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Abstract Membrane bioelectrochemical reactors (MBERS)
integrate membrane filtration into bioelectrochemical systems
for sustainable wastewater treatment and recovery of
bioenergy and other resource. Mathematical models for
MBERs will advance the understanding of this technology
towards further development. In the present study, a mathe-
matical model was implemented for predicting current gen-
eration, membrane fouling, and organic removal within
MBERs. The relative root-mean-square error was used to
examine the model fit to the experimental data. It was
found that a constant to determine how fast the internal
resistance responds to the change of the anodophillic mi-
croorganism concentration could have a dominant impact
on current generation. Hydraulic cross-flow exhibited a mi-
nor effect on membrane fouling unless it was reduced below
0.5ms . This MBER model encourages further optimization
and eventually can be used to guide MBER development.
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Introduction

Integrating filtration membranes into bioelectrochemical sys-
tems such as microbial fuel cells (MFCs) represents a new
approach for sustainable wastewater treatment and has
attracted great interest (Yuan and He 2015). In MFCs,
bioenergy in wastewater is extracted through the interaction
between microbes and electrodes in the anodic compartment
and the produced electrons are transferred to a cathode electrode
through an external circuit (Logan et al. 2006). Comparing
with the conventional activated sludge (CAS) process, MFC
technology requires less energy input, yields less sludge, and
produces useful bio-electricity (Li et al. 2014c; Rabaey and
Verstracte 2005; Zhang et al. 2013). Combining a membrane
separation process with MFCs helps to achieve high-quality
effluent, and the combined system is called membrane
bioelectrochemical reactors (MBERs) or bioelectrochemical
membrane reactors (BEMRs).

MBERSs have been demonstrated feasible and advanced in
several aspects including configurations, nutrient removal,
and energy balance. Early studies applied biofilm grown on
stainless steel mesh as a membrane-like filtration process to
achieve high removal of both organics and ammonia (Wang
et al. 2011, 2012). Commercial hollow-fiber ultrafiltration
membranes were installed in the anodic compartment of a
tubular MFC, forming an MBER, but membrane fouling re-
duced water flux and required frequent membrane cleaning
(Ge et al. 2013). To alleviate fouling issue, MBERs were
modified, such as a fluidized-bed MBER with granular acti-
vated carbon (GAC) in the anodic chamber, or hollow-fiber
membrane being installed in the cathodic chamber with con-
stant aeration (Li et al. 2014a, b). Nitrogen removal could be
improved by using an anion exchange membrane (AEM) as a
separator (Li and He 2015). Membrane bioreactors (MBRs)
can be linked to MFCs for achieving treatment of wastewater
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or reuse of media for fermentation (Li et al. 2015). Two-stage
microbial fuel cell-anaerobic fluidized-bed membrane biore-
actor generated a high-quality effluent with the MBR as ex-
ternal post-treatment of the MFC (Ren et al. 2014).

Given its intrinsic physical, biological, and electrochemical
factors, developing a mathematical model will be helpful for
further understanding of MBER systems. An MBER model
consists of two parts, MFCs and MBR, linked by some key
factors such as organic loading rates (OLR), aeration intensity,
and reactor configuration. The available MFC/MEC models
are based on Nernst-Monod type of equations to calculate
substrate consumption and bacteria growth in the anodic com-
partment, but the mass transfer equations vary depending on
the spatial distribution of substrates and microbial activities
(Kato Marcus et al. 2007; Picioreanu et al. 2007; Ping et al.
2014; Pinto et al. 2010). The existing MBR models are de-
rived from activated sludge model (ASM) with a physical
membrane filtration process (Ng and Kim 2007). Biomass
kinetic models and membrane fouling models are major
components to describe the MBR process (Diez et al.
2014; Zuthi et al. 2015). Development of MBER models
will need to synergistically integrate MFC models with
MBR models. In this study, a dynamic MBER model was
developed for the first time. The model was validated and
examined with the data from three different MBERs
reported previously (Li et al. 2014a, b; Li and He 2015): an
MBER with ultrafiltration membranes in its cathodic com-
partment, an MBER with improved nitrogen removal, and
an MBER with fluidized GAC.

Methods
MBER systems

The data of three MBER systems published previously were
used to examine and validate the developed model, and the
schematics of the three MBER systems are shown in Fig. 1.
The first MBER, MBER-1, was a cubic reactor containing
cation exchange membrane (CEM) as a separator and
hollow-fiber membranes installed in its cathodic compart-
ment; the synthetic organic solution was treated in the anode
and the effluent flew through the cathode (Li et al. 2014a). The
second MBER, MBER-2, was a tubular reactor containing
AEM as a separator and operated similarly to the MBER-1;
it was designed to enhance nitrogen removal via heterotrophic
denitrification in the anode (with nitrate movement across
AEM) and bioelectrochemical denitrification in the cathode
(Li and He 2015). The third MBER, MBER-3, was a tubular
reactor with hollow-fiber membranes installed in its anodic
compartment; fluidized GAC was applied for fouling control
(Li et al. 2014b).
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Model formulation

Mass balance for substrate, microorganisms, and electron
mediators in the anode

The mass balance is established by applying multiplicative
Monod kinetics for microbial growth (Pinto et al. 2010). An
intracellular redox mediator is assumed to be generated by
anodophillic bacteria to aid transfer of the electrons which
were produced from substrate degradation. To simplify the
process of model formulation, a well-mixing condition is as-
sumed in both chambers, and ordinary differential equation
(ODE) is used to calculate the concentration of substrate,
anodophillic, and methanogenic microorganism in the anode
compartment.
The mass balance for the substrate is shown in Eq. 1:

ds S M oy
—— = Dapode SiniS 7ksa
dt de X (S=S)Ksamax X g X e Ty
x Cy—k X 5 x C, (1)
a” Ks,m,max S+K, m

where S is the concentration of substrate (mg-S L™"); Si, is
concentration of influent substrate (mg-S L™"); C, and C,, are
the concentrations of anodophillic and methanogenic micro-
organism (mg-C L, respectively; ks a max a0d Kg m max are the
maximum substrate consumption rates by anodophillic and me-
thanogenic microorganisms (mg-S mg-a_' day ), respectively;
M,y 1s the oxidized fraction per anodophillic microorganism
(mg-M mg-aﬁl); and K,, K,,, and Ky; are the half-saturation
concentration for the anodophillic microorganisms, methano-
genic microorganisms, and the redox mediator (mg-S L™, mg-
S L', and mg-M mg-a "), respectively. It is assumed that the
growth of anodophillic bacteria is limited by both substrate
concentration and the oxidized form of the mediator, whereas
the growth of methanogenic microorganism is limited only by
the substrate concentration.

Qin (2)

Vanode

Danode =

D oo 18 the dilution rate (dayfl), where Oy, is the influent
flow rate of the substrate (L dayfl), and V04 18 the volume of
the anode compartment (L).

The concentration of anodophillic or methanogenic micro-
organisms is calculated by the differential equations:

dcC,
7 = ka X Cafkd,a X CafDanode (3)
y 1+ tahn(ka,x X (Ca + Cm*Cu,max))

2

x C,
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Fig. 1 Schematics of the previously developed membrane bioelectrochemical reactors (MBERs): a MBER-1, hollow-fiber membranes installed in the
cathode; b MBER-2, enhanced nitrogen removal with AEM; and ¢ MBER-3, fluidized GAC in the anode

dc,,
= km Cm_k m Cm_Dano e
dr X dm X d

R tahn (kpx x (Cq + Co=Crymax) )
2

x Cp (4)

where kq, and k4, are decay rates of the microorganisms
(day ), ka x and ki, « are the steepness factors for anodophillic
microorganisms (L mg-a ') and methanogenic microorgan-
isms (L mg-mﬁl) for the biofilm retention, C, max and Ciy max
are the maximum attainable concentration for anodophillic
microorganisms (mg-a L") and methanogenic microorgan-
isms (mg-m L"), and &, and k,, are the growth rates of
microorganisms (day ') calculated by Eqs. 5 and 6:

S M,,
ka = ka max X X (5)
' Ka +S KM + Mox
S
ke = o max X m (6)

where Ky max and ky max are the maximum microorganism
growth rates (day '). The intercellular material balance for
the oxidized mediator can be described as follows:

M, I
— _YM X ks,a + 7x (7)
dt ’ Vanode X Cq X 1o X F
Mtotal = Mox + Mred (8)

where My, is the total mediator fraction per microorgan-
isms (mg-M mg—aﬁl), M,.q4 1s the reduced mediator fraction
per microorganisms (mg-M mg-a '), Y, is the mediator
yield (mg-M mg-S™'), ~ is the mediator molar mass
(mg-M mole-M "), I is the current through the circuit of
an MBER (A), F is the Faraday constant (A day mole ),
and n. is number of electrons transferred per mole of
mediator (mole-e mole-M ).

Electrical generation

The overall cell voltage in an MBER is modeled by the fol-
lowing equation:

I x Raxt = Voc_OPanode_OPcathode_OPconc_I X Rint (9)
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where R, is the external resistance (), V. is the open circuit
voltage (V), OP,,04c 1S the anode overpotential (V), OP.amode
is the cathode overpotential (V), OP, is the concentration
overpotential, and Ry, is the internal resistance (L2).

Usually, R, includes mass transfer resistance, ohmic resis-
tance, and activation resistance. In the present study, the inter-
nal resistance was calculated as follows:

Rint = Rmin + (Rmax_Rmin) X e_erCu (10)

where R, and R ., are the minimum and maximum internal
resistance () and £; is the constant that determines how fast
the internal resistance respond to the change in microorganism
concentration C, (L mg-a_l).

The open circuit voltage was calculated as:

Vuc = Vmin + (Vmafomin) X e*l/(k,xCa) (11)

where Vi, and V., are the lowest and highest observed V.

values (V).
The concentration overpotential is assumed to be associat-
ed with electron mediators and could be modeled as follows:
RxT

M
OP,ype = —— " x In 2%l

F Mred ( 12)

It is noteworthy that the anode overpotential and cathode
overpotential have been neglected, due to the sufficient buffer
solution in both chambers. Hence, the current generation
equation is simplified to be as follows:

I — Voc_OPconc
Rext + Rim

(13)

Membrane fouling

Membrane fouling issues correlate to a couple of factors, such
as wastewater strength, operation condition, hydrodynamic
effects, and aeration intensity (Judd 2008). Hence, providing
a constant aeration to membrane is a key factor on fouling
control.

Membrane simulation of the MBER-1 Due to the similarity
of system configuration, submerged membrane bioreactor
(sMBR) models are used for membrane performance predic-
tion. Being as a stand-alone technology, sMBR models in-
clude aeration, cake formation, filtration, fouling, physical,
and bioprocess description (Pimentel et al. 2015). The total
membrane fouling is represented by combining cake layer
resistance (R.ax.), intrinsic resistance (R,,), and resistance
which is caused by total resistance disturbance (dg). However,
the formation of cake layer is usually responsible for mem-
brane fouling issue (Khan et al. 2009).

Rtotal = Rm + Rcake + 6R: Rcake (14)
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where the cake layer resistance is calculated by:
m—+ mo)
A

Rcake:px ( (15)
where p is the specific cake layer resistance (m g '), m is the
initial cake mass (g), 4 is the area of the membrane surface,
and m is the current cake mass (g).

The calculation of the transmembrane pressure is expressed
as follow:

AP:Q tXnXRl‘Ota[ (16)

ou.

where AP is the transmembrane pressure (Pa), n is the
water apparent viscosity (Pa.s), and Q. is effluent rate
(m® day ™).

The change of the cake layer mass can be expressed:
dm
E = Qout X X=Jair X Haip X M (17)

m

=X — 18
Hair ﬁ Kair +m ( )
where X is the concentration of the suspended solids (g m>),
Joir is the air cross-flow (m® m? dayfl), (3 is linked to the
resistance of the cake to detachment (m "), and K, is the
half-saturation coefficient of air flow (g).

The biological activity is described involving one biomass
growing on a limited substrate.

s 1 On o
(S) = () X > (20)
)= B ma = g
dX? =W Qin _ =Zout
dt<u(S) V) x X + 7 X Xin 7 x X
Jair
+7X/,L><m (21)

where Yis yield coefficient of the substrate consumption, y(S)
is the microbial growth rate (day '), 1(S)max is the maximum
microbial growth rate (day '), Qj, is the inflow rate
(m® dayfl), Jis the volume of the cathode chamber (m3), Sin
is the substrate concentration in the influent flow, S is the
substrate concentration (g m °), K, is the half saturation of
substrate (g m °), Oy, is the waste flux (m® day '), and X;, is
the solid concentration in the influent (g m ™).

The parameter ( represents the ease (or difficulty) of
detaching the cake from the membrane using an air cross-flow.

B yxp (22)
Membrane simulation for the fluidized-bed MBER-3 A
previous study was used to develop and predict membrane
fouling problem in the fluidized MBER system (Liu et al.
2003). The membrane fouling rate under various hydrody-
namic conditions has been estimated.
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The filtration resistance is calculated as an indicator for

membrane fouling status:

AP
R=36x10 x ——

" (23)

where R is the filtration resistance (m "), J is filtration flux
(Lm %h"), and AP is the transmembrane pressure (Pa). The 7
is approximately expressed by the viscosity of tap water and is
calculated as follows:

n=1.6003 x ¢ 00217 (24)

where T is the temperature of water.

It is assumed that the membrane filtration resistance in-
creases with time during the filtration, and the increasing rate
of resistance K is obtained as a slope of the straight line to the
changing course of the measured resistance.

The increase rate of resistance K is calculated as follows:

K=fxU; xJxXx* (25)

where f, ¢, d, and e are constants. X is the concentration of
suspended solids in mixed liquor (g L™"), J is filtration flux
(Lm 2 h™"); U, is the cross-flow velocity on the membrane
surface (m s ').

Nitrogen removal from the MBER-2

Nitrogen can be removed from an MBER by either ionic
migration or diffusion due to the concentration gradient. To
quantify the total nitrogen concentration in the membrane
permeate:

dt

= (CTN,in_CTN) X Deathode™C

1

X 7—ﬁ X CTN
Fx Vcathode

(26)
where Crnin and Cry are the total nitrogen concentration
in the anode effluent and membrane filtrate, respectively,
(mole-N L") Deathode is the dilution rate (dayfl) in the
cathode compartment that is quantified by the ration of
effluent rate (Q,,) over the volume of the cathode com-
partment (Veamode); ¢ 1s the fraction of produced electrons
for total nitrogen removal; [ is the current produced (A); F
is the Faraday constant; and 3 is the diffusion coefficient
for concentration gradient (day ).

Parameter estimation

The information about the estimated parameters can be found
in Table S1-3 (Supplemental data). The parameters obtained
are further re-estimated from additional experimental data.
The genetic algorithm routine in MATLAB is used for param-
eter estimation to minimize the relative root-mean-square

error (RMSE) between the predicted value and the experimen-
tal data. The RMSE is calculated as follows:

S G’
N

max(y,)

where N is the total number sampling time points in the sim-
ulation and y,, and y, represents model-predicted values and
experimental data at ¢, respectively. The maximum value of
experimental data was used to normalize the error in Eq. 27. A
smaller RMSE indicates that model has a good fit to experi-
mental data. MATLAB Function ODE23 is applied to solve
differentiation equation in this work.

\

RMSE = (27)

Results and discussions
Model performance with the MBER-1 data

The developed model was examined with the data of the
MBER-1 that was operated under a hydraulic full-loop mode,
and the flow rate of its anode feeding was adjusted at 0.23,
0.39, and 0.23 mL min” ! on days 20, 66, and 78, respectively,
resulting in an anodic hydraulic retention time (HRT) of 10, 6,
and 10 h. The model output of current value shows a general
agreement with the experimental measurement, but some un-
derestimation and overestimation can be seen (Fig. 2a). The
RMSE indicated that the mean error for the current generation
was within 15.2 % of their maximum value during the first
46 days. Such a discrepancy can be observed from the mis-
match at the early period: the current simulation was started
from day 20 of the MBER operation, and a sharp decrease in
the modeled current occurred in a short period of time after-
ward. The initial anodophillic bacteria concentration was es-
timated as 345.3 mg L', and the lagging time of bacteria
growth resulted in a temporary drop of current generation;
when the anodophillic bacteria concentration reached a steady
state, a stable current generation was achieved as a result. The
simulated current generation increased by 0.5 mA from day
66, as a response to enhanced organic loading rate, but over-
estimation can be observed and the RMSE for the current
generation was 20.8 %. The formulated model has a high
sensitivity to the change of organic loading rate, but the ex-
periment did not respond correspondingly, possibly related to
the fact that a large amount of organic compounds were con-
sumed by microorganisms rather than anodophillic bacteria.
The predicted current generation was below 4 mA after the
feeding flow rate was changed back to 0.23 mL min~' on day
78 with slight overestimation and a RMSE of 18.4 %.

The predicted transmembrane pressure (TMP) profile had a
very good fit to the experimental data (Fig. 2b), and the
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Fig.2 Experimental data and model simulation of the MBER-1 when the
flow rate of the feeding solution was at 0.23, 0.39, and 0.23 mL min~! on
days 20, 66, and 78, respectively: a current generation and b TMP change

relative RMSE was 11.3 % when the system was operated at
an anodic HRT of 10 h from days 20 to 66. The simulated
TMP experienced a dynamic process, in which it started from
5 kPa on day 20, increased to a peak value of 8 kPa on day 40,
and then dropped back to 5 kPa. The underestimation of the
TMP during the starting period was likely related to the for-
mation of membrane fouling. The arch shape of the TMP
change can be explained from Eq. 17, in which the first term
represents the attachment of total suspended solids on the mem-
brane surface depending on the effluent rate, and the second
term in the equation represents cake detachment proportional to
the air cross-flow. Equation 17 indicates that the change of cake
layer mass is proportional to the instantaneous cake layer mass,
with a factorial of 2. Hence, the change of cake layer mass
follows a parabolic shape and “archy” shape is a portion of
the parabola. The change of TMP was less obvious in the ex-
perimental measurements due to the method of TMP recording
(data were recorded manually three times a day, and the average
value was used for analysis). The developed model was further
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evaluated and validated for TMP by changing the feeding rate
t0 0.39 mL min ' on day 66 and then to 0.23 mL min "' on day
78 in a stepwise way. The model prediction for TMP generally
followed the trend of experimental data, and the simulated TMP
increased from 14 to 25 kPa before the anode feeding rate was
changed back to 0.23 mL min'. During this period, a linearized
change of TMP indicates that the enhanced water flux played a
dominant role for cake layer accumulation on the membrane
surface, and cake mass detachment from air cross-flow became
a marginal effect due to a higher vacuum pressure after water
flux adjustment. The change of cake layer mass is proportional
to water flux by a factorial of 1, resulting in a linearized TMP
change. The simulated TMP dropped back to 10 kPa along
with reduced water flux after the anolyte was fed at
0.23 mL min ' again on day 78; it is worth noting that
the TMP began to increase from an initial TMP of
10 kPa, higher than 5 kPa on day 20, likely because of
irreversible fouling. The model gave a fairly good predic-
tion on TMP variation with a low RMSE of 5.4 % during
the final period.

Model performance with the MBER-2 data

The MBER-2 was a modified MBER-1 with AEM as a sepa-
rator for enhancing nitrogen removal through nitrate migration
driven by electricity generation and denitrification. Thus, ni-
trogen was a new parameter for the model to include. This
MBER was fed with an anolyte at 1.34 mL min ™' in a hydrau-
lic full-loop mode until day 60. The developed model gave
good prediction on current generation from a synthetic solu-
tion with slight overestimation and a low RMSE of 10.7 %
(Fig. 3a). The using of carbon brush and enhanced separator
area resulted in an improved electrical performance (com-
pared to the MBER-1). The substrate consumption in the an-
odic chamber was also simulated (Fig. 3b), and the simulated
results suggest that the MBER-2 almost reached a steady state
in 40 days with a low concentration of residual chemical ox-
ygen demand (COD). It should be noted that the measurement
was taken once a week, and future studies to improve the
developed model will require more frequent measurement.
Cake mass accumulation endured a dynamic process, in which
a peak TMP value of 10 kPa was obtained on day 30 and it
dropped back to 5 kPa on day 60 (Fig. 3c), due to the low
suspended solids and organic content from the anolyte. The
simulated concentration of total nitrogen concentration in
membrane permeate exhibited a satisfactory agreement with
the experimental measurement (Fig. 3d), and the mean error
for the total nitrogen concentration was within 6.5 % of their
maximum values. Equation 26 indicates that the concentration
gradient-driven diffusion from the cathodic to the anodic com-
partment and the ion migration-driven by ionic current and
charge balance, which is described by the Faraday’s law, are
two major mechanisms for nitrogen removal. Compared to ion
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Fig.3 Experimental data and model simulation of the MBER-2 fed with a synthetic solution: a current generation, b substrate concentration in the anode
effluent, ¢ TMP change, and d total nitrogen (TN) concentration in the membrane permeate

migration effect, ion diffusion from concentration gradient
played a minor role for nitrogen removal. A coefficient «
(0.13) was applied to modify on ion migration, which indi-
cates about 13 % of generated electrons was used for driving
negatively charged nitrate ions into the anodic compartment
and other negatively charged ions such as chlorine and sulfate
may use the rest of electrons.

The MBER-2 was also operated by feeding actual waste-
water, a primary effluent from a local wastewater treatment
plant, at 1.25 mL min", resulting in anodic HRT of 10 h, and
the data obtained from actual wastewater were also used for
model validation. In general, the developed model can well
predict TMP and total nitrogen (Fig. 4c, d), with low RMSE of
8.6 and 9.7 %, respectively. The current predication (Fig. 4a)
has a high RMSE 0f24.8 %, mainly because of the fluctuating
current generation with actual wastewater. It should be noted
that the conductivity of the primary effluent was below
1 mS em ', much lower than 3.3 mS e¢m ' of the synthetic
solution; therefore, the parameter R,,;, was re-designated as
300€ for model fitting. The COD consumption in the anodic
compartment was predicted with underestimation, with simu-
lated COD concentration about 10 mg L' higher than the
experimental measurement (Fig. 4b). The new R,,,;, might be

responsible for this discrepancy, but this warrants further
investigation.

Model performance with the MBER-3 data

The MBER-3 was a fluidized-bed system with GAC as media.
The fluidized GAC was affected by the anolyte recirculation;
thus, recirculation strategy was examined. The developed
model showed a satisfactory agreement of current prediction
with the experimental measurement, and its RMSE was within
8.8 % of their maximum value (Fig. 5a). The slight overesti-
mation of current between days 10 and 43 was related to the
assumption that a homogeneous condition for substrate and
biomass distribution is always valid, even though the absence
of recirculation flow may retard substrate transfer to electrode
surface. A significant mismatch with a high RMSE of 55.7 %
was observed on day 63 when the anodic HRT was changed to
5 h. Such a discrepancy was likely related to several fac-
tors: the stacked GAC in the anodic chamber may have
offset the effect of the enhanced flow rate of feeding solu-
tion, the electrochemically active biofilm on the electrode
surface may require longer time for acclimating to new
hydraulic condition, and/or the enhanced organics could

@ Springer
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Fig. 4 Experimental data and model simulation of the MBER-2 fed with actual wastewater (primary effluent): a current generation, b substrate
concentration in the anode effluent, ¢ TMP change, and d total nitrogen (TN) concentration in the membrane permeate

be consumed by the non-electrochemically active microor-
ganism on the GAC surface (which could be dominated in
a mixed culture system).

The model gave a very good prediction for TMP change
with a low RMSE of 9.0 % (Fig. 5b). The change of filtration
resistance (R) correlates to water flux (J) and hydraulic cross-
flow (U.,), which has been shown in Eqs. 23 and 25. The
change of membrane resistance rate (K) is proportional to
water flux by a factorial of 0.38 and to hydraulic cross-flow
inversely by a factorial of 1.1. The increase of TMP has been
expressed in a linearized way after the recirculation flow was
stopped, and the effect of U, can be neglected due to the
extremely low cross-flow on membrane surface. Therefore,
since day 10, TMP has been increasing along with a slope,
mainly determined by water flux. Water flux might have a
minor effect after the recirculation flow was re-started, due
to the quantitative relationship between J and Uj,. Hence,
filtration resistance is determined by hydraulic cross-flow in
an inverse relationship, and a low TMP can be seen between
day 43 to 63. The model prediction of TMP was also vali-
dated after the MBER system was fed at 2.33 mL min ' on
day 63, and based on the model results, hydraulic cross-
flow still could have played a dominant role for membrane
fouling control.

@ Springer

The effects of multiple factors were studied focusing on
water flux (J) and hydraulic cross-flow on membrane surface
(U.,), where these two parameters are changed simulta-
neously for evaluating filtration resistance change
(Fig. 6). The simulation results show that a higher water flux
can be compensated by increasing the recirculation rate. It is
demonstrated that for a fixed water flux, the change of mem-
brane resistance K decreases upon the increase of hydraulic
cross-flow at 0.0005 m s, corresponding to 630 mL min "
recirculation flow in this MBER. The membrane has a minor
fouling issue (or it requires a long time for noticeable fouling)
when a recirculation flow rate is higher than 630 mL min .
However, for a fixed recirculation flow rate lower than
630 mL min ', the change of filtration resistance increases
upon the increase of water flux. Therefore, controlling recir-
culation flow rate at 630 mL min ' can be an optimum oper-
ation method to minimize membrane fouling issue, thereby
extending membrane’s lifetime and reducing energy con-
sumption, in the absence of aeration and chemical cleaning.

Perspectives

This work represents the first attempt to model membrane
bioelectrochemical systems, and the developed model can
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Fig.5 Experimental data and simulation results of the MBER-3 a current
generation and b TMP change. The anodic HRT was 8 h with
800 mL min ' recirculation during days 0 and 53; recirculation stopped

on day 10 and resumed on day 43, with 600 mL min ' on day 53. The
anodic HRT decreased to 5 h with 800 mL min ' recirculation on day 63

effectively predict the key parameters of an MBER such as
current generation, substrate consumption, and TMP.

A
U ims™)

JiL m2 Yy

Fig. 6 Model simulation of the effects of multiple factors including
membrane filtration resistance (K), cross-flow velocity (U;,), and water

flux (J)

However, limitations still exist in the current model. For ex-
ample, the present model is based on the assumption that a
homogeneous condition has been well established within an
MBER; although this assumption simplifies simulation and
calculation procedures, such an ideal condition cannot be
easily obtained with real operation. In addition, the model
assumes that the overpotential of both anode and cathode
electrodes is kept constant in a low range, which may not
always be the case because the residual organics from the
anode chamber can act as a source of organics for the micro-
bial simulation in the cathode, and as a result, the
overpotential will vary. Furthermore, other factors such as
nitrogen consumption due to the microbial synthesis have
not been accounted for total nitrogen simulation. Future stud-
ies will optimize and advance this MBER model from several
aspects: (1) complex substrates and substrate gradient and
heterogeneous spatial distribution of microorganism will be
considered, (2) dynamic variation of electrode overpotentials
will be included, (3) other biological processes such as deni-
trification should be included for the organic consumption,
and (4) the model will be used to guide the system scaling
up for developing large-scale MBER system for treating actu-
al wastewater.

Conclusions

A dynamic mathematical model has been developed and used
to simulate/predict the key parameters of the MBER systems,
such as current generation, substrate consumption, membrane
fouling, and nitrogen removal. It was adjusted to successfully
model three different types of MBER systems with distinct
features such as nitrogen removal and fluidized GAC. The
model gave a satisfactory agreement with experimental data,
but some under/overestimation was observed. The results of
this work encourages further optimization of this MBER mod-
el through including more dynamic factors, and ultimately, the
model can guide the development of large-scale MBER sys-
tems for actual wastewater treatment.
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