
Immersed and Discontinuous Finite Element Methods

Nabil Chaabane

Dissertation submitted to the Faculty of the
Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in

Mathematics

Slimane Adjerid, Chair
Tao Lin, Co-chair
Serkan Gugercin
Yuriko Renardy

March 20, 2015
Blacksburg, Virginia

Keywords: Immersed finite element, discontinuous Galerkin, Stokes interface problem,
LDG, Q1/Q0

Copyright 2015, Nabil Chaabane

Immersed and Discontinuous Finite Element Methods

Nabil Chaabane

(ABSTRACT)

In this dissertation we prove the superconvergence of the minimal-dissipation local discontin-
uous Galerkin method for elliptic problems and construct optimal immersed finite element
approximations and discontinuous immersed finite element methods for the Stokes interface
problem.

In the first part we present an error analysis for the minimal dissipation local discontinuous
Galerkin method applied to a model elliptic problem on Cartesian meshes when polynomials
of degree at most k and an appropriate approximation of the boundary condition are used.
This special approximation allows us to achieve k + 1 order of convergence for both the
potential and its gradient in the L2 norm. Here we improve on existing estimates for the
solution gradient by a factor

√
h.

In the second part we present discontinuous immersed finite element (IFE) methods for
the Stokes interface problem on Cartesian meshes that does not require the mesh to be
aligned with the interface. As such, we allow unfitted meshes that are cut by the interface.
Thus, elements may contain more than one fluid. On these unfitted meshes we construct an
immersed Q1/Q0 finite element approximation that depends on the location of the interface.
We discuss the basic features of the proposed Q1/Q0 IFE basis functions such as the uni-
solvent property. We present several numerical examples to demonstrate that the proposed
IFE approximations applied to solve interface Stokes problems maintain the optimal approx-
imation capability of their standard counterpart applied to solve the homogeneous Stokes
problem. Similarly, we also show that discontinuous Galerkin IFE solutions of the Stokes
interface problem maintain the optimal convergence rates in both L2 and broken H1 norms.
Furthermore, we extend our method to solve the axisymmetric Stokes interface problem with
a moving interface and test the proposed method by solving several benchmark problems
from the literature.

This work received support from NSF grants DMS-1016313 and DMS-0809262.

Dedication

To my parents.

iii

Acknowledgments

I would like to take the opportunity to reflect on the past five years and thank all the
friends and family who helped me and supported me along the way.

I would like to express my sincerest feelings of gratitude to both my advisors Dr. Slimane
Adjerid and Dr. Tao Lin, who guided me through my Ph.D. Their constant advise have
greatly helped me work through several challenging problems and their support have helped
me overcome my failures. Their integrity and passion have inspired me to become a better
scholar.

I would like to thank Dr. Pengtao Yue for his guidance through my last part of my disser-
tation. His insightful advises and comments helped me extend my work and approach more
complex problems.

Members of my Ph.D. committee Dr. Yuriko Renardy and Dr. Serkan Gugercin deserve
my sincerest thanks. I have learned a lot from each of them and I am grateful for their
valuable advises and insightful comments on my research and dissertation.

Special thanks to Ms. Eileen Shugart for being my teaching mentor for the past years
and sharing a lot of her valuable experience with me.

I wish to express my sincerest gratitude to my parents. Their constant support is an inspi-
ration for me to become a better person and a better scholar.

iv

Contents

1 Introduction 1

1.1 Discontinuous Galerkin method . 1

1.1.1 A priori error estimates for the DG method 3

1.1.2 Superconvergence error estimates . 4

1.1.3 A posteriori error estimates for the DG method 5

1.2 The immersed finite element method . 6

1.2.1 Illustration of the IFE method for a one-dimensional elliptic problem 6

1.2.2 History of the IFE method . 8

1.3 The Stokes interface problem . 9

1.3.1 Statement of the problem . 9

1.3.2 Applications of the Stokes interface problem 10

1.3.3 Survey of numerical methods for solving the Stokes problem 12

1.3.4 Numerical methods for solving the Stokes interface problem 14

1.4 Motivations for studying immersed finite element methods 16

1.5 Outline of the dissertation . 19

2 Local discontinuous Galerkin method 20

2.1 Problem formulation and notations . 20

2.2 The md-LDG method . 22

2.3 Error analysis . 24

2.4 Numerical results . 35

v

3 Q1/Q0 Immersed finite element approximations for the Stokes interface
problem 38

3.1 Space Sh(Ω) . 39

3.2 Space S̃h(Ω) . 44

3.3 Q1/Q0 particular IFE functions with surface force 46

3.4 Basic properties of the Q1/Q0 IFE space Sh(Ω) 48

4 Immersed finite element method for the Stokes interface problem 56

4.1 Weak formulation and finite element scheme 57

4.2 Numerical simulations . 60

4.2.1 Approximation properties of Q1/Q0 IFE spaces 60

4.2.2 Convergence of the immersed finite element method 66

5 Immersed finite element method for the Stokes problem with a moving
interface 73

5.1 Introduction . 73

5.2 IFE implementation . 74

5.2.1 Even-odd rule . 75

5.2.2 Surface force . 76

5.2.3 Immersed finite element method . 77

5.3 Numerical simulations . 81

6 Axisymmetric Stokes interface problem 89

6.1 IFE spaces and particular functions for the Stokes interface problem 92

6.1.1 Q1/Q0 IFE shape functions without surface force 92

6.1.2 Q1/Q0 particular IFE functions with surface force 97

6.1.3 Basic properties of the Q1/Q0 IFE space 99

6.2 An immersed discontinuous Galerkin method 101

6.3 Numerical simulations . 105

6.4 Axisymmetric Stokes problem with a moving interface 107

vi

6.4.1 Surface force . 108

6.4.2 Proposed algorithm . 109

6.4.3 Numerical experiments . 110

6.4.4 Re-sampling of the interface . 115

7 Conclusion and future work 117

7.1 Contribution . 117

7.2 Future work . 118

7.2.1 High order IFE spaces . 118

7.2.2 A priori error analysis . 119

7.2.3 Three-dimensional interface problems 119

vii

List of Figures

1.1 Piecewise linear IFE shape functions. 8

1.2 A domain Ω and an interface Γ. 11

1.3 Stable finite element functions for the Stokes problem where black dots are
the nodes used to construct the Lagrange shape functions. 13

1.4 An immersed finite element mesh (right) and a body-fitted mesh (left). . . . 17

2.1 An example of a Cartesian mesh T and a vector v to define mesh orientation
with ∂Ω± = Γ±1 ∪ Γ±2 . 24

3.1 Reference interface elements of Type I (left) and Type II (right). 40

3.2 The (u1, u2, p)
T components of the IFE shape function Φ1 (left) and standard

shape function Ψ1 (right). 43

3.3 An interface element. 52

4.1 The regions ∆±, ∆±h and their intersections. 60

5.1 A rectangular domain Ω with an immersed interface Γ(t). 75

5.2 An illustration of the Even-Odd algorithm. 76

5.3 An illustration of the quadratic parametric interpolation used to determine
the curvature of the interface and the normal vector to the interface at (x, y). 77

5.4 Flowchart of an algorithm used to solve the Stokes interface problem. 81

5.5 Finite element errors versus the degrees of freedom in the log-log scale for
adaptive (-o) and uniform (- -�) refinements. 82

5.6 Initial state of the system for Example 5.3.1 (upper left), the mesh used to
discretize Stokes problem (5.2a)−(5.2c) at t = 0 (upper right) and a blow-up
of the mesh near the interface (bottom). 83

viii

5.7 Simulation of Example 5.3.1. 84

5.8 Kinetic energy of the system versus time (left). Volume of the drop versus
time (right). 85

5.9 The computational domain for drop deformation in shear flow. 86

5.10 The length L and width W of a deformed drop. 86

5.11 Simulation of Example 5.3.2. 88

6.1 The 3D domain V and a typical cylindrical element T 3 (upper left), and
their projections onto the meridian plane (upper right). The 3D domain and
interface (lower left) and their axisymmetric projection (lower right). 93

6.2 The (ur, uz, p) components of the IFE shape function Φ1 (left) and standard
shape function Ψ1 (right). 98

6.3 The distance R used to compute the curvature κ2. 108

6.4 The computational domain for transient drop deformation under extensional
flow in three-dimensional domain (left) and its projection onto the meridian
plane (right). 111

6.5 Drop deformation in extensional flow versus time (top) and blown-ups, near
the interface, of the meshes used to partition the domain Ω (bottom) for
Example 6.4.1. 112

6.6 Drop deformation in extensional flow versus time (top) and blown-ups of the
three-dimensional drops (bottom) for Example 6.4.1. 113

6.7 Drop deformation in extensional flow versus time for Example 6.4.1. 114

6.8 Control points at t = 0 (left) and t = 1 (right) for Example 6.4.1 without
re-sampling. 114

6.9 Drop deformation in extensional flow versus time for Example 6.4.2 using
re-sampling. 115

6.10 Drop volume versus time for Example 6.4.2. 116

ix

List of Tables

2.1 L2 errors on uniform meshes having N = 16, 36, 64, 100, 144, 196, 256, 324, 400
elements and k = 1, 2, 3, 4 with P+gD in (2.16) and gD in (2.15). 36

2.2 L2 errors on uniform meshes having N = 16, 36, 64, 100, 144, 196, 256, 324, 400
elements and k = 1, 2, 3, 4 with gD in (2.16) and P+gD in (2.15). 37

4.1 L2 interpolation errors for Example 4.2.1 using the space Sh(Ω). 63

4.2 Broken H1 interpolation errors in the velocity for Example 4.2.1 using the
space Sh(Ω). 64

4.3 L2 errors of the L2 projection for Example 4.2.1 using the space S̃h(Ω). . . . 64

4.4 Broken H1 errors of the L2 projection of the velocity for Example 4.2.1 using
the space S̃h(Ω). 64

4.5 L2 interpolation errors for Example 4.2.2 using the space Sh(Ω). 65

4.6 Broken H1 interpolation errors for Example 4.2.2 using the space Sh(Ω). . . 65

4.7 L2 interpolation errors for Example 4.2.3 using the space Sh(Ω). 66

4.8 Broken H1 interpolation errors for Example 4.2.3 using the space Sh(Ω). . . 67

4.9 L2 IFE errors for SIPG method applied to Example 4.2.4 using the space Sh(Ω). 67

4.10 L2 IFE error for NIPG method applied to Example 4.2.4 using the space Sh(Ω). 68

4.11 Broken H1 IFE errors for SIPG method applied to Example 4.2.4 using the
space Sh(Ω). 68

4.12 Broken H1 IFE errors for NIPG method applied to Example 4.2.4 using the
space Sh(Ω). 68

4.13 L2 IFE errors for SIPG method applied to Example 4.2.4 using the space S̃h(Ω). 68

4.14 L2 IFE errors for NIPG method applied to Example 4.2.4 using the space S̃h(Ω). 69

x

4.15 Broken H1 IFE errors for SIPG method applied to Example 4.2.4 using the
space S̃h(Ω). 69

4.16 Broken H1 IFE errors for NIPG method applied to Example 4.2.4 using the
space S̃h(Ω). 69

4.17 L2 IFE errors for SIPG method applied to Example 4.2.5 using the space Sh(Ω). 70

4.18 L2 IFE errors for NIPG method applied to Example 4.2.5 using the space Sh(Ω). 70

4.19 Broken H1 IFE errors for SIPG method applied to Example 4.2.5 using the
space Sh(Ω). 71

4.20 Broken H1 IFE errors for NIPG method applied to Example 4.2.5 using the
space Sh(Ω). 71

4.21 L2 IFE errors for SIPG method applied to Example 4.2.6 using the space Sh(Ω). 71

4.22 Broken H1 IFE errors for SIPG method applied to Example 4.2.6 using the
space Sh(Ω). 71

4.23 L2 IFE errors for NIPG method applied to Example 4.2.6 using the space Sh(Ω). 72

4.24 Broken H1 IFE errors for NIPG method applied to Example 4.2.6 using the
space Sh(Ω). 72

6.1 L2 interpolation errors for Example 6.3.1. 106

6.2 H1 interpolation errors for Example 6.3.1. 106

6.3 L2 IFE errors for NIPG method applied to Example 6.3.1. 106

6.4 H1 IFE errors for NIPG method applied to Example 6.3.1. 106

6.5 L2 IFE errors for SIPG method applied to Example 6.3.1. 107

6.6 H1 IFE errors for SIPG method applied to Example 6.3.1. 107

xi

Chapter 1

Introduction

Numerical methods for partial differential equations have seen important progress over the
past several decades. The rapid development of computer hardware played an important role
in allowing the implementation of new methods to carry out simulations of complex systems.
The recent development allows for faster and more accurate solutions in areas that lack an-
alytical understanding. However, the scientific community still faces many challenges when
solving some of these equations numerically; for instance, some numerical methods exhibit
instability and inaccuracy when applied to some problems. To circumvent such difficulties, a
large amount of resources (time, memory use, complex algorithms) has to be used, and hence
there is a need for more efficient methods. In particular, the relatively recent discontinuous
Galerkin method (DGM), which exhibits several desirable properties, may be used to solve
challenging problems such as problems where shocks form or systems that exhibit sharp
transitions. Also, the immersed finite element method, which belongs to a larger class of
extended finite element methods, has shown a great potential to solve challenging problems
where the PDEs’ coefficients are discontinuous. These problems arise if the domain contains
multiple materials separated by interfaces.

In this dissertation, we (i) study the local discontinuous Galerkin method applied to a
second order elliptic problem and carry out an error analysis of the method, (ii) construct
a new Q1/Q0 immersed finite element space and particular IFE functions to capture the
non-smoothness of the solution of the Stokes interface problem and (iii) derive IFE schemes
to solve the Stokes interface problem.

1.1 Discontinuous Galerkin method

In the late 1950’s, the finite element (FE) method was developed to solve PDEs arising in
structural mechanics (see [61] for a brief history of the FE method). The idea was to ap-

1

Nabil Chaabane Chapter 1. Introduction 2

proximate smooth functions using a linear combination of piecewise polynomials. The finite
element approximation is determined by solving the linear system of the discretized PDEs.
Several finite element formulations can exist for a given differential equation, but as Johnson
[74] states, in general one can follow the general framework below:

• transform the differential equation into a variational problem,

• discretize the infinite variational problem in a finite dimensional space,

• implement the method on a computer and solve the discrete problem.

A finite element method usually involves two finite element spaces, the trial space and the
test space. If the trial and test spaces are identical, the FE method is called a Galerkin
method. The original finite element method was designed such that the numerical solution
is forced to be continuous across element boundaries. This makes the method very inefficient
or impossible to use in certain situations such as shock formation or discontinuous coeffi-
cients. Consult [136] and the references cited therein for more information on FE methods.
If the FE solution is not required to be continuous across the element boundaries, we call it
a discontinuous Galerkin (DG) method. DG methods are suitable for solving systems that
exhibit sharp transitions or discontinuities and is widely used in engineering applications.

Furthermore, the DG method can be seen as a finite volume method using piecewise poly-
nomial basis functions. Therefore, the DG method may be regarded as an extension of the
finite volume method to arbitrarily high orders of accuracy, and therefore inherits desirable
properties from both the finite element and finite volume methods. The solution space is
the span of piecewise polynomials constructed relatively to the mesh and this allows solution
discontinuities (e.g., shocks) to be captured sharply relative to element boundaries. The DG
method gained popularity because

• it simplifies adaptivity since inter-element continuity is neither required for h-refinement
nor p-refinement.

• it can be locally conservative (the method can be designed to conserve the appropri-
ate physical quantities, e.g., mass, momentum, and energy on an elemental basis).

• it is well suited to solve problems on locally refined meshes with hanging nodes.

• it is explicit for some problems, allowing the approximate solutions to be computed on
element by element, or in parallel within layers of elements, in accordance with domain of
dependence requirements.

• it exhibits strong superconvergence of solutions for hyperbolic [1, 125], elliptic [3] and

Nabil Chaabane Chapter 1. Introduction 3

convection-diffusion problems [6] that can be used to estimate the discretization error.

The DG method was first introduced in 1973 by Reed and Hill [117] as a technique to
solve neutron transport problems

∇ · (au) + ru = f, (1.1)

where r is a real number and a a constant vector. The hyperbolic nature of the equation
coupled with the “non-continuity across element boundaries” property of the DG method
allows to compute the solution locally element by element when elements are suitably or-
dered with respect to the characteristic direction. The first numerical analysis was carried
out by Lesaint [86] in 1975 for a linear advection equation, and has been extensively studied
thereafter. The DG method was studied for initial-vlaue problems for ordinary differential
equations [5, 25, 87, 122], hyperbolic [21], parabolic [52, 53, 123] and elliptic [120] PDEs. It
was also studied for systems of PDEs such as the Stokes problem [43], the Navier-Stokes prob-
lem [108] and the elasticity problem [62]. It offers the possibility to use more general mesh
configurations and discontinuous basis functions, which simplify both h- and p-refinements.
Here, the h-refinement refers to the mesh refinement or coarsening and the p-refinement
refers to the method order variation. Furthermore, DG methods have simple communica-
tion pattern between neighboring elements which makes it suitable for parallel computation.
Also, it can handle problems with complex geometries to high order.

Regardless of the method used, an assessment of the accuracy of the approximate solu-
tion has to be obtained, since the exact solution is not given in practice. Also, an efficient
refinement strategy cannot be implemented unless an a posteriori error estimate is inte-
grated in the method to guide adaptivity and stop the refinement process. These estimates
are constructed using superconvergence results. In this section, we present a short survey
of a priori error estimates, a posteriori error estimates and superconvergence results of the
DG method.

1.1.1 A priori error estimates for the DG method

A priori error estimates give an upper bound in a specific norm of the error that relates the
exact solution to the FE solution. Their derivation is usually restricted by the smoothness
assumptions made about the exact solutions, and their use is limited since the exact solution
is unknown. However, they provide a starting point to construct efficient asymptotically cor-
rect a posteriori error estimates, which estimates the accuracy of the computed FE solutions.

The first analysis of the DG method, used to solve the neutron transport equations ,was
carried out by LeSaint and Raviart in [86], where they proved O(hk) convergence rate for
general triangulations in the L2 norm and O(hk+1) order of convergence for Cartesian meshes
where tensor product of polynomials of degree k are used. Johnson at al. [75] improved the

Nabil Chaabane Chapter 1. Introduction 4

estimate for general triangulations by a factor of
√
h and their result was verified numerically

by Peterson [115]. In practice, the optimal rate of convergence is usually observed. Richter
[119] was able to prove optimal order of convergence under some uniformity assumptions
for structured non-Cartesian grids. The optimal order of convergence for a model elliptic
problem, elasticity and Navier-Stokes problems are obtained by adding penalty terms, see
[120] and the references therein for a review of these methods.

The above estimates are constructed under the assumption that the exact solution is suf-
ficiently smooth. Since this is not the case for many applications, error estimates for ap-
plications with non-smooth solutions were a subject of investigation by several scientists.
The convergence of the method for solutions that admit discontinuities was investigated and
the convergence of the method was established in [99]. In [98, 134], the mesh-discontinuity
configuration was explored for piecewise linear and piecewise constant approximations and
the optimal order of convergence was established under suitable assumptions on the mesh.
In [54] Falk and Richter showed O(hk+1/2) rate of convergence for Friedrichs systems using
general triangulations. Later, Cockburn et al. [46] showed how to obtain O(h2k+1) rate of
convergence on Cartesian meshes by postprocessing the approximate solution.

The DG method was extended to nonlinear systems of PDEs by Cockburn et al. in [47],
where they proposed to use a variation of the original DG method to solve nonlinear sys-
tems of conservation laws and the method was referred to as the Runge-Kutta discontinuous
Galerkin (RKDG) method. In fact, it is a DG method in space and a special total varia-
tion diminishing (TVD) Runge-Kutta time discretization, coupled with a generalized slope
limiter strategy to handle the discontinuities. Cockburn and Shu [48] explored the local
discontinuous Galerkin (LDG) method for time dependent convection-diffusion problems.
They showed that, by transforming the equation to a first order degenerate system, the
LDG method can be seen as an extension of the RKDG method used for purely hyperbolic
systems.

1.1.2 Superconvergence error estimates

Superconvergence occurs when the approximate solution converges at certain points, lines,
surfaces, or places at higher rates than elsewhere. Therefore, the computational solution is
more accurate at these places and converges at a rate higher than O(hk+1), which is usu-
ally the discretization error in the L2 norm. Mathematically, superconvergence means that
the local discretization errors converge at an O(hq) rate, where q > k + 1, h is the mesh
size and k is the polynomial degree used to approximate the solution. The superconver-
gence results can be used to design a post-processing procedure to improve the accuracy of
the computational approximations, construct efficient a posteriori error estimates or detect
discontinuities (e.g. align the mesh or use stabilization techniques). These estimates have
been investigated for FE methods [129] and for DG methods applied to ordinary differential

Nabil Chaabane Chapter 1. Introduction 5

equations [87], hyperbolic problems [5, 8, 9] and convection-diffusion problems [6, 37]. In
[34] Castillo investigated the superconvergence behavior of the LDG method applied to a
two-point elliptic boundary-value problem and showed, using the numerical flux proposed in
[35], that on each element the k-degree LDG solution gradient is O(hk+1) superconvergent
at the shifted roots of the k-degree Legendre polynomial.

In [6], Adjerid and Klauser investigated the superconvergence properties of the LDG method
for transient convection-diffusion problems in one-dimension. They proved that the dis-
continuous finite element solutions of convection-dominated problems are O(hk+2) super-
convergent at Radau points. For diffusion-dominated problems, the solution derivative is
O(hk+2) superconvergent at the roots of the derivative of Radau polynomial of degree k+ 1.
They used these results to construct several asymptotically exact a posteriori finite element
error estimates. In [37], a family of FE methods for one-dimensional convection-diffusion
problem was investigated, where DG methods with different numerical traces, discontinuous
Petrov-Galerkin methods and hybridized mixed methods were included. The authors showed
that the numerical traces of the solution and its gradient are superconvergent at the mesh
nodes, provided that the traces are conservative. In particular, for the LDG method, they
showed that the superconvergence is O(h2k+1) when polynomials of degree at most k are used.
Extensive computations in [3] suggest that the LDG solution of elliptic problems obtained
by interpolating Dirichlet boundary conditions at Radau points is O(hk+1) superconvergent
for both the solution gradient and the potential.

1.1.3 A posteriori error estimates for the DG method

A posteriori error estimates constitute a pillar of the adaptive refinement as they indicate
the regions where more or less refinement is needed. Several a posteriori error estimates
for the DG methods have been developed. However, these estimates can be classified as in
[56] into four classes: (i) residual error estimates are found by solving local finite element
problems created on either an element or a subdomain, (ii) flux-projection error estimates
are found by calculating a new flux via a post processing of the finite element solution and
then taking the difference of the new smoother flux and the original flux, (iii) extrapolation
error estimates are found by taking the difference of finite element solutions having different
orders or different meshes, and (iv) interpolation error estimates.

To quantify the efficiency of the a posteriori error estimates, the effectivity index is used,
which is the ratio of the computed error to the exact error. An effectivity index close to
one means that the a posteriori estimate used is efficient. This effectivity index should
converge to one under h- and p-refinement. The a posteriori error estimates can be further
sub-classified under local and global estimates. A global a posteriori error estimate gives a
measure of the global error over the whole domain. On the other hand, a local a posteriori
estimate gives a measure of the error on every element, which makes it more suitable for

Nabil Chaabane Chapter 1. Introduction 6

local mesh refinement/coarsening (h-refinement) and local order variation (p-refinement).
The latter approach offers several advantages as it is usually easy to compute, asymptoti-
cally exact and provides one order higher estimates. The global a posteriori error estimates
were studied for elliptic [19, 121], parabolic [53, 58] and hyperbolic problems [83]. The lo-
cal a posteriori error estimates were constructed for one-dimensional linear and nonlinear
hyperbolic problems [5], two-dimensional hyperbolic problems [8, 9, 16, 22, 81] and elliptic
problems [78].

1.2 The immersed finite element method

The immersed finite element (IFE) method was introduced in 1998 by Li [93] to solve one-
dimensional second order boundary value problems with discontinuous coefficients. These
problems model several phenomena in different areas of engineering and science, and they
typically arise if the domain contains multiple materials. In this section, we illustrate the
IFE method applied to one-dimensional boundary problem. Then, we present a survey of
the history of the IFE method.

1.2.1 Illustration of the IFE method for a one-dimensional elliptic
problem

We consider the following elliptic problem defined on I = [0, 1]:

−(β(x)u′(x))′ + q(x)u(x) = f(x), for x ∈ [0, α) ∪ (α, 1], (1.2a)

u(0) = u(1) = 0. (1.2b)

We assume that the coefficient β(x) is a piecewise constant defined as follows:

β(x) =

β−, if x < α,

β+, if x > α,

where α ∈ (0, 1) is a constant that we shall call interface. We further define I− = [0, α) and
I+ = (α, 1].

The solution of the problem (1.2a-1.2b) is not smooth due to the discontinuity of the coef-
ficient β(x). However, the behavior of the solution at the interface α is known [93]. In fact
the following jump conditions occur at α:

[u(α)] = 0, (1.2c)

[β(α)u′(α)] = 0, (1.2d)

Nabil Chaabane Chapter 1. Introduction 7

where the jump operator [·] is defined as:

[u] = lim
x→α−

u(x)− lim
x→α+

u(x).

This problem can be solved and optimal order of convergence is obtained if the mesh used
to discretize the domain is fitted to the interface (i.e. one of the mesh nodes coincides with
α). However, if the mesh is constructed regardless of the interface location, the standard
finite element space is not guaranteed to capture the essence of the solution due to its non-
smoothness. Therefore, there is a need to construct a more suitable space on such meshes.
This idea represents the main ingredient of the IFE method. In this section, we show how
to construct the IFE space.

As mentioned above, the main idea is to construct a more suitable space that accounts
for the non-smoothness of the solution. Let us first partition the domain [0, 1] into N sub-
intervals using a mesh Th. The subintervals shall be called elements and we denote them
as Ij = [xj−1, xj], j = 1, 2, ...N . The element that contains α will be denoted Ii = [xi−1, xi]
and shall be called interface element while the remainder of the elements shall be called
non-interface elements.

Naturally, the basis functions constructed on the interface element should be non-smooth
at the interface, and in particular, they should obey the jump conditions (1.2c-1.2d). The
IFE shape functions will be defined piecewisely on I−i = [xi−1, α] and I+

i = [α, xi]. On the
other hand, the standard FE basis functions will be used on non-interface elements. The
IFE space is defined on the interface element Ii as follows:

Sh(Ii) = {φ : φ|I±i ∈ Pk(I
±
i) and [φ(α)] = 0, [β(α)φ′(α)] = 0},

where Pk is the space of polynomials of degree at most k. For instance, the local piecewise lin-
ear IFE shape functions φm, m = 1, 2 are constructed on the interface element Ii = [xi−1, xi]
using the following procedure:

• Define the general piecewise basis function as φ±m(x) = a±0 + a±1 x.
• Enforce the Lagrange conditions φ−m(xi−1) = δ1,m, φ+

m(xi) = δ2,m.
• Enforce the jump conditions (1.2c-1.2d) at α: [φm(α)] = 0 and [βφ′m(α)] = 0.

Figure 1.1 shows the piecewise linear IFE shape functions on the reference interface ele-
ment [0, 1] with α = 0.3, β− = 1 and β+ = 4. The global IFE basis functions are continuous
and are constructed using the IFE shape functions φm(x), m = 1, 2. Therefore, they are in
H1(I), and a Galerkin scheme using these IFE basis functions is a conforming finite element
method. The IFE method has been extended to higher order approximations, and a family
of piecewise quadratic IFE basis functions were developed in [32, 101], and their approxima-
tion capability was investigated. In [7], IFE shape functions for any polynomial degree were
constructed and optimal order of convergence of the IFE method was established.

Nabil Chaabane Chapter 1. Introduction 8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

xx

φ
^

1(x) φ
^

2 (x)

Figure 1.1: Piecewise linear IFE shape functions.

1.2.2 History of the IFE method

Since the time the IFE method was introduced by Li in [93], it has been extended to higher
order approximations by Adjerid and Lin [7], and applied to second order elliptic problems
[41, 60, 64, 65, 66, 67, 82, 96, 100, 130]. The first piecewise bilinear IFE space on rectan-
gular mesh was introduced in [100] and the approximation capability of the IFE space was
discussed in [64] where the optimality of the IFE methods was shown.

Note that these IFE basis functions are not continuous across element boundaries and thus,
nonconforming. In [133], rotated IFE basis functions were constructed and the optimality of
the IFE method was proved. For elliptic problems with non-homogeneous jump conditions,
IFE functions were created to enrich the IFE space and capture the discontinuity [64]. In
[96], Li et al. have developed both conforming and nonconforming linear IFE basis functions
on triangular meshes. The nonconforming linear finite element method has two majors ad-
vantages: (i) the construction of the basis function is simple because the continuity across
elements is not enforced and (ii) the applicability of the fast solvers to the IFE linear system
is possible since it has the same structure as the standard FE linear system. The major
drawback is the difficulty to carry out error analysis, while the analysis of the conforming
IFE method is straightforward. However, the conforming IFE method yields a stiffness ma-
trix that is denser than its counterpart obtained using the standard FE method, since extra
degrees of freedom are added on the interface elements. The approximation capability of
the nonconforming spaces is studied in [95], where the authors proved that the interpolation
error converges optimally in both L2 and H1 norms. Due to the nature of the IFE basis
functions, they used a multi-point Taylor expansion instead of the standard scaling argu-
ment. The extension of the IFE method to higher order approximation on triangular meshes
was done in [4, 20], where the authors showed numerically that interior penalty terms have
to be added to reach optimal convergence rates.

Nabil Chaabane Chapter 1. Introduction 9

The most recent work is an extension of the IFE method to systems of PDEs and time
dependent problems. In [105], Lin and Zhang constructed bilinear and linear IFE basis
functions for the planar elasticity problem on triangular and Cartesian meshes and observed
optimal convergence rates in both L2 and H1 norms. However, they showed that for some
configurations of the interface location, the basis functions cannot be constructed. To cir-
cumvent this, they constructed nonconforming IFE basis functions and proved the unisolvent
property [104]. In addition, they observed that, by using these basis functions, the proposed
IFE method is a locking-free scheme.

In [12] an IFE method was used to obtain a spatial discretization of a transient semi lin-
ear parabolic interface problem with static interfaces and the backward Euler method was
used to discretize the problem in time. The authors also attempted an error analysis of
the proposed method. In [103] Lin and Sheen proposed an alternative approach to solve
the problem by using the Laplace transform. This method yields a set of decoupled inter-
face problems that can be solved independently which makes this approach well suited for
parallel computing. He et al. [68] proposed a family of Crank-Nicolson (CN) IFE schemes
for solving parabolic equations with a moving interface and showed numerically that these
schemes achieve optimal order of convergence. For higher order PDEs, IFE methods were
developed to solve the one-dimensional beam interface problem and the two-dimensional
bi-harmonic interface problem [102]. In order to avoid using higher degree approximations,
the fourth order differential equations were reduced to a second order system and the mixed
finite element method was used.

1.3 The Stokes interface problem

In this section, we present the two-dimensional Stokes interface problem and its applica-
tions. Then, a short survey of numerical methods used to solve the Stokes problem and the
Stokes interface problem will be provided. Finally, we discuss our motivations to develop an
immersed finite element (IFE) method to solve Stokes interface problem.

1.3.1 Statement of the problem

The Stokes problem can be seen as a linearization of the Navier-Stokes problem and is
used to simulate creeping incompressible fluids. In particular it models the velocity u(X) =
(u1(X), ..., ud(X)) and the pressure p(X) of incompressible fluids in an open domain Ω ∈ Rd,
d = 2, 3 with boundary ∂Ω such that X = (x1, ..., xd) ∈ Ω. We assume that we have two
immiscible fluids characterized by two different viscosities ν±. Therefore we assume that the
domain is separated by an interface Γ into two sub-domains Ω+, Ω− such that each domain
contains one fluid, which yields the Stokes interface problem. The closure of the physical
domain can be written as Ω = Ω+ ∪ Ω− ∪ Γ, see Figure 1.2 for an illustration. The Stokes

Nabil Chaabane Chapter 1. Introduction 10

interface problem is described by the following equations:

−∇ · S(u, p) = f , in Ω− ∪ Ω+, (1.3a)

∇ · u = 0, in Ω− ∪ Ω+, (1.3b)

u = g, on ∂Ω, (1.3c)

where

S(u, p) = νε(u)− pI, (1.3d)

with
ε(u) = ∇u + (∇u)T , (1.3e)

f is the body force assumed to be in (L2(Ω))d, g is the Dirichlet boundary condition assumed
to be in (L2(∂Ω))d and

∇u =

Ü ∂u1
∂x1

· · · ∂u1
∂xd

...
∂ud
∂x1

· · · ∂ud
∂xd

ê
.

The viscosity coefficient ν is discontinuous across the interface Γ:

ν(X) =

ν− if X ∈ Ω−,

ν+ if X ∈ Ω+,

where ν+, ν− > 0.

We complete the definition of the problem by imposing the following physical jump con-
ditions across the interface

[S(u, p)n]|Γ = σ, (1.3f)

[u] |Γ = 0, (1.3g)

where n is the unit vector normal to the interface and σ is the surface force along the
interface. Note that we treat the two-dimensional Stokes interface problem (i.e., d = 2) in
Chapters 3-5 and the three-dimensional Stokes interface problem (i.e., d = 3) in Chapter 6.

1.3.2 Applications of the Stokes interface problem

Incompressible Stokes and Navier-Stokes equations are important to understand the dynam-
ics of multiphase flows with moving interfaces or free boundary problems in computational
fluid dynamics (CFD). In general, interface problems arise when the domain contain two
fluids such as water and oil, the same fluid at different states such as water and ice, or same
fluid separated by a membrane. These models are usually characterized mathematically by
the discontinuity of the viscosity across the interface and/or the presence of a surface force
term along the interface. Next, we present three applications of the Stokes interface problem.

Nabil Chaabane Chapter 1. Introduction 11

Ω
−

Ω
+

Γ

Figure 1.2: A domain Ω and an interface Γ.

Blood flow in the heart

Numerical simulation of the flow pattern in the heart is a challenging task due to the moving
nature and complex structure of the heart’s walls. In [111], Peskin circumvented this issue by
embedding the domain of interest in a larger box filled with fluid and modeled the boundary
conditions at the heart valves as forces exerted by the fibers on the fluid. Furthermore, he
imposed periodic boundary conditions and showed that the exterior fluid has minor effect
on the flow pattern inside the heart. The flow pattern is modeled using the Stokes interface
problem with the heart’s walls being the interface.

Cochlea (Inner ear) model

Researchers over the years have been trying to understand the complexity of the ear and
how it functions. Theories about the auditory system (in particular the inner ear or the
Cochlea) operation are still being developed. Computational models based on a coupled
fluid/immersed-boundary system have been proposed. The immersed boundaries are used
to describe the flexible and rigid parts of the Cochlea, such as the basilar membrane and the
surrounding bone. These immersed boundaries exerts forces on the surrounding fluid in a
specified manner depending on their location, which forces the Cochlea to move [73]. Thus
the interaction between the fluid and the Cochlea describes the response of the Cochlea to
vibrational stimulus and is modeled using Stokes interface problem.

Energy production

One of the main applications of the Stokes interface problem is in the field of energy produc-
tion, where the recovery of oil can be improved by injecting steam, CO2 or water into the

Nabil Chaabane Chapter 1. Introduction 12

oil reservoir [50]. This yields a porous media flow problem involving several liquids or gas
phases modeled using Stokes interface problem. From an industrial perspective, computa-
tional prediction tools are an asset to make choices of potential carbon capture and storage
sites, so that the CO2 will not be released in the atmosphere.

1.3.3 Survey of numerical methods for solving the Stokes problem

Given the large amount of literature related to solving Stokes problem, we present in this
section some of the recent progress achieved in this field. It is well known that using the
same spaces to approximate the velocity and the pressure usually yields an unstable scheme.
Therefore, choosing the appropriate spaces for velocity and pressure is a major step toward
constructing a stable scheme. Most of these spaces satisfy the so-called inf-sup condition,
which was introduced by Brezzi and Babuska [14, 29] and has led to the development of
many finite element formulations. For convenience, we introduce the following spaces Qk

and Pk. Qk is the space of polynomials of degree at most k in each variable x and y and Pk
is the space of polynomials of degree at most k. A finite element function is defined by the
pair M/N , such that M is the space used to approximate the velocity and N is the space
used to approximate the pressure.

A widely used finite element function is the so-called Taylor-Hood finite element function
[11], which is the finite element function Q2/Q1 for rectangular elements and P2/P1 for tri-
angular elements and was proved to satisfy the inf-sup condition and therefore is stable.
This finite element function was extended to higher order approximations, and it has been
shown that the finite element functions Qk/Qk−1, k > 2 are stable. However, stabilization
techniques have to be used when using the finite element function Q1/Q0 [24]. The latter
has been proved to be stable when the discontinuous Galerkin method is used [120]. Another
stable finite element function is the so-called modified Taylor-Hood finite element function
(or Q2-iso-Q1/Q1 finite element function), where Q1 is used to approximate both velocity
and pressure, but the mesh used to approximate the velocity is finer than the mesh used
to approximate the pressure. In fact, every element in the mesh used to approximate the
pressure has to be subdivided into four congruent elements (if rectangular elements are used)
and the new mesh is used to discretize the velocity.

An alternative way to obtain a stabilized finite element is to use the MINI finite element
function Q∗1/Q1 [10], such that the space Q∗1 consists of the space Q1 enriched with a bub-
ble function. Figure 1.3 shows an illustration of some of these finite element functions on
Cartesian meshes. On the other hand, Hughes et al. [72] proposed a Petrov-Galerkin finite
element formulation that was shown to be convergent for general C0 combinations of velocity
and pressure, and hence circumvent restrictions of the Babuska-Brezzi condition. Douglas
and Wang [51] proposed an absolutely stabilized finite element formulation for the Stokes
equation in which solvability and convergence of the method do not depend on the stability

Nabil Chaabane Chapter 1. Introduction 13

constant. Kechar and Silvester [79] introduced a local stabilization method which includes
the jump of the pressure on the boundary of a macroelement.

Recently, the discontinuous Galerkin method has been used to solve Stokes and Navier-Stokes
equations. Cockburn et al. [45] investigated the LDG method for the Stokes and Navier-
Stokes systems in mixed forms and showed that the LDG method can handle meshes with
hanging nodes, elements of general shapes, local spaces of different types, and weakly enforce
the conservation of mass. Hansbo and Larson [62] introduced a stabilized DG method for
the equations of the linear elasticity in the incompressible and nearly compressible case with-
out using pressure variable and proved an optimal rate of convergence in a mesh-dependent
norm. Lazrov and Ye [85] enforced the continuity of the velocity along the element bound-
aries using Lagrange multipliers to obtain optimal orders of convergence for both velocity
and pressure in the L2 norm.

Cockburn et al. [43] proposed a hybridizable DG method for Stokes flow in order to re-
duce the size of the resulting matrix to the numerical trace of the velocity and the mean
of the pressure on the element boundaries. They claim that by using an augmented La-
grangian method, the globally coupled unknowns are further reduced to the numerical trace
of the velocity only. Furthermore, the approximations of the velocity, pressure and velocity
gradient converge with the optimal order of k + 1 in the L2 norm. An element by element
postprocessing leads to another approximation of the velocity which converges with order
k + 2 in the L2 norm. An analysis of a family of DG methods is provided in [120] for both
Stokes and Navier-Stokes equations, where optimal energy estimates for the velocity and
optimal L2 estimates for the pressure are obtained.

Elements	
 Velocity	
 Pressure	

	

Taylor-­‐Hood	

	

MINI	

	

Modified	
 Taylor-­‐

Hood	

Q2 /Q1

Q1
* /Q1

Q2 − iso−Q1 /Q1

Figure 1.3: Stable finite element functions for the Stokes problem where black dots are the
nodes used to construct the Lagrange shape functions.

Nabil Chaabane Chapter 1. Introduction 14

1.3.4 Numerical methods for solving the Stokes interface problem

Numerous techniques have been proposed to solve the Stokes interface problem. Below, we
present a short survey of the existing techniques. Each method has its own advantages and
drawbacks. We classify the methods into five main categories: the finite element method,
the ghost fluid method, the finite difference method, the immersed boundary method and
the least-squares method.

The finite element method

One approach, proposed by Brackbill in [26], consists of regularizing the discontinuities
by smoothing out the interface and removing the discontinuity leading to a method that
requires finer meshes near interfaces due to its reduced accuracy near the interfaces. In
order to avoid this difficulty, Buscaglia et al. [13] designed a finite element basis for the
pressure that models jumps of the normal component of the surface force assuming that the
tangential component of the surface force is continuous. They showed through numerical
examples that the interpolation error in the pressure is O(h3/2) accurate with first-degree
polynomials for the pressure. Reusken [118] developed a modified XFEM space by deleting
finite element basis functions having small support which improves the conditioning of the
resulting system. Reusken proved that the modified XFEM space is as accurate as the
standard XFEM space but with better stability properties. However, these XFEM spaces
have to be carefully constructed to preserve accuracy. Belytschko and Fries [57] proposed a
generalized/extended finite element method that may be applied to problems whose solutions
are not smooth. An alternative method was proposed by Hansbo et al. [18] by considering
two discrete solutions one on each of the enlarged sub-domains Ω+ and Ω− and enforcing the
jump conditions weakly using a variant of Nitsche’s method. Like the XFEM method, this
method may suffer from ill-conditioning depending on the location of the interface. Zahedi
et al. [63] were able to circumvent the difficulties faced in the latter method by slightly
changing the variational formulation. They proved optimal convergence as well as the well-
conditioning of the stiffness matrix. The relatively new discontinuous Galerkin method has
also been applied to the Stokes interface problem [59] using piecewise polynomials of degree k
for the velocity and of degree k−1 for the pressure on body-fitted meshes. They established
optimal orders of convergence in the L2 and energy norms, respectively, for pressure and
velocity. Ohmori et al. [109] studied the Stokes interface problem and provided an error
analysis for MINI and modified Taylor-Hood finite element functions.

The immersed interface method

The immersed interface method (IIM) is based on a finite difference formulation that main-
tains a second order accuracy by incorporating the jump conditions across the interface.
It can be seen from (1.3f) that the pressure and the derivatives of the velocity are usually

Nabil Chaabane Chapter 1. Introduction 15

not continuous across the interface. The IIM takes this fact into account when developing
the difference equations. It was originally introduced by Leveque and Li [88] to solve the
elliptic interface problem, then it was extended to solve the Stokes interface problem [89].
The main idea is to decouple the velocity and pressure, then use a Cartesian grid immersed
finite difference to solve for each variable separately. The immersed finite difference method
was further developed in [84, 92, 94, 97]. The main drawbacks of this method are (i) the
non-symmetry of the linear system used to solve in order to obtain the discrete solution
of the Stokes interface problem, (ii) the limitation of the method accuracy and (iii) the
necessity to derive more jump conditions across the interface.

The ghost fluid method

The Ghost Fluid (GF) Method was first introduced by Fedkiw et al. [55] to capture the
discontinuity across the multimaterial interface in the inviscid compressible Euler equation.
It was then extended to solve multiphase incompressible flows [76, 77]. At every point of the
domain of interest, a ghost node is created and each grid point contains the mass, momentum
and energy for the fluid that exists at that point and a ghost mass, momentum and energy
for the other fluid. Once these cells are created, the standard methods can be used to solve
the problem regardless of the interface location. The main advantages of this method is
that it is simple and relatively easier than the IIM to implement and the system of finite
difference equations used from the GF method is symmetric for self adjoint elliptic problems.
Unlike the IIM, the fast Poisson solver cannot be used; instead a slower algorithm has to
be used to solve the linear system since the finite difference coefficients change at some grid
points near the boundary. Also, this method may be only first-order accurate for mixed or
non-homogenous Neuman boundary conditions. Moreover, the stability of this method may
deteriorate if a higher-order scheme is used.

The immersed boundary method

The immersed boundary (IB) method is a finite difference-based scheme that was originally
introduced by Peskin to model the blood flow in a human heart [111]. This method has
been applied to many other problems, see [112, 113, 114] for a review of the method and
its application. The main idea of this method is to distribute a singular force to nearby
grid point using a delta function. Several delta functions have been developed, but the most
commonly used functions are the hat function

δε(x) =

(ε− |x|)/ε2 if |x| < ε,

0 if |x| ≥ ε,
(1.4)

Nabil Chaabane Chapter 1. Introduction 16

and Peskin’s original discrete cosine delta function

δε(x) =


1
4ε

(1 + cos(πx
2ε

)) if |x| < 2ε,

0 if |x| ≥ 2ε.
(1.5)

Both delta functions are continuous, but the cosine delta function, first introduced by
Peskin, is smooth and most used in the literature. This method is robust and simple
to implement and its extension to higher dimension is straightforward as we may define
δε(x, y) = δε(x)δε(y). However, if the cosine delta function is used, the solution is only first
order accurate and is smeared in the neighborhood of the interface. Also, in the formulation
used to develop the IB method, the integral term that contains the surface force does not
take into account the curvature of the interface which makes it hard to develop second order
schemes.

The least-squares method

The least-squares method is attractive for several reasons. The first is that the spaces
used to approximate the velocity and pressure don’t have to obey the BB condition [31].
Therefore, one can use the same degree polynomial approximation for both pressure and
velocity. Furthermore, the resulting algebraic system is symmetric positive definite and easy
to precondition and thus, allows the use of efficient iterative schemes. In [33] the authors
proposed a body-fitted least-squares method to solve the elliptic interface problem where
they transformed the problem into a first order system and created a mesh that is fitted
to the interface. They carried out an error analysis and proved that the optimal order of
convergence is reached. This idea was extended to the Stokes interface problem in [69] where
the author combined the least-squares method with a spectral collocation method to improve
accuracy.

1.4 Motivations for studying immersed finite element

methods

The second part of this work focuses on developing immersed finite element (IFE) methods
for solving the Stokes interface problem on a structured Cartesian mesh. The IFE method
can be seen as an alternative to the immersed boundary and immersed interface methods.
The main idea is to create the mesh regardless of the location of the interface as shown in
Figure 1.4, then design new finite element spaces and IFE particular functions that mimic
the behavior of the solution across the interface. These IFE spaces are used only when an
element is cut by the interface (such elements will be called interface elements). These new
spaces are extremely easy to incorporate into existing codes, and they conserve the global

Nabil Chaabane Chapter 1. Introduction 17

degrees of freedom. The IFE basis functions have to be locally constructed on every inter-
face element, which is not expensive since the number of interface elements is usually small
compared to the total number of elements in a mesh. Unlike the conventional FE method,
the IFE method does not require the mesh to be tailored to fit the interface and therefore
avoids the expensive re-meshing procedure.

In general, optimal rates of convergence for conventional finite element solutions are at-
tained for fitted meshes where every element contains one fluid. However, this restriction
leads to several drawbacks such as:

• excessive re-meshing for problems with moving or random interfaces (many problems may
be solved with different interfaces corresponding to different parameters’ values)

• excessive mesh refinement to resolve small structures in the domain such as thin lay-
ers

• prohibition of the use of uniform meshes to solve problems having nontrivial interfaces

In this dissertation, we try to provide a method that have the following properties:

• stability regardless of the location of the interface

• second order accuracy for the velocity and first order accuracy for the pressure

• flexible refinement of the mesh

Figure 1.4: An immersed finite element mesh (right) and a body-fitted mesh (left).

The IFE method have been extensively studied for different interface problems (see section

Nabil Chaabane Chapter 1. Introduction 18

1.2.2) and has exhibited stability and accuracy. In this work, we extend the IFE method to
solve the Stokes interface problem and provide a stable and accurate method. This provides
an efficient tool since it avoids the time-consuming and complicated process of re-meshing
to fit the mesh to moving interfaces with complex geometry. It also allows us to use uni-
form meshes which might be very attractive for some applications. To obtain the desired
convergence rate, we choose to work with the finite element function Q1/Q0 which is second
order accurate for velocity and first order accurate for pressure. This finite element function
will be modified accordingly on interface elements in order to construct the immersed finite
element space and the IFE particular functions. The primal continuous formulation exhibits
instability when the finite element function Q1/Q0 is used [23]. However, this element is
shown to be stable when the discontinuous Galerkin (DG) method is used [120]. Thus, we
choose to use the DG method with the IFE Q1/Q0 spaces. This choice is not solely based
on the stability restriction, but also for the following properties of the DG method:

• It does not require continuity across element boundaries.

• It can be locally conservative.

• It is well suited to solve problems on locally refined meshes with hanging nodes.

• It exhibits strong superconvergence that can be used to estimate the discretization er-
ror.

• It has a simple communication pattern between elements with a common face that makes
it useful for parallel computation.

• It can handle problems with complex geometries to higher order.

In fact, the first feature is very attractive since the IFE basis functions are not continu-
ous across element boundaries as shown in section 3.1. Thus the DG method is useful in this
situation and is a natural choice.

The immersed finite element method shares the basic idea with the immersed interface
method. However, the immersed interface method is only second order accurate for both
velocity and pressure. Its extension to higher order approximations seems to be complicated,
if not impossible. The IFE method, on the other hand, can be extended to higher order ap-
proximations, which has already been done for elliptic problems [4, 20]. Moreover, using the
DG method allows for efficient adaptive mesh refinement which reduces the computational
time. In fact, tracking the interface efficiently is an important task to avoid any instability
and can only be done if our numerical approximation is accurate next to the interface, which
implies that a fine mesh may be needed around the interface. The adaptive mesh refinement
provides a very effective tool to refine the mesh only near the interface.

Nabil Chaabane Chapter 1. Introduction 19

1.5 Outline of the dissertation

At the end of section 4.3 in [44], Cockburn et al. stated the following: “ These experi-
ments justify our contention that the optimal order of convergence in q can be reached if the
boundary conditions are piecewise polynomials of degree k. Our theoretical analysis does
not explain this phenomenon”. Extensive computations in [3] suggest that the md-LDG so-
lution of elliptic problems obtained by interpolating Dirichlet boundary conditions at Radau
points is O(hk+1) superconvergent for both the solution gradient and potential. In Chapter
2, we investigate the local discontinuous Galerkin method applied to an elliptic problem and
carry out an error analysis to prove that, by approximating Dirichlet boundary conditions
with appropriate projections or interpolations, both the md-LDG solution and its gradient
on Cartesian meshes are O(hk+1) convergent.

Next, we focus on developing IFE methods to solve Stokes interface problems. In Chap-
ter 3, we construct IFE spaces and IFE particular functions based on Q1/Q0 finite element
functions on Cartesian meshes for Stokes interface problems. The discussion covers both
Lagrange type and null space based basis functions. Then, we investigate properties of the
Lagrange type IFE spaces. Fundamental properties such as partition of unity, trace inequal-
ities, and inverse inequalities are established. In Chapter 4, we present numerical schemes
based on the previously developed IFE spaces and particular functions to solve the Stokes
interface problem. The optimal rates of convergence of the IFE schemes will be validated
through numerical experiments. In Chapter 5, we extend our method to the Stokes problem
with a moving interface, where we discuss how the interfaces can be tracked using Runge-
Kutta methods and we test our method using two benchmark problems. In Chapter 6, we
construct an IFE space, IFE particular functions and IFE schemes to solve the axisymmet-
ric three-dimensional Stokes interface problem. Several numerical results are provided to
demonstrate the performance of these schemes. We also present an algorithm for solving the
axisymmetric Stokes problem with a moving interface. In Chapter 7, we briefly discuss our
results and finding and suggest future research directions.

Chapter 2

Local discontinuous Galerkin method

The LDG finite element method for solving one-dimensional convection-diffusion partial dif-
ferential equations was introduced by Cockburn and Shu [48] and is based on the work by
Bassi and Rebay [17]. Castillo et al. [35] presented the first a priori error analysis for the
LDG method applied to a model elliptic problem. They considered arbitrary meshes with
hanging nodes and elements of various shapes and studied general numerical fluxes. They
showed that, for smooth solutions, the L2 errors in u and ∇u, respectively, are of order
k + 1/2 and k when polynomials of total degree not exceeding k are used. Later, Cockburn
et al. [44] presented a superconvergence result for the LDG method for a model elliptic
problem on Cartesian meshes. They identified a special numerical flux for which the L2

norms of the solution gradient and the potential are of orders k+1/2 and k+1, respectively,
when tensor product polynomials of degree at most k are used.

An optimal minimal dissipation LDG (md-LDG) method for one-dimensional convection-
diffusion problems was first investigated in [36]. Later, the method was extended to two-
dimensions on triangular meshes in [42] where the authors proved O(hk+1) and O(hk) L2

convergence rates, respectively, for the potential and solution gradient using the complete
k-degree polynomial space Pk.

2.1 Problem formulation and notations

Consider the following second-order elliptic boundary-value problem

−∆u = f, in Ω = [−1, 1]2, (2.1a)

u = gD, on ∂ΩD, (2.1b)

∇u · n = gN · n, on ∂ΩN , (2.1c)

20

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 21

for some given functions gD and gN , where ∂Ω = ∂ΩD ∪ ∂ΩN , n is the unit outer normal
vector on ∂Ω and the measure of ∂ΩD is nonzero.
In our analysis, we select the boundary conditions and the source term f(x, y) such that
the exact solution, u(x, y), is a smooth function. In order to construct the LDG formulation
of Cockburn et al. [44], we first introduce an auxiliary variable q = ∇u and transform the
elliptic problem (2.1) to the following system of first-order differential equations:

q = ∇u in Ω, (2.2a)

−∇ · q = f in Ω, (2.2b)

u = gD on ∂ΩD, (2.2c)

q · n = gN · n on ∂ΩN . (2.2d)

Throughout the dissertation, Ω ∈ R2 denotes a bounded open domain. Also, we let D(Ω) be
the space of C∞ functions with compact support in Ω. We denote by D′(Ω) the dual space
of D(Ω). We also define the weak derivative Dα as follows: Given a multi-index α = (α1, α2)
and |α| = α1 + α2,

Dαv(φ) = (−1)|α|
∫

Ω

v∂|α|φ

∂xα1∂yα2
, ∀φ ∈ D(Ω).

We use the latter to define the norm || · ||k,p,Ω as follows

||v||k,p,Ω =

Ñ∑
|α|≤k
||Dαv||p0,p,Ω

é1/p

,

where
||v||p0,p,Ω =

∫
Ω
|v|pdX,

and 1 ≤ p <∞. In the case p =∞, we define

||v||k,∞,Ω = max
|α|≤k
||Dαv||0,∞,Ω,

where
||v||0,∞,Ω = ess sup{|v(X)| : X ∈ Ω}.

We, then, define the Sobolev space

W k,p(Ω) = {v : ||v||k,p,Ω <∞},

and we call ||·||k,p,Ω the Sobolev norm associated with the Sobolev space W k,p. Also, we define
the Sobolev semi-norm | · |k,p,Ω associated with the W k,p space as |v|k,p,Ω =

∑
|α|=k ||Dαv||0,p,Ω.

In the case p = 2, the sobolev space becomes a Hilbert space and we denote it by Hk(Ω) =
W k,2(Ω). For simplicity reasons, we omit the index 2 in the associated norm and semi-norm,
i.e ||v||k,2,Ω = ||v||k,Ω and |v|k,2,Ω = |v|k,Ω.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 22

Finally, we define the norm ||v||0,e over an arbitrary line e ∈ Ω as

||v||0,e =
∫
e
|v|2ds.

2.2 The md-LDG method

We partition our domain Ω into a rectangular mesh T consisting of N = n × n elements
Kij = [xi, xi+1] × [yj, yj+1], i, j = 0, 1, . . . , n − 1, where xi = yi = −1 + ih, i = 0, 1, . . . , n
and h = 2/n. Now we multiply (2.2a) and (2.2b) by arbitrary smooth test functions v and
r, respectively, integrate over an arbitrary element K, and apply the divergence theorem to
write ∫

K
q · rdx = −

∫
K
u∇ · rdx+

∫
∂K
ur · nds, (2.3)∫

K
q · ∇vdx =

∫
K
fvdx+

∫
∂K
vq · nds. (2.4)

Let Qk(K) denote the tensor product space on K consisting of polynomials where the degree
in each variable does not exceed k, and define

MN := {q ∈
Ä
L2(Ω)

ä2
: q|K ∈ Qk(K)2}, (2.5)

VN := {u ∈ L2(Ω) : u|K ∈ Qk(K)}. (2.6)

The LDG formulation consists of finding (qN , uN) ∈MN × VN that satisfies∫
K

qN · rdx = −
∫
K
uN∇ · rdx+

∫
∂K
ûNr · nds, (2.7a)∫

K
qN · ∇vdx =

∫
K
fvdx+

∫
∂K
vq̂N · nds, (2.7b)

for all (r, v) ∈ MN × VN and for all K ∈ T . Here n is the unit outward normal vector to
the edges ∂K and the numerical fluxes q̂N and ûN are the discrete approximations of the
traces of q and u on element boundaries.

In order to complete the definition of the md-LDG method we need to select the fluxes
q̂N and ûN on ∂K. Let the mean value {·} and jump [[·]] of a scalar function uN and a vector
qN at (x, y) on an edge of ∂K be defined as

{u}(x, y) =
1

2
(u+(x, y) + u−(x, y)), {q}(x, y) =

1

2
(q+(x, y) + q−(x, y)), (2.8)

[[u]](x, y) = (u+(x, y)− u−(x, y))n, [[q]](x, y) = (q+(x, y)− q−(x, y)) · n, (2.9)

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 23

where u+ is the limit of the solution on K and u− is the limit of the solution of an adjacent
element sharing ∂K, i.e., for (x, y) ∈ ∂K, and n is the outer unit normal on ∂K we have

u+(x, y) = lim
ε→0−

u((x, y) + εn), u−(x, y) = lim
ε→0+

u((x, y) + εn). (2.10)

We follow [44] to define the numerical fluxes û and q̂ on interior edges by introducing an
auxiliary vector v and write

q̂ = {q} −C12[[q]], (2.11)

û = {u}+ C12 · [[u]]. (2.12)

The parameter C12 is defined on each edge of ∂K by

C12 · n =
1

2
sign(v · n). (2.13)

We note that the vector v is an arbitrary but fixed vector with nonzero components as
illustrated in Figure 2.1. Without loss of generality, from now on we assume that v has
strictly positive components, thus, û on a horizontal edge is the limit of u from below while
on a vertical edge it is the limit of u from the left. q̂ on a horizontal edge is the limit of q
from above while q̂ on a vertical edge is the limit from the right. We also define

∂Ω− = {(x, y) ∈ ∂Ω | v · n < 0}, ∂Ω+ = {(x, y) ∈ ∂Ω | v · n > 0}. (2.14)

If ∂Ω±D = ∂ΩD ∩ ∂Ω±, we let E , ED, EN , E ±, E ±D respectively, denote the sets of all edges in
∂Ω, ∂ΩD, ∂ΩN , ∂Ω±, ∂Ω±D. Finally the set of all interior edges is defined as EI = E\(ED∪EN).

Letting C11 be a positive constant we define the numerical flux on the boundary as

q̂N =


q+
N if e ∈ E−D

q+
N − C11(u+

N − gD) if e ∈ E+
D

gN if e ∈ EN
, (2.15)

ûN =

u
+
N if e ∈ EN

P+gD if e ∈ ED
, (2.16)

where P+ = P+
1 if the edge e is parallel to the x1 − axis and P+ = P+

2 if e is parallel to
the x2 − axis as defined below.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 24

K


1
-


1
+


2
- 

2
+


1
-


1
+


2
- 

2
+

 v

Figure 2.1: An example of a Cartesian mesh T and a vector v to define mesh orientation
with ∂Ω± = Γ±1 ∪ Γ±2 .

2.3 Error analysis

Let I = [a−, a+] be an arbitrary interval, and let Pk(I) be the space of polynomials of degree
at most k on I, the projection P±w ∈ Pk(I) of w is determined by the following k + 1
conditions ∫

I
[w(x)−P±w(x)]p(x)dx = 0 ∀ p ∈ Pk−1(I), P±w(a±) = w(a±).

If P denotes the L2 projection onto Pk(I), then on a rectangle K = I1× I2 with v ∈ C0(K̄)
and r = (r1, r2)T , we define Π±r = (P±

1 ⊗P2r1,P1 ⊗P±
2 r2)T and π±u = P±

1 ⊗P±
2 u,

with the subscripts in P and P± indicate the one-dimensional operators.
Since v has strictly positive components we use the projections

Πq|K := Π−q|K , πu|K := π+u|K , ∀K ∈ T , (2.17)

having the properties∫
K

[r−Π−r] · ∇vdx = 0, ∀ v ∈ Qk(K) (2.18a)∫
γ−i

[r−Π−r] · nvds = 0 ∀ v ∈ Qk(γ−i), i = 1, 2 (2.18b)

(u− π+u)|γ+i = u|γ+i −P+
i u|γ+i , i = 1, 2. (2.18c)

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 25

In our analysis we need the a priori error estimates stated in the following Lemma.

Lemma 2.3.1. Let v ∈ Hs+2(K) and r ∈ (Hs+1(K))2, s ≥ 0. Then for m = 0, 1, we have

|v − π±v|m,K ≤ Chmin{s+1,k}+1−m||v||s+2,K , (2.19a)

||v − π±v||0,e ≤ Chmin{s+1,k}+ 1
2 ||v||s+2,K , ∀ e ∈ ∂K, (2.19b)

|r−Π±r|m,K ≤ Chmin{s,k}+1−m||r||s+1,K , (2.19c)

||r−Π±r||0,e ≤ Chmin{s,k}+ 1
2 ||r||s+1,K , ∀ e ∈ ∂K. (2.19d)

Furthermore, for any edge ei parallel to the xi-axis, i = 1, 2, we have

||w −P±
i w||0,ei ≤ Chmin{s+ 1

2
,k}+1||w||s+ 3

2
,ei
, ∀ w ∈ Hs+ 3

2 (ei). (2.19e)

If v ∈ W s+1,∞(K), then

||v − π±v||L∞(e) ≤ Chmin{s,k}+1||v||W s+1,∞(K), ∀ e ∈ ∂K. (2.19f)

Let R+v be the k-degree polynomial interpolating v at the roots of the (k + 1)-degree right
Radau polynomial shifted to the edge e and v ∈ Hk+2(e) then

||P+v −R+v||0,e ≤ Chk+2||v||k+2,e. (2.20)

Proof. See [35, 44] for proofs. For the sake of completeness, we prove the result (2.20). Note
that this result was established in [2].
First define the projection π̂u ∈ Pk+1(K), which interpolates u at the roots {xij} of right
Radau polynomials of degree k and at a point x̄ 6= xij that lies in K. Thus

P+π̂u = R+π̂u = πu.

Using the standard interpolation error estimates, we obtain

||u− π̂u||e ≤ Chk+2||u||k+2,e. (2.21)

Next we rewrite,
u = u− π̂u+ π̂u.

By applying P+ to the latter and noting that R+u = P+u, ∀u ∈ Pk+1, (i.e. P+π̂u = R+u)
we obtain

P+u = P+(u− π̂u) + P+π̂u

= P+(u− π̂u) + R+u.

This yields
P+u−R+u = P+(u− π̂u). (2.22)

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 26

Next, we show that
||P+u||e ≤ C||u||e (2.23)

by writing

||P+u||e = ||P+u− u+ u||e
≤ ||P+u− u||e + ||u||e
≤ Chk+1||u||e + ||u||e
≤ C||u||e.

Taking the L2 norm of (2.22), we obtain

||P+u−R+u||e = ||P+(u− π̂u)||e.

Combining the standard interpolation (2.21) with the latter result yields (2.20).

For simplicity, the analysis is done for shape regular uniform Cartesian meshes and the
extension to non uniform meshes is straight forward. Furthermore, the analysis will only
consider domains Ω such that if f ∈ L2(Ω) and the boundary data are zero, then u ∈ H2(Ω)
and ||u||2 ≤ C||f ||0.

Summing (2.7a) and (2.7b) over all elements the discrete LDG formulation consists of finding
(qN , uN) ∈MN × VN such that

A(qN , uN ; r, v) = F (r, v), ∀(r, v) ∈MN × VN , (2.24a)

where

A(q, u; r, v) := a(q, r) + b(u, r)− b(v,q) + c(u, v), F (r, v) := F (r) +G(v),

and
a(q, r) =

∫
Ω

q · rdx,

b(u, r) =
∑
K∈T

∫
K
u∇ · rdx−

∑
e∈EI

∫
e
({u}+ C12[[u]])[[r]]ds−

∑
e∈EN

∫
e
ur · nds,

c(u, v) =
∑
e∈E+D

∫
e
C11uvds

F (r) =
∑
e∈ED

∫
e
P+gDr · nds,

G(v) =
∫
K
fvdx+

∑
e∈E+D

∫
e
C11vgDds+

∑
e∈EN

∫
e
vgN · nds.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 27

We note the use of P+gD in the right hand side F is essential for obtaining superconvergence
of the solution gradient q everywhere. However, The use of either of P+gD or gD in the
right hand side G yields superconvergence for q.

Furthermore, we note that the true solution satisfies

A(q, u; r, v) = a(q, r) + b(u, r)− b(v,q) + c(u, v) =
∫
K
fvdx+

∫
∂Ω+

D

C11gDvds+∫
∂ΩD

gDr · nds+
∫
∂ΩN

vgN · nds, ∀(r, v) ∈
Ä
H1(Ω)

ä2 ×H2(Ω). (2.25)

Subtracting (2.24a) from (2.25), and letting ξu = u − πu, ξq = q − Πq, eu = u − uN ,
eq = q − qN , πeu = πu − uN and Πeq = Πq − qN , the following LDG orthogonality
condition holds for all (r, v) ∈MN × VN

A(eq, eu; r, v)−
∑
e∈ED

∫
e
(gD −P+gD)r · nds = 0.

In the remainder of this manuscript we use semi norm

|(q, u)|2A = A(q, u; q, u) = ||q||20 + C11||u||20,∂Ω+
D
, (2.26)

and assume
∂ΩN ∩ ∂Ω− = ∅.

We further define

ZK(r, u) =
∫
K
ξu∇ · rdx−

∫
γ−1 ∪γ

+
1

(u−P+
1 u)r · nds−

∫
γ−2 ∪γ

+
2

(u−P+
2 u)r · nds, (2.27)

and recall a lemma established in [44] and give the proof for the sake of completeness.

Lemma 2.3.2. Assume u ∈ Hk+2(Ω) and r ∈ (H1(Ω))2. Let π be the operator defined in
(2.17) and ZK(r, u) be the functional defined in (2.27). Then we have

|ZK(r, u)| ≤ Chk+1||u||k+2,K ||r||0,K . (2.28)

Proof. We can write
ZK(r, u) = ZK,1(r, u) + ZK,2(r, u),

where

ZK,1(r1, u) =
∫
K

(u− π+u)
∂r1

∂x1

dx1dx2 −
∫
γ+2

(u−P+
2 u)r1dx2 +

∫
γ−2

(u−P+
2 u)r1dx2

and

ZK,2(r2, u) =
∫
K

(u− π+u)
∂r2

∂x2

dx1dx2 −
∫
γ+1

(u−P+
1 u)r2dx1 +

∫
γ−1

(u−P+
1 u)r2dx1.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 28

The proof of the approximation results for ZK,1 and ZK,2 are analogous; therefore, we just
present the proof for ZK,1. First we consider ZK,1 on the reference square [−1, 1]2. Then we
prove

ZK,1(r1, u) = 0 ∀u ∈ P k+1(K), r1 ∈ Qk(K).

We then fix r1 ∈ Qk(K). Since π+ and P+ are polynomial preserving operators, the equality
holds true for every u ∈ Qk(K). Therefore, we just have to consider the cases u(x1, x2) = xk+1

1

and u(x1, x2) = xk+1
2 .

Let us start with u(x1, x2) = xk+1
1 . On γ+

2 we have u = P+
2 u = 1, and on γ−2 we have

u = P+
2 u = (−1)k+1. Since ∂r1

∂x1
is a polynomial of degree at most k in x1, we obtain

∫
K

(u− π+u)
∂r1

∂x1

dx1dx2 =
∫
K

(u−P+
1 u)

∂r1

∂x1

dx1dx2 = 0.

Thus, ZK,1(r1, u) = 0 for u(x1, x2) = xk+1
1 .

In the case u(x1, x2) = xk+1
2 , we integrate by parts and obtain

∫
K

(u− π+u)
∂r1

∂x1

dx1dx2 =
∫
K

∂(u− π+u)

∂x1

r1dx1dx2

+
∫
γ+2

(u−P+
2 u)r1dx1 −

∫
γ−2

(u−P+
2 u)r1dx2.

Since ∂(u−π+u)
∂x1

= 0 and due to the special form of u, we conclude that ZK,1(r1, u) = 0 also

for u(x1, x2) = xk+1
2 . The proof of (2.28) is completed using a scaling argument.

The next lemma contains preliminary results needed in our analysis.

Lemma 2.3.3. Let u ∈ Hk+2(Ω), k ≥ 0, and set q = ∇u. Assume further that q ∈
(W k+1,∞(Ω))2 and that C11 is a positive constant, and let Π and π be the operators defined
in (2.17). Then, for all (r, v) ∈MN × VN , we have

|A(−ξq,−ξu; r, v) +
∑
e∈ED

∫
e
(gD −P+gD)r · nds| ≤ Chk+1|(r, v)|A,

Furthermore, if ϕ ∈ H2 such that ϕ|∂ΩD = 0, and Φ = ∇ϕ we have

|A(r, v; Φ−ΠΦ, ϕ− πϕ)| ≤ C|(r, v)|A||ϕ||2,

where C > 0 is a generic constant independent of h, v, r.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 29

Proof. First, we write

A(−ξq,−ξu; r, v) +
∑
e∈ED

∫
e
(gD −P+gD)r · nds

= a(−ξq, r) + b(−ξu, r)− b(v,−ξq) + c(−ξu, v) +
∑
e∈ED

∫
e
(gD −P+gD)r · nds

= T1 + T2 + T3 + T4,

where

T1 = a(−ξq, r),

T2 = −b(v,−ξq),

T3 = b(−ξu, r) +
∑
e∈ED

∫
e
(gD −P+gD)r · nds,

T4 = −
∑
e∈E+D

∫
e
C11ξuvds.

Applying Cauchy Schwarz inequality to T1 = a(−ξq, r) leads to

|T1| ≤
∣∣∣∣∣∣ ∑K∈T

∫
K

r.ξqdx

∣∣∣∣∣∣ ≤
Ñ∑
K∈T

||r||20,K

é1/2Ñ∑
K∈T

||ξq||20,K

é1/2

≤ C|(r, v)|A

Ñ∑
K∈T

h2k+2||q||2k+1,K

é1/2

(2.29)

Next, we integrate b(v,−ξq) in (2.24) by parts to write T2

T2 = −b(v,−ξq) = −
∑
K∈T

∫
K
∇v.ξqdx+

∑
e∈ED

∫
e
vξq.nds+

∑
e∈EI

∫
e
[[v]]ξ̂qds.

where ξ̂q on an interior edge is the limit of ξq from the right on a vertical edge and the limit
from above on a horizontal edge.

Using the properties (2.18) of the projection Π−, we obtain∫
K
∇v · ξqdx = 0, ∀K ∈ T,

∫
e
vξq · nds = 0 ∀e ⊂ ∂Ω−,

∫
e
[[v]] · ξ̂qds = 0, ∀e ∈ EI .

Hence,

T2 =
∑
e∈E+D

∫
e
vξq · nds.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 30

Multiplying and dividing each term of the sum by C
1/2
11 and applying Cauchy Schwarz in-

equality, we obtain

|T2| =

∣∣∣∣∣∣∣
∑
e∈E+D

∫
e
vξq · nds

∣∣∣∣∣∣∣ ≤
Ö∑

e∈E+D

C11||v||20,e

è1/2Ö∑
e∈E+D

C−1
11 ||ξq||20,e

è1/2

(by Lemma 2.3.1) ≤ C|(r, v)|A(
∑
e∈E+D

h2k+1||q||2k+1,K)1/2

≤ C|(r, v)|A

Ö ∑
e⊂∂Ω+

D

h2k+1h2||q||2Wk+1,∞

è1/2

≤ C|(r, v)|A

Ö∑
e∈E+D

h2k+3

è1/2

||q||Wk+1,∞

= C|(r, v)|Ahk+1||q||Wk+1,∞ .

For T3 we write

T3 = b(−ξu, r) +
∑
e∈ED

∫
e
(gD −P+gD)r · nds =

−

Ü∑
K∈T

ξu∇ · rdx−
∑
K∈T

Ü ∑
e∈EI
e⊂∂K

∫
e
ξ̂ur · nds

ê
−
∑
e∈EN

∫
e
ξur · nds

ê
+
∑
e∈ED

∫
e
(gD−PgD)r·nds,

where ξ̂u on an interior edge is the limit of ξu from the left if the edge is vertical and from
the bottom if the edge is horizontal.

Using the assumption (2.3) we write

T3 = −

Ü∑
K∈T

ξu∇ · rdx−
∑
K∈T

Ü ∑
e∈EI
e⊂∂K

∫
e
(u−P+u)r · nds

ê
−
∑
e⊂∂Ω

∫
e
(u−P+u)r · nds

ê
= −

∑
K∈T

ZK(r, u), (2.30)

where

ZK(r, u) =
∫
K
ξu∇ · rdx−

∫
γ−1 ∪γ

+
1

(u−P+
1 u)r · nds−

∫
γ−2 ∪γ

+
2

(u−P+
2 u)r · nds, (2.31)

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 31

with γ+
i being the outflow edges and γ−i the inflow edges of element K as illustrated in Figure

2.1.

Applying an estimate for ZK from Lemma 2.3.2 and Cauchy Schwarz inequality we write∑
K∈T

ZK(r, u) ≤ C
∑
K∈T

hk+1||u||k+2,K ||r||0,K ≤ C|(r, v)|Ahk+1||u||k+2.

Thus,
|T3| ≤ C|(r, v)|Ahk+1||u||k+2.

Applying Cauchy Schwartz inequality we write

|T4| ≤ |
∑
e∈E+D

∫
e
C11ξuvds)|

≤ (
∑
e∈E+D

C11||v||20,e)1/2(
∑
e∈E+D

C11||ξu||20,e)1/2,

leading to
|T4| ≤ |(r, v)|A(

∑
e∈E+D

C11||ξu||20,e)1/2,

which, by Lemma 2.3.1, becomes

|T4| ≤ |(r, v)|AC(
∑
e∈E+D

h2k+1||u||2k+2,K)1/2

≤ |(r, v)|AChk+1||u||Wk+2,∞ .

The proof of (2.3.3) is completed by combining the estimates for T1, T2,T3 and T4.

Similarly, we establish (2.3.3) by splitting

A(r, v; Φ−ΠΦ, ϕ− πϕ) = a(r,Φ−ΠΦ) + b(v,Φ−ΠΦ)− b(ϕ− πϕ, r) + c(v, ϕ− πϕ)

= T̃1 + T̃2 + T̃3 + T̃4,

where
T̃1 = a(r, ξΦ), T̃2 = −b(v, ξΦ), T̃3 = b(ξϕ, r), T̃4 =

∑
e∈E+D

∫
e
C11ξϕvds.

We establish the proof by bounding each of terms T̃i, i = 1, 2, 3, 4.

Following (2.29) for T1 we apply Cauchy Schwarz inequality to T̃1 and Lemma 2.3.1 to
obtain

|T̃1| ≤ |(r, v)|A

Ñ∑
K∈T

||ξΦ||20,K

é1/2

≤ |(r, v)|A||ξΦ||0 ≤ C|(r, v)|A||ϕ||2.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 32

We follow (2.3) for T2 and use projection properties (2.18) and Lemma 2.3.1 to write

|T̃2| = |
∑
e∈E+D

∫
e
vξΦ · nds|

≤ C|(r, v)|A

Ö∑
e∈E+D

C−1
11 ||ξΦ||20,e

è1/2

≤ C|(r, v)|A||ϕ||2.

Next we will find a bound for T̃3 as

|T̃3| = | −

Ñ∑
K∈T

ξϕ∇ · rdx−
∑
K∈T

Ñ ∑
e∈EI ,e⊂∂K

∫
e
ξ̂ϕr · nds

é
−
∑
e∈EN

∫
e
ξϕr · nds

é
|,

where ξ̂ϕ is the limit of ξϕ from the left on a vertical edge and from the bottom on a horizontal
edge.

Since ϕ = 0 on ∂ΩD and ∂ΩN ⊂ ∂Ω+, T̃3 can be written as

T̃3 = −
∑
K∈T

ZK(r, ϕ)

≤ C|(r, v)|A||ξϕ||1 ≤ C|(r, v)|A||ϕ||2.

Finally for T̃4 we follow (2.3) for T4 to write

T̃4 ≤ |(r, v)|A(
∑
e∈E+D

C11||ξϕ||20,e)1/2

≤ C|(r, v)|A||ϕ||2. (2.32)

Combining the bounds for T̃i, i = 1, 2, 3, 4 completes the proof of the lemma.

The main result of this chapter is summarized in the following theorem where the estimate
for q− qN is improved by

√
h while that for u− uN is the same as in [44].

Theorem 2.3.4. Assume that the solution (q, u) of the problem (2.2) is in (Hk+1(Ω))2 ×
Hk+2(Ω) for k ≥ 0. If (qN , uN) satisfies the LDG weak equations (2.24), then

|(q− qN , u− uN)|A ≤ Chk+1,

and
||u− uN ||0 ≤ Chk+1

where the constant C > 0 is independent of the mesh size h.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 33

Proof. We first prove (2.3.4) which is an improvement of the result in [44] by a factor of
√
h.

Since |(·, ·)|A is a semi norm we write

|(eq, eu)|A = |(Πeq + ξq, πeu + ξu)|A ≤ |(ξq, ξu)|A + |(Πeq, πeu)|A,

where the projection error term

|(ξq, ξu)|A = O(hk+1).

Next, we establish that |(Πeq, πeu)|A = O(hk+1) to prove (2.3.4).
Let us write

|(Πeq,Πeu)|2A = A(Πeq, πeu; Πeq, πeu)

= A(Πq− q + eq, πu− u+ eu; Πeq, πeu)

= A(Πq− q, πu− u; Πeq, πeu) + A(eq, eu; Πeq, πeu)

Applying the LDG orthogonality condition (2.3) with r = Πeq and v = πeu we obtain

|(Πeq,Πeu)|2A = A(−ξq,−ξu; Πeq, πeu) +
∑
e∈ED

∫
e
(gD −P+gD)Πeq · nds.

Applying Lemma 2.3.3 yields

|A(−ξq,−ξu; Πeq, πeu)) +
∑
e∈ED

∫
e
(gD −P+gD)Πeq · nds| ≤ Chk+1|(Πeq,Πeu)|A,

which establishes
|(Πeq, πeu)|A ≤ Chk+1.

We complete the proof of (2.3.4) by combining (2.3), (2.3) and (2.3).

Next, for λ ∈ L2 we let ϕ be the solution of the adjoint problem

−∆ϕ = λ in Ω,

ϕ = 0 on ∂ΩD

∂ϕ

∂n
= 0 on ∂ΩN .

If Φ = −∇ϕ from standard partial differential equations theory we have ||Φ||1 < C||λ||0.

One can verify that for s ∈ (L2)2 and w ∈ L2 the following holds

A(−Φ, ϕ;−s, w) = (λ,w) =
∫

Ω
λwdx.

Letting s = eq, and w = λ = eu we obtain

A(−Φ, ϕ;−eq, eu) = ||eu||20,

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 34

which leads to
||eu||20 = A(eq, eu; Φ, ϕ).

Applying the orthogonality condition (2.3) yields

||eu||20 = A(eq, eu; Φ−ΠΦ, ϕ− πϕ) +
∑
e∈ED

∫
e
(gD −P+gD)ΠΦ · nds.

Again we split eq = q− qN = q−Πq + Πq− qN and eu = u− uN = u− πu+ πu− uN to
obtain

||eu||20 = A(Πeq, πeu; Φ−ΠΦ, ϕ−πϕ)+A(ξq, ξu; Φ−ΠΦ, ϕ−πϕ)+
∑
e∈ED

∫
e
(gD−P+gD)ΠΦ·nds.

which can be written as

||eu||20 = A(Πeq, πeu; Φ−ΠΦ, ϕ− πϕ)

−

A(−ξq,−ξu; Φ−ΠΦ, ϕ− πϕ) +
∑
e∈ED

∫
e
(gD −P+gD)(Φ−ΠΦ) · nds


+
∑
e∈ED

∫
e
(gD −P+gD)Φ · nds

= H1 +H2 +H3. (2.33)

where

H1 = A(Πeq, πeu; Φ−ΠΦ, ϕ− πϕ)

H2 = −[A(−ξq,−ξu; Φ−ΠΦ, ϕ− πϕ) +
∑
e∈ED

∫
e
(gD −P+gD)(Φ−ΠΦ) · nds],

H3 =
∑
e∈ED

∫
e
(gD −P+gD)Φ · nds.

Applying Lemma 2.3.3 and the estimate (2.3) we prove that

|H1| ≤ C|(Πeq, πeu)|A||ϕ||2 ≤ Chk+1||eu||0.

By Lemma 2.3.3

|H2| ≤ Chk+1|(Φ−ΠΦ, ϕ− πϕ)|A ≤ Chk+1||ϕ||2 ≤ Chk+1||eu||0.

Applying Cauchy Schwarz inequality, the trace theorem [28] and Lemma 2.3.1 we write

|H3| ≤ C||gD −P+gD||0,∂ΩD ||Φ||0,∂ΩD ≤ C||gD −P+gD||0,∂ΩD ||ϕ||2 ≤ Chk+1||eu||0.

Combining (2.33), (2.3), (2.3) and (2.3) completes the proof of the theorem.

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 35

Instead of the projection P+gD, one could also use the interpolation R+gD of the boundary
condition gD in (2.16) and still have O(hk+1) superconvergence rates for both u and q. The
proof will follow the same line of reasoning to prove Lemma 2.3.3 and Theorem 2.3.4. The
term T3 in the proof of Lemma 2.3.3 now contains

∑
e∈ED

∫
e
(gD −R+gD)r · nds.

Adding and subtracting
∑
e∈ED

∫
e P+gDr · nds, we write T3 as

T3 = −
∑
K∈T

Zk(r, v) +
∑
e∈ED

∫
e
(P+gD −R+gD)r · nds.

Applying the bounds for ZK used above, the superconvergence result (2.20) and the bound
||r||0,e ≤ C||r||0,K/

√
h we establish that |T3| ≤ C|(r, v)|Ahk+1.

2.4 Numerical results

In order to verify the sharpness of our L2 a priori error estimates in Theorem 2.3.4 we
conduct two computational experiments on the standard linear diffusion problem

−∆u = f, ∈ (−1, 1)2,

with Dirichlet boundary conditions and a source term f(x, y) such that the true solution is

u(x, y) = cos(πx) + cos(πy).

We solve this problem on uniform Cartesian meshes having N = 16, 36, 64, 100, 144, 196, 256
, 324 ,400 square elements with spaces Qk, k = 1, 2, 3, 4, using the minimal dissipation LDG
method with the auxiliary vector v = [1, 1]T , stabilization parameter C11 = 1, projection
P+gD in (2.16) and gD in (2.15). In Table 6.1 we present the LDG L2 errors in u and q
which are in full agreement with Theorem 2.3.4 and obtain O(hk+1) convergence rates for
both u and its gradient q. We repeat the computational experiment using the true Dirichlet
boundary condition gD in (2.16) and P+gD in (2.15) and show the LDG L2 errors for u and
q in Table 6.2. In this case we obtain the suboptimal O(hk+1/2) convergence rates for q.
This confirms our error analysis that states that P+gD is only needed in (2.16).

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 36

p N ||u− uN ||0,Ω Order ||q1 − q1,N ||0,Ω Order

k = 1

16 4.4127e-01 NA 8.0770e-01 NA
36 1.4973e-01 2.6656 3.2685e-01 2.2313
64 7.5654e-02 2.3729 1.7566e-01 2.1583
100 4.6725e-02 2.1596 1.0996e-01 2.0992
144 3.2141e-02 2.0521 7.5482e-02 2.0636
196 2.3605e-02 2.0026 5.5094e-02 2.0425
256 1.8119e-02 1.9805 4.2016e-02 2.0295
324 1.4365e-02 1.9712 3.3115e-02 2.0211
400 1.1675e-02 1.9680 2.6780e-02 2.0155

k = 2

16 8.2880e-02 NA 1.0980e-01 NA
36 2.5288e-02 2.9277 3.5270e-02 2.8009
64 1.0205e-02 3.1542 1.4991e-02 2.9741
100 4.9612e-03 3.2324 7.6106e-03 3.0380
144 2.7357e-03 3.2649 4.3513e-03 3.0664
196 1.6503e-03 3.2788 2.7064e-03 3.0805
256 1.0645e-03 3.2838 1.7919e-03 3.0878
324 7.2300e-04 3.2841 1.2450e-03 3.0916
400 5.1164e-04 3.2819 8.9873e-04 3.0935

k = 3

16 6.1615e-03 NA 1.1106e-02 NA
36 8.5780e-04 4.8628 1.8783e-03 4.3829
64 2.3538e-04 4.4952 5.5323e-04 4.2490
100 9.1811e-05 4.2190 2.1883e-04 4.1565
144 4.3638e-05 4.0796 1.0358e-04 4.1021
196 2.3498e-05 4.0158 5.5314e-05 4.0698
256 1.3797e-05 3.9874 3.2210e-05 4.0496
324 8.6387e-06 3.9751 2.0022e-05 4.0366
400 5.6856e-06 3.9704 1.3098e-05 4.0277

k = 4

16 6.3759e-04 NA 8.0053e-04 NA
36 8.4088e-05 4.9963 1.1493e-04 4.7869
64 1.8723e-05 5.2215 2.7300e-05 4.9968
100 5.7411e-06 5.2974 8.8037e-06 5.0716
144 2.1728e-06 5.3294 3.4706e-06 5.1055
196 9.5340e-07 5.3436 1.5756e-06 5.1229
256 4.6672e-07 5.3494 7.9397e-07 5.1325
324 2.4852e-07 5.3507 4.3350e-07 5.1379
400 1.4144e-07 5.3494 2.5221e-07 5.1409

Table 2.1: L2 errors on uniform meshes having N = 16, 36, 64, 100, 144, 196, 256, 324, 400
elements and k = 1, 2, 3, 4 with P+gD in (2.16) and gD in (2.15).

Nabil Chaabane Chapter 2. Local discontinuous Galerkin method 37

p N ||u− uN ||0,Ω Order ||q1 − q1,N ||0,Ω Order

k = 1

16 4.6592e-01 NA 8.1159e-01 NA
36 1.5476e-01 2.7182 3.5707e-01 2.0250
64 7.6531e-02 2.4478 2.0960e-01 1.8518
100 4.6716e-02 2.2121 1.4160e-01 1.7575
144 3.1965e-02 2.0811 1.0373e-01 1.7072
196 2.3425e-02 2.0165 8.0097e-02 1.6771
256 1.7969e-02 1.9858 6.4200e-02 1.6568
324 1.4245e-02 1.9716 5.2911e-02 1.6419
400 1.1581e-02 1.9656 4.4560e-02 1.6303

k = 2

16 7.9648e-02 NA 1.3297e-01 NA
36 2.4826e-02 2.8750 4.4042e-02 2.7252
64 1.0088e-02 3.1302 1.9528e-02 2.8271
100 4.9201e-03 3.2180 1.0381e-02 2.8317
144 2.7179e-03 3.2550 6.2156e-03 2.8131
196 1.6414e-03 3.2714 4.0433e-03 2.7895
256 1.0596e-03 3.2780 2.7946e-03 2.7661
324 7.2008e-04 3.2794 2.0227e-03 2.7446
400 5.0979e-04 3.2779 1.5178e-03 2.7254

k = 3

16 6.3200e-03 NA 1.2346e-02 NA
36 8.7191e-04 4.8852 2.4734e-03 3.9652
64 2.3655e-04 4.5346 8.4950e-04 3.7149
100 9.1681e-05 4.2477 3.7923e-04 3.6142
144 4.3454e-05 4.0951 1.9772e-04 3.5722
196 2.3373e-05 4.0228 1.1436e-04 3.5521
256 1.3720e-05 3.9895 7.1269e-05 3.5411
324 8.5911e-06 3.9745 4.7002e-05 3.5343
400 5.6554e-06 3.9683 3.2404e-05 3.5298

k = 4

16 6.2182e-04 NA 1.1241e-03 NA
36 8.3110e-05 4.9634 1.7174e-04 4.6337
64 1.8585e-05 5.2065 4.4120e-05 4.7242
100 5.7104e-06 5.2883 1.5392e-05 4.7191
144 2.1636e-06 5.3231 6.5369e-06 4.6972
196 9.5007e-07 5.3389 3.1802e-06 4.6742
256 4.6532e-07 5.3457 1.7083e-06 4.6538
324 2.4786e-07 5.3476 9.8947e-07 4.6364
400 1.4111e-07 5.3468 6.0803e-07 4.6218

Table 2.2: L2 errors on uniform meshes having N = 16, 36, 64, 100, 144, 196, 256, 324, 400
elements and k = 1, 2, 3, 4 with gD in (2.16) and P+gD in (2.15).

Chapter 3

Q1/Q0 Immersed finite element
approximations for the Stokes
interface problem

In this chapter, we construct two immersed finite element spaces Sh(Ω) and S̃h(Ω), which
will be used to solve the two-dimensional Stokes interface problem (1.3). These spaces are
derived using the jump conditions (1.3f) and (1.3g) across the interface. We use two ap-
proaches: (i) we apply properties of the standard Lagrange basis functions by enforcing
the nodal conditions, (ii) we construct the IFE basis functions by applying solely the jump
conditions (1.3f) and (1.3g) and computing the null space of the resulting matrix.

Let Th be an arbitrary partition of the domain rectangular Ω and assume that Th consists
of uniform rectangles. We shall call the elements and edges cut by the interface interface
elements and interface edges, respectively and denote their union by the set T ih , E ih, and
T nh = Th\T ih , Enh = Eh\E ih, respectively. We assume:

(H1) The interface can only intersect an arbitrary element at two edges.

(H2) An arbitrary edge can only intersect the interface at one point or the whole edge is
on the interface.

We present the procedure to construct the IFE basis functions. For a typical interface rect-
angular element T = �A1A2A3A4 ∈ T ih with vertices Aj = (xj, yj), j = 1, 2, 3, 4 such that
the interface Γ intersects two edges at D = (xD, yD) and E = (xE, yE) referred to as interface

points. The interface fiDE = Γ∩T is approximated by the line segment DE which separates
T into two polygonal domains T+ and T− such that T+ contains vertices of T that are in
Ω+. Topologically, there are two types of interface elements: Type I interface elements are
those with two adjacent edges cut by the interface and Type II interface elements are with

38

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 39

two opposite edges cut by the interface, see the illustrations in Figure 3.1.

3.1 Space Sh(Ω)

As usual, the construction and analysis of the finite element basis functions are performed
on the reference element T̂ = �Â1Â2Â3Â4 with vertices Â1 = (0, 0), Â2 = (1, 0), Â3 =
(0, 1), Â4 = (1, 1). Let X = (x, y) and X̂ = (x̂, ŷ) and let

X̂ = F (X) = MX +B, (3.1)

be the standard affine mapping from an arbitrary element T to the reference element T̂ such
that Âi = F (Ai), i = 1, 2, 3, 4. We further note that each interface element T of Type I
(Type II) is mapped into a reference element of Type I (Type II) shown in Figure 3.1 where

Ê = F (E) and D̂ = F (D) and D̂Ê = F (DE). The interface points Ê and D̂ can be written
as

D̂ =

(
0

d̂

)
, Ê =

Ç
ê
0

å
, (3.2)

for an element of Type I and

D̂ =

(
d̂
1

)
, Ê =

Ç
ê
0

å
, (3.3)

for an element of Type II, where 0 < d̂, ê < 1 as shown in Figure 3.1.

Now we are ready to describe our procedure for constructing the IFE shape functions on
the reference element. Again, a function f̂(x̂, ŷ) defined for (x̂, ŷ) ∈ T̂ leads to a function
f(x, y) = f̂(F−1(x̂, ŷ)) for (x, y) ∈ T by the affine mapping between the reference element T̂
and element T . We first note that the velocity u and the pressure p are coupled through the
jump condition (1.3f), which requires the design of vector-valued shape functions for both
u and p. This means we plan to approximate the solution vector Û = [û, p̂]T by an IFE
function Φ̂ which is a piecewise polynomial vector function of the form

Φ̂(x̂, ŷ) = Φ̂s(x̂, ŷ) =

Ü
φ̂s1(x̂, ŷ)

φ̂s2(x̂, ŷ)

φ̂s3(x̂, ŷ)

ê
, for (x̂, ŷ) ∈ T̂ s, s = +,−, (3.4a)

where

φ̂sj(x̂, ŷ) = asj + bsjx̂+ csj ŷ + dsjx̂ŷ, j = 1, 2, s = +,−, (3.4b)

φ̂s3(x̂, ŷ) = as3, s = +,−. (3.4c)

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 40

Figure 3.1: Reference interface elements of Type I (left) and Type II (right).

Next we let Θ̂ = (φ̂1, φ̂2)T such that Θ̂|T s(x̂, ŷ) = Θ̂s(x̂, ŷ) =

(
φ̂s1(x̂, ŷ)

φ̂s2(x, y

)
, s = +,−.

We then discuss the construction of IFE shape functions that will be used to form the local
IFE space on the reference element T̂ . According to (3.4) each IFE function is defined by 18
coefficients asj , b

s
j , c

s
j , d

s
j , j = 1, 2, s = +,− and as3, s = +,−. Hence, we can define IFE shape

functions Φ̂i, i = 1, 2, . . . , 9 whose coefficients are determined by the following 18 conditions:

• continuity of the velocity component across D̂Ê for Θ̂i = (φ̂1,i, φ̂2,i)
T

Θ̂−i (Ê) = Θ̂+
i (Ê), Θ̂−i (D̂) = Θ̂+

i (D̂),
∂2Θ̂−i
∂x̂∂ŷ

=
∂2Θ̂+

i

∂x̂∂ŷ
(3.5a)

• weak continuity of the normal stress across D̂Ê∫
D̂Ê

[S(Θ̂i, φ̂3,i)nD̂Ê]ds = 0, (3.5b)

where n
D̂Ê

is the normal vector to the approximate interface D̂Ê

• continuity of the divergence of the velocity

∇̂ · Θ̂+
i (D̂) = ∇̂ · Θ̂−i (D̂) (3.5c)

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 41

• Lagrange and scaling conditions

φ̂1,i(Âj) = δi,j, φ̂2,i(Âj) = δi,j+4, j = 1, 2, 3, 4, and
1

|T̂ |

∫
T̂
φ̂3,i = δi,9, (3.5d)

where |T̂ | is the area of the rectangle T̂ .

Note that the continuity of the second derivatives in (3.5a) is equivalent to d+
1 = d−1 and

d+
2 = d−2 which by using d+

1 = d−1 = d1 and d+
2 = d−2 = d2 in (3.4a-3.4b) reduces the number

of unknown coefficients to 16.

Conditions (3.5a) - (3.5d) lead to a linear system Mci = bi about the coefficient ci =
(a+

1 , b
+
1 , c

+
1 , d1, a

−
1 , b

−
1 , c

−
1 , a

+
2 , b

+
2 , c

+
2 , d2, a

−
2 , b

−
2 , c

−
2 , a

−
3 , a

+
3)T . The matrix M for Type I ele-

ment is



1 ê 0 0 −1 −ê 0 0 0 0 0 0 0 0 0 0

1 0 d̂ 0 −1 0 −d̂ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ê 0 0 −1 −ê 0 0 0

0 0 0 0 0 0 0 1 0 d 0 −1 0 −d̂ 0 0

0 m52 m53 m54 0 m56 ν−ê 0 −ν+ê 0 m511 0 ν−ê 0 −d̂ d̂

0 0 m63 m64 0 0 ν−d̂ 0 −ν+d̂ m610 m611 0 ν−d̂ m614 −ê ê
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 m1515 m1516

0 −1 0 0 0 1 0 0 0 −1 0 0 0 1 0 0



, (3.6)

where

m52 = −2ν+d̂, m53 = −ν+ê, m54 =
1

2
(ν− − ν+)

(
ê2 + 2d̂2

)
,m56 = 2ν−d̂,

m511 =
1

2
(ν− − ν+)êd̂,

m63 = −ν+d̂, m64 =
1

2
(ν− − ν+)êd̂, m610 = −2ν+ê,

m611 =
1

2
(ν− − ν+)

(
2ê2 + d̂2

)
,m614 = 2ν−ê,

m1515 =
1

2
êd̂, m1516 = 1− 1

2
êd̂.

For an element of Type II the matrix M is

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 42



1 ê 0 0 −1 −ê 0 0 0 0 0 0 0 0 0 0

1 d 1 0 −1 −d̂ −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ê 0 0 −1 −ê 0 0 0

0 0 0 0 0 0 0 1 d̂ 1 0 −1 −d̂ −1 0 0
0 −2ν+ m53 m54 0 2ν− m57 0 m59 0 m510 0 m513 0 −1 1

0 0 −ν+ m64 0 0 ν− 0 −ν+ m610 m611 0 ν− m614 d̂− ê m616

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 d̂+ê
2

m1516

0 −1 0 0 0 1 0 0 0 −1 0 0 0 1 0 0



, (3.7)

m53 = ν+(d̂− ê), m54 = −1

2
(ν−−ν+)

(
−2 + d̂2 − ê2

)
, m57 = ν−(−d̂+ ê), m59 = ν+(d̂− ê),

m511 = −1

2
(ν− − ν+)(d̂− ê), m513 = ν−(−d̂+ ê),

m64 =
1

2
(ν− − ν+)(d̂+ ê),m610 = 2ν+(d̂− ê), m611 = −1

2
(ν− − ν+)

(
−1 + 2d̂2 − 2ê2

)
,

m616 = −d̂+ ê, m614 = 2ν−(−d̂+ ê),m1516 =
1

2
(2− d̂− ê).

The vector bi for both Type I and Type II is given by

bi = (0, 0, 0, 0, 0, 0, δi,1, δi,2, δi,3, δi,4, δi,5, δi,6, δi,7, δi,8, δi,9, 0)T .

Once these IFE shape functions are constructed on the reference element, the standard affine
mapping is applied to obtain the corresponding vector IFE shape functions on an interface
element T as Φi(x, y) = Φ̂i(F

−1(x̂, ŷ)), i = 1, 2, . . . , 9.

On every non-interface element T we use the standard finite element shape functions Ψi, i =
1, 2, . . . , 9:

Ψj =

Ö
ψj(x, y)

0
0

è
,Ψj+4 =

Ö
0

ψj(x, y)
0

è
,Ψ9 =

Ö
0
0
1

è
, j = 1, 2, 3, 4, (3.8)

where ψj, j = 1, 2, 3, 4 are the standard Lagrange bilinear shape functions associated with
the vertices of T . Figure 3.2 presents illustrations for the shape functions Ψ1 and Φ1. Un-
like Ψ1 used in the standard Q1/Q0 finite element space, the components of the IFE shape
function Φ1 cannot be decoupled, i.e., its second and third components are not always zero.

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 43

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

0

1

2

3

4

5

6

7

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

Figure 3.2: The (u1, u2, p)
T components of the IFE shape function Φ1 (left) and standard

shape function Ψ1 (right).

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 44

Then, the shape functions defined above are used to construct the global IFE space on Ω for
the Stokes interface problem as follows:

Sh(Ω) = {Uh | Uh|T ∈ Xh(T)}, (3.9)

where

Xh(T) =

span{Φi(x, y), i = 1, 2, . . . , 9}, if T ∈ T ih ,
span{Ψi(x, y), i = 1, 2, . . . , 9}, if T ∈ T nh .

Remark. The constraint (3.5c) is necessary to obtain a square invertible system. Other
variations of the constraint such as

∫
DE∇ · uds = 0 and ∇ · u(D) = 0 were investigated

yielding (i) a non-invertible system for some mesh-interface configurations and (ii) non-
consistent IFE shape functions with the standard Lagrange shape functions.

3.2 Space S̃h(Ω)

In this section, we develop another IFE space using an alternative approach which does not
use the divergence condition in (3.5c). In fact, developing higher order approximations will
require finding more constraints that might not be easy to do. In addition, the existence of
the IFE basis functions becomes trivial.

As in the first approach, we write the piecewise basis associated with the velocity and the
pressure on the reference element in the form (3.4a−3.4c). We can see that each IFE basis
has 18 coefficients asj , b

s
j , c

s
j , d

s
j , a

s
3, j = 1, 2, s = +,−. On each interface element, these coeffi-

cients have to be determined according to jump conditions. We suggest to use the following
restrictions to construct the IFE shape functions Φ̂i, i = 1, 2, ..., 10:

• continuity of the velocity across DE:

Θ̂−(Ê) = Θ̂+(Ê), Θ̂−(D̂) = Θ̂+(D̂),
∂2Θ̂−

∂x̂∂ŷ
=
∂2Θ̂+

∂x̂∂ŷ
(3.10)

• weak continuity of the normal component of the stress tensor across DE:∫
D̂Ê

[S(Θ̂, φ̂3)n
D̂Ê

]ds = 0. (3.11)

Again, the restrictions on the second derivatives of the velocity basis functions in (3.10) is
equivalent to d+

1 = d−1 and d+
2 = d−2 , which by using d+

1 = d−1 = d1 and d+
2 = d−2 = d2 in

(3.4a−3.4c), reduces the number of unknowns to 16 coefficients.

Conditions (3.10) and (3.11) yield the algebraic linear system

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 45

Mc = b, (3.12)

c = (a+
1 , b

+
1 , c

+
1 , d1, a

−
1 , b

−
1 , c

−
1 , a

+
2 , b

+
2 , c

+
2 , d2, a

−
2 , b

−
2 , c

−
2 , a

−
3 , a

+
3)T , (3.13)

b = (0, 0, 0, 0, 0, 0)T . (3.14)

For Type I elements, we have

M =

à
1 ê 0 0 −1 −ê 0 0 0 0 0 0 0 0 0 0

1 0 d̂ 0 −1 0 −d̂ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ê 0 0 −1 −ê 0 0 0

0 0 0 0 0 0 0 1 0 d̂ 0 −1 0 −d̂ 0 0

0 m52 m53 m54 0 m56 ν−ê 0 −ν+ê 0 m511 0 ν−ê 0 −d̂ d̂

0 0 m63 m64 0 0 ν−d̂ 0 −ν+d̂ m610 m611 0 ν−d̂ m614 −ê ê

í
,

where

m52 = −2ν+d̂, m53 = −ν+ê, m54 =
1

2
(ν− − ν+)

(
ê2 + 2d̂2

)
,m56 = 2ν−d̂,

m511 =
1

2
(ν− − ν+)êd̂,

m63 = −ν+d̂, m64 =
1

2
(ν− − ν+)êd̂, m610 = −2ν+ê,

m611 =
1

2
(ν− − ν+)

(
2ê2 + d̂2

)
,m614 = 2ν−ê.

For Type II elements, we obtain

M =

à
1 ê 0 0 −1 m16 0 0 0 0 0 0 0 0 0 0

1 d̂ 1 0 −1 −d̂ −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ê 0 0 −1 −ê 0 0 0

0 0 0 0 0 0 0 1 d̂ 1 0 −1 −d̂ −1 0 0
0 −2ν+ m53 m54 0 2ν− m57 0 m59 0 m511 0 m513 0 −1 1

0 0 m63 m64 0 0 ν− 0 m69 m610 m611 0 ν− m614 d̂− ê m616

í
,

(3.15)

where

m16 = −ê, m53 = ν+(d̂− ê), m54 = −1

2
(ν− − ν+)

(
−2 + d̂2 − ê2

)
, m57 = ν−(−d̂+ ê),

m59 = ν+(d̂− ê),m511 = −1

2
(ν− − ν+)(d̂− ê), m513 = ν−(−d̂+ ê),

m64 =
1

2
(ν− − ν+)(d̂+ ê),m610 = 2ν+(d̂− ê), m611 = −1

2
(ν− − ν+)

(
−1 + 2d̂2 − 2ê2

)
,

m616 = −d̂+ ê, m614 = 2ν−(−d̂+ ê),m1516 =
1

2
(2− d̂− ê).

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 46

For both Type I and II elements the matrices M are full-ranked since the constraints in
(3.10) and (3.11) are linearly independent, which will be shown in Proposition 3.4.1. Next,
we find a basis {ζ1, ζ2, ..., ζ10} for the null space of M, where

ζi =
Ä
a+

1,i, b
+
1,i, c

+
1,i, d1,i, a

−
1,i, b

−
1,i, c

−
1,i, a

+
2,i, b

+
2,i, c

+
2,i, d2,i, a

−
2,i, b

−
2,i, c

−
2,i, a

−
3,i, a

+
3,i

äT
.

The entries of ζi can therefore be used to construct the IFE basis Φ̂i, i = 1, 2, ..., 10, using
(3.4a-3.4c). Then, using the affine mapping between the reference element T̂ and physical
reference T , we obtain the ith local vector IFE basis function on T as follows:

Φi(x, y) = Φ̂i(F
−1(x̂, ŷ)), i = 1, 2, ..., 10.

These basis functions are used to construct the global IFE space S̃h(Ω) as

S̃h(Ω) = {Uh | Uh|T ∈ X̃h(T)}, (3.16)

where

X̃h(T) =

span{Φi(x, y), i = 1, 2, . . . , 10}, if T ∈ T ih ,
span{Ψi(x, y), i = 1, 2, . . . , 9}, if T ∈ T nh ,

and Ψi, i = 1, 2, ..., 9 are the standard Lagrange finite element basis defined in (3.8).

3.3 Q1/Q0 particular IFE functions with surface force

In the case where the jump condition (1.3f) is such that σ 6= 0, we follow [67] to treat the
non-homogeneous term. First, we construct a set of particular IFE functions that can cap-
ture the non-homogeneous term modeling the surface force. These particular functions are
solely used to construct the IFE solution and will not be included in the test space; hence,
they will not increase the size of the discrete IFE problem.

On each interface element T , the particular IFE functions are defined as

Υj =

Ç
Λj

ψj

å
, j = 1, 2.

whose velocity component is

Λj(x, y) =

Λ+
j (x, y) on T+

Λ−j (x, y) on T−
, j = 1, 2, (3.17)

with

Λs
j(x, y) =

Ç
Λs

1,j(x, y)
Λs

2,j(x, y)

å
, on T s, s = +,−, j = 1, 2, (3.18)

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 47

and the pressure component is a piecewise constant function such that

ψj =

ψ
+
j (x, y), on T+

ψ−j (x, y), on T−
, ψsj (x, y) = as3,j, s = +,−.

We then select the velocity component in the particular IFE functions to be piecewise poly-
nomials as

Λs
i,j(x, y) = asi,j + bsi,jx+ csi,jy + dsi,jxy, j = 1, 2, i = 1, 2, s = +,−, (3.19)

and require the particular IFE functions to satisfy the following constraints

Λj(Ai) = 0, i = 1, 2, 3, 4, (3.20)

Λ−j (E) = Λ+
j (E), Λ−j (D) = Λ+

j (D),
∂2Λ−j
∂x∂y

=
∂2Λ+

j

∂x∂y
, (3.21)∫

DE
[S(Λj, ψj)nDE]ds = ej, ej is the canonical vector in R2 (3.22)

1

|T |

∫
T
ψjdX = 0,∇ ·Λ+

j (D) = ∇ ·Λ−j (D). (3.23)

These conditions lead to a linear system for determining the parameters of the particular
IFE functions; and, after mapping (3.20-3.23) to the reference element, the matrix of this
linear system is equal to the one used to find the IFE shape functions in section 3.1. However
the right-hand side is different and is given as:

bj = (0, 0, 0, 0, δj,1, δj,2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

For the Stokes interface problem with a nonzero surface force σ 6= 0, we define its IFE
solution (uh, ph)

T to be in the function set Sh(Ω)⊕{qh(x, y)} where Sh(Ω) is the IFE space
defined in the section 3.1 and the vector function qh(x, y) is such that

qh(x, y) =

κ1Υ1(x, y) + κ2Υ2(x, y), on T ∈ Ti
0 elsewhere

, (3.24)

where κj =
∫
DE σh,jds and σh = (σh,1,σh,2)T is the linear interpolation of σ defined by

σh(E) = σ(E) and σh(D) = σ(D). In fact, the IFE solution on an interface element will
take the form Ç

uh
ph

å
=

9∑
i=1

ciΦi + κ1Υ1 + κ2Υ2. (3.25)

Remark. The set of particular IFE functions can be used to approximate the IFE solutions
if added to the spaces Sh(Ω) or S̃h(Ω). If necessary, the divergence constraint in (3.23) can be
ignored and the particular IFE functions can be constructed using null space-based approach.
This work however will not cover this case.

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 48

3.4 Basic properties of the Q1/Q0 IFE space Sh(Ω)

In this section, we investigate basic properties of the IFE basis functions for the Stokes
interface problem constructed using the first approach (i.e. the space Sh(Ω)). We start by
showing the existence and uniqueness of IFE shape functions for an arbitrary configuration
of ν−, ν+ and interface location.

Proposition 3.4.1. On every interface element T , there exists a unique set of linearly
independent IFE shape functions {Φi, i = 1, 2, . . . , 9} as defined in section 3.1.

Proof. The uniqueness and existence of IFE shape functions are directly guaranteed by the
invertibility of the matrices (3.6) and (3.7).

For interface elements of Type I a direct computation of the determinant of the matrix M
in (3.6) yields

det(M) = −1

2
(ê2 + d̂2)(Q1ν

− +Q2ν
+), (3.26)

Q1 = (−2ê2(−1 + d̂) + ê3d̂+ 2d̂2 + ê(−2 + d̂)d̂2),

Q2 = −êd̂(−2ê+ ê2 + (−2 + d̂)d̂).

Thus it suffices to show that Q1 > 0 and Q2 > 0. Since 0 < ê, d̂ < 1 and ê2 ≤ ê

Q1 > −4êd̂+ 2ê2 + 2d̂2 + ê3d̂+ êd̂3.

Factoring the first three terms of the right-hand side we obtain

Q1 > 2(ê− d̂)2 + ê3d̂+ êd̂3 > 0.

Similarly one can easily check that Q2 > 0 by writing Q2 as

Q2 = −êd̂(ê(−2 + ê) + (−2 + d̂)d̂)

and noting that both (−2 + d̂)d̂ < 0 and (−2 + ê)ê < 0. This leads to Q2 > 0. Hence,
det(M) 6= 0, for all ê, d̂ ∈ (0, 1).

For interface elements of Type II the determinant of the matrix M in (3.7) is such that

det(M) = −1

2
(1 + d̂2 − 2d̂ê+ ê2)(P1ν

− + P2ν
+), (3.27)

where
P1 = (2 + d̂3 − ê− d̂2ê+ ê3 − d̂(1 + ê2)),

P2 = (−d̂3 + ê+ 2ê2 − ê3 + d̂2(2 + ê) + d̂(1− 4ê+ ê2)).

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 49

First, we can write P1 as

P1 = 2 + d̂3 + ê3 − ê− d̂− ê2d̂− êd̂2,

and noting that −ê2d̂ > −êd̂ and−êd̂2 > −êd̂, we obtain

P1 > 2 + d̂3 + ê3 − ê− d̂− 2êd̂.

Applying 2êd̂ < ê2 + d̂2 we obtain

P1 > 2 + d̂(d̂2 − d̂− 1) + ê(ê2 − ê− 1).

Since −1 < x(x2 − x − 1) < 0, for 0 < x < 1 we establish P1 > 0. Next, we write P2 as
follows

P2 = −d̂3 + ê+ 2ê2 − ê3 + 2d̂2 + d̂2ê+ d̂− 4d̂ê+ d̂ê2

Note that ê > ê3 and d̂ > d̂3, thus

P2 > 2ê2 + 2d̂2 + êd̂2 + d̂ê2 − 4d̂ê = 2(ê− d̂)2 + êd̂2 + d̂ê2 > 0.

Therefore det(M) 6= 0, ∀ 0 < ê, d̂ < 1.

The next proposition shows that the velocity component of an IFE function is continuous
on each element.

Proposition 3.4.2. The velocity component of an IFE function, defined in section 3.1, is
continuous on each element.

Proof. The statement is obviously true on each non-interface element because the standard
bilinear shape functions are all continuous. On each interface element, the arguments in
Proposition 4.1 of [133] can be applied here to show the continuity of the velocity component
of each IFE shape function is continuous and this results in the needed proof.

The next result is easy to verify.

Proposition 3.4.3. The IFE Q1/Q0 space Sh(Ω), defined in section 3.1, over a mesh Th of
Ω has the same dimension as the standard Q1/Q0 finite element space on the same mesh.

Next we show that the IFE shape functions on each interface element form a partition of
unity.

Proposition 3.4.4. If Φi, i = 1, 2, . . . , 9 are the IFE shape functions constructed in section
3.1 on an interface element, then

4∑
i=1

Φi(x, y) =

Ö
1
0
0

è
,

8∑
i=4

Φi(x, y) =

Ö
0
1
0

è
, (3.28)

Φ9(x, y) =

Ö
0
0
1

è
, ∀(x, y) ∈ T. (3.29)

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 50

Proof. The proof is accomplished by a direct verification.

The next proposition shows that the proposed Q1/Q0 IFE shape functions are consistent
with the associated standard finite element shape functions.

Proposition 3.4.5. If ν+ = ν− on an interface element T and the Q1/Q0 IFE finite element
shape functions are constructed in section 3.1, then the Q1/Q0 IFE and standard Lagrange
Q1/Q0 finite element shape functions are the same.

Proof. Noting that, when ν+ = ν−, the jump conditions (3.5a-3.5d) are satisfied by both
the IFE and the standard Q1/Q0 shape functions, by uniqueness, these two types of shape
functions are equal.

Next, we establish modified trace and inverse inequalities for the IFE basis. The argu-
ment used to establish the standard trace and inverse inequalities cannot be used due to
non-smoothness of the IFE basis functions. Instead, we use an argument based on Taylor
expansion. These two inequalities will be necessary to investigate the global error of the IFE
methods.

We start by stating and proving a lemma that relates the gradient of the IFE basis functions
on T− to their counterpart on T+.

Lemma 3.4.6. For any v ∈ Sh(Ω) constructed in section 3.1 and defined on an interface
element as

v(x, y) =

Ç
u(x, y)
v3(x, y)

å
=

Ö
vs1(x, y)
vs2(x, y)
vs3(x, y)

è
, s = +,−, (3.30a)

where

vs1(x, y) = as1 + bs1x+ cs1y + d1xy, (3.30b)

vs2(x, y) = as2 + bs2x+ cs2y + d2xy, (3.30c)

vs3(x, y) = as3, (3.30d)

the following equality holdsÖ
∇v+

1 (D)
∇v+

2 (D)
v+

3

è
= A

Ö
∇v−1 (D)
∇v−2 (D)
v−3

è
, (3.31)

where

A =

Ö
A11 A12 0
A21 A22 0
B1 B2 B3

è
,

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 51

A11 =

Ü −(2(ν−)n2
xn

2
y+(ν+)(n4

x+n4
y))

ν+
((ν−)−(ν+))nxny(n2

x−n2
y))

ν+

2((ν−)−(ν+))n3
xny)

ν+
−((ν−)n4

x−(ν−)n2
xn

2
y+3(ν+)n2

xn
2
y+(ν+)n4

y)

ν+

ê
,

A12 =

Ü
((ν−)−(ν+))nxny(n2

x−n2
y))

ν+
2((ν−)−(ν+))n2

xn
2
y)

(ν+)

−(((ν−)−(ν+))n2
x(n2

x−n2
y))

ν+
2(−(ν−)+(ν+))n3

xny)
ν+

ê
,

A21 =

Ü
2(−(ν−)+(ν+))nxn3

y)

ν+
((ν−)−(ν+))n2

y(n2
x−n2

y))

ν+

2((ν−)−(ν+))n2
xn

2
y)

ν+
−(((ν−)−(ν+))nxny(n2

x−n2
y))

ν+

ê
,

A22 =

Ü −(((ν+)n4
x−(ν−)n2

xn
2
y+3(ν+)n2

xn
2
y+(ν−)n4

y)

ν+
(2((ν−)−(ν+))nxn3

y)

ν+

−((ν−)−(ν+))nxny(n2
x−n2

y))

ν+
−(2(ν−)n2

xn
2
y+(ν+)(n4

x+n4
y))

ν+

ê
,

B1 =
Ä
2(ν− − ν+)n2

x, 2(ν− − ν+)nxny
ä
, B2 =

Ä
2(ν− − ν+)nxny, (2(ν− − ν+)n2

y

ä
,

B3 = −n2
x − n2

y.

Proof. The function v =

Ç
u(x, y)
v3(x, y)

å
defined in (3.30) is in Sh(Ω), hence it satisfies the

jump conditions (3.5a), (3.5b) and (3.5c). Therefore

[u]DE = 0, (3.32)

[S(u, v3)n]DE = 0, (3.33)

[∇ · u(D)] = 0. (3.34)

Equation (3.32) implies that the jump in the tangential derivative of the velocity u across
the interface is zero. The latter combined with (3.33) and (3.34) yields (3.31).

Remark. The entries of the matrices Aij, 1 ≤ i, j ≤ 2, defined in Lemma 3.4.6 can be
bounded with a constant C independent of the mesh size h and the interface location.

Next, we state a lemma that relates the coefficients of the basis functions defined on T− to
their counterparts defined on T+.

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 52

Lemma 3.4.7. For any v =

Ç
u(x, y)
v3(x, y)

å
∈ Sh(Ω) defined in (3.30), there exists C > 0

independent of the mesh size h and the interface location such that

|b+
i |+ |c+

i |+ h|di| ≤ C
2∑
j=1

Ä
|b−j |+ |c−j |+ h|dj|

ä
, i = 1, 2. (3.35)

|b−i |+ |c−i |+ h|di| ≤ C
2∑
j=1

Ä
|b+
j |+ |c+

j |+ h|dj|
ä
, i = 1, 2. (3.36)

D

E

e−

e+

~

T

A1 A2

A3 A4

Figure 3.3: An interface element.

Proof. As shown in Figure 3.3, we let T = �A1A2A3A4 be an interface element with vertices
A1 = (0, 0), A2 = (h, 0), A3 = (0, h) and A4 = (h, h) and, without loss of generality denote
the interface edge of T that contains D = (xD, yD) = (0, γh), 0 < γ < 1 as e and denote
by e+ and e− the segments of the edge e that lie in Ω+ and Ω− respectively. Next, let
X = (x, y)T ∈ e+, then Taylor expansion of v+

i (X), i = 1, 2 around D is:

v+
i (X) = v+

i (D) +∇v+
i (D) · (X −D) + di ((x− xD)(y − yD)) , i = 1, 2. (3.37)

Using the continuity condition (3.5a) and (3.31),

v+
i (X) = v−i (D) + Ai1∇v−1 (D) · (X −D) + Ai2∇v−2 (D) · (X −D)

+di(x− xD)(y − yD), i = 1, 2. (3.38)

Let (dij)1≤i,j≤2 be the entries of A11 and let (aij)1≤i,j≤2 be the entries of A12. Taking the
derivative of v+

1 (X) in (3.38) with respect to x yields

v+
1,x(X) = d11v

−
1,x(D) + d12v

−
1,y(D) + a11v

−
2,x(D) + a12v

−
2,y(D) + d1(y − yD).

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 53

Using (3.30) leads to

b+
1 + d1y = d11(b−1 + d1yD) + d12(c−1 + d1xD) + a11(b−2 + d2yD)

+a12(c−2 + d2xD) + d1(y − yD).

We note that the term d1y cancels out and use the fact that the entries of the matrices A11

and A12 are bounded by a constant independent of h and the interface location to bound b+
1

as follows
|b+

1 | ≤ C
Ä
|b−1 |+ |c−1 |+ h|d1|+ |b−2 |+ |c−2 |+ h|d2|

ä
. (3.39)

Similarly by taking the derivative of (3.38) with respect to y and using (3.30), we obtain

|c+
1 | ≤ C

Ä
|b−1 |+ |c−1 |+ h|d1|+ |b−2 |+ |c−2 |+ h|d2|

ä
. (3.40)

Equations (3.39) and (3.40) yield

|b+
1 |+ |c+

1 |+ h|d1| ≤ C
Ä
|b−1 |+ |c−1 |+ h|d1|+ |b−2 |+ |c−2 |+ h|d2|

ä
. (3.41)

In a similar way and using i = 2 in Equation (3.38), we prove that

|b+
2 |+ |c+

2 |+ h|d2| ≤ C
Ä
|b−1 |+ |c−1 |+ h|d1|+ |b−2 |+ |c−2 |+ h|d2|

ä
.

Taking X ∈ e− and expanding v−i (x) around D as in (3.37) and following the same reasoning
as to obtain (3.35) yield

|b−i |+ |c−i |+ h|di| ≤ C2

Ä
|b+

1 |+ |c+
1 |+ h|d1|+ |b+

2 |+ |c+
2 |+ h|d2|

ä
, i = 1, 2.

Divide the element T into 4 congruent rectangles as shown in Figure 3.3. Without loss of
generality, let us assume that the upper right rectangle T̃ lies completely in T−. In the next
Lemma, we establish bounds for the coefficients in (3.30b) and (3.30c) in terms of v defined
in (3.30).

Lemma 3.4.8. For any v =

Ç
u(x, y)
v3(x, y)

å
∈ Sh(Ω) defined in (3.30), we have

h

|T̃ |
||∇u||2

0,T̃
≥ Ch

Ä
(bs1)2 + (cs1)2 + h2(d1)2 + (bs2)2 + (cs2)2 + h2(d2)2

ä
, s = +,−. (3.42)

Proof. By direct computations, (3.30) yields

||∂xv1||20,T̃ =
h2

48

Ä
12(b−1)2 + 18b−1 d1h+ 7(hd1)2

ä
≥ h2

48

ÇÇ
12− 9

σ1

å
(b−1)2 + (7− 9σ1) (hd1)2

å
, with σ1 > 0. (Young’s inequality)

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 54

Similarly,

||∂yv1||20,T̃ =
h2

48

Ä
12(c−1)2 + 18c−1 d1h+ 7(hd1)2

ä
≥ h2

48

ÇÇ
12− 9

σ1

å
(c−1)2 + (7− 9σ1) (hd1)2

å
.

Let σ1,2 ∈ (3
4
, 7

9
), then

||∇v1||20,T̃ ≥ Ch2
Ä
(b−1)2 + (c−1)2 + (hd1)2

ä
.

Following the previous reasoning, a similar lower bound for v2 can be written as

||∇v2||20,T̃ ≥ Ch2
Ä
(b−2)2 + (c−2)2 + (hd2)2

ä
.

Therefore,

||∇v1||20,T̃ + ||∇v2||20,T̃ ≥ Ch2
Ä
(b−1)2 + (c−1)2 + (hd1)2 + (b−2)2 + (c−2)2 + (hd2)2

ä
.

Using (3.35) with the equivalence property of || · ||1 and || · ||2 norms in Rn, we obtain

||∇v1||20,T̃ + ||∇v2||20,T̃ ≥ Ch2
Ä
(b+

1)2 + (c+
1)2 + (hd1)2 + (b+

2)2 + (c+
2)2 + (hd2)2

ä
.

The bound (3.42) follows using |T̃ | ≤ h2.

Next, we state the modified trace inequality for piecewise polynomials in Sh(T).

Theorem 3.4.9. Let T be an interface element with interface edge e as shown in Figure

3.3. Then, for all v =

Ç
u(x, y)
v3(x, y)

å
∈ Sh(Ω) defined on T as in (3.30), we have

||∇u||0,e ≤ C
h1/2

|T |1/2
||∇u||0,T . (3.43)

Proof. We recall that the interface point D in Figure 3.3 is defined as D = (0, γh) with
0 < γ < 1.

By direct computations, we obtain,

||v+
i,x||20,e+ = (b+

i)2γh+ b+
i diγ

2h2 +
1

3
γ3d2

ih
3

≤ C((b+
i)2 + (hdi)

2)h, (Young’s inequality)

||v+
i,y||20,e+ = (c+

i)2γh ≤ (c+
i)2h,

||v−i,x||20,e− = (b−i)2h(1− γ) + b−i dih
2(1− γ2) +

1

3
d3
ih

3(1− γ3)

Nabil Chaabane Chapter 3. IFE approximations for the Stokes interface problem 55

≤ Ch((b−i)2 + (hdi)
2).

||v−i,y||20,e− = (c−i)2(h− γh) ≤ (c−i)2h,

Applying (3.42), we obtain,

||v+
i,x||20,e+ ≤ C

h

|T̃ |
||∇u||2

0,T̃
,

||v+
i,y||20,e+ ≤ C

h

|T̃ |
||∇u||2

0,T̃
,

||v−i,x||20,e− ≤ C
h

|T̃ |
||∇u||2

0,T̃
,

||v−i,y||20,e− ≤ C
h

|T̃ |
||∇u||2

0,T̃
.

Therefore,

||vi,r||20,e ≤ C
h

|T̃ |
||∇u||2

0,T̃
≤ C

h

|T |
||∇u||20,T , r = x, y, i = 1, 2.

The result follows by summing over all partial derivatives.

In the next Lemma, we extend the inverse inequality to the IFE basis functions.

Lemma 3.4.10. For all v =

Ç
u(x, y)
v3(x, y)

å
∈ Sh(Ω) defined in (3.30) on an interface element

T , there exists a constant C > 0 independent of the mesh size and the interface location such
that

|u|W 1,∞(T) ≤ Ch−1|u|1,T , (3.44)

Proof. Consider an interface element T = T− ∪ T+. Then

|u|W 1,∞(T) = |v1|W 1,∞(T) + |v2|W 1,∞(T) = max{|u|1,∞,T− , |u|1,∞,T+}

≤ max{|b−1 |+ |c−1 |+ h|d1|+ |b−2 |+ |c−2 |+ h|d2|, |b+
1 |+ |c+

1 |+ h|d1|+ |b+
2 |+ |c+

2 |+ h|d2|}.

Using (3.36) and (3.42), we obtain

|u|1,∞,T ≤ C(|b+
1 |+ |c+

1 |+ h|d1|+ |b+
2 |+ |c+

2 |+ h|d2|)

≤ Ch−1||∇u||0,T ≤ Ch−1|u|1,T .

Chapter 4

Immersed finite element method for
the Stokes interface problem

In this chapter, we introduce the discontinuous Galerkin immersed finite element (DG-IFE)
method for Stokes interface problem (1.3). Note that, due to its complexity, the Stokes
problem has to be solved with suitably chosen finite element spaces and special finite element
functions have to be used in order to get satisfactory approximations. In this chapter, we
consider the Q1/Q0 finite element function with discontinuous Galerkin methods used in
[120] . This choice is motivated by two major reasons

• The primal finite element method with the Q1/Q0 FE function is not stable [23], while
the discontinuous Galerkin method leads to a stable formulation [120].

• The IFE basis functions are not continuous across element boundaries, which is not
required by the discontinuous Galerkin method.

First let us recall the standard Q1/Q0 DG finite element method. We partition our domain
Ω into a Cartesian mesh Th. On every element, we use the standard Lagrange bilinear basis
functions to approximate the two components of the velocity, and use piecewise constant
basis functions to approximate the pressure.

Next, define the spaces

Hm(Ω) = {(u, p) : u ∈ C0(Ω),u ∈ (Hm(A))2 and p ∈ H1(A), ∀A ⊂ Ω±},

where Hm is the standard Sobolev space. Furthermore, we introduce

Hm
0 (Ω) = {(u, p) ∈ Hm(Ω) : u = 0 on ∂Ω}.

56

Nabil Chaabane Chapter 4. Immersed finite element method 57

4.1 Weak formulation and finite element scheme

In order to construct the weak formulation we assume that (u, p) ∈ H2(Ω) is the solution
of the Stokes interface problem (1.3). On an arbitrary edge e ∈ Eh shared by two elements
TR and TL we use the average defined in (2.8) and define the jump of a vector function u
across an edge e as

[u]e = (u|TR − u|TL).

On a boundary edge e ⊂ ∂Ω we define the jump by

[u]e = u|e.

Following the standard procedure given in [120] for instance, we multiply the system (1.3a-
1.3b) by (v, q) ∈ H1

0(Ω) and integrate over an arbitrary non-interface element T ∈ Th to
obtain

−
∫
T

(∇ · S(u, p)) · vdx−
∫
T
∇ · uqdx =

∫
T

f · vdx. (4.1)

(4.2)

We apply the divergence theorem to integrate the first term by parts and obtain

−
∫
∂T

(S(u, p)n) · vds+
∫
T

S(u, p) : ∇vdx−
∫
T
∇ · uqdx =

∫
T

f · vdx, (4.3)

where A : B =
∑2
i=1

∑2
j=1 AijBij and (S(u, p)n)i =

∑2
j=1 sijnj with sij being the entries of

S(u, p).

On an interface element T , we apply the divergence theorem on T ∩Ω+ and T ∩Ω− and take
into account that the exact solution satisfies the jump conditions (1.3f) and (1.3g) across the
interface to obtain

−
∫
∂T

(S(u, p)n) · vds+
∫
T

S(u, p) : ∇vdx−
∫
T
∇ · uqdx =∫

T
f · vdx+

∫
T∩Γ

σ · vds. (4.4)

Summing over all elements leads to

−
∑
T∈Th

∫
∂T

(S(u, p)n) · vds+
∫

Ω
S(u, p) : ∇vdx−

∫
Ω
∇ · uqdx =∫

Ω
f · vdx+

∫
Γ
σ · vds. (4.5)

By rewriting (4.5), we obtain

−
∑
e∈Eh

∫
e
[(S(u, p)n) · v]ds+

∫
Ω

S(u, p) : ∇vdx−
∫

Ω
∇ · uqdx

=
∫

Ω
f · vdx+

∫
Γ
σ · vds. (4.6)

Nabil Chaabane Chapter 4. Immersed finite element method 58

Applying the identity ab− cd = 1
2
(a+ c)(b− d) + 1

2
(a− c)(b+ d) yields

−
∑
e∈Eh

∫
e
([(S(u, p)n)] · {v}+ {(S(u, p)n)} · [v]) ds

+
∫

Ω
S(u, p) : ∇vdx−

∫
Ω
∇ · uqdx =

∫
Ω

f · vdx+
∫

Γ
σ · vds. (4.7)

Every interface edge can be expressed as e = e+ ∪ e−, where e± = e ∩ Ω±. Hence∫
e
[S(u, p)n] · {v}ds =

∫
e+

[S(u, p)n] · {v}ds+
∫
e−

[S(u, p)n] · {v}ds.

Since (u, p) ∈ H2(Ω), we write ∫
e
[S(u, p)n] · {v}ds = 0, (4.8)

which also holds for non-interface edges.

Combining (4.7) and (4.8) with (u, p) ∈ H2(Ω) and assuming u continuous lead to the
interior penalty weak formulation∫

Ω
S(u, p) : ∇vdx−

∫
Ω
∇ · uqdx−

∑
e∈Eh

∫
e
{(S(u, p)n)} · [v]ds

+
∑
e∈Eh

α

he

∫
e
ν[u] · [v]ds+ γ

∑
e∈Eh

∫
e
{(νε(v)n)} · [u]ds+

∑
e∈Eh

∫
e
{q}[u] · n =

∫
Ω

f · vdx

+
∫

Γ
σ · vds+ γ

∑
e⊂∂Ω

∫
e
{(νε(v)n)} · [g]ds+

∑
e⊂∂Ω

∫
e
{q}[g] · n +

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [v]ds, (4.9)

where α is a positive stabilization parameter and γ = 1 for the nonsymmetric weak formu-
lation (NIPG) while γ = −1 for the symmetric weak formulation (SIPG).

The advantages of adding penalty terms are discussed in [120]. The fifth and sixth terms
are added to ensure the symmetry of the scheme in the case γ = −1, and are balanced using
the third and fourth terms on the right hand side. The fourth term is a penalty term used
to obtain a scheme with optimal order of convergence and is balanced using the last term
in the right hand side. Note that, when γ = α = 0, the scheme is not guaranteed to have a
unique solution.

The weak form above leads to the interior penalty formulation for the Stokes interface prob-
lem consisting of finding (u, p) ∈ H1(Ω) with u = g, on ∂Ω, such thatA(u,v) +B(v, p) = L(v)

B(u, q) = l(q)
, ∀ (v, q) ∈ H1

0(Ω), (4.10a)

Nabil Chaabane Chapter 4. Immersed finite element method 59

where

A(w,v) =
∫

Ω
νε(w) : ∇vdx−

∑
e∈Eh

∫
e
ν{ε(w)n} · [v]ds

+γ
∑
e∈Eh

∫
e
{νε(v)n} · [w] +

∑
e∈Eh

α

he

∫
e
ν[u] · [v]ds, (4.10b)

B(v, q) = −
∫

Ω
q∇ · vdx+

∑
e∈Eh

∫
e
{q}[v] · nds, (4.10c)

L(v) =
∫

Ω
f · vdx+

∫
Γ
σ · vds+ γ

∑
e⊂∂Ω

∫
e
{νε(v)n} · [g]ds+

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [v]ds, (4.10d)

l(q) =
∑
e⊂∂Ω

∫
e
{q}[g] · nds.

Then, this formulation leads to the DG-IFE method consisting of finding (uh, ph) ∈ Sh(Ω)⊕
{qh(x,y)}, such thatA(uh,vh) +B(vh, ph) = Lh(vh)

B(uh, qh) = l(qh)
, ∀ (vh, qh) ∈ Sh,0(Ω), (4.11)

subject to the boundary conditions:

uh(R) = g(R), for all mesh vertices R ∈ ∂Ω,

where
Lh(vh) =

∫
Ω

f · vhdx+
∑
T∈T i

h

∫
DE

σh · vhds+ γ
∑
e⊂∂Ω

∫
e
{νε(vh)n} · [g]ds

+
∑
e⊂∂Ω

α

he

∫
e
ν[g] · [vh]ds, (4.12)

σh is the linear interpolant of σ on DE using the value of σ at D and E and

Sh,0(Ω) = {(v, p) ∈ Sh(Ω) : v(R) = 0, for all mesh vertices R ∈ ∂Ω}.

Remark. On every interface element T = �(A1A2A3A4) with an edge e = [A1, A2] lying on
the boundary ∂Ω, we use the boundary condition g = (g1, g2)T and rewrite the IFE solution
(uh, ph) in (3.25) asÇ

uh
ph

å
= g1(A1)Φ1 + g1(A2)Φ2 + g2(A1)Φ5 + g2(A2)Φ6 +

4∑
i=3

ciΦi +
9∑
i=7

ciΦi + κ1Υ1 + κ2Υ2.

Nabil Chaabane Chapter 4. Immersed finite element method 60

D

E

Δ h

− ∩ Δ−

Δ h

+ ∩Δ−

Δ h

+ ∩Δ+

Δ h

− ∩ Δ−

Δ h

+ ∩Δ+

Δ h

+ ∩Δ−

D

E

DE

Γ
Γ

DE

Figure 4.1: The regions ∆±, ∆±h and their intersections.

4.2 Numerical simulations

Here we investigate the approximation properties of the IFE spaces and IFE particular
functions and the convergence properties of the proposed DG-IFE method for the Stokes
problem. L2 and H1 errors on non-interface elements are computed using standard Gauss
quadratures. However, extra care is needed near the interface where we assume that every
interface element ∆ is split by the true interface as ∆ = ∆+ ∪ ∆−. We further assume
that the piecewise linear approximate interface split the domain Ω into Ω+

h and Ω−h and
∆ = ∆+

h ∪∆−h . Here we recall the notation ∆± = ∆ ∩Ω± and ∆±h = ∆ ∩Ω±h . For, instance,
the true L2 error of the pressure on such interface element ∆ is computed as

||p−ph||20,∆ = ||p+−p+
h ||20,∆+∩∆+

h
+ ||p−−p−h ||20,∆−∩∆−

h
+ ||p+−p−h ||20,∆+∩∆−

h
+ ||p−−p+

h ||20,∆−∩∆+
h
.

The subregions ∆+∩∆+
h and ∆−∩∆−h may be split into triangles with at most one curved side

for which Gauss quadratures exist. The subregions ∆+∩∆−h and ∆−∩∆+
h are bounded by the

true interface and its linear approximation. Elementary numerical quadrature methods on
such regions can be found in elementary numerical analysis books such as [30]. We illustrate
an example of different regions that may arise in our computations in Figure 4.1.

4.2.1 Approximation properties of Q1/Q0 IFE spaces

First, we investigate the approximation capabilities of our Sh(Ω) and S̃h(Ω) spaces by com-
puting interpolation errors and their convergence rates under mesh refinement for the Sh(Ω)
space and by computing the L2 projection errors and their convergence rates under mesh

Nabil Chaabane Chapter 4. Immersed finite element method 61

refinement for the S̃h(Ω) space. The interpolation error cannot be computed for the space
S̃h(Ω) since the nodal property is not satisfied by the corresponding IFE shape functions.

Here we consider Th a Cartesian mesh for the domain Ω and, since we are interested in
solving Stokes interface problems, we only test the approximation capabilities of our IFE
space on functions in the set

S(Ω) = {(u, p) | [u]Γ = 0, [S(u, p)n]|Γ = σ}.

The piecewise polynomial interpolant Ih(u, p) ∈ Sh(Ω) of a vector function (u, p) ∈ S(Ω) on
an element T = �A1A2A3A4 is defined by

Ih(u, p)|T =


∑4
i=1 u1(Ai)Φi +

∑8
i=5 u2(Ai−4)Φi + pTΦ9 +

2∑
j=1

κjΥj, if T ∈ T ih ,

∑4
i=1 u1(Ai)Ψi +

∑8
i=5 u2(Ai−4)Ψi + pTΨ9, if T ∈ T nh ,

(4.13)

where pT =
∫
T pdX, κj =

∫
DE σh,jds and Φi, Ψi and Υj, respectively, are the Q1/Q0 IFE

shape functions, standard shape functions and particular IFE functions associated with el-
ement T . The ith component Ih(u, p) denoted by (Ih(u, p))i is such that (Ih(u, p))1 ≈ u1,
(Ih(u, p))2 ≈ u2 and (Ih(u, p))3 ≈ p with errors ε(ui) = ui − (Ih(u, p))i, for i = 1, 2 and
ε(p) = p− (Ih(u, p))3.

The L2 projection, denoted as Πh(u, p) ∈ S̃h(Ω), of a vector function (u, p) ∈ S(Ω) on
an interface element T = �A1A2A3A4 is defined as follows:

Πh(u, p)|T =
10∑
i=1

ciΦi, (4.14)

where ci, i = 1, 2, ..., 10 are the entries of the vector c obtained by solving the linear system

Ac = b, (4.15)

where the entries ai,j, i, j = 1, 2, ..., 10, of the matrix A are defined as

ai,j =
∫
T

Φi ·Φj,

and the entries bi, i = 1, 2, ..., 10 of the vector b are defined as

bi =
∫
T

Φi ·
Ç

u
p

å
,

and Φi, i = 1, 2, ..., 10, are the basis functions of the space S̃h(T).

Nabil Chaabane Chapter 4. Immersed finite element method 62

If T is a non-interface element, the standard Lagrange basis functions Ψi, i = 1, 2, ..., 9
are used, and the L2 projection is obtained as follows

Πh(u, p)|T =
9∑
i=1

ciΨi, (4.16)

where ci, i = 1, 2, ..., 9 are the entries of the vector c obtained by solving the linear system

Ac = b, (4.17)

where the entries ai,j, i, j = 1, 2, ..., 9, of the matrix A are defined as

ai,j =
∫
T

Ψi ·Ψj,

and the entries bi, i = 1, 2, ..., 9 of the vector b are defined as

bi =
∫
T

Ψi ·
Ç

u
p

å
.

In the case where the projection error is computed, ε(ui), i = 1, 2 and ε(p) will refer to
the L2 projection errors in velocity and pressure. To investigate the order of convergence,
we consider three example functions.

Example 4.2.1.

We consider the domain Ω = [−1, 1]2 cut by the linear interface y = −x−
√

0.3 which splits
Ω into Ω+ = {(x, y) ∈ Ω : y + x+

√
0.3 > 0} and Ω− = {(x, y) ∈ Ω : y + x+

√
0.3 < 0}. We

select the following function (u, p) ∈ S(Ω) given by

u =



u+ =

Ü
x2 + y + y2

−2x(x+ν−y)
ν−

ê
, if (x, y) ∈ Ω+,

u− =

á
−ν+(0.3−x2+2

√
0.3y+y2)+ν−(0.3+y+2

√
0.3y+2y2)

ν−

2x(−x+ν−(
√

0.3+x)−ν+(
√

0.3+x+y))
ν−

ë
, if (x, y) ∈ Ω−,

(4.18a)

Nabil Chaabane Chapter 4. Immersed finite element method 63

and the pressure is defined as follows

p =



15(−43+4
√

30(ν−)2−2ν+(310+3
√

30+30(−43+4
√

30)
√

0.3+2400x)
1200ν−

+

ν−(620+6
√

30+60(−43+4
√

30)
√

0.3−15ν+(−43+4
√

30+320x))
1200ν−

, if (x, y) ∈ Ω+,

15(37+4
√

30)(ν−)2−2ν+(310+3
√

30+30(37+4
√

30)
√

0.3+2400x+2400y)
(1200)ν−

+

ν−(620+6
√

30+60(37+4
√

30)
√

0.3−15ν+(37+4
√

30+320x)+4800y)
(1200)ν−

, if (x, y) ∈ Ω−,

(4.18b)

with ν− = 1, ν+ = 10 and σ = 0. We create uniform Cartesian meshes having N2 =
52, 102, 202, 402, 802, 1602 square elements and present L2 interpolation errors using the space
Sh(Ω) in Table 4.1. Broken H1 interpolation errors for the velocity are shown in Table 4.2
for the space Sh(Ω). On the other hand, we present the L2 errors of the L2 projection of the
space S̃h(Ω) in Table 4.3 and the broken H1 error of the L2 projection of the space S̃h(Ω) in
Table 4.4. The broken H1 norm for functions in S(Ω) is defined as follows:

|| · ||1,Ω = || · ||1,Ω+ + || · ||1,Ω− .

N ||ε(u1)||0,Ω Order ||ε(u2)||0,Ω Order ||ε(p)||0,Ω Order
5 1.8197e-03 NA 5.5240e-03 NA 2.3704e-01 NA
10 4.7976e-04 1.9233 1.4501e-03 1.9296 1.1271e-01 1.0726
20 1.1915e-04 2.0095 3.7080e-04 1.9674 5.1155e-02 1.1396
40 2.9911e-05 1.9941 9.4230e-05 1.9764 2.4874e-02 1.0402
80 7.4878e-06 1.9980 2.3649e-05 1.9944 1.2160e-02 1.0325
160 1.8734e-06 1.9989 5.9242e-06 1.9971 6.0057e-03 1.0177

Table 4.1: L2 interpolation errors for Example 4.2.1 using the space Sh(Ω).

This numerical example suggests that the proposed Q1/Q0 IFE spaces maintain the optimal
convergence rates of Q1/Q0 spaces observed for smooth functions in [120] and non-smooth
functions on fitted-meshes in [59].

Example 4.2.2.

We consider the domain Ω = [−1, 1]2 cut by the circular interface x2+y2 = 0.3 that separates
Ω into two regions Ω+ = {(x, y) ∈ Ω : x2 + y2 > 0.3} and Ω− = {(x, y) ∈ Ω : x2 + y2 < 0.3}.
The functions u and p are chosen to satisfy jump conditions (1.3f) and (1.3g) and are given

Nabil Chaabane Chapter 4. Immersed finite element method 64

N ||ε(u1)||1,Ω Order ||ε(u2)||1,Ω Order
5 3.0294e-02 NA 4.6821e-02 NA
10 1.5541e-02 0.9629 2.3890e-02 0.9707
20 7.7082e-03 1.0117 1.1949e-02 0.9995
40 3.8663e-03 0.9954 5.9991e-03 0.9940
80 1.9319e-03 1.0010 3.0026e-03 0.9985
160 9.6557e-04 1.0006 1.5021e-03 0.9992

Table 4.2: Broken H1 interpolation errors in the velocity for Example 4.2.1 using the space
Sh(Ω).

N ||ε(u1)||0,Ω Order ||ε(u2)||0,Ω Order ||ε(p)||0,Ω Order
5 2.2505e-02 NA 2.2505e-02 NA 4.1878e-02 NA
10 6.8965e-03 1.7063 6.8965e-03 1.7063 9.2471e-02 -1.1427
20 1.9150e-03 1.8484 1.9150e-03 1.8484 3.3636e-02 1.4589
40 4.9301e-04 1.9576 4.9301e-04 1.9576 1.1397e-02 1.5612
80 1.2549e-04 1.9740 1.2549e-04 1.9740 4.4902e-03 1.3438
160 3.1629e-05 1.9882 3.1629e-05 1.9882 1.8539e-03 1.2762

Table 4.3: L2 errors of the L2 projection for Example 4.2.1 using the space S̃h(Ω).

N ||ε(u1)||1,Ω Order ||ε(u2)||1,Ω Order
5 1.5918e-01 NA 1.5918564e-01 NA
10 9.3038e-02 0.7748 9.3038e-02 0.7748
20 5.0793e-02 0.8731 5.0793e-02 0.8731
40 2.5777e-02 0.9785 2.5777e-02 0.9785
80 1.3028e-02 0.9844 1.3028e-02 0.9844
160 9.6557e-04 1.0006 1.5021e-03 0.9992

Table 4.4: Broken H1 errors of the L2 projection of the velocity for Example 4.2.1 using the
space S̃h(Ω).

Nabil Chaabane Chapter 4. Immersed finite element method 65

by

u =



u+ =

Ü
y(x2+y2−0.3)

ν+

x(x2+y2−0.3)
ν+

ê
, if (x, y) ∈ Ω+,

u− =

Ü
y(x2+y2−0.3)

ν−

x(x2+y2−0.3)
ν−

ê
, if (x, y) ∈ Ω−,

(4.19a)

and the pressure is defined by

p =
1

10
(x3 − y3). (4.19b)

where ν− = 1, ν+ = 10 and σ = 0.

Next we create uniform Cartesian meshes having N2 = 52, 102, 202, 402, 802, 1602, 3202 square
elements and present the L2 interpolation errors using the space Sh(Ω) in Table 4.5 and the
broken H1 interpolation errors for the velocity in Table 4.6.

N ||ε(u1)||0,Ω Order ||ε(u2)||0,Ω Order ||ε(p)||0,Ω Order
5 2.2505e-02 0 2.2505e-02 0 4.1879e-02 0
10 6.8966e-03 1.7063 6.8966e-03 1.7063 9.2471e-02 -1.1428
20 1.9151e-03 1.8485 1.9151e-03 1.8485 3.3637e-02 1.4590
40 4.9302e-04 1.9577 4.9302e-04 1.9577 1.1398e-02 1.5613
80 1.2549e-04 1.9740 1.2549e-04 1.9740 4.4903e-03 1.3439
160 3.1629e-05 1.9883 3.1629e-05 1.9883 1.8539e-03 1.2762
320 7.9416e-06 1.9938 7.9416e-06 1.9938 8.1715e-04 1.1819

Table 4.5: L2 interpolation errors for Example 4.2.2 using the space Sh(Ω).

N ||ε(u1)||1,Ω Order ||ε(u2)||1,Ω Order
5 1.5919e-01 NA 1.5919e-01 NA
10 9.3038e-02 0.7748 9.3038e-02 0.7748
20 5.0794e-02 0.8731 5.0794e-02 0.8731
40 2.5778e-02 0.9785 2.5778e-02 0.9785
80 1.3029e-02 0.9844 1.3029e-02 0.9844
160 6.5516e-03 0.9917 6.5516e-03 0.9917
320 3.2854e-03 0.9957 3.2854e-03 0.9957

Table 4.6: Broken H1 interpolation errors for Example 4.2.2 using the space Sh(Ω).

Here we also observe optimal quadratic convergence for the velocity and linear convergence
for the pressure. We recall that the circular interface is approximated by a piecewise linear
interface.

Nabil Chaabane Chapter 4. Immersed finite element method 66

Example 4.2.3.

We consider the same domain and interface as in the previous example and define the func-
tions u and p that satisfy the homogeneous jump condition (1.3g) and the non-homogeneous
jump condition (1.3f):

u =



u+ =

Ü
1− y

ν+
sin(0.3− x2 − y2)

2 + x
ν+

sin(0.3− x2 − y2)

ê
, if (x, y) ∈ Ω+,

u− =

Ü
1− y

ν−
sin(0.3− x2 − y2)

2 + x
ν−

sin(0.3− x2 − y2)

ê
, if (x, y) ∈ Ω−,

(4.20a)

p =

p+ = ex+y − 1.3798535909816816, if (x, y) ∈ Ω+,

p− =
√

1 + x2 + y2 − 1.3798535909816816, if (x, y) ∈ Ω−,
(4.20b)

We select ν− = 1 and ν+ = 10 and compute the IFE interpolation errors on uniform
rectangular meshes and show the interpolation errors and their orders of convergence in
Tables 4.7 and 4.8.

N ||ε(u1)||0,Ω Order ||ε(u2)||0,Ω Order ||ε(p)||0,Ω Order
5 2.0116e-02 NA 1.9965e-02 NA 5.6124e-01 NA
10 6.4161e-03 1.6486 6.4032e-03 1.6406 2.9540e-01 0.9259
20 1.8107e-03 1.8251 1.8098e-03 1.8230 1.4454e-01 1.0312
40 4.6792e-04 1.9522 4.6788e-04 1.9516 7.1237e-02 1.0207
80 1.1936e-04 1.9710 1.1935e-04 1.9709 3.5461e-02 1.0064
160 3.0110e-05 1.9870 3.0110e-05 1.9869 1.7688e-02 1.0034
320 7.5635e-06 1.9931 7.5635e-06 1.9931 8.8340e-03 1.0016

Table 4.7: L2 interpolation errors for Example 4.2.3 using the space Sh(Ω).

Again, the numerical results suggest that our IFE spaces and IFE particular functions main-
tain the optimal convergence rates in the presence of singularity across the interface.

4.2.2 Convergence of the immersed finite element method

We use numerical results to show the approximation capability of our finite element method.
First we recall from [59] that using the finite element spaces Q1/Q0 on fitted meshes the L2

Nabil Chaabane Chapter 4. Immersed finite element method 67

N ||ε(u1)||1,Ω Order ||ε(u2)||1,Ω Order
5 1.4584e-01 NA 1.4582e-01 NA
10 8.7277e-02 0.7407 8.7276e-02 0.7405
20 4.8239e-02 0.8554 4.8239e-02 0.8554
40 2.4528e-02 0.9757 2.4528e-02 0.9757
80 1.2412e-02 0.9827 1.2412e-02 0.9827
160 6.2452e-03 0.9908 6.2452e-03 0.9908
320 3.1327e-03 0.9953 3.1327e-03 0.9953

Table 4.8: Broken H1 interpolation errors for Example 4.2.3 using the space Sh(Ω).

errors of the velocity and pressure, respectively, are O(h2) and O(h) convergent. Further-
more, the broken H1 error of the velocity is O(h) convergent. The finite element errors are
denoted by e(ui) = ui − ui,h for i = 1, 2 and e(p) = p− ph.

Example 4.2.4.

First we consider Stokes interface problem where the exact solution is given by (4.18) with a
linear interface on [−1, 1]2 and ν− = 1 and ν+ = 10. We use the meshes from Example 4.2.1
to carry out several simulations by solving (4.11) with SIPG and NIPG methods using the
immersed space Sh(Ω) and show the L2 IFE errors in Tables 4.9 and 4.10 and the broken H1

errors in Tables 4.11 and 4.12. The computational results show optimal quadratic conver-
gence for the velocity and linear convergence for the pressure. The broken H1 errors show
linear convergence for the velocity. On the other hand, we use the same formulation (4.11)
with SIPG and NIPG methods using the space S̃h(Ω) and show the L2 IFE errors in Tables
4.13 and 4.14 and the broken H1 errors in Tables 4.15 and 4.16. The computational results
show optimal quadratic convergence for the velocity in the L2 norm and linear convergence
in the broken H1 norm. However, in Table 4.14, the order of convergence of the pressure is
oscillating. In this case, we use a linear regression of log(||e(p)||0,Ω) against log(h). The order
of convergence is 0.96 which satisfies the expected order shown in the previous experiments.

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 3.3087e-03 NA 3.8791e-03 NA 2.5120e-01 NA
10 9.0140e-04 1.8760 8.7783e-04 2.1437 1.0615e-01 1.2427
20 2.2736e-04 1.9872 2.0301e-04 2.1124 4.9161e-02 1.1105
40 5.7379e-05 1.9864 4.8446e-05 2.0671 2.3896e-02 1.0407
80 1.4565e-05 1.9780 1.1897e-05 2.0258 1.1894e-02 1.0065
160 3.6736e-06 1.9873 2.9492e-06 2.0122 5.9394e-03 1.0019

Table 4.9: L2 IFE errors for SIPG method applied to Example 4.2.4 using the space Sh(Ω).

Nabil Chaabane Chapter 4. Immersed finite element method 68

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 3.4272e-03 NA 3.9838e-03 NA 2.7117e-01 NA
10 9.0967e-04 1.9136 8.8799e-04 2.1655 1.1021e-01 1.2990
20 2.2703e-04 2.0025 2.0535e-04 2.1125 4.9935e-02 1.1421
40 5.5829e-05 2.0238 4.8465e-05 2.0830 2.4162e-02 1.0473
80 1.4108e-05 1.9845 1.1846e-05 2.0325 1.1953e-02 1.0154
160 3.5698e-06 1.9825 2.9313e-06 2.0148 5.9517e-03 1.0059

Table 4.10: L2 IFE error for NIPG method applied to Example 4.2.4 using the space Sh(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 3.2948e-02 NA 4.9512e-02 NA
10 1.6537e-02 0.9945 2.4719e-02 1.0021
20 7.9295e-03 1.0604 1.2108e-02 1.0297
40 3.9223e-03 1.0155 6.0275e-03 1.0063
80 1.9478e-03 1.0099 3.0099e-03 1.0019
160 9.7012e-04 1.0056 1.5042e-03 1.0007

Table 4.11: Broken H1 IFE errors for SIPG method applied to Example 4.2.4 using the space
Sh(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 3.3416e-02 NA 4.9495e-02 NA
10 1.6596e-02 1.0097 2.4617e-02 1.0076
20 7.9550e-03 1.0609 1.2093e-02 1.0255
40 3.9165e-03 1.0223 6.0254e-03 1.0050
80 1.9458e-03 1.0092 3.0094e-03 1.0016
160 9.6965e-04 1.0049 1.5040e-03 1.0006

Table 4.12: Broken H1 IFE errors for NIPG method applied to Example 4.2.4 using the
space Sh(Ω).

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 2.0218e-02 NA 2.0218e-02 NA 4.7817e-02 NA
10 6.7313e-03 1.5867 6.7313e-03 1.5867 8.5664e-02 -0.841
20 1.6983e-03 1.9868 1.6983e-03 1.9868 2.9682e-02 1.5291
40 4.3537e-04 1.9638 4.3537e-04 1.9638 9.2608e-03 1.6804
80 1.1363e-04 1.9378 1.1363e-04 1.9378 4.6147e-03 1.0049
160 2.8176e-05 2.0119 2.8176e-05 2.0119 1.8664e-03 1.3060

Table 4.13: L2 IFE errors for SIPG method applied to Example 4.2.4 using the space S̃h(Ω).

Nabil Chaabane Chapter 4. Immersed finite element method 69

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 2.0254e-02 NA 2.0254e-02 NA 1.6324e-01 NA
10 6.6006e-03 1.6176 6.6006e-03 1.6176 3.8986e-01 -1.256
20 1.3329e-03 2.3081 1.3329e-03 2.3081 8.4541e-02 2.2052
40 3.3742e-04 1.9819 3.3742e-04 1.9819 1.9153e-02 2.1421
80 8.1939e-05 2.0419 8.1939e-05 2.0419 2.8380e-02 -0.567
160 1.9085e-05 2.1021 1.9085e-05 2.1021 9.9622e-03 1.5104

Table 4.14: L2 IFE errors for NIPG method applied to Example 4.2.4 using the space S̃h(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 1.6136e-01 NA 1.6136e-01 NA
10 9.3050e-02 0.7942 9.3050e-02 0.7942
20 5.0189e-02 0.8906 5.0189e-02 0.8906
40 2.5758e-02 0.9623 2.5758e-02 0.9623
80 1.3020e-02 0.9842 1.3020e-02 0.9842
160 6.5483e-03 0.9915 6.5483e-03 0.9915

Table 4.15: Broken H1 IFE errors for SIPG method applied to Example 4.2.4 using the space
S̃h(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 1.6022e-01 0 1.6022e-01 0
10 9.8574e-02 0.7008 9.8574e-02 0.7008
20 5.0825e-02 0.9556 5.0825e-02 0.9556
40 2.5889e-02 0.9731 2.5889e-02 0.9731
80 1.3260e-02 0.9652 1.3260e-02 0.9652
160 6.6716e-03 0.9909 6.6716e-03 0.9909

Table 4.16: Broken H1 IFE errors for NIPG method applied to Example 4.2.4 using the
space S̃h(Ω).

Nabil Chaabane Chapter 4. Immersed finite element method 70

Example 4.2.5.

Here we consider Stokes interface problem on [−1, 1]2 with a circular interface and exact
solution given by (4.19) with ν− = 1 and ν+ = 10. We solve (4.11) using SIPG and NIPG
methods on the uniform meshes from the previous example using the space Sh(Ω). We
present the L2 errors in Tables 4.17 and 4.18 while the H1 errors are shown in Tables 4.19
and 4.20. The numerical results again suggest quadratic convergence for the velocity and
linear convergence for the pressure in the L2 norm.

The computational results show that, despite the presence of the singularity, the L2 errors in
the velocity and pressure for the DG-IFE methods maintain the optimal orders of convergence
shown in [120] for non-interface problems with smooth solutions.

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 2.0045e-02 NA 2.0122e-02 NA 5.6755e-01 NA
10 6.6060e-03 1.6014 6.6230e-03 1.6032 2.8468e-01 0.9954
20 1.6771e-03 1.9778 1.6788e-03 1.9800 1.4354e-01 0.9878
40 4.2978e-04 1.9643 4.2983e-04 1.9656 7.1163e-02 1.0123
80 1.1222e-04 1.9373 1.1217e-04 1.9381 3.5401e-02 1.0073
160 2.7808e-05 2.0127 2.7795e-05 2.0128 1.7677e-02 1.0020

Table 4.17: L2 IFE errors for SIPG method applied to Example 4.2.5 using the space Sh(Ω).

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 1.5657e-02 NA 1.5274e-02 NA 3.6065e-01 NA
10 4.6777e-03 1.7430 4.7450e-03 1.6866 2.3837e-01 0.5974
20 1.2919e-03 1.8563 1.2980e-03 1.8702 9.6466e-02 1.3051
40 3.4281e-04 1.9140 3.4302e-04 1.9199 3.5601e-02 1.4381
80 9.1878e-05 1.8996 9.1895e-05 1.9002 1.2834e-02 1.4719
160 2.2674e-05 2.0187 2.2676e-05 2.0188 4.6366e-03 1.4689

Table 4.18: L2 IFE errors for NIPG method applied to Example 4.2.5 using the space Sh(Ω).

Example 4.2.6.

We solve Stokes interface problem with surface force on the domain [−1, 1]2 with the true
solution (4.20) using SIPG and NIPG methods, the IFE space Sh(Ω) and IFE particular
functions on uniform rectangular meshes and show the IFE errors and convergence orders in
Tables 4.21, 4.22, 4.23 and 4.24.

Again, the numerical results show that our immersed Q1/Q0 interior penalty methods main-
tain the optimal convergence rates observed for non-interface problems with smooth solu-
tions.

Nabil Chaabane Chapter 4. Immersed finite element method 71

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 1.4788e-01 NA 1.4740e-01 NA
10 8.6853e-02 0.7678 8.6677e-02 0.7660
20 4.7526e-02 0.8698 4.7488e-02 0.8681
40 2.4497e-02 0.9561 2.4490e-02 0.9553
80 1.2395e-02 0.9828 1.2394e-02 0.9825
160 6.2400e-03 0.9901 6.2396e-03 0.9901

Table 4.19: Broken H1 IFE errors for SIPG method applied to Example 4.2.5 using the space
Sh(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 1.5691e-01 NA 1.5949e-01 NA
10 9.0996e-02 0.7860 1.2474e-01 0.3546
20 5.4141e-02 0.7490 7.2397e-02 0.7849
40 2.8510e-02 0.9252 3.9634e-02 0.8691
80 1.4935e-02 0.9328 2.1296e-02 0.8961
160 7.5725e-03 0.9798 1.1135e-02 0.9354

Table 4.20: Broken H1 IFE errors for NIPG method applied to Example 4.2.5 using the
space Sh(Ω).

N ||e(u1)||0,Ω Order ||e(u1)||0,Ω Order ||e(p)||0,Ω Order
5 9.2041e-03 0 8.5578e-03 0 5.4909e-01 0
10 4.5395e-03 1.0197 4.5505e-03 0.9112 2.7844e-01 0.9796
20 1.4915e-03 1.6057 1.4932e-03 1.6076 1.4054e-01 0.9863
40 3.9612e-04 1.9128 3.9624e-04 1.9140 7.0953e-02 0.9860
80 1.0697e-04 1.8887 1.0693e-04 1.8897 3.5401e-02 1.0031
160 2.7612e-05 1.9774 2.7613e-05 1.9775 1.4127e-03 1.0600

Table 4.21: L2 IFE errors for SIPG method applied to Example 4.2.6 using the space Sh(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 7.4130e-02 0 7.1057e-02 0
10 5.7993e-02 0.3541 5.7955e-02 0.2940
20 4.2999e-02 0.4315 4.2987e-02 0.4310
40 2.3153e-02 0.8930 2.3152e-02 0.8927
80 1.1935e-02 0.9560 1.1935e-02 0.9559
160 7.5730e-03 0.9799 1.1138e-02 0.9355

Table 4.22: Broken H1 IFE errors for SIPG method applied to Example 4.2.6 using the space
Sh(Ω).

Nabil Chaabane Chapter 4. Immersed finite element method 72

N ||e(u1)||0,Ω Order ||e(u2)||0,Ω Order ||e(p)||0,Ω Order
5 9.2914e-03 0 8.6753e-03 0 5.4880e-01 0
10 3.5277e-03 1.3972 3.5297e-03 1.2973 2.8385e-01 0.9511
20 1.0441e-03 1.7564 1.0436e-03 1.7580 1.4428e-01 0.9762
40 2.8611e-04 1.8676 2.8597e-04 1.8677 7.2363e-02 0.9955
80 7.8308e-05 1.8693 7.8220e-05 1.8702 3.5822e-02 1.0144
160 1.9256e-05 2.0238 1.9228e-05 2.0243 1.7832e-02 1.0064

Table 4.23: L2 IFE errors for NIPG method applied to Example 4.2.6 using the space Sh(Ω).

N ||e(u1)||1,Ω Order ||e(u2)||1,Ω Order
5 7.3792e-02 0 7.0814e-02 0
10 5.7363e-02 0.3633 5.7322e-02 0.3049
20 4.2973e-02 04166 4.2966e-02 0.4158
40 2.3151e-02 0.8923 2.3151e-02 0.8921
80 1.1935e-02 0.9559 1.1934e-02 0.9559
160 6.1779e-03 0.9499 6.1779e-03 0.9499

Table 4.24: Broken H1 IFE errors for NIPG method applied to Example 4.2.6 using the
space Sh(Ω).

Chapter 5

Immersed finite element method for
the Stokes problem with a moving
interface

5.1 Introduction

The dispersions of one liquid in another immiscible liquid are called emulsions, and the phe-
nomenon arises in several industries such as medicine, oil recovery and material processing.
The emulsions usually yield a system consisting of droplets immersed in a matrix fluid sep-
arated by interfaces. An assessment of the drop size and shape helps control the physical
properties of the emulsions such as viscosity, stability and transport properties, and thus it
is necessary to understand the dynamics of drop deformation. This problem was studied in
[39, 106, 110].

Usually, conventional methods with body-fitted meshes can be used to solve interface prob-
lems modeling emulsions. This has been done using finite difference schemes [116], finite
element methods [70, 71], boundary integral and boundary element methods [49, 80, 126]
and discontinuous Galerkin finite element methods [59]. In general, optimal convergence
rates for the solutions obtained using conventional methods are attained for fitted meshes
where every element essentially contains one fluid [15, 27, 40]. This task is relatively simple
if the interface does not change shape or location. However, this is hardly the case when
dealing with fluids as they move according to their velocity. As a consequence, the use of
conventional methods becomes inefficient as a new mesh has to be generated at every time
step which is a time-consuming process in particular for applications with moving inter-
faces having complex geometries. Also as observed in [68], by regenerating a new mesh, a
change in the degrees of freedom as well as their location may occur, which will add an extra
computational cost and complexity. Another drawback is the loss of the so-called global

73

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 74

matrices assembling feature. In fact, this feature is one of the most desirable property of
the FE methods. This procedure consists of constructing a local matrix over every element
and its entries are then distributed to the global matrix. If the mesh changes in time, this
simplicity is lost and complicated and time consuming quadratures have to be used. As
an alternative, methods that do not require remeshing such as the volume of fluid method
[90, 91], the front-tracking method [128] and the level-set method [38] have been developed.
These methods differ from conventional methods as they do not model the flow over two
domains separated by an interface. Instead, they model the flow over the whole domain and
represent the surface force as a body force smeared over a narrow region of the interface.

In this chapter, we construct an IFE method to solve the Stokes interface problem with
moving interfaces. As we have already discussed in the previous chapters, the mesh does
not depend on the interface and therefore, a structured mesh may be used throughout the
computations. In [133], a parabolic problem with a moving interface was solved using an
IFE method where a priori knowledge of the interface location at any time was assumed.
However, solving the Stokes problem with a moving interface is more challenging since an
analytical expression for the interface is not available. Instead, the interface is driven by the
velocity of the fluids and it satisfies the following system of ODEs

d
dt
Xα(t) = u(Xα(t), t), t ∈ [0, T]

Xα(0) = Xα
0

, ∀Xα(t) ∈ Γ(t), (5.1)

where u is the solution to the transient Stokes interface problem:

−∇ · S(u(X, t), p(X, t)) = 0, if X ∈ Ω−(t) ∪ Ω+(t), t > 0 (5.2a)

∇ · u(X, t) = 0, if X ∈ Ω−(t) ∪ Ω+(t), t > 0 (5.2b)

u(X, t) = g(X, t), on ∂Ω, t > 0 (5.2c)

where S is defined in (1.3d). Across the interface the following jump conditions occur

[S(u(X, t), p(X, t))n] = σ(X, t), if X ∈ Γ(t), (5.2d)

[u(X, t)] = 0, if X ∈ Γ(t), (5.2e)

where Γ(t) is the interface that separates the subdomains Ω+(t) and Ω−(t) illustrated in
Figure 5.1 and n is the unit normal vector to the interface. We omit the dependent variable
t and denote the domains Ω±(t) by Ω±.

5.2 IFE implementation

In this section, we present the algorithm used to solve the Stokes interface problem with
moving interfaces. This includes determining the surface force, solving the Stokes interface

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 75

Ω
+
(t)

Ω
−
(t)

Γ(t)

Figure 5.1: A rectangular domain Ω with an immersed interface Γ(t).

problem, tracking the interface and updating the type of the elements. We note that since
the problem is strongly dependent on time (i.e. the interface evolves in time), the IFE space
and IFE particular functions evolve in time. Therefore, the tasks described in Sections 5.2.1,
5.2.2 and 5.2.3 must be carried out at every time step with the corresponding IFE space and
particular functions. We note that an interface tracking procedure cannot be implemented
to track all the points on the interface. Instead, we assume that at the initial time t0, the
interface Γ(t) is sampled uniformly using a set of N control points. These control points,
which we shall denote X (t) = (X (1)(t),X (2)(t), ...,X (N)(t)), are ordered in space and evolve
in time.

5.2.1 Even-odd rule

To implement the IFE method, it is very important to determine whether a point in the
domain Ω lies inside Ω+ or Ω−. To this end, we introduce the polygon Γ̃(t) obtained using a
piecewise linear interpolation of the control points X (t) and assume that the approximated
interface Γ̃(t) is a closed polygon and apply the so-called even-odd algorithm described in
[124]. The main idea of this algorithm is to count how many times a horizontal ray passing
through the point of interest cuts the closed polygon. If the number of intersections is odd
then the point lies inside the polygon, otherwise it lies outside the polygon as illustrated in
Figure 5.2. This algorithm allows us to obtain information regarding the interface elements
and edges such as their position with respect to the interface and their intersections with
the interface.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 76

~
Γ

Odd	
 number	
 of	
 intersec0on	

Even	
 number	
 of	
 intersec0on	

Figure 5.2: An illustration of the Even-Odd algorithm.

5.2.2 Surface force

For a point (x, y) ∈ Γ̃(t), the surface force is usually given by the expression [90]

σ(x, y, t) = −σκ(x, y, t)n(x, y, t), t > 0, (5.3)

where σ ≥ 0 is the surface tension, κ(x, y, t) is the curvature of the interface at the point
(x, y) and n(x, y, t) = (nx, ny)

T is the unit vector normal to the interface at (x, y) pointing
towards the exterior of the region enclosed by the interface. In this work, we only need to
approximate the curvature κ at (x, y) ∈ Γ̃(t), which will be done using a piecewise quadratic
parametric interpolation at three adjacent control points that we denote X (i−1)(t), X (i)(t)
and X (i+1)(t), such that X (i)(t) is the closest to the point (x, y) ∈ Γ̃(t) as shown in Figure
5.3. We denote the interpolant by r(τ) = (rx(τ), ry(τ))T , and use the following formula to
determine the curvature:

κ(τ) =

∣∣∣∣∣∣d
~T

ds

∣∣∣∣∣∣ , (5.4)

where ~T is the unit tangent vector to r(τ) and s is the arc length.

In this work, we assume that the control points are ordered counter clockwise and therefore
we use the following formula to determine the unit normal vector n(x, y):

a =
∣∣∣r′y(τ)

∣∣∣ , b = |r′x(τ)| ,

c = (c1, c2, c3)T = (x2 − x1, y2 − y1, 0)T × (0, 0, 1)T ,

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 77

X (i+1)(t)

n

(x, y)∈Γ
~

X (i)(t)

X (i−1)(t)

Figure 5.3: An illustration of the quadratic parametric interpolation used to determine the
curvature of the interface and the normal vector to the interface at (x, y).

nx =
sign(c1)a√
a2 + b2

, ny =
sign(c2)b√
a2 + b2

,

where (x1, y1) and (x2, y2) are the coordinates of the control points X (i−1) and X (i), respec-
tively.

5.2.3 Immersed finite element method

In this section, we derive the finite element formulation used to solve the Stokes interface
problem with a moving interface. Note that due to the motion of the interface, the IFE
space and particular functions evolve in time. Thus, we define the spaces

Hm(Ω, t) = {(u, p) : u ∈ C0(Ω),u ∈ (Hm(A))2 and p ∈ H1(A), ∀A ⊂ Ω±},

where Hm is the standard Sobolev space and introduce

Hm
0 (Ω, t) = {(u, p) ∈ Hm(Ω, t) : u = 0 on ∂Ω}.

Following the standard procedure, see for instance [120], we multiply the system (5.2a-5.2b)
by (v, q) ∈ H1

0(Ω, t), at a given time t, and integrate over an arbitrary non-interface element
T ∈ Th to obtain

−
∫
T

(∇ · S(u, p)) · vdx−
∫
T
∇ · uqdx = 0. (5.5)

We apply the divergence theorem to integrate the first term by parts and obtain

−
∫
∂T

(S(u, p)n) · vds+
∫
T

S(u, p) : ∇vdx−
∫
T
∇ · uqdx = 0, (5.6)

where A : B =
∑2
i=1

∑2
j=1AijBij.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 78

On an interface element T , we apply the divergence theorem on T ∩Ω+ and T ∩Ω− and take
into account that the exact solution satisfies the jump conditions (5.2d) and (5.2e) across
the interface to obtain

−
∫
∂T

(S(u, p)n) · vds+
∫
T

S(u, p) : ∇vdx−
∫
T
∇ · uqdx

=
∫
T∩Γ(t)

σ · vds, (5.7)

Summing over all elements leads to

−
∑
T∈Th

∫
∂T

(S(u, p)n) · vds+
∫

Ω
S(u, p) : ∇vdx−

∫
Ω
∇ · uqdx =∫
Γ(t)

σ · vds. (5.8)

We assume (u, p) ∈ H2(Ω, t), hence

−
∑
e∈Eh

∫
e
[(S(u, p)n) · v]ds+

∫
Ω

S(u, p) : ∇vdx−
∫

Ω
∇ · uqdx =∫
Γ(t)

σ · vds. (5.9)

Applying the identity ab− cd = 1
2
(a+ c)(b− d) + 1

2
(a− c)(b+ d) yields

−
∑
e∈Eh

∫
e
([(S(u, p)n)] · {v}+ {(S(u, p)n)} · [v]) ds+

∫
Ω

S(u, p) : ∇vdx

−
∫

Ω
∇ · uqdx =

∫
Γ(t)

σ · vds. (5.10)

Every interface edge can be expressed as e = e+ ∪ e−, where e± = e ∩ Ω±. Hence∫
e
[S(u, p)n] · {v}ds =

∫
e+

[S(u, p)n] · {v}ds+
∫
e−

[S(u, p)n] · {v}ds.

Since (u, p) ∈ H2(Ω, t), we write ∫
e
[S(u, p)n] · {v}ds = 0, (5.11)

which also holds for non-interface elements.

Combining (5.10) and (5.11) with (u, p) ∈ H2(Ω, t) and assuming u continuous lead to the
interior penalty weak formulation∫

Ω
S(u, p) : ∇vdx−

∫
Ω
∇ · uqdx−

∑
e∈Eh

∫
e
{(S(u, p)n)} · [v]ds

+
∑
e∈Eh

α

he

∫
e
ν[u] · [v]ds+ γ

∑
e∈Eh

∫
e
{(νε(v)n)} · [u]ds+

∑
e∈Eh

∫
e
{q}[u] · n =∫

Γ(t)
σ · vds+ γ

∑
e⊂∂Ω

∫
e
{(νε(v)n)} · [g]ds+

∑
e⊂∂Ω

∫
e
{q}[g] · n +

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [v]ds, (5.12)

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 79

where α is a positive stabilization parameter and γ = 1 for the nonsymmetric weak formu-
lation (NIPG) while γ = −1 for the symmetric weak formulation (SIPG).

The weak form above leads to the interior penalty formulation for the Stokes problem con-
sisting of finding (u(x, y, t), p(x, y, t)) ∈ H1(Ω, t) such that u = g on ∂ΩA(u,v) +B(v, p) = L(v)

B(u, q) = l(q)
, ∀ (v, q) ∈ H1

0(Ω, t), (5.13a)

where
A(w,v) =∫

Ω
νε(w) : ∇vdx−

∑
e∈Eh

∫
e
ν{ε(w)n} · [v]ds+ γ

∑
e∈Eh

∫
e
{νε(v)n} · [w]

+
∑
e∈Eh

α

he

∫
e
ν[u] · [v]ds, (5.13b)

B(v, q) = −
∫

Ω
q∇ · vdx+

∑
e∈Eh

∫
e
{q}[v] · nds, (5.13c)

L(v) =
∫

Γ(t)
σ · vds+ γ

∑
e⊂∂Ω

∫
e
{νε(v)n} · [g]ds+

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [v]ds, (5.13d)

l(q) =
∑
e⊂∂Ω

∫
e
{q}[g] · nds. (5.13e)

Then, this formulation leads to the DG-IFE method consisting of finding (uh, ph) ∈ Sh(Ω, t)⊕
{qh(x, y, t)} such thatA(uh,vh) +B(vh, ph) = Lh(vh)

B(uh, qh) = l(qh)
, ∀ (vh, qh) ∈ Sh,0(Ω, t), (5.14)

subject to the boundary conditions:

uh(R) = g(R), for all mesh vertices R ∈ ∂Ω,

where

Lh(vh) =
∑
T∈T i

h

∫
DE

σh · vhds+ γ
∑
e⊂∂Ω

∫
e
{νε(vh)n} · [g]ds+

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [vh]ds, (5.15)

σh is the linear interpolant of σ on DE using the value of σ at D and E.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 80

Here Sh(Ω, t) is the IFE space Sh(Ω) defined in (3.9) and constructed using the approxi-
mated interface Γ̃(t); qh(x, y, t) is the IFE vector function qh(x, y) defined in (3.24) and
constructed using the approximated interface Γ̃(t) and

Sh,0(Ω, t) = {(v, p) ∈ Sh(Ω, t) : v(R) = 0, for all mesh vertices R ∈ ∂Ω}.

Since the interface is evolving in time and is driven by the velocity of the fluids, we propose to
track the interface using the approximate velocity uh, the control points X (i)(t), 1 ≤ i ≤ N ,
and the ODEs (5.1). The tracking procedure can therefore be written as{

d
dtX

(i)(t) = uh(X (i)(t), t), t ∈ [0, T]

X (i)(0) = X (i)
0

, i = 1, 2, ..., N, (5.16)

where uh(X (i)(t), t) is the IFE velocity of the fluid at the control point X (i)(t) and N denotes the

total number of control points.

To solve the Stokes problem with a moving interface, we propose to use the following algorithm:

Select a small ε > 0, ∆t > 0 and the number of control points N

Determine the initial control points X (0)

Define the partition tk = k∆t, k = 0, 1, 2, 3, ...

Construct an initial uniform mesh for Ω.

For k = 0, 1, 2, ...

1. If needed, refine the initial mesh near the interface.

2. Use the given control points X (tk) to construct the IFE space and particular

functions and compute the surface force σ at the interface points.

3. Solve Stokes problem and determine the velocity uh(X (i)(tk), tk) at the control

points X (i)(tk), i = 1, 2, ..., N .

4. Stop when max1≤i≤N ||uh(X (i)(tk), tk)− uh(X (i)(tk−1), tk−1)||2 < ε.

5. Move the control points X (tk) according to the ODEs (5.16).

A flowchart of this algorithm is shown in Figure 5.4.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 81

Background	
 FE	
 mesh	

Control	
 points	
 X(t)	

Es0mate	
 the	

curvature	
 and	

construct	
 the	
 IFE	

space.	

Solve	
 Stokes	
 problem	

Move	
 interface	

Refine	
 Mesh	

Ini0al	
 control	
 points	
 X(0)	

Equilibrium	
 state	
 reached?	

Yes	

Stop	

No	

Figure 5.4: Flowchart of an algorithm used to solve the Stokes interface problem.

5.3 Numerical simulations

In this section, we consider two examples. The first is the retraction of drops and the second
is the deformation of the drop in shear flows. To solve these two problems, a good approxi-
mation of the velocity is needed. Since we are using a DG method, the local refinement of
the mesh around the interface is possible yielding hanging nodes. The procedure to create
this mesh is simpler to implement than the usual mesh refinement procedures that do not
allow hanging nodes.

To illustrate the efficiency of the adaptive refinement we solve Example 4.2.3 using uni-
form meshes having 52, 102, 202, 402, 802 and 1602 elements and use the SIPG method. We
also solve the same problem starting with a coarse mesh having 52 elements and then we
refine the mesh by dividing the elements cut by the interface into four congruent elements.
The refinement is carried out eight times and the SIPG method is used. The maximum
errors of the velocity at the control points X (t) are computed for each mesh and plotted
against the corresponding degrees of freedom as shown in Figure 5.5. We can see that the
error converges faster when the adaptive refinement procedure is used. To take advantage
of this feature, we create an initial background mesh and then refine all the elements cut
by the interface. The level of refinement shall refer to the depth of refinement of the mesh
around the interface. This local refinement procedure is very efficient as it allows the use of

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 82

5 6 7 8 9 10 11 12
−16

−14

−12

−10

−8

−6

−4

M
ax
im

um
	
 e
rr
or
	

Dof	

Figure 5.5: Finite element errors versus the degrees of freedom in the log-log scale for adaptive
(-o) and uniform (- -�) refinements.

structured meshes and uses fewer degrees of freedom than the uniform refinement procedure.

Example 5.3.1. Retraction of drops

It is well known that if an elastic drop is stretched out, it will retract to its equilibrium
state if no body forces are exerted upon the flow [131]. In this experiment, we consider
the square domain [−1, 1]2 and a stretched drop modeled using an ellipse centered at the
origin with length of major axis a =

√
3/3.1 and length of minor axis b =

√
3/5.3. The

viscosity of the fluid inside the drop is ν− = 0.6 and outside the drop ν+ = 2. We use
a mesh with approximately 3, 000 elements, obtained by partitioning the domain using a
20× 20 background mesh and using four levels of refinement as shown in Figure 5.6. We use
homogeneous boundary conditions and no body forces so that the motion of the interface is
driven by its surface force.

To track the interface in time, we solve the ODE (5.16) using the forward Euler method:

X (i)
k+1 = X (i)

k + ∆tuh(X (i)
k , tk), i = 1, 2, ..., N, (5.17)

where X (i)
k , i = 1, 2, ..., , N are the approximate locations of the control points at time tk.

Note that the Stokes interface problem is solved using the SIPG method at every time
step tk in order to obtain the approximate velocity uh(X (i)

k , tk), i = 1, 2, ..., N at the control
points. In this simulation, we use a time step ∆t = 10−2, homogenous boundary conditions
and as mentioned above we assume that there is no body forces exerted on the system.

We show the DG-IFE pressure and the mesh used to partition the domain at t = 0, 0.7, 4.27
in Figure 5.7. The equilibrium state reached by the drop indicates that the drop has retracted

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 83

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−0.8 −0.75 −0.7 −0.65 −0.6 −0.55 −0.5 −0.45 −0.4 −0.35

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

Figure 5.6: Initial state of the system for Example 5.3.1 (upper left), the mesh used to
discretize Stokes problem (5.2a)−(5.2c) at t = 0 (upper right) and a blow-up of the mesh
near the interface (bottom).

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 84

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

x

(a) The interface and a mesh at t = 0 (b) DG-IFE pressure at t = 0

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

x

(c) The interface and a mesh at t = 0.7 (d) DG-IFE pressure at t = 0.7

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

y

x

(e) The interface and a mesh at t = 4.27 (f) DG-IFE pressure at t = 4.27 (steady state)

Figure 5.7: Simulation of Example 5.3.1.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 85

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09
Kinetic energy

Ki
ne

%c
	
 e
ne

rg
y	

Time	

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.45

0.5

0.55

0.6

0.65

Volume

Vo
lu
m
e	

Time	

Figure 5.8: Kinetic energy of the system versus time (left). Volume of the drop versus time
(right).

to its natural spherical state after 427 iterations. Our stoping criteria is the convergence of
the kinetic energy E(tk) = ||uh(X (i)

k , tk)||0,Ω to zero (i.e., E(tk) < ε) as shown in Figure
5.8. Also, since we are dealing with incompressible flows, the volume of the drop should
remain unchanged with respect to time. This has been validated in Figure 5.8 which shows
the volume inside the drop versus time. The steady state pressure shown in Figure 5.7(f)
satisfies the Young-Laplace equation

[p]|Γ =
σ

R
, (5.18)

where R is the radius of the drop. The surface tension σ = 2 is used in this experiment,
and the radius of the steady state drop is R ≈ 0.4273. According to (5.18), the jump of
the pressure across the interface should be [p]|Γ ≈ 4.6805. By examining Figure 5.7, we can
see that the pressure on each subdomain is constant and the jump of the DG-IFE pressure
across the interface is [p]|Γ ≈ 4.68 which agrees with the expected value.

Example 5.3.2. Drop deformation in shear flow

We validate our DG-IFE method by studying the behavior of a drop in shear flow. The
domain of interest consists of a drop with initial radius a = 1

4
centered at the origin, immersed

in a rectangle Ω = [−π, π] × [−1, 1] and subjected to a shear flow as shown in Figure 5.9.
The boundary conditions are defined as u = g = (εy, 0)T on ∂Ω such that ε is the shear rate.
We define the capillary parameter Ca = νaε

σ
where ν is the viscosity of the drop and σ is the

surface tension. The deformation of the drop depends strongly on Ca and was extensively
studied in [135]. The deformation is computed using the following formula:

D =
L−W
L+W

, (5.19)

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 86

2π

2
x

y

a

(−π ,−1)

Shear	

flow	

Figure 5.9: The computational domain for drop deformation in shear flow.

L

W

Figure 5.10: The length L and width W of a deformed drop.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 87

where L is the length of the deformed drop and W is its width as illustrated in Figure 5.10.

We solve the ODE system (5.16) using the following adaptive Runge-Kutta method [107]:

Set up the initial time t0 = 0, initial time step ∆t, ε1 and εmax :

For k=0,1,2,...

1. Compute the velocity at different stages:

K
(i)
1 = ∆tuh

(
X (i)
k , tk

)
,

K
(i)
2 = ∆tuh

Å
X (i)
k +

2K
(i)
1

3
, tk + 2

3
∆t
ã
,

K
(i)
3 = ∆tuh

Å
X (i)
k +

2K
(i)
2

3
, tk + 2

3
∆t
ã
, i = 1, 2, ...N.

2. Approximate the location of the control points using methods of order 2 and 3 respectively:

X̂(i) = X (i)
k +

K
(i)
1

4
+

3K
(i)
2

4
,

X̃(i) = X (i)
k +

K
(i)
1

4
+

3K
(i)
2

8
+

3K
(i)
3

8
, i = 1, 2, ...N.

3.Update the time step:

ε = max1≤i≤N ||X̃(i) − X̂(i)||2,
∆t = 0.9

Ä
εmax

ε

ä1/4
∆t,

if ε < εmax :

Xk+1 = X̂,

Stop when max1≤i≤N ||uh(X (i)(tk), tk)− uh(X (i)(tk−1), tk−1)||2 < ε1.

tk+1 = tk + ∆t,

else:

Repeat (1).

(5.20)
We solve problem 5.3.2 using a structured mesh having at most 3500 elements. The viscosi-
ties are ν− = ν+ = 1, and the simulations are carried out using SIPG method, the ODE
solver (5.20) and different capillary numbers Ca = 3

32
, 1

8
, 1

4
, 1

2
. We plot the evolution of the

deformation D defined in (5.19) versus time for different values of Ca in Figure 5.11(a). Then
we plot the steady state deformation D versus the capillary number in Figure 5.11(b), and
compare our results to their counterparts obtained in [131]. Figure 5.11(b) shows excellent
agreement between the results obtained in this work and the results obtained in [131]. In
fact, the maximum difference in the steady deformation between our results and the ones
obtained in [131] is about 0.0087. However, the simulations in [131] were carried out using
a much finer mesh having 2048 × 1024 elements, while the simulations in this work were
carried out with at most 3500 elements. This shows that this method solves smaller linear
systems and can capture the physics of the problem.

Nabil Chaabane Chapter 5. IFE method for Stokes with moving interfaces 88

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.1

0.2

0.3

0.4

0.5

time

D
e

fo
rm

a
ti
o

n
 D

Ca=0.09375

Ca=0.125

Ca=0.25

Ca=0.5

(a) The drop deformation D versus time.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Capillary number Ca

S
te

a
d

y
 s

ta
te

 d
e

fo
rm

a
ti
o

n
 D

IFE method

Data from [131]

Regression using the IFE data

(b) Steady state deformation D versus Ca.

Figure 5.11: Simulation of Example 5.3.2.

Chapter 6

Axisymmetric Stokes interface
problem

In this chapter, we treat the three-dimensional Stokes interface problem with velocity u =
(u1, u2, u3)T , ui : R3 → R, i = 1, 2, 3, and the pressure p : R3 → R for incompressible
flow. In this chapter, we use u to describe a three-dimensional vector and use u to denote a
two-dimensional vector as before. The problem is given by the following set of equations:

−∇ · L(u, p) = f , in V + ∪ V −, (6.1a)

∇ · u = 0, in V + ∪ V −, (6.1b)

u = g, on ∂V, (6.1c)

where the stress tensor is defined as follows

L(u, p) = ν(∇u + (∇u)T)− pI3,

f(x, y, z) : R3 → R3 is a body force in L2(V) and I3 is the 3× 3 identity matrix.

The domain V = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1,−1 ≤ z ≤ 1} is a three-dimensional cylinder
and ∂V denotes its boundary. We assume that the domain is separated by an interface Ξ
into two subdomains V + and V −, such that each domain contains one fluid, and we assume
that the interface is defined by Ξ = {(x, y, z) ∈ V : G(x, y, z) = 0}, where G : R3 → R is a
smooth function. Across the interface Ξ, the following jump conditions occur:

[u]|Ξ = 0, (6.1d)

[L(u, p)n]|Ξ = σ, (6.1e)

where σ = (σ1, σ2, σ3)T is the surface force and n is a unit vector normal to the interface.

89

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 90

In cylindrical coordinates (r, θ, z), the Stokes interface problem for the velocity u = (ur, uθ, uz)
T

and the pressure p is defined as follows:

−∇ · L(u(r, θ, z), p(r, θ, z)) = f(r, θ, z), in V + ∪ V −, (6.2a)

∇ · u(r, θ, z) = 0, in V + ∪ V −, (6.2b)

u(r, θ, z) = g(r, θ, z), on ∂V, (6.2c)

and the jump conditions become

[u(r, θ, z)]|Ξ = 0, (6.2d)

[L(u(r, θ, z), p(r, θ, z))n]|Ξ = σ. (6.2e)

We recall the divergence of a vector v = (vr, vθ, vz)
T in cylindrical coordinates:

∇ · v =
1

r

∂rvr
∂r

+
1

r

∂vθ
∂θ

+
∂vz
∂z

(6.2f)

and the velocity gradient

∇v =



∂vr
∂r

1
r
∂vr
∂θ
− vθ

r
∂vr
∂z

∂vθ
∂r

∂vθ
∂θ

+ vr
r

∂vθ
∂z

∂vz
∂r

1
r
∂vz
∂θ

∂vz
∂z

 . (6.2g)

In this work, we assume axisymmetry around the z-axis, then:
• we project the three-dimensional domain V onto the meridian plane Ω = {(r, z) : 0 ≤ r ≤
1, −1 ≤ z ≤ 1}.
• we project the interface Ξ onto the meridian plane Ω and denote it as Γ = {(r, z) : G̃(r, z) =
G(r, 0, z) = 0}.
• we reduce the three-dimensional velocity u to a two-dimensional velocity u = (ur, uz)

T

defined on the meridian plane Ω.
• we reduce the three-dimensional stress tensor L(u(r, θ, z), p(r, θ, z)) to an axisymmetric
stress tensor S(u(r, z), p(r, z)) defined on the meridian plane Ω.

We note that the projected interface Γ separates the meridian plane Ω into two sub-domains
Ω− and Ω+ as shown in Figure 6.1. Then the Stokes interface problem can be reduced in
the meridian plane Ω as follows: Find u = (ur, uz)

T and p that satisfy

−∇ · S(u(r, z), p(r, z)) = f(r, z), in Ω+ ∪ Ω−, (6.3a)

∇ · u(r, z) = 0, in Ω+ ∪ Ω−, (6.3b)

u(r, z) = g(r, z), on ∂Ω, (6.3c)

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 91

where f = (fr, 0, fz)
T is a body force and g = (gr, gz)

T , and the jump conditions across the
projected interface Γ become

[u(r, z)]|Γ = 0, (6.3d)

[S1(u(r, z), p(r, z))n]|Γ = σ. (6.3e)

Here, n = (nr, nz)
T is the unit vector normal to the interface Γ, σ = (σr, σz)

T is the surface
force and S is the projected stress tensor onto the meridian plane Ω and is defined as

S(u, p) = νεs(u)− pI3, (6.3f)

with
εs(u) = (∇u + (∇u)T), (6.3g)

where

∇u =



∂ur
∂r

0 ∂ur
∂z

0 ur
r

0

∂uz
∂r

0 ∂uz
∂z

 . (6.3h)

The divergence operator in the axisymmetric coordinates applied to a vector v = (vr, vz)
T

is:

∇ · v =
1

r

∂rvr
∂r

+
∂vz
∂z

. (6.3i)

The stress tensor
S1(u, p) = νε1(u)− pI2, (6.3j)

where I2 is the 2× 2 identity matrix and

ε1(u) =

Ö
2∂ur
∂r

∂ur
∂z

+ ∂uz
∂r

∂ur
∂z

+ ∂uz
∂r

2∂uz
∂z

è
. (6.3k)

It is important to note that the PDEs (6.3a) only yields two PDEs. From hereafter, we
denote by w = (wr, wz)

T any two-dimensional vector in Ω, obtained by projecting its
three-dimensional counterpart w = (wr, 0, wz)

T onto Ω. For instance, the two-dimensional
body force f = (fr, fz)

T will refer to the projection of the three-dimensional surface force
f = (fr, 0, fz)

T onto Ω.

In Section 6.1, the IFE basis functions are derived using the jump conditions (6.3d)-(6.3e).
In Section 6.2, we obtain an axisymmetric weak formulation using the three-dimensional
model and projecting it onto the meridian plane (r, z).

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 92

6.1 IFE spaces and particular functions for the Stokes

interface problem

In this section, we develop an immersed finite element space and particular functions for
the Stokes interface problem with and without surface force. To this end, we introduce
the three-dimensional mesh T 3

h consisting of cylindrical elements T 3
kj, k = 0, 1, ...,M − 1,

j = 0, 1, ..., N − 1,

T 3
kj = {(r, θ, z) : 0 ≤ θ < 2π, k∆r ≤ r ≤ (k + 1)∆r, j∆z ≤ z ≤ (j + 1)∆z}

where ∆z = 2
N

, ∆r = 1
M

, N is the number of nodes in the z-direction and M is the number
of nodes in the r-direction. We shall denote the faces of the elements T 3 as ∂T 3 and their
projection onto the meridian plane Ω, T with edges ∂T . The projection of the mesh T 3

h

onto Ω will be denoted Th, and Γ will refer to the projection of the interface Ξ onto Ω as
shown in Figure 6.1. We further classify the elements into two subcategories: (i) the set of
all elements cut by the interface, which we shall denote T 3,i

h , (ii) the set of all elements not
cut by the interface denoted T 3,n

h . Next, let E3
h denote the set of all element faces in T 3

h and
let E3,i

h ⊂ E3
h be the set of element faces cut by the interface. We note that the mesh T 3

h is
only used to construct the IFE basis functions and derive the weak formulation and will not
be used in any numerical computations.

6.1.1 Q1/Q0 IFE shape functions without surface force

We present the procedure to construct the IFE basis functions. A typical cylindrical interface
element T 3 is projected onto the meridian plane (r, z), which yields an interface rectangular
element T = �A1A2A3A4 ∈ T ih with vertices Aj = (rj, zj), j = 1, 2, 3, 4. The projected
interface Γ intersects two edges at D = (rD, zD) and E = (rE, zE) as shown in Figure 3.1,

and the interface fiDE = Γ ∩ T is approximated by the line segment DE which separates
T into two polygonal domains T+ and T− such that T+ contains vertices of T that are in
Ω+. Topologically, there are two types of interface elements. Type I interface elements are
those with two adjacent edges cut by the interface and Type II interface elements have two
opposite edges cut by the interface, see the illustrations in Figure 3.1.

As usual, the construction and analysis of the finite element basis functions are performed
on the reference element T̂ = �Â1Â2Â3Â4 with vertices Â1 = (0, 0)T , Â2 = (1, 0)T , Â3 =
(0, 1)T , Â4 = (1, 1)T . Let Y = (r, z) and Ŷ = (r̂, ẑ) and let

Ŷ = F (Y) = MY +B, (6.4)

be the standard affine mapping from an arbitrary element T to the reference element T̂ such
that Âj = F (Aj), j = 1, 2, 3, 4. We further note that each interface element T of Type I

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 93

T 3
T

Projec5on	

V Ω
Projec5on	

z

x

y

z

r

V −

V +

z

x

y

V

Ξ

Ω

Ω+Ω−

Γ

z

r

Figure 6.1: The 3D domain V and a typical cylindrical element T 3 (upper left), and their
projections onto the meridian plane (upper right). The 3D domain and interface (lower left)
and their axisymmetric projection (lower right).

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 94

(Type II) is mapped into a reference element of Type I (Type II) shown in Figure 3.1 where

Ê = F (E) and D̂ = F (D) and D̂Ê = F (DE). The interface points Ê and D̂ can be written
as

D̂ =

(
0

d̂

)
, Ê =

Ç
ê
0

å
, (6.5)

for an element of Type I and

D̂ =

(
d̂
1

)
, Ê =

Ç
ê
0

å
, (6.6)

for an element of Type II, where 0 < d̂, ê < 1 as shown in Figure 3.1.

Now we are ready to describe our procedure for constructing the IFE shape functions on
the reference element. As usual, a function f̂(r̂, ẑ) defined for (r̂, ẑ) ∈ T̂ leads to a function
f(r, z) = f̂(F−1(r̂, ẑ)) for (r, z) ∈ T by the affine mapping between the reference element T̂
and element T . We first note that the velocity u = (ur, uz) and the pressure p are coupled
through the jump condition (6.3e) which requires the design of vector-valued shape functions
for both u and p. This means we plan to approximate the solution vector Û = [û, p̂]T by an
IFE function Φ̂ which is a piecewise polynomial vector function of the form

Φ̂(r̂, ẑ) = Φ̂s(r̂, ẑ) =

Ü
φ̂s1(r̂, ẑ)

φ̂s2(r̂, ẑ)

φ̂s3(r̂, ẑ)

ê
, for (r̂, ẑ) ∈ T̂ s, s = +,−, (6.7a)

where

φ̂sj(r̂, ẑ) = asj + bsj r̂ + csj ẑ + dsj r̂ẑ, j = 1, 2, s = +,−, (6.7b)

φ̂s3(r̂, ẑ) = as3, s = +,−. (6.7c)

Next we let Θ̂ = (φ̂1, φ̂2)T and Θ̂|T s(r̂, ẑ) = Θ̂s(r̂, ẑ) =

(
φ̂s1(r̂, ẑ)

φ̂s2(r̂, ẑ)

)
, s = +,−.

We then discuss the construction of IFE shape functions that will be used to form the local
IFE space on the reference element T̂ . According to (6.7) each IFE function is defined by 18
coefficients asj , b

s
j , c

s
j , d

s
j , j = 1, 2, s = +,− and as3, s = +,−. Hence, we can define IFE shape

functions Φ̂i, i = 1, 2, . . . , 9 whose coefficients are uniquely determined by the following 18
conditions:

• continuity of the velocity component across D̂Ê for Θ̂i = (φ̂1,i, φ̂2,i)
T

Θ̂−i (Ê) = Θ̂+
i (Ê), Θ̂−i (D̂) = Θ̂+

i (D̂),
∂2Θ̂−i
∂r̂∂ẑ

=
∂2Θ̂+

i

∂r̂∂ẑ
(6.8a)

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 95

• weak continuity of the normal stress (6.3e) across D̂Ê∫
D̂Ê

[S1(Θ̂i, φ̂3,i)nD̂Ê]ds = 0 (6.8b)

n
D̂Ê

= (nr, nz)
T is a unit vector normal to the approximate interface D̂Ê and S1 is

the stress tensor defined in (6.3j).

• continuity of the divergence of the velocity

∇̂ · Θ̂+
i

(
D̂ + Ê

2

)
= ∇̂ · Θ̂−i

(
D̂ + Ê

2

)
(6.8c)

• Lagrange and scaling conditions

φ̂1,i(Âj) = δi,j, φ̂2,i(Âj) = δi,j+4, j = 1, 2, 3, 4, and
1

|T̂ |

∫
T̂
φ̂3,i = δi,9. (6.8d)

Note that the continuity of the second derivatives in (6.8a) is equivalent to d+
1 = d−1 and

d+
2 = d−2 which by using d+

1 = d−1 = d1 and d+
2 = d−2 = d2 in (6.7a-6.7b) reduces the number

of unknown coefficients to 16.

Conditions (6.8a) - (6.8d) lead to a linear system Mci = bi for the coefficients

ci = (a+
1 , b

+
1 , c

+
1 , d1, a

−
1 , b

−
1 , c

−
1 , a

+
2 , b

+
2 , c

+
2 , d2, a

−
2 , b

−
2 , c

−
2 , a

−
3 , a

+
3)T .

The matrix M for a reference element of Type I is



1 ê 0 0 −1 −ê 0 0 0 0 0 0 0 0 0 0

1 0 d̂ 0 −1 0 −d̂ 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ê 0 0 −1 −ê 0 0 0

0 0 0 0 0 0 0 1 0 d̂ 0 −1 0 −d̂ 0 0

0 m52 m53 m54 0 m56 ν−ê 0 −ν+ê 0 m511 0 ν−ê 0 −d̂ d̂

0 0 m63 m64 0 0 ν−d̂ 0 −ν+d̂ m610 m611 0 ν−d̂ m614 −ê ê
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 m1515 m1516

−1 −ê − d̂
2

0 1 ê d̂
2

0 0 − ê
2

0 0 0 ê
2

0 0



, (6.9)

where

m52 = −2ν+d̂, m53 = −ν+ê, m54 =
1

2
(ν− − ν+)

(
ê2 + 2d̂2

)
,m56 = 2ν−d̂,

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 96

m511 =
1

2
(ν− − ν+)êd̂,

m63 = −ν+d̂, m64 =
1

2
(ν− − ν+)êd̂, m610 = −2ν+ê,

m611 =
1

2
(ν− − ν+)

(
2ê2 + d̂2

)
,m614 = 2ν−ê,

m1515 =
1

2
êd̂, m1516 = 1− 1

2
êd̂.

For a reference element of Type II, the matrix M is



1 ê 0 0 −1 −ê 0 0 0 0 0 0 0 0 0 0

1 d 1 0 −1 −d̂ −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 ê 0 0 −1 −ê 0 0 0

0 0 0 0 0 0 0 1 d̂ 1 0 −1 −d̂ −1 0 0
0 −2ν+ m53 m54 0 2ν− m57 0 m59 0 m510 0 m513 0 −1 1

0 0 −ν+ m64 0 0 ν− 0 −ν+ m610 m611 0 ν− m614 d̂− ê m616

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 d̂+ê
2

m1516

−1 −ê − d̂
2

0 1 ê d̂
2

0 0 − ê
2

0 0 0 ê
2

0 0



, (6.10)

m53 = ν+(d̂− ê), m54 = −1

2
(ν−−ν+)

(
−2 + d̂2 − ê2

)
, m57 = ν−(−d̂+ ê), m5,9 = ν+(d̂− ê),

m511 = −1

2
(ν− − ν+)(d̂− ê), m513 = ν−(−d̂+ ê),

m64 =
1

2
(ν− − ν+)(d̂+ ê),m610 = 2ν+(d̂− ê), m611 = −1

2
(ν− − ν+)

(
−1 + 2d̂2 − 2ê2

)
,

m614 = 2ν−(−d̂+ ê),m1516 =
1

2
(2− d̂− ê),

and the vector bi for both Type I and Type II elements is

bi = (0, 0, 0, 0, 0, 0, δi,1, δi,2, δi,3, δi,4, δi,5, δi,6, δi,7, δi,8, δi,9, 0)T .

We note that, other than the last row which corresponds to the conservation of mass con-
straint (6.8c), the matrices M in (6.9) and (6.10) are exactly the same as the ones defined in
Section 3.1. This implies that the shape functions constructed in this section are essentially
different from those constructed in Section 3.1 despite several similarities. Once these IFE

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 97

shape functions are constructed on the reference element, the standard affine mapping is
applied to obtain the corresponding vector IFE shape functions on an interface element T
as Φi(r, z) = Φ̂i(F

−1(r̂, ẑ)), i = 1, 2, . . . , 9.

On every non-interface element T we use the standard finite element shape functions Ψi, i =
1, 2, . . . , 9 defined in (3.8). Figure 6.2 presents illustrations for the shape functions Ψ1 and
Φ1. Unlike Ψ1 used in the standard Q1/Q0 finite element space, the components of the IFE
shape function Φ1 cannot be decoupled, i.e., its second and third components are not zero.

Then, the two-dimensional shape functions defined above are used to construct the global
IFE space on Ω for the axisymmetric Stokes interface problem as follows:

Ssh(Ω) = {Uh | Uh|T ∈ Xs
h(T)}, (6.11)

where

Xs
h(T) =

span{Φi(r, z), i = 1, 2, . . . , 9}, if T ∈ T ih ,
span{Ψi(r, z), i = 1, 2, . . . , 9}, if T ∈ T nh .

6.1.2 Q1/Q0 particular IFE functions with surface force

In the case where the jump condition (6.3e) is such that σ 6= 0, we use the idea presented
in Section 3.3. On each interface element T , the particular IFE functions are defined as

Υj =

Ç
Λj

ψj

å
, j = 1, 2.

whose velocity component is

Λj(r, z) =

Λ+
j (r, z) on T+

Λ−j (r, z) on T−
, (6.12)

with

Λs
j(r, z) =

Ç
Λs

1,j(r, z)
Λs

2,j(r, z)

å
, on T s, s = +,−, (6.13)

and the pressure component is a piecewise constant function such that

ψj =

ψ
+
j (r, z), on T+

ψ−j (r, z), on T−
, ψsj (r, z) = as3, s = +,−.

We then define the velocity component of the particular IFE functions to be piecewise
polynomials

Λs
i,j(r, z) = asi,j + bsi,jr + csi,jz + dsi,jrz, j = 1, 2, i = 1, 2, s = +,−. (6.14)

We further require that the particular IFE functions satisfy the following constraints

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 98

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−2

0

2

4

6

8

10

12

14

16

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−1

−0.5

0

0.5

1

Figure 6.2: The (ur, uz, p) components of the IFE shape function Φ1 (left) and standard
shape function Ψ1 (right).

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 99

Λj(Ai) = 0, i = 1, 2, 3, 4, (6.15)

Λ−j (E) = Λ+
j (E), Λ−j (D) = Λ+

j (D),
∂2Λ−j
∂r∂z

=
∂2Λ+

j

∂r∂z
, (6.16)∫

DE
[S1(Λj, ψj)nDE]ds = ej, (6.17)

1

|T |

∫
T
ψjdX = 0,∇ ·Λ+

j

Ç
D + E

2

å
= ∇ ·Λ−j

Ç
D + E

2

å
, (6.18)

where nDE is the unit normal vector used in (6.8b), ej is the canonical vector in R2 and S1

is defined in (6.3j). Note that these conditions lead to a linear system for determining the
parameters of a particular IFE function, and the matrix of this linear system, after mapping
of (6.15)-(6.18) to the reference element, is exactly the same as the one used to find the IFE
shape functions in the previous section. However, the right hand-side bj is different and is
given by

bj = (0, 0, 0, 0, δj,1, δj,2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T .

For the Stokes interface problem with a nonzero interface surface force σ 6= 0, we look for an
IFE solution (uh, ph) in Ssh(Ω)⊕ {qh(r, z)} where Ssh(Ω) is the IFE space defined in section
6.1.1 and the vector function qh(r, z) is such that

qh(r, z) =

κ1Υ1(r, z) + κ2Υ2(r, z), on T ∈ T ih
0 elsewhere

, (6.19)

where κ1 =
∫
DE σh,rds, κ2 =

∫
DE σh,zds and σh = (σh,r, σh,z)

T is the linear interpolation of
σ = (σr, σz)

T defined by σh(E) = σ(E) and σh(D) = σ(D). In fact, the IFE solution on
an interface element will take the formÇ

uh
ph

å
=

9∑
i=1

ciΦi + κ1Υ1 + κ2Υ2, (6.20)

where uh = (uh,r, uh,z)
T .

We note that since the velocity and pressure of the fluids modeled using axisymmetric
Stokes problem don’t depend on the variable θ, our two-dimensional IFE approximation
in the meridian plane is sufficient to capture the main features of the three-dimensional
system.

6.1.3 Basic properties of the Q1/Q0 IFE space

In this section, we investigate the basic properties of the IFE shape functions for the ax-
isymmetric Stokes interface problem. We start by showing the existence and uniqueness of
IFE shape functions for an arbitrary configuration of ν−, ν+ and interface location.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 100

Proposition 6.1.1. On every interface element T , there exists a unique set of linearly
independent IFE shape functions {Φi, i = 1, 2, . . . , 9} as defined in section 6.1.1.

Proof. The uniqueness and existence of IFE shape functions are directly guaranteed by the
invertibility of the matrices (6.9) and (6.10).

For interface elements of Type I a direct computation of the determinant of the matrix M
in (6.9) yields

det(M) = −1

4
ê(ê2 + d̂2)(Q1ν

− +Q2ν
+), (6.21)

Q1 = (−2ê2(−1 + d̂) + ê3d̂+ 2d̂2 + ê(−2 + d̂)d̂2),

Q2 = −êd̂(−2ê+ ê2 + (−2 + d̂)d̂).

Thus it suffices to show that Q1 > 0 and Q2 > 0. This is done by noting that Q1 and Q2

are exactly the same as in the proof of Proposition 3.4.1.

For interface elements of Type II the determinant of the matrix M in (6.10) is such that

det(M) = −1

4

(
d̂3 − d̂2ê− d̂ê2 + d̂+ ê3 + ê

)
(P1ν

− + P2ν
+), (6.22)

where
P1 = (2 + d̂3 − ê− d̂2ê+ ê3 − d̂(1 + ê2)),

P2 = (−d̂3 + ê+ 2ê2 − ê3 + d̂2(2 + ê) + d̂(1− 4ê+ ê2)).

Again, we note that P1 and P2 are the same as in Proposition 3.4.1, therefore P1, P2 > 0, for
all 0 < ê, d̂ < 1. Also, for all 0 < ê, d̂ < 1,(

d̂3 − d̂2ê− d̂ê2 + d̂+ ê3 + ê
)
≥
(
d̂3 − 2d̂ê+ d̂+ ê3 + ê

)
≥ d3 + e3 > 0.

Therefore, det(M) > 0 and the proof is completed.

The next proposition shows that the velocity component of an IFE function is continuous
on each element.

Proposition 6.1.2. The velocity component of an IFE function is continuous on each ele-
ment.

Proof. The result is established using a similar argument as in Proposition 3.4.2.

The next result is fairly easy to verify.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 101

Proposition 6.1.3. The IFE Q1/Q0 space Ssh(Ω) over a mesh Th of Ω defined in section
6.1.1 has the same dimension as the standard Q1/Q0 finite element space on the same mesh.

Next we show that the IFE shape functions on each interface element form a partition of
unity.

Proposition 6.1.4. If Φi, i = 1, 2, . . . , 9 are the IFE shape functions on an interface
element, then

4∑
i=1

Φi(r, z) =

Ö
1
0
0

è
,

8∑
i=4

Φi(r, z) =

Ö
0
1
0

è
, (6.23)

Φ9(r, z) =

Ö
0
0
1

è
, ∀(r, z) ∈ T. (6.24)

Proof. The proof is accomplished by a direct verification.

The next proposition shows that the proposed Q1/Q0 IFE shape functions are consistent
with the associated standard finite element shape functions.

Proposition 6.1.5. If ν+ = ν− on an interface element T , then the Q1/Q0 IFE and standard
Lagrange Q1/Q0 finite element shape functions are the same.

Proof. The result is established by using the same argument as in Proposition 3.4.5.

6.2 An immersed discontinuous Galerkin method

In this section, we derive the weak formulation for the axisymmetric Stokes interface problem.
We define the following spaces for the velocity u = (u1, u2, u3)T and the pressure p

Hm(V) = {(u, p) : u ∈ C0(V), u ∈ (Hm(A))3 and p ∈ H1(A), ∀A ⊂ V ±},

where Hm is the standard Sobolev space,

Hm
0 (V) = {(u, p) ∈ Hm(V) : u|∂V = 0}.

We further define on Ω the following spaces for the velocity u = (ur, uz)
T and pressure p,

Hm(Ω) = {(u, p) : u ∈ C0(Ω), u ∈ (Hm(A))2 and p ∈ H1(A), ∀A ⊂ Ω±},

and
Hm

0 (Ω) = {(u, p) ∈ Hm(Ω) : u|∂Ω = 0}.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 102

In order to construct the weak formulation we assume that (u, p) ∈ H2(V) is the solution of
Stokes problem (6.1a-6.1b). On an arbitrary face e3 ∈ E3

h shared by two elements T 3
R and T 3

L

we define the average and jump of a function u across a face e3 as

{u}e3 =
1

2
(u|T 3

R
+ u|T 3

L
),

[u]e3 = (u|T 3
R
− u|T 3

L
).

If the face e3 coincides with the domain boundary (i.e. e3 ⊂ ∂V) we define the average and
jump by

{u}e3 = u|e3 ,
and

[u]e3 = u|e3 .
Following the standard procedure, for instance, in [120] we multiply the system (6.1a-6.1b)
by (v, q) ∈ H1

0(V) and integrate over an arbitrary non-interface element T 3 ∈ T 3
h to obtain

−
∫
T 3

(∇ · L(u, p)) · vdX −
∫
T 3
∇ · uqdX =

∫
T 3

f · vdX, (6.25)

where X = (x, y, z) denotes the three-dimensional Cartesian coordinates. Then, We apply
the divergence theorem to integrate the first term by parts and obtain

−
∫
∂T 3

(L(u, p)n) · vdA+
∫
T 3

L(u, p) : ∇vdX −
∫
T 3
∇ · uqdX =

∫
T 3

f · vdX, (6.26)

where A : B =
∑3
i=1

∑3
j=1AijBij. and n = (nx, ny, nz)

T is the outwards normal vector to
the cylindrical element T 3.

On an interface element T 3, we apply the divergence theorem on T 3 ∩ V + and T 3 ∩ V −
and take into account that the exact solution satisfies the jump conditions (6.1d) and (6.1e)
across the interface to obtain

−
∫
∂T 3

(L(u, p)n) · vdA+
∫
T 3

L(u, p) : ∇vdX −
∫
T 3
∇ · uqdX =∫

T 3
f · vdX +

∫
T 3∩Ξ

σ · vdA. (6.27)

Using the symmetry of the problem around the z-axis, we project (6.27) onto the meridian
plane Ω and sum over all elements of the mesh Th to obtain

2π

Ñ
−
∑
T∈Th

∫
∂T

(S1(u, p)n) · vrds+
∫

Ω
S(u, p) : ∇vrdrdz −

∫
Ω
∇ · uqrdrdz

é
=

2π
Å∫

Ω
f · vrdrdz +

∫
Γ
σ · vrds

ã
, (6.28)

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 103

where n = (nr, nz)
T is the outward unit vector normal to the projected element T in the

meridian plane, u = (ur, uz)
T , v = (vr, vz)

T , S and S1 are the stress tensors defined in (6.3f)
and (6.3j), respectively and σ = (σr, σz)

T is the surface force. The operators ∇· and ∇ are
defined in (6.3i) and (6.3h).

By rewriting (6.28), we obtain

−
∑
e∈Eh

∫
e
[(S1(u, p)n) · v]rds+

∫
Ω

S(u, p) : ∇vrdrdz −
∫

Ω
∇ · uqrdrdz

=
∫

Ω
f · vrdrdz +

∫
Γ
σ · vrds. (6.29)

Applying the identity ab− cd = 1
2
(a+ c)(b− d) + 1

2
(a− c)(b+ d) yields

−
∑
e∈Eh

∫
e
([(S1(u, p)n)] · {v}+ {(S1(u, p)n)} · [v]) rds

+
∫

Ω
S(u, p) : ∇vrdrdz −

∫
Ω
∇ · uqrdrdz =

∫
Ω

f · vrdrdz +
∫

Γ
σ · vrds. (6.30)

Every interface edge can be expressed as e = e+ ∪ e−, where e± = e ∩ Ω±. Hence∫
e
[S1(u, p)n] · {v}rds =

∫
e+

[S1(u, p)n] · {v}rds+
∫
e−

[S1(u, p)n] · {v}rds.

Since (u, p) ∈ H2(Ω), we write ∫
e
[S1(u, p)n] · {v}rds = 0, (6.31)

which also holds for non-interface elements.

Combining (6.30) and (6.31) with (u, p) ∈ H2(Ω) and assuming u continuous lead to the
interior penalty weak formulation∫

Ω
S(u, p) : ∇vdx−

∫
Ω
∇ · uqdx−

∑
e∈Eh

∫
e
{(S1(u, p)n)} · [v]ds

+
∑
e∈Eh

α

he

∫
e
ν[u] · [v]ds+ γ

∑
e∈Eh

∫
e
{(νε1(v)n)} · [u]ds+

∑
e∈Eh

∫
e
{q}[u] · n =

∫
Ω

f · vdx

+
∫

Γ
σ · vds+ γ

∑
e⊂∂Ω

∫
e
{(νε1(v)n)} · [g]ds+

∑
e⊂∂Ω

∫
e
{q}[g] · n +

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [v]ds,(6.32)

where α is a positive stabilization parameter and γ = 1 for the nonsymmetric weak formu-
lation (NIPG) while γ = −1 for the symmetric weak formulation (SIPG).

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 104

The weak form above leads to the interior penalty formulation for the Stokes problem con-
sisting of finding (u, p) ∈ H1(Ω) such that u = g on ∂Ω andA(u,v) +B(v, p) = L(v)

B(u, q) = l(q)
, ∀ (v, q) ∈ H1

0(Ω), (6.33a)

where

A(w,v) =
∫

Ω
νεs(w) : ∇vrdrdz −

∑
e∈Eh

∫
e
ν{ε1(w)n} · [v]rds

+γ
∑
e∈Eh

∫
e
{νε1(v)n} · [w] +

∑
e∈Eh

α

he

∫
e
ν[w] · [v]rds, (6.33b)

B(v, q) = −
∫

Ω
q∇ · vrdrdz +

∑
e∈Eh

∫
e
{q}[v] · nrds, (6.33c)

L(v) =
∫

Ω
f · vrdrdz +

∫
Γ
σ · vrds+ γ

∑
e⊂∂Ω

∫
e
{ν(ε1(v)n)} · [g]rds

+
∑
e⊂∂Ω

α

he

∫
e
ν[g] · [v]rds, (6.33d)

l(q) =
∑
e⊂∂Ω

∫
e
{q}[g] · n. (6.33e)

Then, this formulation leads to the DG-IFE method consisting of finding (uh, ph) ∈ Ssh(Ω)⊕
{qh(r, z)} such that

A(uh,vh) +B(vh, ph) = Lh(vh)

B(uh, qh) = l(qh)
, ∀ (vh, qh) ∈ Ssh,0(Ω), (6.34)

subject to the boundary conditions:

uh(R) = g(R), for all mesh vertices R ∈ ∂Ω,

where

Lh(vh) =
∫

Ω
f ·vhdx+

∑
T∈T i

h

∫
DE

σh ·vhds+γ
∑
e⊂∂Ω

∫
e
{νε(vh)n} · [g]ds+

∑
e⊂∂Ω

α

he

∫
e
ν[g] · [vh]ds,

(6.35)
σh is the linear interpolant of σ on DE using the value of σ at D and E and

Ssh,0(Ω) = {(v, p) ∈ Ssh(Ω) : v(R) = 0, for all mesh vertices R ∈ ∂Ω}.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 105

6.3 Numerical simulations

Example 6.3.1.

We consider the domain Ω = [0, 1]× [−1, 1] cut by the half-circular interface r2 + z2 = 0.3,
which separates Ω into two regions Ω+ = {(r, z) ∈ Ω : r2 + z2 > 0.3} and Ω− = {(r, z) ∈
Ω : r2 + z2 < 0.3}. The functions u = (ur, uz)

T and p are chosen to satisfy jump conditions
(6.3d) and (6.3e) and are given by

u =



u− =

Ü
2rz−s

2+r2+z2

ν−s2

1
ν−

(−s2 + r2 + z2)(1− 3r2

s2
− z2

s2
)

ê
, if (r, z) ∈ Ω−

u+ =

Ü
2rz−s

2+r2+z2

ν+s2

1
ν+

(−s2 + r2 + z2)(1− 3r2

s2
− z2

s2
)

ê
, if (r, z) ∈ Ω+

, (6.36a)

and

p =

er
2+z2 − 3.48673, if (r, z) ∈ Ω+

r2 + z2 − 3.48673, if (r, z) ∈ Ω−
, (6.36b)

where ν− = 1, ν+ = 10 and

σ =

(
(er

2+z2 − r2 − z2)nr
(er

2+z2 − r2 − z2)nz

)
, if (r, z) ∈ Γ. (6.36c)

In order to show the approximation capability of the IFE space Ssh(Ω) and the IFE particular
functions, we create uniform Cartesian meshes having N2 = 52, 102, 202, 402, 802, 1602, 3202,
6402 square elements and show the L2 interpolation errors in Table 6.1. Broken H1 in-
terpolation errors for the velocity are shown in Table 6.2. Note that we follow the same
procedure as in Section 4.2.1 to compute the interpolation errors. Since the IFE shape
functions are coupled, the ith component of Ih(u, p) denoted by (Ih(u, p))i is such that
(Ih(u, p))1 ≈ ur, (Ih(u, p))2 ≈ uz and (Ih(u, p))3 ≈ p with errors ε(u1) = ur − (Ih(u, p))1,
ε(u2) = uz − (Ih(u, p))2 and ε(p) = p− (Ih(u, p))3.

Next, we solve Stokes interface problem (6.3a)-(6.3b) using NIPG and SIPG methods. Tables
6.3-6.6 show the L2 and H1 errors for the NIPG and SIPG methods using uniform Cartesian
meshes having N2 = 52, 102, 202, 402, 802, 1602 square elements. The results show optimal
convergence rates for both velocity and pressure.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 106

N ||ε(u1)||0,Ω Order ||ε(u2)||0,Ω Order ||ε(p)||0,Ω Order
5 1.0856379e-01 0 2.3305131e-01 0 4.6908971e-01 0
10 2.7866727e-02 1.9619 5.9355848e-02 1.9732 2.8694522e-01 0.7091
20 7.0753794e-03 1.9777 1.4962605e-02 1.9880 1.5035181e-01 0.9324
40 1.7816441e-03 1.9896 3.7582846e-03 1.9932 7.8725548e-02 0.9334
80 4.4740453e-04 1.9936 9.4230218e-04 1.9958 4.1341933e-02 0.9292
160 1.1215141e-04 1.9961 2.3598395e-04 1.9975 2.1390042e-02 0.9507
320 2.8076001e-05 1.9980 5.9048054e-05 1.9987 1.1115584e-02 0.9444
640 7.0236840e-06 1.9990 1.4768365e-05 1.9994 5.7534917e-03 0.9501

Table 6.1: L2 interpolation errors for Example 6.3.1.

N ||ε(u1)||1,Ω Order ||ε(u2)||1,Ω Order
5 8.1106161e-01 0 1.9389213 0
10 4.1144714e-01 0.9791 9.9411494e-01 0.9638
20 2.0794416e-01 0.9845 5.0629661e-01 0.9734
40 1.0437684e-01 0.9944 2.5484515e-01 0.9904
80 5.2440062e-02 0.9931 1.2823624e-01 0.9908
160 2.6279386e-02 0.9967 6.4425896e-02 0.9931
320 1.3155398e-02 0.9983 3.2377497e-02 0.9926
640 6.5802972e-03 0.9994 1.6269287e-02 0.9928

Table 6.2: H1 interpolation errors for Example 6.3.1.

N ||ur − uh,r||0,Ω Order ||uz − uh,z||0,Ω Order ||p− ph||0,Ω Order
5 9.4319719e-02 0 2.2454486e-01 0 5.8772950 0
10 2.4047769e-02 1.9717 5.8767856e-02 1.9339 1.9042523 1.6259
20 5.4646708e-03 2.1377 1.3572075e-02 2.1144 5.9593073e-01 1.6760
40 1.5234498e-03 1.8428 3.8193315e-03 1.8292 2.2606959e-01 1.3984
80 3.8362178e-04 1.9896 9.5860167e-04 1.9943 8.2944194e-02 1.4466
160 9.6776069e-05 1.9870 2.3759725e-04 2.0124 3.3054746e-02 1.3273

Table 6.3: L2 IFE errors for NIPG method applied to Example 6.3.1.

N ||ur − uh,r||1,Ω Order ||uz − uh,z||1,Ω Order
5 8.4612929e-01 0 2.0405984 0
10 4.2492877e-01 0.9937 1.0177753 1.0036
20 2.0172889e-01 1.0748 4.8156827e-01 1.0796
40 1.0540784e-01 0.9364 2.5618594e-01 0.9105
80 5.2750816e-02 0.9987 1.2856579e-01 0.9947
160 2.6422708e-02 0.9974 6.4525575e-02 0.9946

Table 6.4: H1 IFE errors for NIPG method applied to Example 6.3.1.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 107

N ||ur − uh,r||0,Ω Order ||uz − uh,z||0,Ω Order ||p− ph||0,Ω Order
5 7.6801230e-02 0 1.9014195e-01 0. 2.5120401 0
10 1.6765687e-02 2.1956 4.5489583e-02 2.0635 8.7545953e-01 1.5207
20 3.7367291e-03 2.1657 1.0956793e-02 2.0537 2.8165736e-01 1.6361
40 8.7682076e-04 2.0914 2.6871048e-03 2.0277 1.0518215e-01 1.4211
80 2.1483450e-04 2.0291 6.7097560e-04 2.0017 4.6934253e-02 1.1642
160 5.5364507e-05 1.9562 1.7094399e-04 1.9727 2.2991455e-02 1.0295

Table 6.5: L2 IFE errors for SIPG method applied to Example 6.3.1.

N ||ur − uh,r||1,Ω Order ||uz − uh,z||1,Ω Order
5 9.1150148e-01 0 2.0019068e+00 0
10 4.3985982e-01 1.0512 1.0086862e+00 0.9889
20 2.1509537e-01 1.0321 5.1022581e-01 0.9833
40 1.0633369e-01 1.0164 2.5588889e-01 0.9956
80 5.3161310e-02 1.0002 1.2853372e-01 0.9934
160 2.6774145e-02 0.9895 6.4523829e-02 0.9942

Table 6.6: H1 IFE errors for SIPG method applied to Example 6.3.1.

6.4 Axisymmetric Stokes problem with a moving in-

terface

In this section, we present the algorithm used to solve the axisymmetric Stokes problem with
moving interfaces. This includes determining the surface force, solving the Stokes interface
problem, tracking the interface and determining the position of the mesh nodes with respect
to the interface. We note that, due to the interface motion, the IFE space and particular
functions evolve in time. Therefore, the operations described below must be carried out at
every time step with the corresponding IFE space and particular functions. However, since
the three-dimensional Stokes problem is reduced to a two-dimensional problem, most of the
operations remain the same as the ones described in section 5.2. In fact, determining the
position of the mesh nodes with respect to the interface can be done using the even-odd rule
described in section 5.2.1 and the normal vector to the interface can be computed using the
procedure introduced in section 5.2.2. However, to compute the surface force, we need to
determine the curvature of the three-dimensional interface, otherwise, the computed surface
force will be underestimated.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 108

r

z

R
Γ(t)

P

Q

Figure 6.3: The distance R used to compute the curvature κ2.

6.4.1 Surface force

The surface force is given by the expression

σ(r, z, t) = −σκ(r, z, t)n(r, z, t), (6.37)

where σ ≥ 0 is the surface tension, κ(r, z, t) is the curvature of the three-dimensional interface
at the point (r, z) and n(r, z, t) = (nr, nz)

T is the unit normal outward vector to the interface
at the point (r, z). As mentioned above, the normal vector is computed using the procedure
presented in section 5.2.2. On the other hand, we note that the curvature κ at a given point
P (r, z) can be written as κ = κ1 + κ2 (see [132]), where κ1 is the curvature computed in
section 5.2.2 and κ2 is defined as

κ2 =


1
R
, if r 6= 0

κ1, if r = 0
, (6.38)

where R = |PQ| and Q is the intersection point of the line normal to the interface at P with
the z-axis as illustrated in Figure 6.3.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 109

6.4.2 Proposed algorithm

To solve the axisymmetric Stokes problem with a moving interface, we need to implement a
time integrator to solve the following ODEs:

d
dt
X (i)(t) = uh(X (i)(t), t), t ∈ [0, T]

X (i)(0) = X (i)
0

, i = 1, 2, ..., N (6.39)

where uh(X (i)(t), t) = (uh,r(X (i)(t), t), uh,z(X (i)(t), t))T is the velocity of the fluid at the point
X (i)(t), N is the number of control points and X0 is the set of the initial control points ob-
tained by uniformly sampling the projected interface Γ. We use the algorithm described in
Figure 5.4 to solve the axisymmetric problem (6.3a)-(6.3i) with a moving interface using the
DG-IFE formulation (6.34) and ODEs (6.39).

In this section we use the trapezoidal method given by:

X (i)
k+1 = X (i)

k +
∆t

2

(
uh(X (i)

k , tk) + uh(X (i)
k+1, tk+1)

)
, i = 1, 2, ..., N,

where N is the number of control points and X (i)
k is the approximation of X (i)(tk) at time

tk.

This implicit time integrator is coupled with Newton’s method, which yields the follow-
ing procedure:

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 110



Set up the initial time t0 = 0 and select the time step ∆t, tol1 and tol2 :

For k=0,1,2,...

1. Set n = 0 and ε1 = 1

2. Compute the initial guess X (i,n)
k+1 using Euler method as:

X (i,n)
k+1 = X (i)

k + ∆tuh
(
X (i)
k , tk

)
, i = 1, 2, ...N.

3. While ε1 > tol1

- Determine the Jacobian of uh(X (i,n)
k+1 , tk+1) at the control points:

J(X (i,n)
k+1) = I − 1

2
∆t

(
∂
∂r

uh(X (i,n)
k+1 , tk+1) ∂

∂z
uh(X (i,n)

k+1 , tk+1)
)
, i = 1, 2, ...N.

- Evaluate F(X (i,n+1)
k+1):

F(X (i,n)
k+1) = X (i,n)

k+1 −X
(i)
k − 1

2
∆t

(
uh(X (i)

k , tk) + uh(X (i,n)
k+1 , tk+1)

)
, i = 1, 2, ..., N.

- Update X (i,n+1)
k+1 :

X (i,n+1)
k+1 = X (i,n)

k+1 −
(
J(X (i,n)

k+1)
)−1

F(X (i,n)
k+1), i = 1, 2, ..., N.

- ε1 = max1≤i≤N ||X (i,n+1)
k+1 −X (i,n)

k+1)||, n = n+ 1:

4. X (i)
k+1 = X (i,n+1)

k+1 , i = 1, 2, ..., N.

5. Stop when max1≤i≤N ||uh(X (i)
k+1, tk+1)− uh(X (i)(tk), tk)|| < tol2.

(6.40)

6.4.3 Numerical experiments

Example 6.4.1.

We validate our method by studying the behavior of a drop subjected to an extensional
flow. We assume that the system is symmetric with respect to the z-axis and the xy-plane.
Therefore, we can reduce it to a two-dimensional problem in the upper half of the meridian
plane as shown in Figure 6.4.

We use the same parameters as in [132] with an initial drop of radius R0 = H/10 and
H = W = 1. The boundary conditions are u(r, z) = (ur, uz) = (−0.5εr, εz) if r = W or
z = H such that ε > 0 is the extension rate. On the boundaries defined by r = 0 and z = 0,

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 111

x

z

y

Extensional	
 flow	

Extensional	
 flow	

Extensional	
 flow	

Extensional	
 flow	

Ini/al	
 spherical	
 drop	

r

z

H

W

R0
L

Extensional	

flow	

Ini/al	
 spherical	
 drop	

Deformed	

drop	

B

Figure 6.4: The computational domain for transient drop deformation under extensional
flow in three-dimensional domain (left) and its projection onto the meridian plane (right).

we use the symmetry of the system to impose the following boundary conditions:ur = 0, ∂
∂r
uz = 0, if r = 0,

uz = 0, ∂
∂z
ur = 0, if z = 0.

We denote by ν+ and ν− the viscosity of the matrix fluid (i.e. the fluid outside the drop)
and the viscosity of the drop, respectively. The capillary number is then defined as Ca =
ν+εR0

σ
and the viscosity ratio is defined as β = ν−

ν+
. The simulation is carried out using the

SIPG method with Ca = 0.1, β = 0.5, the trapezoidal method (6.40) with uniform time
step ∆t = 10−3 and meshes having at most 6000 elements obtained by locally refining a
background 71× 71 uniform mesh four times. We plot the interfaces and the meshes used to
partition the domain at t = 0, 0.09, 0.628, 2.5 in Figure 6.5, and we plot the corresponding
three-dimensional drops in Figure 6.6 .

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 112

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

t=0

t=0.09

t=0.628

t=2.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

(a) t=0

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

(b) t=0.09

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

r

z

(c) t=0.628

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

(d) t=2.5

Figure 6.5: Drop deformation in extensional flow versus time (top) and blown-ups, near the
interface, of the meshes used to partition the domain Ω (bottom) for Example 6.4.1.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 113

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

t=0

t=0.09

t=0.628

t=2.5

(a) t=0 (b) t=0.09

(c) t=0.628 (d) t=2.5

Figure 6.6: Drop deformation in extensional flow versus time (top) and blown-ups of the
three-dimensional drops (bottom) for Example 6.4.1.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 114

Next, we define the deformation D = L
R0

(L is the length of the deformed drop shown in
Figure 6.4), and plot it versus time in Figure 6.7, together with the results obtained by Yue
et al. in [132]. We observe good agreement between our results and those obtained in [132]
for t < 1.5 with spurious oscillations appearing near the equilibrium state.

0 0.5 1 1.5 2 2.5 3 3.5
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

time

D
e

fo
rm

a
ti
o

n
 D

Yue et al.

IFE method

Figure 6.7: Drop deformation in extensional flow versus time for Example 6.4.1.

These spurious oscillations are caused by the clustering of the control points near the upper
tip of the drop as shown in Figure 6.8, which makes the curvature computation very sensitive
to errors in the control points locations.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r

z

Figure 6.8: Control points at t = 0 (left) and t = 1 (right) for Example 6.4.1 without
re-sampling.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 115

6.4.4 Re-sampling of the interface

In order to reduce this effect, we assume that the interface can be represented as a function
of z and propose to re-sample the interface by computing a cubic spline interpolation of the
current control points at every time step. This procedure is not ideal but it works well for
modeling simple interfaces. Other re-sampling procedures such as [127] will be investigated
in future work.

At time tk, our re-sampling algorithm performs the following steps:

• Use the current control points to construct the not-a-knot cubic spline r = cs(z).
• Define the partition zi = i zmax

N
, i = 0, 1, ..., N , where N is the number of control points

and zmax is the maximum z-value reached by the control points.
• Construct the new control points (cs(zi), zi), i = 0, 1, ..., N .

Example 6.4.2.

We run the simulation for β = 0.5, 1 using the same parameters as Example 6.4.1 with a
coarser mesh having at most 3200 elements (obtained by locally refining a 51×51 mesh four
times) and a uniform time step ∆t = 7×10−3. We plot the deformation versus time together
with results obtained by Yue et al. [132] in Figure 6.9 to observe excellent agreement. We
also note that, despite using a much larger time step and a coarser mesh, the method does
not exhibit the spurious oscillations seen in Figure 6.7. We further verify the conservation
of mass property in Figure 6.10 by plotting the volume of the drop versus time to observe
that the volume remains constant.

0 0.5 1 1.5 2 2.5 3 3.5 4
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

time

D
e

fo
rm

a
ti
o

n
 D

Yue et al. β=0.5

Yue et al. β=1

IFE method β=1

IFE method β=0.5

Figure 6.9: Drop deformation in extensional flow versus time for Example 6.4.2 using re-
sampling.

Nabil Chaabane Chapter 6. Axisymmetric Stokes interface problem 116

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

time

v
o

lu
m

e

Figure 6.10: Drop volume versus time for Example 6.4.2.

Chapter 7

Conclusion and future work

7.1 Contribution

This dissertation covered two main topics: the LDG method applied to a second order ellip-
tic problem and the immersed finite element method applied to the Stokes interface problem.

In the first part, we showed that by integrating the Dirichlet boundary conditions at Radau
points the previous estimate of the velocity gradient can be improved and the optimal order
of convergence is reached. If polynomials of degree at most k are used to approximate the
solution gradient q = ∇u, the new error estimate of the LDG solution qh satisfies

||q− qh||0,Ω ≤ Chk+1,

which is an improvement of the existing bound

||q− qh||0,Ω ≤ Chk+1/2.

In the second part of the dissertation, we constructed IFE methods to solve the Stokes in-
terface problem. One of the main advantages of the IFE method is that it does not require
the mesh to be aligned with interfaces. Other methods that have this feature are at most
second order convergent and have failed to reach a higher order approximation and some of
them utilizes non-conservative schemes. On the other hand, the IFE method is conservative;
and it has been extended to higher degree approximation for second order elliptic problems
and following the same procedure, IFE spaces with higher approximation capabilities may
be developed for the Stokes interface problem. Our work mainly consisted of developing
IFE spaces and particular functions with optimal approximation capability to produce accu-
rate numerical solutions to the Stokes interface problem. Then, we derived a discontinuous
Galerkin finite element method that uses the IFE spaces and particular functions developed
in Chapter 3. Numerical results for several interface problems with different interface ge-
ometries suggest that our IFE method is optimal.

117

Nabil Chaabane Chapter 7. Conclusion and future work 118

Based on two different sets of jump conditions on the interface, we developed two IFE
spaces Sh(Ω) and S̃h(Ω) for the two-dimensional Stokes interface problem where we con-
structed local IFE spaces on arbitrary interface elements. We constructed Lagrange and
null space based shape functions on interface elements and presented a general procedure to
construct functions belonging to both spaces Sh(Ω) and S̃h(Ω). Using extensive numerical
simulations, we have shown that these IFE spaces have optimal approximation capabilities.

The basic properties of the space Sh(Ω) were studied and we showed the existence and
uniqueness of the space for any mesh-interface configuration. We further showed that the
IFE basis functions form a partition of unity and are physically consistent with the standard
Lagrange IFE basis functions (i.e., the two sets of basis functions are the same if ν− → ν+).
In an effort to investigate the global a priori error estimate, we also established modified
trace and inverse inequalities.

We derived interior penalty IFE methods which relies on the proposed IFE spaces Sh(Ω)
and S̃h(Ω) and based on the NIPG and SIPG methods [120]. We presented several numeri-
cal results and computational examples which showed that this method leads to O(h2) and
O(h) optimal convergence rates, respectively, in the L2 and broken H1 norms. These schemes
were further used to solve the Stokes interface problem with a moving interface. Two bench-
mark problems were treated and our results were validated by comparing them with results
obtained using different methods. Our method showed that it can solve the problems using
fewer degrees of freedom. We finally solved the axisymmetric Stokes interface problem by
developing a new IFE space and deriving a new numerical scheme. Again, a benchmark
problem with moving interface was solved and our results were validated.

7.2 Future work

There are several long term goals and future work that can follow this dissertation. Here, we
present some possible extensions to our work and give ideas and perspectives on how these
problems may be treated.

7.2.1 High order IFE spaces

We have numerically shown that Q1/Q0 IFE spaces exhibit optimal convergence rates when
an arbitrary interface is interpolated using piecewise linear approximation. Developing IFE
spaces that exhibit higher approximation capabilities will require:

• extending Qk/Qk−1 elements to IFE elements
• additional jump constraints across the interface

Nabil Chaabane Chapter 7. Conclusion and future work 119

• high degree approximation of the interface.

The first and second constraints might be circumvented by developing IFE spaces based
on null spaces following the same procedure as in Section 3.2, and the third constraint can
be satisfied by using higher degree polynomials to approximate the interface.

7.2.2 A priori error analysis

We have shown, numerically, that the interpolation error in the IFE space Sh(Ω) and the
projection error in the IFE space S̃h(Ω) for functions which are not smooth across the inter-
face reach optimal order of convergence. We have further established few preliminary results
which will be needed to prove a priori error bounds for the interpolation and projection onto
the IFE spaces.

Next, we will develop a priori IFE error estimates for NIPG and SIPG methods using
the proposed Q1/Q0 IFE spaces.

7.2.3 Three-dimensional interface problems

Three-dimensional interface problems provide a powerful tool to understand the fluid dy-
namics of complex systems. In this dissertation, we only treated the case where the system
is symmetric with respect to the z-axis. A future work consists of developing IFE spaces
for the three-dimensional Stokes interface problem. The main difficulty that will arise when
developing these spaces is to design a procedure to approximate the three-dimensional in-
terface, which is not a trivial task.

Furthermore, implementing a more sophisticated interface tracking procedure such as the
level set and the front tracking methods will allow us to solve more complex problems.

Bibliography

[1] S. Adjerid and M. Baccouch. The discontinuous Galerkin method for two-dimensional
hyperbolic problems. Part I: Superconvergence error analysis. Journal of Scientific
Computing, 33:75–113, 2007.

[2] S. Adjerid and M. Baccouch. Asymptotically exact a posteriori error estimates for a
one-dimensional linear hyperbolic problem. Applied Numerical Mathematics, 60:903–
914, 2010.

[3] S. Adjerid and M. Baccouch. A superconvergent local discontinuous Galerkin method
for elliptic problems. Journal of Scientific Computing, 52:113–152, 2012.

[4] S. Adjerid, M. Ben-Romdhane, and T. Lin. High-order interior penalty immersed finite
element method for second-order elliptic interface problems. International Journal of
Numerical Analysis & Modeling, 11:541–566, 2014.

[5] S. Adjerid, K. D. Devine, J. E. Flaherty, and L. Krivodonova. A posteriori error
estimation for discontinuous Galerkin solutions of hyperbolic problems. Computer
Methods in Applied Mechanics and Engineering, 191:1097–1112, 2002.

[6] S. Adjerid and A. Klauser. Superconvergence of discontinuous finite element solutions
for convection-diffusion problems. Journal of Scientific Computing, 22-23:5–24, 2005.

[7] S. Adjerid and T. Lin. A pth-degree immersed finite element method for boundary value
problems with discontinuous coefficients. Applied Numerical Mathematics, 59:1303–
1321, 2009.

[8] S. Adjerid and T. C. Massey. A posteriori discontinuous finite element error estimation
for two-dimensional hyperbolic problems. Computer Methods in Applied Mechanics and
Engineering, 191:5877–5897, 2002.

[9] S. Adjerid and T. C. Massey. Superconvergence of discontinuous finite element solu-
tions for nonlinear hyperbolic problems. Computer Methods in Applied Mechanics and
Engineering, 195:3331–3346, 2006.

[10] D. Arnold, F. Brezzi, and M. Fortin. A stable finite element for the Stokes equations.
Calcolo, 21:337–344, 1984.

120

Nabil Chaabane Chapter 7. Conclusion and future work 121

[11] Douglas N. Arnold and Jinshui Qin. Quadratic velocity/linear pressure stokes elements.
In Advances in Computer Methods for Partial Differential Equations VII, pages 28–34.
IMACS, 1992.

[12] C. Attanayake and D. Senaratne. Convergence of an immersed finite element method
for semilinear parabolic interface problems. Applied Mathematical Sciences, 5(1-4):135–
147, 2011.

[13] R. Ausas, F. Sousa, and G. Buscaglia. An improved finite element space for discontin-
uous pressures. Computer Methods in Applied Mechanics and Engineering, 199:1019–
1031, 2010.

[14] I. Babuska. Error-bounds for finite element method. Numerische Mathematik, 16:322–
333, 1971.

[15] I. Babuska and J. E. Osborn. Can a finite element method perform arbitrarily badly?
Mathematics of Computation, 69:443–462, 2000.

[16] M. Baccouch. Superconvergence and A posteriori Error Estimation for the Discontin-
uous Galerkin Method Applied to Hyperbolic Problems on Triangular Meshes. Ph.D
dissertation, Virginia Tech, 2008.

[17] F. Bassi and S. Rebay. A high-order accurate discontinuous finite element method
for the numerical solution of the compressible Navier-Stokes equations. Journal of
Computational Physics, 131:267–279, 1997.

[18] R. Becker, E. Burman, and P. Hansbo. A Nitsche extended finite element method for
incompressible elasticity with discontinuous modulus of elasticity. Computer Methods
in Applied Mechanics and Engineering, 198:3352–3360, 2009.

[19] R. Becker, P. Hansbo, and M. Larson. Energy norm a posteriori error estimation
for discontinuous Galerkin methods. Computer Methods in Applied Mechanics and
Engineering, 192:723–733, 2003.

[20] M. Ben-Romdhane. Higher-degree immersed finite elements for second-order elliptic
interface problems. Ph.D dissertation, Virginia Tech, 2011.

[21] K. S. Bey, A. Patra, and J. T. Oden. hp-version discontinuous Galerkin method for
hyperbolic conservation laws: A parallel adaptive strategy. International Journal of
Numerical Methods in Engineering, 38:3889–3908, 1995.

[22] R. Biswas, K. D. Devine, and J. E. Flaherty. Parallel adaptive finite element methods
for conservation laws. Applied Numerical Mathematics, 14:255–283, 1994.

[23] P. Bochev, C. Dohrmann, and M. Gunzberger. Stabilization of low-order mixed finite
elements for the Stokes equations. SIAM Journal on Numerical Analysis, 44(1):82–101,
2006.

Nabil Chaabane Chapter 7. Conclusion and future work 122

[24] J. Boland and R. Nicolaides. On the stability of bilinear-constant velocity pressure
finite elements. Numerische Mathematik, 44(2):219–222, 1984.

[25] K. Bottcher and R. Rannache. Adaptive error control in solving ordinary differential
equations by the discontinuous Galerkin method. Tech. report, University of Heidel-
berg, 1996.

[26] J. Brackbill, D. Kothe, and C. Zemach. A continuum method for modeling surface
tension. Journal of computational physics, 100:335–354, 1992.

[27] J. H. Bramble and J. T. King. A finite element method for interface problems in do-
mains with smooth boundary and interfaces. Advances in Computational Mathematics,
6:109–138, 1997.

[28] S. Brenner and R. Scott. The Mathematical Theory of Finite Element Methods.
Springer, New York, 2008.

[29] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems
arising from Lagrangian multipliers. ESAIM: Mathematical Modelling and Numerical
Analysis - Modlisation Mathmatique et Analyse Numrique, 8(R2):129–151, 1974.

[30] R. L. Burden and J. D. Faires. Numerical Analysis. Brooks/Cole, 9 edition, 2010.

[31] Z. Cai, T.A. Manteuffel, and S.F McCormick. First-order system least squares for the
Stokes equations, with application to linear elasticity. SIAM Journal on Numerical
Analysis, 34(5):1727–1741, 1997.

[32] B. Camp, T. Lin, Y. Lin, and W. Sun. Quadratic immersed finite element spaces
and their approximation capabilities. Advances in Computational Mathematics, 24(1-
4):81–112, 2006.

[33] Y. Cao and M. Gunzburger. Least-squares finite element approximations to solutions
of interface problems. SIAM Journal on Numerical Analysis, 35(1):393–405, 1998.

[34] P. Castillo. A superconvergence result for discontinuous Galerkin methods applied to
elliptic problems. Computer Methods in Applied Mechanics and Engineering, 192:4675–
4685, 2003.

[35] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. An a priori error analysis
of the local discontinuous Galerkin method for elliptic problems. SIAM Journal on
Numerical Analysis, 38:1676–1706, 2000.

[36] P. Castillo, B. Cockburn, D. Schötzau, and C. Schwab. Optimal a priori error estimates
for the hp-version of the local discontinuous Galerkin method for convection-diffusion
problems. Mathematics of Computation, 71:455–478, 2002.

Nabil Chaabane Chapter 7. Conclusion and future work 123

[37] F. Celiker and B. Cockburn. Superconvergence of the numerical traces of discontinuous
Galerkin and hybridized mixed methods for convection-diffusion problems in one space
dimension. Mathematics of computation, 76:67–96, 2007.

[38] Y. Chang, T. Hou, B. Merriman, and S. Osher. A level set formulation of Eulerian
interface capturing methods for incompressible fluid flows. Journal of Computational
Physics, 124:449–464, 1996.

[39] L. Changzhi and G. Liejin. Experimental study of drop deformation and breakup in
simple shear flows. Chin. J. Chern. En, 15:1–5, 2007.

[40] Z. Chen and J. Zou. Finite element methods and their convergence for elliptic and
parabolic interface problems. Numerische Mathematik, 79:175–202, 1998.

[41] S. Chou, D. Kwak, and K. Wee. Optimal convergence analysis of an immersed interface

finite element method. Advances in Computational Mathematics, 33:149–168, 2010.

[42] B. Cockburn and B. Dong. An analysis of the minimal dissipation local discontinuous
Galerkin method for convection-diffusion problems. Journal of Scientific Computing,
32:233–262, 2007.

[43] B. Cockburn, J. Gopalakhirishnan, N. Nguyen, J. Peraire, and F. Sayas. Analysis of
HDG methods for Stokes flow. Mathematics of Computation, 80:723–760, 2011.

[44] B. Cockburn, G. Kanschat, I. Perugia, and D. Schötzau. Superconvergence of the local
discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM Journal
on Numerical Analysis, 39:264–285, 2001.

[45] B. Cockburn, G. Kanshat, and D. Schotzau. A locally conservative LDG method for the
incompressible Navier-Stokes equations. Mathematics of computation, 74(251):1067–
1095, 2004.

[46] B. Cockburn, M. Luskin, C.-W. Shu, and E. Suli. Enhanced accuracy by post-
processing for finite element methods for hyperbolic equations. Mathematics of Com-
putation, 72:577–606, 2003.

[47] B. Cockburn and C.-W. Shu. TVB Runge-Kutta local projection discontinuous
Galerkin methods for scalar conservation laws II: General framework. Mathematics
of Computation, 52:411–435, 1989.

[48] B. Cockburn and C.-W. Shu. The local discontinuous Galerkin finite element method
for convection-diffusion systems. SIAM Journal on Numerical Analysis, 35:2240–2463,
1998.

[49] V. Cristini, J. Blawzdziewicz, and M. Loewenberg. Drop breakup in three-dimensional
viscous flows. Physics of Fluids, 10(8):1781–1783, 1998.

Nabil Chaabane Chapter 7. Conclusion and future work 124

[50] L. Djamel. Advanced simulation of transient multiphase flow and flow assurance in the
oil and gas industry. The Canadian Journal of Chemical Engineering, 91(7):1201–1214,
2013.

[51] J. Douglas and J. Wang. An absolutely stabilized finite element method for the Stokes
problem. Mathematics of Computation, 52(186):495–508, 1989.

[52] K. Ericksson and C. Johnson. Adaptive finite element methods for parabolic problems
I: A linear model problem. SIAM Journal on Numerical Analysis, 28:43–77, 1991.

[53] K. Ericksson and C. Johnson. Adaptive finite element methods for parabolic problems
II: Optimal error estimates in L∞L2 and L∞L∞. SIAM Journal on Numerical Analysis,
32:706–740, 1995.

[54] R. Falk and G. Richter. Explicit finite element methods for symmetric hyperbolic
equations. SIAM Journal on Numerical Analysis, 36:935–952, 1999.

[55] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian approach
to interfaces in multimaterial flows (the ghost fluid method). Journal of Computational
Physics, 152:457–492, 1999.

[56] J. Flaherty. Finite element analysis lecture notes. Renssealer Polythechnique Institute.

[57] T. Fries and T. Belytschko. The extended/generalized finite element method: An
overview of the method and its applications. International Journal for Numerical
Methods in Engineering, 84:253–304, 2010.

[58] E. Georgoulis, O. Lakkis, and J. Virtanen. A posteriori error control for discontinu-
ous Galerkin methods for parabolic problems. SIAM Journal on Numerical Analysis,
49(2):427–458, 2011.

[59] V. Girault, B. Riviere, and M. Wheeler. A discontinuous Galerkin method with
nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems.
Mathematics of computation, 74:53–84, 2004.

[60] Y. Gong, B. Li, and Z. Li. Immersed-interface finite-element methods for elliptic in-
terface problems with nonhomogeneous jump conditions. SIAM Journal on Numerical
Analysis, 46(1):472–495, 2008.

[61] K. Gupta and J. Meek. A brief history of the beginning of the finite element method.
International journal for numerical methods in engineering, 39:3761–3774, 1996.

[62] P. Hansbo and M. Larson. Discontinuous Galerkin and the Crouzeix-Raviart element:
Application to elasticity. Mathematical modelling and numerical analysis, 37(1):63–72,
2003.

Nabil Chaabane Chapter 7. Conclusion and future work 125

[63] P. Hansbo, M. Larson, and S. Zahedi. A cut finite element method for a Stokes interface
problem. Applied Numerical Mathematics, 85:90–114, 2014.

[64] X. He. Bilinear Immersed Finite Elements For Interface Problems. Ph.D dissertation,
Virginia Tech, 2009.

[65] X. He, T. Lin, and Y. Lin. Approximation capability of a bilinear immersed finite
element space. Numerical Methods for Partial Differential Equations, 24:1265–1300,
2008.

[66] X. He, T. Lin, and Y. Lin. A bilinear immersed finite volume element method for the
diffusion equation with discontinuous coefficient. Communications in Computational
Physics, 6(1):185–202, 2009.

[67] X. He, T. Lin, and Y. Lin. Immersed finite element methods for elliptic interface
problems with non-homogeneous jump conditions. International Journal of numerical
analysis and modeling, 8(2):284–301, 2011.

[68] X. He, T. Lin, Y. Lin, and X. Zhang. Immersed finite element methods for parabolic
equations with moving interface. Numerical Methods for Partial Differential Equations,
29:619–646, 2013.

[69] P. Hessari. First-order system least squares method for the interface problem of the
Stokes equations. Computers and Mathematics with Applications., 68(3):309–324, 2014.

[70] R. Hooper, M. Toose, C. Macosko, and J. Derby. A comparison of boundary element
and finite element methods for modeling axisymmetric polymeric drop deformation.
Intl. J. Numer. Meth. Fluids, 37:837–864, 2001.

[71] H. Hu, N. Patankar, and M. Zhu. Direct numerical simulations of fluid-solid systems
using the arbitrary Lagrangian-Eulerian technique. Journal of Computational Physics,
169:427–462, 2001.

[72] T. Hughes and L. Franca. A new finite element formulation for computational fluid
dynamics: VII. the Stokes problem with various well-posed boundary conditions: sym-
metric formulations that converge for all velocity/pressure spaces. Computer methods
in applied mechanics and engineering, 65:85–96, 1987.

[73] V. Isailovic, M. Obradovic, D. Nikolic, I. Saveljic, and N. Filipovic. SIFEM project:
Finite element modeling of the cochlea. In Bioinformatics and Bioengineering (BIBE),
2013 IEEE 13th International Conference on, pages 1–4, Nov 2013.

[74] C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element
Method. Cambridge University Press New York, 1987.

[75] C. Johnson and J. Pitkaranta. An analysis of the discontinuous Galerkin method for
a scalar hyperbolic equation. Mathematics of Computation, 46:1–26, 1986.

Nabil Chaabane Chapter 7. Conclusion and future work 126

[76] M. Kang, R. Fedkiw, and X. Liu. A boundary condition capturing method for multi-
phase incompressible flow. Journal of Scientific Computing, 15:323–360, 2000.

[77] M. Kang, R. Fedkiw, and D. Nguyen. A boundary condition capturing method for
incompressible flame discontinuities. Journal of Computational Physics, 172:71–98,
2001.

[78] O. Karakashian and F. Pascal. A posteriori error estimates for a discontinuous Galerkin
approximation of second-order elliptic problems. SIAM Journal on Numerical Analysis,
41(6):2374–2399, 2003.

[79] N. Kechar and D. Silvester. Analysis of locally stabilized mixed finite element methods
for the Stokes problem. Mathematics of computation, 58(197):1–10, 1992.

[80] R. Khayat. Three-dimensional boundary-element analysis of drop deformation for
Newtonian and viscoelastic systems. Intl. J. Numer. Meth. Fluids, 34(3):241–275,
2000.

[81] L. Krivodonova and J. E. Flaherty. Error estimation for discontinuous Galerkin solu-
tions of two-dimensional hyperbolic problems. Advances in Computational Mathemat-
ics, 19:57–71, 2003.

[82] D. Kwak and K. Wee. An analysis of a broken P1-nonconforming finite element method
for interface problems. SIAM Journal on Numerical Analysis, 48(6):2117–2134, 2010.

[83] M. Larson and T. Barth. A posteriori error estimation for adaptive discontinuous
Galerkin approximations of hyperbolic systems. Lecture Notes in Computational Sci-
ence and Engineering, 11:363–368, 2000.

[84] A. Layton and J. Beale. On the accuracy of finite difference methods for elliptic
problems with interfaces. Communications in Applied Mathematics and Computational
Science, 1:91–119, 2006.

[85] R.D. Lazrov and X. Ye. Stabilized discontinuous finite element approximations for
Stokes equations. Journal of computational and applied mathematics, 198:236–252,
2007.

[86] P. Lesaint. Sur la resolution des systemes hyperboliques du premier ordre par la methode
des elements finis. Ph.D dissertation, Universite Pierre et Marie Curie, Paris, 1975.

[87] P. Lesaint and P. Raviart. On a finite element method for solving the neutron transport
equations. Mathematical Aspects of Finite Elements in Partial Differential Equations,
pages 89–123, 1974.

[88] R. LeVeque and Z. Li. The immersed interface method for elliptic equations with
discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis,
31:1019–1044, 1994.

Nabil Chaabane Chapter 7. Conclusion and future work 127

[89] R. LeVeque and Z. Li. Immersed interface method for Stokes flow with elastic bound-
aries or surface tension. SIAM Journal on Scientific Computing, 18:709–735, 1997.

[90] J. Li and Y. Renardy. Numerical study of flows of two immiscible liquids at low
reynolds number. SIAM Rev, 42(3):417–439, 2000.

[91] J. Li and Y. Renardy. Shear-induced rupturing of a viscous drop in a Bingham liquid.
J. Non-Newtonian Fluid Mech., 95:235–251, 2000.

[92] Z. Li. The Immersed interface method a numerical approach for partial differential
equations with interfaces. Ph.D dissertation, University of Washington, 1994.

[93] Z. Li. The immersed interface method using a finite element formulation. Applied
Numerical Mathematics, 27:253–267, 1998.

[94] Z. Li, K. Ito, and M. Lai. An augmented approach for Stokes equations with a discon-
tinuous viscosity and singular forces. Computers and fluids, 36:622–635, 2007.

[95] Z. Li, T. Lin, Y. Lin, and R. Rogers. An immersed finite element space and its approx-
imation capability. Numerical Methods for Partial Differential Equations, 20:338–367,
2004.

[96] Z. Li, T. Lin, and X. Wu. New cartesian grid methods for interface problems using
the finite element formulation. Numerische Mathematik, 96(1):61–98, 2003.

[97] Z. Li, W. Wang, I. Chern, and M. Lai. New formulations for interface problems in
polar coordinates. SIAM Journal on Scientific Computing, 25:224–245, 2003.

[98] Q. Lin, N. Yan, and A. Zhou. An optimal error estimate of the discontinuous Galerkin
method. Journal of Engineering Mathematics, 13:101–105, 1996.

[99] Q. Lin and A. Zhou. Convergence of the discontinuous Galerkin method for a scalar
hyperbolic equation. Acta Math. Sci., 13:207–210, 1993.

[100] T. Lin, Y. Lin, R. Rogers, and M. Ryan. A rectangular immersed finite element space
for interface problems. Advances in Computation: Theory and Practice, 7:107–114,
2001.

[101] T. Lin, Y. Lin, and W. Sun. Error estimation of a class of quadratic immersed finite
element methods for elliptic interface problems. Discrete and Continuous Dynamical
Systems - Series B, 7(4):807–823, 2007.

[102] T. Lin, Y. Lin, W. Sun, and Z. Wang. Immersed finite element methods for 4th order
differential equations. J. Comput. Appl. Math., 235:3953–3964, 2011.

[103] T. Lin and D. Sheen. The immersed finite element method for parabolic problems
with the laplace transformation in time discretization. Int. J. Numer. Anal. Model.,
10(2):298–313, 2013.

Nabil Chaabane Chapter 7. Conclusion and future work 128

[104] T. Lin, D. Sheen, and X. Zhang. A locking-free immersed finite element method for
planar elasticity interface problems. Journal of Computational Physics, 247:228–247,
2013.

[105] T. Lin and X. Zhang. Linear and bilinear immersed finite elements for planar elasticity
interface problems. Journal of Computation and Applied Mathematics, 236:4681–4699,
2012.

[106] T. Mason and J. Bibette. Emulsification in viscoelastic media. Phys. Rev. Lett.,
77:3481–3484, 1996.

[107] N. Nassif and D. Khuwayri-Fayyad. Introduction to Numerical Analysis and Scientific
Computing. Chapman and Hall/CRC, 2013.

[108] J.T. Oden, W. Wu, and M. Ainsworth. Three-step h − p adaptive strategy for the
incompressible Navier-Stokes equation. In I. Babuska, J.E. Flaherty, W.D. Henshaw,
J.E. Hopcroft, J.E. Oliger, and T. Tezduyar, editors, Modeling, Mesh Generation and
Adaptive Numerical Methods for Partial Differential Equations, The IMA Volumes
in Mathematics and its Applications, volume 75, pages 347–366, New York, 1995.
Springer.

[109] K. Ohmori and N. Saito. On the convergence of finite element solutions to the interface
problem for the Stokes system. Journal of computational and applied mathematics,
198:116–128, 2007.

[110] J. Ottino, P. DeRoussel, S. Hansen, and D. Khakhar. Mixing and dispersion of viscous
liquids and powdered solids. Advances in Chemical Engineering, 25:105–204, 2000.

[111] C. Peskin. Flow patterns around heart valves: A numerical method. Journal of
Computational Physics, 10:252–271, 1972.

[112] C. Peskin. Lectures on mathematical aspects of physiology. Lectures in Appl. Math.,
107:19–69, 1981.

[113] C. Peskin. The immersed boundary method. Acta Numer., 11:479–517, 2002.

[114] C. Peskin and D. McQueen. Modeling prosthetic heart valves for numerical analysis
of blood flow in the heart. Journal of Computational Physics, 37:113–132, 1980.

[115] T. Peterson. A note on the convergence of the discontinuous Galerkin method for a
scalar hyperbolic equation. SIAM Journal on Numerical Analysis, 28:133–140, 1991.

[116] S. Ramaswamy and L. Leal. The deformation of a viscoelastic drop subjected to steady
uniaxial extensional flow of a Newtonian fluid. J. Non-Newtonian Fluid Mechanics,
85:127–163, 1999.

Nabil Chaabane Chapter 7. Conclusion and future work 129

[117] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport
equation. technical report la-ur-73-479. Los Alamos Scientific Laboratory, Los Alamos,
3, 1973.

[118] A. Reusken. Analysis of an extended pressure finite element space for two-phase in-
compressible flows. Comput. Visual sci., 11:293–305, 2008.

[119] G. Richter. An optimal-order error estimate for the discontinuous Galerkin method.
Mathematics of Computation, 50(181):75–88, 1988.

[120] B. Riviere. Discontinuous Galerkin methods for solving Elliptic and parabolic equations.
Frontiers in applied mathematics, Philadelphia, 2008.

[121] B. Riviere and M. Wheeler. A posteriori error estimates and mesh adaptation strategy
for discontinuous Galerkin methods applied to diffusion problems. TICAM Report 00-
10, University of Texas at Austin, USA, 2000.

[122] D. Schotzau and C. Schwab. An hp a-priori error analysis of the DG time-stepping
method for initial value problems. Calcolo, 37:207–232, 2000.

[123] D. Schotzau and C. Schwab. Time discretization of parabolic problems by the hp- ver-
sion of the discontinuous Galerkin finite element method. SIAM Journal on Numerical
Analysis, 38:837–875, 2000.

[124] M. Shimrat. Algorithm 112: Position of point relative to polygon. Communications of
the ACM, 5:5877–5897, 1962.

[125] E. Suli and P. Houston. Finite element methods for hyperbolic problems: A posteriori
error analysis and adaptivity. In I. Duff and G. Watson, editors, The State of the Art
in Numerical Analysis, pages 441–471, 1997.

[126] E. Toose, B. Geurts, and J. Kuerten. A boundary integral method for two-dimensional
(non)-Newtonian drops in slow viscous flow. Non-Newtonian Fluid Mech., 60:129–154,
1995.

[127] H. Udaykumar, R. Mittal, and W. Shyy. Computation of solid-liquid phase fronts in the
sharp interface limit on fixed grids. Journal of Computational Physics, 153:535–574,
1999.

[128] S. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible,
multi-fluid flows. Journal of Computational Physics, 100:25–37, 1992.

[129] L. Wahlbin. Superconvergence in Galerkin Finite Element Methods, volume 1605 of
Lecture Notes in Mathematics. Springer, 1995.

Nabil Chaabane Chapter 7. Conclusion and future work 130

[130] C. Wu, Z. Li, and M. Lai. Adaptive mesh refinement for elliptic interface problems
using the non-conforming immersed finite element method. International Journal of
Numerical Analysis & Modeling, 8(3):466–483, 2011.

[131] P. Yue, J. Feng, C. Liu, and J. Shen. A diffuse-interface method for simulating two-
phase flows of complex fluids. Journal of Fluid Mechanics, 515:293–317, 2004.

[132] P. Yue, C. Zhou, J. Feng, C. Ollivier-Gooch, and H. Hu. Phase-field simulations of
interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing.
Journal of Computational Physics, 219:47–67, 2006.

[133] X. Zhang. Nonconforming Immersed Finite Element Methods for Interface Problems.
Ph.D dissertation, Virginia Tech, 2013.

[134] A. Zhou and Q. Lin. Optimal and superconvergence estimates of the finite element
method for a scalar hyperbolic equation. Acta Math. Sci., 14:90–94, 1994.

[135] H. Zhou and C. Pozrikidis. The flow suspension in channels: Single files of drops.
Physics of Fluids, A(5):311–324, 1993.

[136] O. Zienkiewicz and R. Taylor. The finite element method: Fluid mechanics., volume 3.
Butterworth Heinemann Oxford, 2000.

