that all fluctuations van-

ish when there are no particles left (i.e., in the absorbing state). But, as we shall

see shortly, at least for processes dominated by two-particle annihilation reactions,

this generically leads to an incorrect analysis.

Thus, in order to systematically include the effects of microscopic density fluc-

tuations in low dimensions, one can instead start with the corresponding classical

master equation, then represent this stochastic process by the action of second-

quantised bosonic operators, and finally use a coherent-state path integral repre-

sentation to map this system onto a field theory. This mapping itself is a standard

procedure, and is described in detail in Refs. [2, 4, 5, 7], for instance. Apart from
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the continuum limit that is usually taken, this procedure provides an exact mapping

of the initial master equation, and involves no assumptions whatsoever regarding

the form of the noise, the relevance or irrelevance of certain terms etc. Note that

the resulting bosonic theory applies only to systems where there is no restriction

on the particle occupation number in the microscopic model. For the description

of exclusion processes where the site occupation numbers are restricted to 0 or 1,

obviously a fermionic representation is more useful.

For example, for the simple two-particle annihilation reaction A + A → ∅ the

ensuing field-theoretic action reads

S =
∫

ddx
∫

dt
[

â(∂t − D∇2)a − λ(1 − â2)a2
]

, (7)

where we omit boundary terms relating to the initial conditions and the projec-

tion state. Here D denotes the diffusion constant, λ the annihilation rate, and

â(x, t) and a(x, t) are bosonic fields. The stationarity conditions (‘classical field

equations’) δS/δa = 0 and δS/δâ = 0 yield, respectively, â = 1 and the mean-field

rate equation ∂ta = D∇2a − 2λa2. Thus, within the mean-field approximation

we can identify a(x, t) with the local ‘coarse-grained’ particle density. However,

fluctuations in a(x, t) may not be simply related to density variations, as can be

seen by performing the shift â = 1 + ā,

S =
∫

ddx
∫

dt
[

ā(∂t − D∇2)a + 2λāa2 + λā2a2
]

. (8)

Integrating out the ‘response’ field ā in the functional integral
∫ DaDā exp(−S)

then leads precisely to eq. (2) with the negative noise correlator (3). Physically

this counterintuitive result corresponds to the anticorrelation of particles in low

dimensions. Furthermore, power counting reveals that this noise, which originates
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from the quartic term in the above action, becomes relevant below a critical dimen-

sion dc = 2. Because of this pure imaginary noise, a(x, t) clearly cannot represent

a physical density variable. Although 〈a(x, t)〉 is equal to the mean density n(x, t),

similar relations do not hold for higher correlators, see Ref. [2]. Moreover, since

a(x, t) is not the density field, this means that the noise must also take a non-

standard from — in fact η in eq. (3) represents only the contribution to the overall

noise from the reaction process. In reality, of course, diffusive and reaction noise

can never be disentangled from one another, and consequently there is no partic-

ular reason why the noise in eq. (3) should be ‘real’, i.e., described by a strictly

positive correlator.

However, it is possible to give descriptions where the diffusive noise does appear

explicitly. One approach begins with a Langevin equation including both real

reaction noise and diffusive noise. In that case the field a(x, t) represents a coarse-

grained local density. This is the approach taken, for example, by Janssen in

Ref. [12]. A second possibility is to begin with the representation (7) and then

obtain an equivalent description in terms of ‘density’ variables by considering the

canonical transformation a = exp(−ρ̃)ρ, â = exp(ρ̃), âa = ρ (see Ref. [13]). The

resulting effective action in terms of the new ‘density’ fields ρ and ρ̃ then includes

a term ∝ −ρ̃2ρ2 which corresponds to pure real noise. However, the ensuing field

theory contains an extra ‘diffusion noise’ contribution.

Hence we see that the ‘naive’ Langevin equation (i.e., eq. (2), but with a positive

noise correlator and no diffusion noise) does not provide an appropriate effective

description of the above system. On the other hand, for the standard Gribov

process A → ∅, A → A + A, A + A → A [12, 13], the action in terms of the shifted
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fields reads

S =
∫

ddx
∫

dt
[

ā[∂t + D(r −∇2)]a − σā2a + λāa2 + λā2a2
]

. (9)

Here D and λ represent the diffusion constant and annihilation rate as before, σ

is the branching rate, and r = (µ − σ)/D where µ denotes the spontaneous decay

rate. Integrating out the response fields now yields

∂ta(x, t) = D (∇2 − r)a(x, t) − λ a(x, t)2 + η(x, t) , (10)

with

〈η(x, t)〉 = 0 , 〈η(x, t)η(x′, t′)〉 = 2[σ a(x, t) − λ a(x, t)2] δd(x − x′)δ(t − t′) . (11)

It should be noted, however, that the effective coupling entering the perturbation

expansion is actually ∝ σλ, which leads to an upper critical dimension dc = 4.

Consequently, the term λā2a2 becomes irrelevant, and we are left with a pure

positive definite noise correlator ∝ σa(x, t) (or ‘square-root’ multiplicative noise,

if we replace η with
√

aη′). After a simple rescaling, the action is readily mapped

onto Reggeon field theory for directed percolation [10, 11, 12, 13]. Thus, here we

encounter the generic case where a(x, t) can be identified with a coarse-grained

density field. Physically, the above reactions lead to particle clustering, and local

densities indeed constitute a natural choice for the order parameter field. We also

remark that the signs and magnitudes of the prefactors (which may even be chosen

to be imaginary) of the cubic nonlinearities in the action (9) do not matter provided

their product −σλ remains real and negative.

In the above analysis, we have brought out the contrasting features of two cate-

gories of reaction-diffusion systems — containing either imaginary (anticorrelating)

or real (clustering) noise. However, reaction-diffusion systems with a multiplicative
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noise term ∝ aη are characteristically governed by pair reaction processes and thus

have ‘imaginary’ noise. This is in contrast to the ansatz in Ref. [17]. Of course,

one might argue that if there are both ‘real’ and ‘imaginary’ noise contributions

present, then the ‘real’ parts might prevail and lead to the scenario discussed in

[17]. This possibility motivates the following two case studies of combined scatter-

ing / annihilation and annihilation / fission reactions to which we now turn our

attention.

3 The scattering and annihilation process

The first reaction-diffusion system we want to consider consists of the four reaction

processes

A + A → ∅ , A + A → B + B , B + B → A + A , and B + B → ∅ , (12)

which occur at rates λAA, λAB, λBA, and λBB, respectively, and with diffusion

constants DA and DB for the A and B particles. We choose uncorrelated initial

conditions where the A and B particles are distributed randomly. Physically the

above reaction scheme might occur if the A particles could undergo a scattering

process turning into B particles, and vice versa, in addition to the presence of

the annihilation reactions. In order to systematically include the effects of mi-

croscopic density fluctuations in low dimensions, we represent the corresponding

master equation by a coherent-state path integral (see Sec. 2). In terms of the

continuous fields a, ā, b, b̄, the diffusivities Di 6= 0, continuum reaction rates {λij},

and the initial homogeneous densities ni (where i, j = A, B), the action reads (for
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t ≥ 0):

S =
∫

ddx
∫

dt
[

ā(∂t − DA∇2)a + b̄(∂t − DB∇2)b + 2λAAāa2 + λAAā2a2+

+2λBB b̄b2 + λBB b̄2b2 + 2λABāa2 + λABā2a2 − 2λAB b̄a2 − λAB b̄2a2+

+2λBAb̄b2 + λBAb̄2b2 − 2λBAāb2 − λBAā2b2 − nAāδ(t) − nB b̄ δ(t)
]

. (13)

If we now integrate out the response fields ā and b̄ from the functional integral

∫ DaDāDbDb̄ exp(−S), we find that the above reaction-diffusion system can be

described exactly by a pair of Langevin-type equations

∂ta(x, t) = DA ∇2a(x, t) − 2(λAA + λAB) a(x, t)2 + 2λBA b(x, t)2 + ηA(x, t) ,

∂tb(x, t) = DB ∇2b(x, t) − 2(λBB + λBA) b(x, t)2 + 2λAB a(x, t)2 + ηB(x, t) ,(14)

with noise correlations

〈ηA(x, t)〉 = 〈ηB(x, t)〉 = 0 , (15)

〈ηA(x, t)ηA(x′, t′)〉 = [λBA b(x, t)2 − (λAA + λAB) a(x, t)2] δd(x − x′)δ(t − t′) ,

〈ηB(x, t)ηB(x′, t′)〉 = [λAB a(x, t)2 − (λBB + λBA) b(x, t)2] δd(x − x′)δ(t − t′) .

Hence, as desired, we have constructed a system where in a Langevin-type for-

malism we have terms of both signs present in the correlator. Thus we can now

attempt to answer the question of whether this ‘competition’ alters the structure

of the theory in low dimensions where fluctuations are of vital importance.

Power counting on the action (13) reveals that all the reaction rates {λij} have

dimension ∼ µ2−d, where µ denotes a momentum scale. Hence we expect to find

a critical dimension dc = 2, below which fluctuations change the mean-field be-

haviour qualitatively and the theory must be renormalised. As in the pure annihi-

lation model (8), this renormalisation is simple since the diagrammatic structure of
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+ . . . = + +

Figure 1: The temporally extended vertex function λ̃AA(k, s) to one-loop order.

the theory does not permit any dressing of the propagators. Hence the only renor-

malisation required is that for the reaction rates. We now define λ̃AA = λAA +λAB,

λ̃AB = λAB, λ̃BA = λBA and λ̃BB = λBB + λBA. The temporally extended vertex

function for λ̃AA(k, s) to one-loop order is given by the sum of diagrams shown in

Fig. 1 (here s is the Laplace transformed time variable; time runs from right to

left). The diagrams for the other vertex functions look quite similar. Evaluation of

these one-loop diagrams yields the following form of the renormalised reaction rates:

gij = Cdλ̃ij(k, s)|k2/4=µ2,s=0/Diµ
ǫ, where ǫ = 2 − d, and Cd = Γ(2 − d/2)/2d−1πd/2

is a geometric factor. This leads in a straightforward manner to the following

one-loop RG beta functions βij = µ ∂gij/∂µ:

βAA = gAA(−ǫ + gAA) + gAB gBA , (16)

βAB = gAB(−ǫ + gAA + gBB) , (17)

βBA = gBA(−ǫ + gAA + gBB) , (18)

βBB = gBB(−ǫ + gBB) + gAB gBA . (19)

In fact it can be shown that the above one-loop beta functions are actually

exact to all orders in perturbation theory. This is readily accomplished by writing

down the full coupled Bethe-Salpeter equations for the vertices. Diagrammatically,

this corresponds to replacing either the right-hand or the left-hand bare vertices in

all the one-loop contributions (see Fig. 1) by their fully renormalised counterparts.
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This freedom of choice immediately implies the relation

λ̃AB(k, s)/λ̃AB = λ̃BA(k, s)/λ̃BA = N(k, s) . (20)

After absorbing the diffusivities Di into the bare couplings λ̃ij and the full ver-

tex functions λ̃ij(k, s), respectively, and introducing the abbreviation Ii(k, s) =

(2π)−d
∫

ddp [p2 + (k2/4) + (s/2Di)]
−1, the coupled exact Bethe-Salpeter equations

can be explicitly written as

λ̃AA(k, s) [1 + λ̃AAIA(k, s)] + λ̃AB(k, s) λ̃BA IB(k, s) = λ̃AA , (21)

λ̃AA(k, s) λ̃AB IA(k, s) + λ̃AB(k, s) [1 + λ̃BB IB(k, s)] = λ̃AB , (22)

together with a second pair of equations which follow by interchanging A ↔ B in

eqs. (21) and (22). These coupled linear equations (20)–(22) for λ̃ij(k, s) are solved

by

N(k, s)−1 = [1 + λ̃AAIA(k, s)] [1 + λ̃BB IB(k, s)] − λ̃AB λ̃BA IA(k, s) IB(k, s) , (23)

and

[λ̃AA(k, s)/λ̃AA N(k, s)] = 1 + [λ̃BB(1 − λ̃ABλ̃BA/λ̃AAλ̃BB)] IB(k, s) , (24)

[λ̃BB(k, s)/λ̃BB N(k, s)] = 1 + [λ̃AA(1 − λ̃ABλ̃BA/λ̃AAλ̃BB)] IA(k, s) . (25)

At the normalisation point one has Ii(2µ, 0) = Cdµ
−ǫ/ǫ, and after some tedious but

straightforward algebra eqs. (23)–(25) yield again the beta functions (16)–(19).

We can now examine the above eqs. (16)–(19), which we have just demonstrated

to hold to all orders in perturbation theory, for fixed point solutions g∗
ij defined by

βij({g∗
ij}) = 0. For d > 2 we find, as expected, merely the trivial Gaussian fixed

point where all g∗
ij = 0. However, for d < 2, the only stable fixed points are those
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describing uncoupled annihilation processes, i.e.,

g∗
AB = g∗

BA = 0 , g∗
AA = g∗

BB = ǫ . (26)

Furthermore, there are also other solutions, for example the fixed line

0 < c = g∗
AB g∗

BA ≤ ǫ2/4 fixed but arbitrary, and

2g∗
AA = ǫ ±

√
ǫ2 − 4c , 2g∗

BB = ǫ ∓
√

ǫ2 − 4c ; (27)

but these, like the Gaussian fixed point, turn out to be unstable for d < 2.

Hence the above annihilation / scattering model (12) asymptotically becomes

rather simple, and in fact lies in the same universality class as single-species an-

nihilation (with respect to both the decay exponent and amplitude). Hence each

species of particle decays according to eq. (1) as t → ∞ for d < 2. Physically this is

a result of the ‘reentrancy’ property of random walks — as soon as two particles are

in close proximity, they will rapidly annihilate, even in the presence of scattering

processes. Therefore we conclude that, for this system, the presence of ‘real’ as well

as ‘imaginary’ noise has not introduced any novel behaviour. We finally remark

that the above results also apply in the extreme asymmetric situation where, say,

λ̃BA = 0 but λ̃AB > 0 originally, i.e., when there is spontaneous unidirectional

transformation of pairs of A particles into pairs of B particles, but not vice versa.

At least in this special case, our result that this pairwise transmutation is irrele-

vant in the long-time limit, appears nontrivial. For example, in the related case of

DP processes for A, B particles with coinciding critical points, which are coupled

via the reaction A → B, the usual DP critical exponent β is replaced by a much

smaller density exponent as a consequence of an ensuing multicritical point [18].
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4 The annihilation and fission process

Our second reaction-diffusion system consists of the processes

A + A → ∅ and A + A → (n + 2)A , (28)

to which we assign the annihilation rate λ and ‘fission’ rate σn. Note that these

processes differ from the ‘Branching and Annihilating Random Walks’ [8, 9, 14]

mentioned earlier in that offspring particles can only be produced upon collision

of two A particles. The corresponding action derived from the master equation

describing the reactions (28) reads in terms of the unshifted continuous fields â(x, t)

and a(x, t)

S =
∫

ddx
∫

dt
[

â(∂t − D∇2)a − λ(1 − â2)a2 + σn(1 − ân)â2a2
]

(29)

(the terms depending on the homogeneous, uncorrelated initial density distribution

and on the projection state have been omitted here). Once again we point out

that this theory is valid only for unrestricted particle occupation numbers in the

microscopic model. It is quite possible that altering the microscopic rules for site

occupancy (for example by allowing only 0 or 1 particles at a site) may change some

of our later conclusions [19]. If we now proceed by performing the shift â = 1 + ā,

the effective action becomes

S =
∫

ddx
∫

dt

[

ā(∂t − D∇2)a + (2λ − nσn) āa2 +

+

(

λ − n(n + 3)

2
σn

)

ā2a2 − σn

n+2
∑

l=3

(

n + 2

l

)

āla2

]

. (30)

If all vertices āla2 for l ≥ 3 are neglected, this field theory becomes equivalent to a

nonlinear Langevin equation

∂ta(x, t) = D∇2a(x, t) + (nσn − 2λ) a(x, t)2 + a(x, t) η(x, t) , (31)
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〈η(x, t)〉 = 0 , 〈η(x, t)η(x′, t′)〉 = [n(n + 3)σn − 2λ] δd(x − x′)δ(t − t′) , (32)

which again describes competition between ‘real’ noise (associated with σn) and

‘imaginary’ noise (associated with λ). Upon comparing with the model of Ref. [17],

eqs. (4), (5), we see that the annihilation / fission process apparently corresponds

to their parameters r = 0, u = 2λ − nσn, and ν = n(n + 3)σn/2 − λ.

Notice that it is potentially dangerous to perform the shift â = 1 + ā and

then to arbitrarily omit certain nonlinearities [2, 14], due to the discrete symmetry

â → −â, a → −a, under which the action (29) is invariant (for n even). This

symmetry corresponds to local particle number conservation modulo 2, which is

lost in the Langevin description based on (30). Furthermore, the neglected terms

have the same scaling dimension as those retained. We therefore proceed with the

analysis of the unshifted theory (29). We find that both the annihilation and fission

rate have identical scaling dimension ∼ µ2−d and thus the upper critical dimension

is again expected to be dc = 2. For d > 2, a description given by the mean-field

equation (i.e. eq. (31) without noise) should become qualitatively correct. For

nσn < 2λ this leads asymptotically to a density decay n̄(t) ∼ t−1 (with reduced

annihilation rate λR = λ − nσn/2); for nσn > 2λ, on the other hand, the density

grows rapidly and diverges at tc = 1/(nσ − 2λ)n0, where n0 is the initial density.

Thus, there is no stationary state in the active phase.

We now consider a one-loop analysis of the action (29) for d ≤ 2. To this order

all the couplings associated with the interaction vertices in (29) are renormalised.

For example the coupling σn is renormalised by the diagrams shown in Fig. 2a.

However, in addition to this, other processes are also generated at this order: 2A →

nA (by a combination of fission and annihilation, see Fig. 2b) and 2A → 2(n+1)A

(by two successive fission reactions, see Fig. 2c). Furthermore, the mechanisms
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Figure 2: One-loop diagrams for (a) the renormalisation of the σn coupling, (b)

the generation of the process 2A → nA from a combination of 2A → (n + 2)A and

2A → ∅, and (c) the generation of the process 2A → 2(n + 1)A by two successive

fission reactions.

producing these processes (with increasingly large n) are not simply restricted to

the one-loop level — new particle creation vertices are effectively generated at

each successive order in perturbation theory. Therefore the number of (relevant)

higher-order couplings, each of which requires renormalisation, increases without

bound as higher and higher orders of perturbation theory are considered. Hence

we must conclude that the field theory is non-renormalisable: an infinite number

of renormalisations would be needed to render the theory free from divergences.

Nevertheless some further progress is possible by considering the original master

equation for the annihilation-fission process [20]. Omitting the diffusive terms, we

have

∂P ({mi}; t)
∂t

= λlat
∑

i

[(mi+2)(mi+1)P ({. . . , mi+2, . . .}; t)−mi(mi−1)P ({mi}; t)]

+σlat
n

∑

i

[(mi−n)(mi−n−1)P ({. . . , mi−n, . . .}; t)−mi(mi−1)P ({mi}; t)], (33)
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where P ({mi}; t) is the configuration probability for finding occupation numbers

{mi} at time t, and where λlat and σlat
n are the lattice annihilation and fission rates,

respectively. Using the relation m(t) =
∑

{mi} miP ({mi}; t), eq. (33) implies that

dm(t)

dt
= (nσlat

n − 2λlat) m(m − 1). (34)

Since mi = 0, 1, 2, . . ., we see that m(m − 1) is non-negative, and hence that nσlat
n =

2λlat marks the transition point between the active and inactive phases. Note that

actually at the transition (nσlat
n = 2λlat), the average density will remain constant,

whereas in the active phase it will diverge. These conclusions can be confirmed

by studying the shifted action (30). If we have the equality 2λ = nσn for the bare

field-theoretic parameters, then the bare cubic coupling vanishes. However, the

structure of the higher-order vertices ensures that a cubic coupling cannot then

be regenerated at any order in perturbation theory. Hence we can again conclude

that 2λ = nσn is the transition point between the active and inactive phases.

Furthermore in the inactive phase, where the annihilation mechanism dominates,

and the successive generation of an infinite series of fission processes is probably

suppressed, we might expect the density to decay as t−d/2 (for d < 2) due to the

strong particle anticorrelations which emerge as a result of the annihilation process

in low dimensions.

However, the non-renormalisability of the field theory means that we are unable

to fully address the properties of either the active phase or the active / inactive

transition. This failure may be associated with the fact that the active phase is

not in a stationary state (at least in mean-field theory, and with unrestricted site

occupancy mi = 0, 1, . . . ,∞, the density in this phase diverges in finite time).

This behaviour, taken together with the massless nature of our field theory (i.e.,
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there is no term proportional to the field a(x, t) in eq. (31)), implies that the

transition from the absorbing to the active phase cannot be in the DP universality

class. Rather the transition is closer to being ‘first order’, as suggested by an exact

evaluation of the correlation function at criticality [20]. As field-theoretic methods

clearly cannot shed any further light on this problem, we hope that our analysis

will stimulate further work using, for example, exact one-dimensional methods. In

addition, numerical simulations presently in progress seem to indicate that this

annihilation / fission system may display remarkably rich behaviour [19].

5 Summary

In this paper we have studied the effects of various types of noise in diffusion

limited reactions. In section 2 we emphasised that ‘naive’ Langevin equations

(with positive noise correlators) fail to accurately describe systems controlled by

pair reaction processes, where the noise is in fact ‘imaginary’. Physically this failure

is associated with the anticorrelation of particles in low dimensions. On the other

hand such a naive approach does indeed work for the Gribov process, where the

noise turns out to be ‘real’ (related to particle clustering).

We then studied two diffusion-limited reaction systems with both real and imag-

inary noise components: the annihilation / scattering processes (12) and the an-

nihilation / fission processes (28). We have shown (to all orders in perturbation

theory) that the first of these belongs to the same universality class as the pure

annihilation model in dimensions d ≤ 2, while for d > 2 the mean-field rate equa-

tions apply. However, the second system displays a transition between an active

and absorbing state, which is not accessible to perturbative analysis. In both cases,
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despite the competition between ‘real’ and ‘imaginary’ noise, we have been unable

to recover any of the interesting behaviour discussed in Ref. [17]. In fact, consider-

ing that the processes discussed here, along with BARW, are amongst the simplest

reactions leading to both ‘real’ and ‘imaginary’ multiplicative noise, it is rather

unclear which physical system might be described by the Langevin equation (4)

with purely ‘real’ multiplicative noise (5), and thus display the nontrivial effects of

Ref. [17].
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