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Abstract

High dimensional data have been frequently collected in many fields of scientific re-

search and technological development. The traditional idea of best subset selection

methods, which use penalized L0 regularization, is computationally too expensive for

many modern statistical applications. A large number of variable selection approaches

via various forms of penalized least squares or likelihood have been developed to se-

lect significant variables and estimate their effects simultaneously in high dimensional

statistical inference. However, in modern applications in areas such as genomics and

proteomics, ultra-high dimensional data are often collected, where the dimension of

data may grow exponentially with the sample size. In such problems, the regular-

ization methods can become computationally unstable or even infeasible. To deal

with the ultra-high dimensionality, Fan and Lv (2008) proposed a variable screen-

ing procedure via correlation learning to reduce dimensionality in sparse ultra-high

dimensional models. Since then many authors further developed the procedure and

applied to various statistical models. However, they all focused on single type of

predictors, that is, the predictors are either all continuous or all discrete. In practice,

we often collect mixed type of data, which contains both continuous and discrete

predictors. For example, in genetic studies, we can collect information on both gene



expression profiles and single nucleotide polymorphism (SNP) genotypes. Further-

more, outliers are often present in the observations due to experimental errors and

other reasons. And the true trend underlying the data might not follow the paramet-

ric models assumed in many existing screening procedures. Hence a robust screening

procedure against outliers and model misspecification is desired. In my dissertation,

I shall propose a robust feature screening procedure for mixed type of data. To gain

insights on screening for individual types of data, I first studied feature screening pro-

cedures for single type of data in Chapter 2 based on marginal quantities. For each

type of data, new feature screening procedures are proposed and simulation studies

are performed to compare their performances with existing procedures. The aim is

to identify a best robust screening procedure for each type of data. In Chapter 3, I

combine these best screening procedures to form the robust feature screening proce-

dure for mixed type of data. Its performance will be assessed by simulation studies.

I shall further illustrate the proposed procedure by the analysis of a real example.



General Audience Abstract

In modern applications in areas such as genomics and proteomics, ultra-high dimen-

sional data are often collected, where the dimension of data may grow exponentially

with the sample size. To deal with the ultra-high dimensionality, Fan and Lv (2008)

proposed a variable screening procedure via correlation learning to reduce dimen-

sionality in sparse ultra-high dimensional models. Since then many authors further

developed the procedure and applied to various statistical models. However, they all

focused on single type of predictors, that is, the predictors are either all continuous

or all discrete. In practice, we often collect mixed type of data, which contains both

continuous and discrete predictors. Furthermore, outliers are often present in the

observations due to experimental errors and other reasons. Hence a robust screening

procedure against outliers and model misspecification is desired. In my dissertation, I

shall propose a robust feature screening procedure for mixed type of data. I first stud-

ied feature screening procedures for single type of data based on marginal quantities.

For each type of data, new feature screening procedures are proposed and simulation

studies are performed to compare their performances with existing procedures. The

aim is to identify a best robust screening procedure for each type of data. Then i

combined these best screening procedures to form the robust feature screening pro-

cedure for mixed type of data. Its performance will be assessed by simulation studies

and the analysis of real examples.
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Chapter 1

Introduction

High dimensional data analysis has become increasingly frequent and important in

many areas such as economics, finance, health sciences and machine learning. Vari-

able selection and feature extraction play a crucial role in knowledge discovery in all

of these areas. Classical model selection methods have been developed and applied

to different areas for many decades. Traditional variable selection, for example, by

AIC[1],BIC[53],Mallow’s Cp[43], RIC[21] and GCV[55], involves an NP-hard combi-

natorial optimization problem. It is natural that these classical variable selection

methods use penalized L0 regularization, which gives a nice interpretation of best

subset selection and admits nice sampling properties[3]. However, the expensive

computational cost makes classical procedures infeasible for high dimensional data

analysis. Other variable selection procedures should be used.
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1.1 High Dimensional Variable Selection

A considerable amount of existing variable selection techniques for high dimensional

data are based on the assumption that the relationship between the response and

covariates is linear. Consider the linear model

y = Xβ + ε, (1.1)

where y is a vector of n observations from a response variable Y , X is an n × p

design matrix from p predictors X1, X2, . . . , Xp, β = (β1, . . . , βp)
T is a vector of p

unknown coefficients, and ε ∼ N(0, σ2In) is a vector of n independent and identically

distributed random errors. A generalized form of the penalized least squares is

||y −Xβ||2 +

p∑
j=1

pλ(βj), (1.2)

where pλ is a penalty function on individual coefficient. A natural generalization of

L0 regularization is penalized Lq regularization, referred as the bridge regression[22],

in which pλ(t) = λ|t|q for 0 < q ≤ 2. This bridges the best subset selection(penalized

L0 regularization) and ridge regression(penalized L2 regularization). In particular,

the well-known Lasso[56] is the penalized L1 regression.

Fan and Li[12] considered three properties for the penalty function[14]:

1. Sparsity: The resulting estimator automatically sets small estimated coefficients

to zero to accomplish variable selection and reduce model complexity.
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2. Unbiasedness: The resulting estimator is nearly unbiased, especially when the

true coefficient βj is large, to reduce model bias.

3. Continuity: The resulting estimator is continuous in the data to reduce insta-

bility in model prediction.

When q > 1, the convex Lq penalty does not satisfy the sparsity condition. When

0 ≤ q < 1, the concave Lq penalty does not satisfy the continuity condition. In par-

ticular, the Lasso produces biased estimates for large coefficients. This has motivated

Fan and Li[12] to propose the smoothly clipped absolute deviation(SCAD) penalty

p′λ(t) = λ

{
I(t ≤ λ) +

(aλ− t)+
(a− 1)λ

I(t > λ)

}
forsome a > 2, (1.3)

where pλ(0) = 0 and, often, a = 3.7 is used. The SCAD penalty satisfies all

aforementioned three properties and the resulting estimator possesses the oracle

property[12]. With similar spirit, Zhang[68] proposed the following minimax con-

cave penalty(MCP),

p′λ(t) = (aλ− t)+/a, (1.4)

and showed that the resulting procedure possesses the oracle property. However,

since the SCAD penalty is nonconcave and it is challenging to optimize nonconcave

penalized likelihood. Fan and Li[12] proposed a unified and effective local quadratic

approximation(LQA) algorithm. Their idea is to locally approximate the objective

function by a quardratic function. Zou and Li[75] proposed a better approximation
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achieved by using the local linear approximation(LLA). Fan and Lv[17] are able to give

the conditions under which the penalized likelihood estimator exists and is unique.

Zou[72] proposed a weighted version of L1 penalty, called the adaptive Lasso, to

overcome the lack of oracle property of the Lasso.The adaptive Lasso has the oracle

property under some regularity conditions[31]. However, the penalty at zero is infinite.

While, the penalty function such as SCAD and MCP do not have this undesired

property. The adaptive Lasso estimates can be calculated using the same algorithms

for Lasso. Efron et al.[9] proposed a fast and efficient least angle regression(LARS)

algorithm for computing the whole solution path of the Lasso. The computation

is based on the fact that the Lasso solution path is piecewise linear. The idea of

the LARS algorithm can be expanded to solve the penalized least squares problem.

Fu[23], Daubechies et al.[8],Osborne et al.[52] and Wu and Lang[64] proposed the

coordinate descent algorithm, which is very efficient for large Lasso problems. This

algorithm can also be applied to optimize the group Lasso[67] as shown in Meier

et al.[45]. Asymptotic properties of the group Lasso have been studied by Bach[2]

and Nardi and Rinaldo[49]. Other group level procedures were developed by Kim et

al.[35], Wang et al.[61] and Zhao et al.[69].

Zou and Hastie[73] proposed the elastic net(ENet) which is a combination of the

L1 and L2 penalties:

pλ(t) = λ1|t|+ λ2t
2, (1.5)

where the L1 penalty encourages sparsity in the coefficients and the L2 penalty en-
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courages some grouping effects. Liu and Wu[40] proposed the L0L1 penalty which is

a combination of the L0 and L1 penalties:

pλ(t) = (1− λ1) min{|t|/λ2, 1}+ λ1|t|. (1.6)

The L0L1 penalty overcome disadvantages of the L0 and L1 penalties. Wu et al. [63]

proposed a procedure that combines the L1 and L∞ penalties:

Jλ(β) = λ1

p∑
j=1

|βj|+ λ∞||β||∞, (1.7)

where ||β||∞ = max1≤j≤p|βj|. While the L1 penalty leads to sparsity, the L∞ penalty

encourages grouping among highly correlated predictors.

1.1.1 Choice of Penalty Parameters

The performance of penalized likelihood methods depends on the choice of the tun-

ing parameters, which control the trade-off between the bias and variance in result-

ing estimators[28]. Traditionally, cross-validation and information criteria, including

AIC and BIC, are widely applied. Nishii[50] proposed generalized information crite-

rion(GIC):

n log ||y −Xβ̂(λ)||2 + ξd(λ), (1.8)

where β̂(λ) is an estimate of β, d(λ) measures the model complexity, and ξ controls

the trade-off between goodness of fit and model complexity. AIC and BIC correspond
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to the special cases when ξ = 2 and ξ = log n. Another criterion is the generalized

cross validation(GCV):

||y −Xβ̂(λ)||2

(n− d(λ))2
. (1.9)

However, we need an appropriate measure of model complexity d(λ) to be able to use

these criteria.

Existing model selection criteria are naturally incorporated to select the tuning

parameter for some regularization methods. For the Lasso procedure, Zou et al.

[74] showed that the number of nonzero coefficients is an unbiased and consistent

estimator of d(λ). For the SCAD approach, Wang et al. [59] showed that the model

selected by GCV contains all important variables and the BIC can identify the true

model consistently. Wang et al. [58] showed that a modified BIC continues to work

in the setting of linear regression with diverging dimensionality. We also refer to the

work of Chen and Chen[5] and Wang and Zhu[62]. New statistical methodologies as

well as theories are needed on the choice of penalty parameters[13].

1.2 Ultra-high Dimensional Variable Selection

The regularization methods in the last section can comfortably deal with high dimen-

sional cases when p is almost as large as n but may have difficulty when p can increase

in an exponential order exp{O(nα)}, α > 0 of the sample size n. To deal with the ul-

tra high dimensionality, one appealing idea is that a fast,reliable and efficient method

is first used to reduce the dimensionality p from a large or huge scale to a relatively
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large scale d (e.g., O(nb) for some b > 0), then the regularization methods can be

applied to the reduced feature space. This suggests a two-scale method: a crude large

scale screening followed by a moderate scale selection[15]. Many screening techniques

can be chosen in the first step, as long as the sure screening property introduced in

Fan and Lv[15] is satisfied, such that all the important variables can be selected with

asymptotic probability one.

1.2.1 Sure Independence Screening

The main theme behind independence screening is as follows: each feature is used

independently as a predictor for predicting the response and, subsequently, those fea-

tures which appear highly related to the response are selected. In the linear model,

the marginal correlation coefficient serves as an example of a measure of association

between the covariates and the response. Fan and Lv[15] proposed sure independence

screening(SIS) that ranks features according to the magnitude of its sample correla-

tion with the response variable. Let ω = (ω1, . . . , ωp)
T = XTy be a p-vector obtained

by componentwise regression, where we assume that each column of the n× p design

matrix X has been standardized with mean zero and variance one. For any given dn,

take the selected submodel to be

Mdn = {1 ≤ i ≤ p : |ωi| is among the first dn largest of all}.
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where a conservative practical choice of dn suggested in the paper is [n/ log n]. Such

correlation learning screens those variables that have weak marginal correlations with

the response. SIS has been shown to possess the sure screening property, which means

that with high probability(tending to 1) it is able to detect a subset of covariates which

contains the important ones and its size is much smaller than p. After the dimen-

sionality is reduced from a large scale p to a moderate scale d, a variable selection

procedure such as SCAD and adaptive Lasso can be applied to the selected variables

from the screening procedure. The sampling properties of the sure screening methods

can be obtained by combining the theory of SIS and penalization methods[16]. How-

ever, the screening procedure may fail when some key conditions are not valid. For

example, the SIS may fail to select the important variable which is jointly correlated

but marginal uncorrelated with the response and tends to select the unimportant

variable which is jointly uncorrelated but highly marginally correlated with the re-

sponse. To refine the screening performance, Fan and Lv[15] provided an iterative

SIS procedure (ISIS) by iteratively replacing the response with the residual obtained

from the regression of the response on selected covariates in the previous step; see

Section 1.2.2 for more details. Wang[57] studied the property of forward regression

with ultrahigh-dimensional predictors and proposed using the extended BIC[4] to de-

termine the size of the active predictor set. Hall and Miller[27] proposed using the

generalized correlation as a marginal screening utility and ranking all predictors based

on the magnitude of estimated generalized correlation. Li et al.[37] proposed a robust

rank correlation screening(RRCS) procedure based on the Kendall rank correlation
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to deal with the heavy-tail distributions. And the RRCS procedure is robust to out-

liers and influence points in the observations, which is not the case for the Pearson

correlation in SIS procedure.

Since Fan and Lv[15] proposed SIS for ultra high dimensional variable selection,

many authors further developed the SIS method and applied to various statistical

models.

1.2.2 Iterative Sure Independence Screening

Fan and Lv[15] point out three potential problems with SIS: an important predictor

that is marginally uncorrelated but jointly correlated with the response cannot be

picked; unimportant predictors that are highly correlated with the important predic-

tors can have higher priority to be selected by SIS than important predictors that are

relatively weakly related to the response; the issue of collinearity among the predic-

tors adds difficulty to the problem of variable selection. Fan and Lv[15] address these

issues by proposing an iterative SIS(ISIS).

Fan et al.[19] extended and improved the idea of ISIS and proposed an iterative

feature screening procedure under the more general statistical framework. Suppose

that our objective is to find a sparse β to minimize

n−1
n∑
i=1

L(Yi,x
T
i β) +

p∑
j=1

pλ(|βj|). (1.10)

The proposed iterative procedure consists of the following steps.
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1. Apply an SIS procedure to pick a set A1 of indices of size k1, and then employ

a penalized likelihood method such as Lasso, SCAD or MCP to select a subset

M1 of these indices.

2. Instead of computing residuals as in Fan and Lv[15], compute

L
(2)
j = min

β0,βM1
,βj
n−1

n∑
i=1

L(Yi, β0 + xi,M1

TβM1 + Xijβj), (1.11)

for j /∈ M1, where xi,M1 is the sub-vector of xi consisting of those elements in

M1. This measures the additional contribution of variable Xj in the presence

of variables xM1 . Pick k2 variables with the smallest {L(2)
j , j /∈M1} and let A2

be the resulting set.

3. Use penalized likelihood to obtain

β̂2 = argmin
β0,βM1

,βA2

n−1
n∑
i=1

L(Yi, β0 + xTi,M1
βM1 + xTi,A2

βA2) +
∑

j∈M1∪A2

pλ(|βj|).

(1.12)

This gives a new set M2 of active indices consisting of nonvanishing elements

of β̂2. This step also deviates importantly from the approach in Fan and Lv[15]

even in the least squares case. It allows the procedure to delete variables from

the previous selected variables M1.

4. Iterate the above two steps until d (a prescribed number) variables are recruited

or Ml =Ml−1.



11

The final estimate is then β̂Ml
. This iterative procedure extends the ISIS to a general

statistical framework. It can be easily extended to many procedures. It also allows

the procedure to delete predictors from the previously selected set.

Xu and Chen[66] claimed that the gain of the iterative procedure is built on

higher computational cost and increased complexity. They proposed the sparsity re-

stricted MLE(SRMLE) method for the generalized linear models and demonstrated

the SRMLE is conceptually simpler and computationally cheaper. They further

demonstrated that the SRMLE procedure enjoys the sure screening property.

1.2.3 SIS for Generalized Linear Models

Consider the generalized linear model with a canonical link. The conditional density

is given by

f(y|x) = exp{yθ(x)− b(θ(x)) + c(y)}, (1.13)

for some known functions b(·), c(·), and θ(x) = xTβ. Without loss of generality, we

assume the dispersion parameter φ = 1. As before, we assume that each variable has

been standardized to have mean 0 and variance 1. The penalized likelihood is

−n−1
n∑
i=1

`((xi)
Tβ, yi)−

p∑
j=1

pλ(|βj|), (1.14)
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where `(θ, y) = b(θ)−yθ. Define the maximum marginal likelihood estimator(MMLE)

β̂Mj as the minimizer of the componentwise regression

β̂j
M

= (β̂Mj,0, β̂
M
j ) = argminβ0,βj

n∑
i=1

`(β0 + βjXij,Yi), (1.15)

where Xij is the ith observation of the jth variable. Similar to the marginal least

squares estimate, it is reasonable to consider the magnitude of β̂Mj to rank the im-

portance of the features. Fan and Song[20] select a set of variables whose marginal

magnitude exceeds a predefined threshold value γn:

Mγn = {1 ≤ j ≤ p : |β̂j
M
| ≥ γn}. (1.16)

Fan and Song[20] further proved that, under some technical assumptions, the MMLEs

are uniformly convergent to the population values and established the sure screening

property of the MMLE screening procedure. They also discussed the size of the

selected model.

1.2.4 Nonparametric Independence Screening

In practice, there is often little prior information indicating that the effects of the

covariates take a linear form or belong to any other finite-dimensional parametric

family. Substantial improvements are sometimes possible by using a more flexible

class of nonparametric models, such as the additive model[54]. Fan et al.[11] proposed
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a nonparametric independence screening(NIS) for the ultra high dimensional additive

model

Y =

p∑
j=1

mj(Xj) + ε, (1.17)

where {mj(Xj)}pj=1 have mean 0. They rank the utility of covariates according to

E(f 2
j (Xj)), where fj(Xj) = E(Y|Xj) is the projection of Y onto Xj. fj(x) can be

estimated via a normalized B-spline basis Bj(x) = {Bj1(x), . . . ,Bjdn(x)}T :

f̂nj(x) = β̂Tj Bj(x), 1 ≤ j ≤ p, (1.18)

where β̂j = (βj1, . . . , βjdn)T is obtained through the componentwise least squares

regression:

β̂j = argmin
βj∈Rdn

n∑
i=1

(Yi − βTj Bj(Xij)). (1.19)

Thus the screened model index set is

Mν = {1 ≤ j ≤ p : ||f̂nj||2n ≥ νn}, (1.20)

where ||f̂nj||2n = n−1
∑n

i=1 f̂nj(Xij)
2 and νn is a predefined threshold value. Such an

independence screening ranks the importance of features according to the marginal

strength of the marginal nonparametric regression. Fan et al.[11] further introduced

INIS-penGAM procedure to decrease the false selection rate and greedy INIS (g-INIS)

algorithm to deal with the highly correlated covariates.

Fan et al.[18], and Liu et al.[39] extended the NIS to sparse ultra high dimensional
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varying coefficient models. Fan et al.[18] proposed a conditional correlation screening

procedure based on the kernel regression approach. From a different point of view,

Liu et al.[39] proposed another sure independent screening procedure based on the

conditional correlation learning(CC-SIS).

1.2.5 Model-free Feature Screening for Continuous Variables

Most of the screening procedures we reviewed above focuses on a class of specific

model and its performance is based upon the belief that the imposed working model

is close to the true model. However, it may be very challenging to specify the model

structure on the regression function in ultra high dimensional modelling.

Zhu et al.[71] proposed a sure independent ranking screening(SIRS) procedure,

which is a model-free variable screening procedure. Let Y be the response vari-

able with support Ψy, and Y can be both univariate and multivariate. Let x =

(X1, . . . ,Xp)
T be a covariate vector. Zhu et al.[71] first developed the notion of active

predictors and inactive predictors without specifying a regression model. Consider

the conditional distribution function of Y given x, denoted by F(y|x) = P(Y < y|x).

Define the true model

M∗ = {k : F(y|x) functionally depends on Xk for some y ∈ Ψy}, (1.21)

if k ∈ M∗, Xk is referred to as an active predictor, otherwise it is referred to as an

inactive predictor. Zhu et al.[71] considered a general model framework under which
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a unified screening approach was developed. Assume that

F(y|x) = F0(y|BTxM∗), (1.22)

where F0(·|BTxM∗) is an unknown distribution function for a given BTxM∗ . Assume

that E(Xk) = 0 and Var(Xk) = 1 for k = 1, . . . , p. Define Ω(y) = E[xF(y|x)]. It

then follows by the law of iterated expectations that Ω(y) = E[xE{1(Y < y)|x}] =

cov{x,1(Y < y)}. Let Ωk(y) be the kth element of Ω(y), and define

ωk = E{Ω2
k(Y)}, k = 1, . . . , p. (1.23)

Then ωk is to serve as the marginal utility measure for predictor ranking. A natural

estimator for ωk is

ω̂k =
1

n

n∑
j=1

Ω̂2
k(Yj) =

1

n

n∑
j=1

{
1

n

n∑
j=1

Xik1(Yi < Yj)

}2

, k = 1, . . . , p, (1.24)

where Xik denotes the kth element of xi. Zhu et al.[71] proposed ranking all the

candidate predictor Xk according to ω̂k from the largest to smallest, and then selecting

the top ones as the active predictors. And they empirically demonstrated that the

combination of the soft cutoff and hard cutoff by setting d = [n/ log(n)] works quite

well in their simulation studies.

Several other model-free screening procedures have been proposed. Li et al.[37]

proposed a robust rank correlation screening (RRCS) procedure based on the Kendall
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rank correlation. RRCS can be used against outliers and influence points in the

observations and the sure independence screening property can hold only under the

existence of a second order moment of predictor variable. Li et al.[38] developed

the sure independence screening procedure based on the distance correlation (DC-

SIS) under general parametric models. The DC-SIS can be used directly to screen

grouped predictor variables and for multivariate response variables.

1.2.6 Model-free Feature Screening for Categorical Data

The aforementioned methods implicitly assume that predictor variables are continu-

ous. Ultra high dimensional data with categorical predictors and categorical responses

are frequently encountered in practice.

To deal with the cases when the predictors and the responses are all categorical,

Huang et al.[30] employed the Pearson χ2 test statistic as a marginal utility for

feature screening. Let Yi ∈ {1, . . . ,K} be the corresponding class label, and Xi =

(Xi1, . . . ,Xip)
T ∈ Rp be the associated categorical predictor. Define P (Yi = k) = πyk,

P (Xij = k) = πjk, and P (Yi = k1, Xij = k2) = πyj,k1k2 . Those quantities can

be estimated by π̂yk = n−1
∑

I(Yi = k), π̂jk = n−1
∑

I(Xij = k), and π̂yj,k1k2 =

n−1
∑

I(Yi = k1)I(Xij = k2). Subsequently, a chi-square type statistic can be defined

as

4̂j =
K∑

k1=1

2∑
k2=1

(π̂yk1 π̂jk2 − π̂yj,k1k2)2

π̂yk1 π̂jk2
, (1.25)
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which is a nature estimator of

4j =
K∑

k1=1

2∑
k2=1

(πyk1πjk2 − πyj,k1k2)2

πyk1πjk2
. (1.26)

Huang et al.[30] proposed estimating the true model by Ŝ = {j : 4̂j > c}, where c > 0

is some prespecified constant. They further established the sure screening property

under mild conditions.

1.2.7 SIS for Classification

Classification and discriminant analysis are useful for analysis of categorical response

data. Traditional methods of classification and discriminant analysis may break down

when the dimensionality is extremely large.

Let Y be a categorical response with K classes {y1, . . . , yK}. If an individual

covariate Xj is associated with the response Y, then µjk = E(Xj|Y = yk) are likely

different from the population mean µj = E(Xj). It is intuitive to use the test statis-

tic for multi-sample mean problem as a marginal utility for feature screening. Fan

and Fan[10] proposed using the two sample t-statistic as marginal utility for feature

screening in high dimensional binary classification. They further showed that the t-

statistic does not miss any important features with probability 1 under some technical

conditions.

Although the variable screening based on two-sample t-statistic performs gen-

erally well in the high-dimensional classification problems, it may break down for
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heavy-tailed distributions or data with outliers. To overcome this drawback, Mai

and Zou[42] proposed a feature screening method for binary classification based

on the Kolmogorov-Smirnov statistic. Let F+j(x) and F−j(x) denote the condi-

tional cumulative probability functions of Kj given Y = 1,−1, respectively. De-

fine Kj = sup−∞<x<∞|F+j(x) − F−j(x)|. The sample version of Kj is defined as

Knj = sup−∞<x<∞|F̂+j(x) − F̂−j(x)|. Mai and Zou[42] proposed ranking all the

variables by the Knj statistics, which is the Kolmogorov-Smirnov test statistic for

testing the equivalence of two distributions. Mai and Zou[42] further established

the sure screening property and showed that this method is almost as fast as t-test

screening[10] and is ten times faster than nonparametric maximum marginal likeli-

hood screening[11]. However, it is limited to the binary classification. Cui et al.[7]

proposed a model-free feature screening procedure using mean variance index for

ultra high dimensional discriminant analysis. It is not only robust to heavy-tailed

distributions of predictors and the presence of potential outliers, but also allows the

categorical response having a diverging number of classes in the order of O(nk) with

some k ≥ 0.

1.3 New Challenges for Ultra-high Dimensional Vari-

able Selection

In the previous section, we have provided a selective overview on feature screening

for ultra-high dimensional data. We briefly described a variety of feature screen-
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ing procedures for linear models, generalized linear models, nonparametric regression

models, several model-free feature screening procedures and classification. They all

focus on single type of predictors, which means the predictors are all continuous or

all discrete. However, in practice, we often collect mixed type of data, which con-

tains both continuous and discrete predictors. For example, in genetic studies, we

can collect information on both gene expression profiles and single nucleotide poly-

morphisms(SNPs) genotypes. Numerous gene expression(continuous variables) based

strategies have been developed(Goeman et al.[24]; Kim and Volsky[33]; Mansmann

and Meister[44]) and many methods have been developed for pathway analyses using

SNP data(Wang et al. [60]; Holden et al. [29]; Zhong et al.[70]). As discussed by

Xiong et al.[65], valuable associations may be discarded in single data type analyses.

For instance, genes with only genetic alterations are not considered in gene set anal-

yses based solely on expression data. Similarly, genes with only expression changes

cannot be captured by a purely SNP-based approach. These issues create a need to

integrate both gene expression and SNPs into the association analysis of gene sets.

This motivates us to develop a feature screening procedure for mixed type of data.

We first studied the performances of the procedures for single type of data and it

prepared us to find a procedure for mixed type of data.

Furthermore, data with ultra-high dimensions are often contaminated with out-

liers. Many existing screening procedures can suffer from such contamination. And

many procedures assume strict parametric models that might not be realistic for

most practical data. Therefore, in this dissertation we are particularly interested in
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developing screening procedures that are robust against outliers and model misspec-

ifications.

The remainder of this dissertation is organized as follows. In Chapter 2, we

focus on feature screening procedures for single type of data. For each type of data,

we propose a new robust procedure and conduct simulation studies to assess the

performance of the proposed procedure and compare them with existing procedures.

The goal of this chapter is to identify a candidate robust screening procedure for

each type of data which will be combined together to form the robust screening

procedure for mixed type of data in the next chapter. In Chapter 3, we propose a

robust screening procedure for mixed type of data. We conduct simulation studies

to evaluate the performance of the proposed procedure and we further illustrate the

procedure using a real-life data example.
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Chapter 2

SIS for Single Type of Data

In this chapter, we focus on feature screening procedures for single type of data

and aim to identify a best robust candidate screening procedure for each type of

data, which will be combined together to form the screening procedure for mixed

type of data. For continuous response and continuous predictors, we introduce the

Spearman correlation screening procedure and conduct simulation studies to com-

pare the performance with SIS([15]), RRCS([37]), CQC-SIS([41]) and DC-SIS([38]).

For continuous response and categorical predictors, we introduce the screening pro-

cedures respectively by the ANOVA and Kruskal-Wallis test and conduct simulation

studies to compare their performances with SIS and RRCS. For categorical response

and continuous predictors, we introduce the screening procedures respectively by

the Kolmogorov-Smirnov and Mann-Whitney tests and conduct simulation studies

to compare their performances with NIS([11]) and SIRS([71]). We also introduce

the nonparametric screening procedure by smoothing spline: for continuous response,
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we conduct simulation studies to compare its performance with SIS, CQC-SIS and

NIS; for discrete response from exponential family, we conduct simulation studies to

compare its performance with NIS, SIRS and the screening procedure by the Kruskal-

Wallis test. For categorical response and categorical predictors, screening with χ2 test

statistic[30] seems to be the only option. These studies for single type of data prepared

us to find a robust procedure for mixed type of data.

2.1 Continuous Response, Continuous Predictors

2.1.1 Screening by Spearman Correlation

Consider the random vectors (Xi, Yi), i = 1, . . . , n. After converting the raw values

Xi, Yi to ranks rgXi, rgYi, the Spearman’s ρ rank correlation between Xi and Yi is

defined as

ρ =
cov(rgX , rgY )

σrgXσrgY
, (2.1)

where cov(rgX , rgY ), σrgX and σrgY are respectively the covariance and standard

deviations of the rank variables. If there are no ties, it can be computed as

ρ = 1− 6
∑
d2i

n(n2 − 1)
, (2.2)

where di = rg(Xi)− rg(Yi) is the difference between the two ranks at the ith obser-

vation.

Let Y = (Y1, . . . , Yn) be an n-vector of response, X = (X1, . . . ,Xn) be an n × p
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design matrix and ω = (ω1, . . . , ωp)
T be a p-vector with components

ωk = 1− 6
∑n

i=1 d
2
ik

n(n2 − 1)
, k = 1, . . . , p, (2.3)

where dik = rg(Xik) − rg(Yi) and ωk is essentially the marginal rank correlation

coefficient between Y and X·k. We can then sort the magnitudes of all the components

of ω in a decreasing order and select a submodel

Mdn = {1 ≤ k ≤ p : |ωk| is among the first dn largest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a

submodel with the size dn.

The Spearman rank correlation between two variables is the nonparametric version

of the Pearson correlation and equal to the Pearson correlation between the rank

values of those two variables. Because of the robustness of the Spearman correlation

against heavy-tailed distributions and outliers, a screening method using Spearman

correlation is expected to be more robust than the SIS.

2.1.2 Numerical Studies

In this section, we present several simulation settings to compare the performances

of the Spearman correlation screening procedure with the existing methods, such as

SIS([15]), RRCS([37]), CQC-SIS([41]) and DC-SIS([38]).
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We used the linear model (1.1) with standard Gaussian predictors and the noise

ε is generated from two different distributions: the standard normal distribution and

the standard normal distribution with 10% of the outliers following the Cauchy dis-

tribution. We considered two such models with (n, p) = (100, 1000) and (200, 1000),

respectively. The sizes s of the true models, i.e., the numbers of nonzero coefficients,

were chosen to be 5 and 8, respectively, and the coefficients of the nonzero components

of the p-vectors β were chosen to be 5. We consider three designs for the covariance

matrix of X as follows: (1) Σ1 = Ip×p; (2) Σ2 = (σij)p×p with σij = ρ|i−j|, ρ = 0.5; (3)

Σ3 = (σij)p×p with σij = ρ|i−j|, ρ = 0.8. We chose d = [n/ log n] and d = [3
2
n/ log n],

respectively. For each model we simulated 500 data sets.

(n,p) ρ Outliers SIS Spear-
man

RRCS CQC-
SIS

DC-
SIS

(100,1000) 0 0 5 5 5 5 5
0.940 0.924 0.930 0.944 0.898

(100,1000) 0 10% 4 5 5 5 5
0.356 0.820 0.818 0.842 0.694

(100,1000) 0.5 0 5 5 5 5 5
0.890 0.874 0.880 0.930 0.892

(100,1000) 0.5 10% 4 5 5 5 5
0.296 0.772 0.784 0.798 0.680

(100,1000) 0.8 0 5 5 5 5 5
0.658 0.622 0.642 0.724 0.658

(100,1000) 0.8 10% 3 5 5 5 4
0.230 0.550 0.570 0.606 0.490

Table 2.1: Results of simulation with s = 5 in Section 2.1.2: Median num-
bers (top numbers) of correctly selected variables and proportions (bottom num-
bers) of times that the screened predictor set contained the true model for
SIS,Spearman,RRCS,CQC-SIS,DC-SIS with n = 100

We used the median number of correctly selected predictors and the proportion

of times that the screened predictor set contained the true model to evaluate the
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(n,p) ρ Outliers SIS Spear-
man

RRCS CQC-
SIS

DC-
SIS

(200,1000) 0 0 8 8 8 8 8
0.988 0.976 0.976 0.990 0.974

(200,1000) 0 10% 7 8 8 8 8
0.404 0.934 0.940 0.946 0.862

(200,1000) 0.5 0 8 8 8 8 8
0.970 0.952 0.948 0.980 0.946

(200,1000) 0.5 10% 7 5 5 5 5
0.414 0.930 0.930 0.952 0.864

(200,1000) 0.8 0 8 8 8 8 8
0.722 0.706 0.710 0.756 0.712

(200,1000) 0.8 10% 6 8 8 8 8
0.206 0.618 0.616 0.616 0.558

Table 2.2: Results of simulation with s = 8 in Section 2.1.2: Median num-
bers (top numbers) of correctly selected variables and proportions (bottom num-
bers) of times that the screened predictor set contained the true model for
SIS,Spearman,RRCS,CQC-SIS,DC-SIS with n = 200

performances of the procedures. Table 2.1 and Table 2.2 summarized the simulation

results and we can draw the following conclusions:

1. When there is no outlier, SIS and CQC-SIS performed better than others ac-

cording to higher proportions of predictors containing the true model selected.

The difference became smaller with a larger sample size. But when outliers

were present in data, Spearman, RRCS and CQC-SIS performed much better

than others. SIS was very sensitive to outliers.

2. Spearman, RRCS and CQC-SIS could outperform DC-SIS with or without out-

liers. Generally speaking, the performance of Spearman, RRCS and CQC-SIS

were the best.

3. With the increase of the sample size, they all had improved performances.



26

2.2 Continuous Response, Categorical Predictors

2.2.1 Screening by the ANOVA and Kruskal-Wallis Tests

Given observations (Xi, Yi), i = 1, . . . , n, of a continuous variable Y and a categorical

variable X, where Xi ∈ {1, . . . , K} is the observed class label. We can divide the n-

vector Y = (Y1, . . . , Yn) into K groups according to the corresponding class label Xi.

Then we can perform a one-way ANOVA to test whether the means of the K groups

are all the same. And we can get a p-value of the test, this p-value indicates the

association between Y and X. The ANOVA assumes that Y is normally distributed.

When this assumption does not hold, we can use the Kruskal-Wallis test[36], which

is the nonparametric equivalent of ANOVA. Let ni represent the sample size for the

ith group, i = 1, . . . , K. Rank the combined sample and compute Ri, the sum of the

ranks for group i. Then the Kruskal-Wallis test statistic is

H =
12

n(n+ 1)

K∑
i=1

R2
i

ni
− 3(n+ 1). (2.4)

This statistic approximately follows a χ2 distribution with K−1 degrees of freedom if

the null hypothesis is true. Each of the ni should be at least 5 for the approximation

to be valid.

Let Xj = (X1j, . . . ,Xnj) be the vector of observed values for the jth categorical

predictor and ω = (ω1, . . . , ωp)
T be the vector of p-values of tests on the marginal as-

sociation between Y and Xj. We can then sort the magnitudes of all the components
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of ω in an increasing order and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn smallest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a

submodel with size dn.

2.2.2 Numerical Studies

In this section, we present several simulations to compare the performances of four

methods: screening by the ANOVA test, screening by the Kruskal-Wallis test, SIS([15])

and RRCS([37]).

We used the linear model (1.1) with binary predictors and the noise ε is generated

from two different distributions: the standard normal distribution and the standard

t distribution with one degree of freedom. We considered two such models with

(n, p) = (100, 1000) and (200, 1000), respectively. The sizes s of the true models, i.e.,

the numbers of nonzero coefficients, were chosen to be 5 and 8, respectively, and all the

nonzero components of the coefficient vector β were chosen to be 5. We consider three

designs for the covariance matrix of X as follows: (1) Σ1 = Ip×p (2) Σ2 = (σij)p×p

with σij = ρ|i−j|, ρ = 0.5; (3) Σ3 = (σij)p×p with σij = ρ|i−j|, ρ = 0.8. We chose

d = [n/ log n] and d = [3
2
n/ log n], respectively. For each model we simulated 500

data sets.

We use the median number of correctly selected predictors and the proportion



28

of times that the screened predictor set contained the true model to evaluate the

performances of the procedures. Table 2.3 and Table 2.4 summarized the simulation

results and we can draw the following conclusions:

1. With the standard normal noise, the ANOVA test performed better than others

according to higher proportions of predictors containing the true model selected.

The difference became smaller with a larger sample size. But with the t distri-

bution noise, the Kruskal-Wallis test and RRCS performed much better than

others.

2. Generally speaking, the performance of the Kruskal-Wallis test and RRCS are

the best.

3. With the increase of the sample size, they all had improved performances.

4. An interesting finding is that: the performance of the Kruskal-Wallis test and

RRCS were the same in almost all the settings. This may be due to their

common nonparametric nature.

2.3 Categorical Response, Continuous Predictors

2.3.1 Screening by the Kolmogorov-Smirnov and Mann-Whitney

Tests
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(n,p) ρ ε ANOVA K-W SIS RRCS

(100,1000) 0 N(0, 1) 5 5 2 5
0.972 0.928 0.008 0.928

(100,1000) 0 t(1) 2 5 1 5
0.136 0.626 0.004 0.626

(100,1000) 0.5 N(0, 1) 5 5 2 5
0.946 0.880 0.004 0.880

(100,1000) 0.5 t(1) 3 5 1 5
0.112 0.610 0.000 0.610

(100,1000) 0.8 N(0, 1) 5 5 2 5
0.912 0.826 0.002 0.826

(100,1000) 0.8 t(1) 2 4 1 4
0.076 0.478 0.002 0.478

Table 2.3: Results of simulation with s = 5 in Section 2.2.2: Median numbers (top
numbers) of correctly selected variables and proportions (bottom numbers) of times
that the screened predictor set contained the true model for the ANOVA, Kruskal-
Wallis, SIS and RRCS with n = 100

(n,p) ρ ε ANOVA K-W SIS RRCS

(200,1000) 0 N(0, 1) 8 8 3 8
0.998 0.996 0.000 0.996

(200,1000) 0 t(1) 4 8 2 8
0.148 0.870 0.000 0.870

(200,1000) 0.5 N(0, 1) 8 8 3 8
0.976 0.970 0.002 0.970

(200,1000) 0.5 t(1) 4 8 2 8
0.130 0.872 0.000 0.872

(200,1000) 0.8 N(0, 1) 8 8 3 8
0.960 0.932 0.004 0.934

(200,1000) 0.8 t(1) 5 8 2 8
0.134 0.764 0.000 0.764

Table 2.4: Results of simulation with s = 8 in Section 2.2.2: Median numbers (top
numbers) of correctly selected variables and proportions (bottom numbers) of times
that the screened predictor set contained the true model for the ANOVA, Kruskal-
Wallis, SIS and RRCS with n = 200

The two sample Kolmogorov-Smirnov test is used to test whether two samples

come from the same distribution. It is a nonparametric hypothesis test that evaluates

the difference between the cumulative distribution functions(c.d.f.) of the two sample
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data vectors over the data range. Suppose that the first sample X1, . . . , Xm of size m

has a distribution with c.d.f. F1(x) and the second sample Y1, . . . , Yn of size n has a

distribution with c.d.f. F2(x). The Kolmogorov-Smirnov statistic is

Dmn = max
x
|F1(x)− F2(x)|. (2.5)

The statistic is calculated by finding the maximum absolute value of the differences

between the two distribution c.d.f.s. The null hypothesis is H0: both samples come

from a population with the same distribution. A natural estimator for Dmn is

D̂mn = max
x
|F̂1(x)− F̂2(x)|, (2.6)

where F̂1 and F̂1 are the sample c.d.f.s. The null hypothesis is rejected at level α if

D̂mn > c(α)

√
m+ n

mn
, (2.7)

where c(α) is given in the Kolmogorov-Smirnov Table.

The Mann-Whitney test is another non-parametric test that can be used to test

whether two samples come from the same distribution. It is based on a comparison

of every observation in the first sample with every observation in the other sample.

Suppose we have a sample X1, . . . , Xm of size m and another sample Y1, . . . , Yn of size

n. We can carry out the test by the following procedure:

1. Arrange all the observation in order of magnitude.
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2. Under each observation, write down X or Y to indicate which sample they are

from.

3. Under each Xi write down the number of Y s which are to the left of it, which

indicates Xi > Yj. Under each Yj write down the number of Xs which are to

the left of it, which indicates Yj > Xi.

4. Add up the total number of times Xi > Yj, denote by Ux. Add up the total

number of times Yj > Xi, denote by Uy. Check that Ux + Uy = mn.

5. Calculate U = min(Ux, Uy).

6. Use statistical tables for the Mann-Whitney test to find the probability of ob-

serving a value of U or lower. If the test is one-sided, this is the p-value; if the

test is two-sided, double this probability to obtain the p-value.

Note that if the number of observations is large enough, a normal approximation can

be used with µU = mn
2

, σU =
√

mn(m+n+1)
12

.

Both the Kolmogorov-Smirnov and Mann-Whitney tests are nonparametric tests

to compare two unpaired groups of data. Both compute p-values for testing the

null hypothesis that the two groups have the same distribution. The Kolmogorov-

Smirnov test is sensitive to any distributional differences. Substantial differences in

shape, spread or median will result in a small p-value. In contrast, the Mann-Whitney

test is mostly sensitive to changes in the median. Both tests can be used when we

have two groups. When we have three or more groups, we can use the Kruskal-Wallis

test as described in section 2.2.1.
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Let Y = (Y1, . . . , Yn) be an n-vector of categorical response where Yi ∈ {1, . . . , K}

is the ith class label, and Xj = (X1j, . . . ,Xnj) be the jth continuous predictor. For

each pair of Y and Xj, we can devide Xj into K groups according to the class label

Yi and perform a test to see whether the K groups come from the same distribution.

Let ω = (ω1, . . . , ωp)
T be a p-vector each being the p-value of the selected test. We

can then sort the magnitudes of all the components of ω in an increasing order and

select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn smallest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a

submodel with the size dn.

2.3.2 Numerical Studies

In this section, we present two examples to compare the performances of four meth-

ods: NIS([11]), SIRS([71]), screening with the Kolmogorov-Smirnov test (K-S) and

screening with the Mann-Whitney test (M-W).

Logistic Regression

In this example, the data (xT1 , Y1), . . . , (x
T
n , Yn) are independent copies of a pair

(xT , Y ), where Y is distributed, conditional on X = x, asBin(1, p(x)), with log( p(x)
1−p(x)) =

xTβ + ε and the noise ε is generated from two different distributions: the standard
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normal distribution and the standard t distribution with one degree of freedom. We

choose n = 200, p = 1000. The sizes s of the true models, i.e., the numbers of nonzero

coefficients, was chosen to be 8 and the nonzero components of the coefficient vector

β were chosen to be 5. We consider three designs for the covariance matrix of X as

follows: (1) Σ1 = Ip×p (2) Σ2 = (σij)p×p with σij = ρ|i−j|, ρ = 0.5; (3) Σ3 = (σij)p×p

with σij = ρ|i−j|, ρ = 0.8. We chose d = [n/ log n]. For each model we simulated 500

data sets.

We use the median number of correctly selected predictors and proportion of times

that the screened predictor set contained the true model to evaluate the performances

of the procedures. Table 2.5 summarized the simulation results and we can draw the

following conclusions:

1. The Mann-Whitney test outperformed the other three methods.

2. With the increase of ρ, the performances all became worse.

Poisson Regression

In the second example, the response Y was distributed, conditional on X = x, as

Poisson(µ(x)), where log(µ(x)) = xTβ + ε and the noise ε was generated from two

different distributions: the standard normal distribution and the standard t distribu-

tion with one degree of freedom. We chose n = 200, p = 1000. The sizes s of the true

models, i.e., the numbers of nonzero coefficients, was chosen to be 3 and the nonzero

components of the coefficient vector β were chosen to be 5. We considered three
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(n,p) ρ ε NIS SIRS M-W K-S

(200,1000) 0 N(0, 1) 8 6 8 7
0.518 0.042 0.714 0.436

(200,1000) 0 t(1) 7 5 8 7
0.332 0.000 0.632 0.404

(200,1000) 0.5 N(0, 1) 7 6 8 7
0.452 0.054 0.664 0.366

(200,1000) 0.5 t(1) 7 5 8 7
0.350 0.036 0.610 0.260

(200,1000) 0.8 N(0, 1) 7 5 7 7
0.256 0.008 0.304 0.144

(200,1000) 0.8 t(1) 6 5 7 6
0.116 0.004 0.242 0.080

Table 2.5: Results of simulation with logistic regression in Section 2.3.2: Median
numbers (top numbers) of correctly selected variables and proportions (bottom num-
bers) of times that the screened predictor set contained the true model for the NIS,
SIRS, Mann-Whitney test and Kolmogorov-Smirnov test with s = 8

designs for the covariance matrix of X as follows: (1) Σ1 = Ip×p (2) Σ2 = (σij)p×p

with σij = ρ|i−j|, ρ = 0.5; (3) Σ3 = (σij)p×p with σij = ρ|i−j|, ρ = 0.8. We chose

d = [n/ log n]. For each model we simulated 500 data sets.

We use median of the correctly selected predictors and proportion of predictors

containing the true model to evaluate the performances of the procedures. Table 2.6

summarized the simulation results and we can draw the following conclusions:

1. The Kruskal-Wallis test outperforms the other three methods.

2. An interesting finding is that: When ρ = 0.5, the performance of the Kruskal-

Wallis test was even better than when ρ = 0. This may be because, with

large p, the sample correlation is non-negligible even with iid standard normal

predictors.
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(n,p) ρ ε NIS SIRS K-W K-S

(200,1000) 0 N(0, 1) 1 0 3 3
0.002 0.320 0.860 0.630

(200,1000) 0 t(1) 1 0 3 2
0.000 0.015 0.568 0.448

(200,1000) 0.5 N(0, 1) 1 0 3 3
0.005 0.250 0.930 0.725

(200,1000) 0.5 t(1) 1 0 3 3
0.000 0.000 0.730 0.538

(200,1000) 0.8 N(0, 1) 1 0 3 3
0.008 0.230 0.802 0.596

(200,1000) 0.8 t(1) 1 0 3 2
0.000 0.000 0.500 0.334

Table 2.6: Results of simulation with poisson regression in Section 2.3.2: Median
numbers (top numbers) of correctly selected variables and proportions (bottom num-
bers) of times that the screened predictor set contained the true model for NIS, SIRS,
Kruskal-Wallis test and Kolmogorov-Smirnov test with s = 3

2.4 Nonparametric Screening with Continuous Pre-

dictors

2.4.1 Screening by Smoothing Spline with Continuous Re-

sponse

Given Yi = η(xi) + εi, with εi ∼ N(0, σ2), the minus log likelihood function L(f)

reduces to the least squares functional proportional to
∑n

i=1(Yi − f(xi))
2. Then, the

general form of penalized least squares functional in a reproducing kernel Hilbert

space H = ⊕pβ=0Hβ can be written as

1

n

n∑
i=1

(Yi − η(xi))
2 + λJ(η), (2.8)
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where J(f) = J(f, f) =
∑p

β=1 θ
−1
β (f, f)β and (f, g)β are inner products in Hβ with

reproducing kernel Rβ(x, y). The penalty is seen to be

λJ(η) = λ

p∑
β=1

θ−1β (f, f)β, (2.9)

with λ and θβ as smoothing parameters. The bilinear form J(f, g) =
∑p

β=1 θ
−1
β (f, g)β

is an inner product in ⊕pβ=1Hβ, with a reproducing kernel RJ(x, y) =
∑p

β=1 θβRβ(x, y)

and a null space NJ = H0 of finite dimension, say m. The minimizer ηλ has the

expression

η(x) =
m∑
ν=1

dνφν(x) +
n∑
i=1

ciRJ(xi, x) = φTd + ξTc, (2.10)

where {φν}mν=1 is a basis of NJ = H0, φ and ξ are vectors of functions, and c and d

are vectors of real coefficients. The estimation then reduces to the minimization of

(Y − Sd−Qc)T (Y − Sd−Qc) + nλcTQc, (2.11)

with respect to c and d, where S is n × m with the (i, ν)th entry φν(xi) and Q is

n× n with the (i, j)th entry RJ(xi, xj). Suppose S is of full column rank. Let

S = FR∗ = (F1, F2)

R̃
O

 = F1R̃, (2.12)
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be the QR-decomposition of S with F orthogonal and R̃ upper-triangular. From

STc = 0, one has F T
1 c = 0, so c = F2F

T
2 c. Some algebra leads to

c = F2(F
T
2 QF2 + nλI)−1F T

2 Y,d = R̃−1(F T
1 Y − F T

1 Qc). (2.13)

Denote the fitted values by Ŷ , some algebra yields

Ŷ = Qc + Sd = (I − nλF2)(F
T
2 QF2 + nλI)−1F T

2 Y = A(λ)Y, (2.14)

where A(λ) is known as the smoothing matrix.

With varying smoothing parameter λ, the minimizer ηλ defines a family of pos-

sible estimates. We can use the method of cross-validation to choose the smooth-

ing parameter λ. If an independent validation data set were available with Y ∗i =

η(xi) + ε∗i , then an intuitive strategy for the selection of λ would be to minimize

n−1
∑n

i=1(ηλ(xi) − Y ∗i )2. Lacking an independent validation data set, an alternative

strategy is to minimize

V0(λ) =
1

n

n∑
i=1

(η
[i]
λ (xi)− Yi)2, (2.15)

where η
[i]
λ is the minimizer of the ”delete-one” functional

1

n

∑
i 6=k

(Yi − η(xi))
2 + λJ(η). (2.16)
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Some algebra yields

V0(λ) =
1

n

n∑
i=1

(Yi − ηλ(xi))2

(1− ai,i)2
, (2.17)

where ai,i is the (i, i)th entry of A(λ). Craven and Wahba[6] substituted ai,i by its

average n−1
∑n

1 ai,i and obtained the generalized cross-validation(GCV) score

V (λ) =
n−1YT (I − A(λ))2Y

n−1tr(I − A(λ))2
. (2.18)

A desirable property of the GCV score is its invariance to an orthogonal transform of

Y. Despite its asymptotic optimality, the GCV score is known to occasionally deliver

severe undersmoothing. Kim and Gu[34] proposed a modified version,

V (λ) =
n−1YT (I − A(λ))2Y

n−1tr(I − αA(λ))2
, (2.19)

with a fudge factor α > 1 proves rather effective in curbing undersmoothing while

maintaining the otherwise good performance of GCV. And α = 1.4 was found to be

adequate in the simulation studies.

Let Y = (Y1, . . . , Yn) be an n-vector of continuous response, X = (X1, . . . ,Xp)T

be an n × p design matrix.For each pair of Y and Xj, we can fit a soonthing spline

model and get an estimate η̂j for ηj, we choose the soothing parameter λ using modi-

fied GCV score described above. Then we can test the significance of the relationship

by examining whether η̂j is a constant function, which means η̂′j ≡ 0. For some arbi-

trary points (x1, . . . , xm), let ω = (ω1, . . . , ωp)
T be a p-vector each being

∑m
i=1[η̂

′
j(xi)]

2.
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We can then sort the magnitudes of all the components of ω in an decreasing order

and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn largest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a

submodel with the size dn.

2.4.2 Screening by Smoothing Spline with Discrete Response

from Exponential Families

Consider exponential family distributions with densities of the form

f(y|x) = exp(yη(x)− b(η(x)))/a(φ) + c(y, φ), (2.20)

where a > 0, b and c are known functions, η(x) is the parameter of interest dependent

on a covariate x, and φ is either known or considered as a nuisance parameter that

is independent of x. Observing Yi|xi ∼ f(y|xi), one is to estimate the regression

function η(x). One has the penalized likelihood functional

− 1

n

n∑
i=1

{Yiη(xi)− b(η(xi))}+
λ

2
J(η) (2.21)

for η ∈ H = ⊕pβ=0Hβ, where J(f) = J(f, f) =
∑p

β=1 θ
−1
β (f, f)β and (f, g)β are inner

products inHβ with reproducing kernels Rβ(x, y). The terms c(Yi, φ) are independent
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of η(x) and, hence, are dropped, and the dispersion parameter a(φ) is absorbed into

λ. The bilinear form J(f, g) is an inner product in ⊕pβ=1Hβ with a reproducing kernel

RJ(x, y) =
∑p

β=1 θβRβ(x, y) and a null space NJ = H0. The first term of (2.21)

depends on η only through the evaluations [xi]η = η(xi), and the minimizer ηλ of

(2.21) has an expression

η(x) =
m∑
ν=1

dνφν(x) +
n∑
i=1

ciRJ(xi, x) = φTd + ξTc, (2.22)

where {φν}mν=1 is a basis of NJ = H0, ξ and φ are vectors of functions, and c and d

are vectors of coefficients. Fixing the smoothing parameters λ, the minimizer ηλ may

be computed via the Newton iteration. Write ũi = −Yi + ḃ(η̃(xi)) = −Yi + µ̃(xi) and

w̃i = b̈(η̃(xi)) = ṽ(xi). The quadratic approximation of −Yiη(xi) + b(η(xi)) at η̃(xi)

is

−Yiη̃(xi)+b(η̃(xi))+ũi{η(xi)−η̃(xi)}+
1

2
w̃i {η(xi)− η̃(xi)}2 =

1

2
w̃i{η(xi)−η̃(xi)+

ũi
w̃i
}2+Ci,

(2.23)

where Ci is independent of η(xi). The Newton iteration updates η̃ by the minimizer

of the penalized weighted least squares functional

1

n

n∑
i=1

w̃i(Ỹi − η(xi))
2 + λJ(η) (2.24)

where Ỹi = η̃(xi)− ũi/w̃i.

Smoothing parameter selection remains an important practical issue. Without
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loss of generality, assume a(φ) = 1. Consider the Kullback-Leibler distance

KL(η, ηλ) =
1

n

n∑
i=1

{µ(xi)(η(xi)− ηλ(xi))− (b(η(xi))− b(ηλ(xi)))}. (2.25)

Dropping terms that do not involve ηλ, one gets the relative Kullback-Leibler distance

RKL(η, ηλ) =
1

n

n∑
i=1

{−µ(xi)ηλ(xi) + b(ηλ(xi))}. (2.26)

Replacing µ(xi)ηλ(xi) by Yiη
[i]
λ (xi), one obtains a cross-validation estimate ofRKL(η, ηλ),

V0(λ) =
1

n

n∑
i=1

{−Yiη[i]λ (xi) + b(ηλ(xi))}, (2.27)

where η
[i]
λ minimizes the ”delete-one” version of (2.21),

− 1

n

∑
i 6=k

{Yiη(xi)− b(η(xi))}+
λ

2
J(η). (2.28)

Note that E[Yi] = µ(xi) and that η
[i]
λ is independent of Yi. Write

V0(λ) = − 1

n

n∑
i=1

{Yiηλ(xi)− b(ηλ(xi))}+
1

n

n∑
i=1

Yi(ηλ(xi)− η[i]λ (xi)), (2.29)

where the first term is readily available, but the second term is impractical to com-

pute. We need computationally practical approximations of the second term. Gu and

Xiang[25] substitute η
[i]
λ,ηλ

(xi) for η
[i]
λ (xi), where η

[k]
λ,ηλ

(xi) minimizes the ”delete-one”
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version of (2.24),

1

n

∑
i 6=k

w̃i(Ỹi − η(xi))
2 + λJ(η), (2.30)

for η̃ = ηλ. Remember that ηλ = ηλ,ηλ . Some algebra yields

V (λ) = − 1

n

n∑
i=1

{Yiηλ(xi)− b(ηλ(xi))}+
1

n

n∑
i=1

ai,i
1− ai,i

Yi(Yi − µλ(xi))
w̃i

, (2.31)

where ai,i is the ith diagonal of the smoothing matrix Aw(λ). We can obtain a general-

ized approximate cross-validation(GACV) score by replacing ai,i/w̃i by n−1
∑n

i=1 ai,i/w̃i

and 1− ai,i by 1− n−1trAw:

Vg(λ) = − 1

n

n∑
i=1

{Yiηλ(xi)− b(ηλ(xi))}+
tr(AwW

−1)

n− trAw
1

n

n∑
i=1

Yi(Yi − µλ(xi)), (2.32)

where W = diag(w̃i).

Let Y = (Y1, . . . , Yn) be an n-vector of discrete response, X = (X1, . . . ,Xp)T be

an n × p design matrix.For each pair of Y and Xj, we can choose a discrete distri-

bution from exponential family, e.g. Binomial distribution or Poisson distribution,

for Y. Then we can fit a smoothing spline model and get an estimate η̂j for ηj, we

choose the smoothing parameter λ using GACV score described above. We then test

the significance of the relationship by examining whether η̂j is a constant function,

which means η̂′j ≡ 0. For some arbitrary points (x1, . . . , xm),let ω = (ω1, . . . , ωp)
T

be a p-vector each being
∑m

i=1[η̂
′
j(xi)]

2. We can then sort the magnitudes of all the
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components of ω in an decreasing order and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn largest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a

submodel with the size dn.

2.4.3 Numerical Studies

Continuous Response

For continuous response, we compared the performance of screening by smoothing

spline with SIS([15]), CQC-SIS([41]) and NIS([11]). We set n = 400 and p = 1000.

For NIS, the number of basis is set to be 5 as suggested by Fan et al.[11]. For

smoothing spline, the number of basis is set to be max(30, 10n2/9) and a = 1.4 in

modified GCV as suggested by Kim and Gu[34]. For each model we simulated 500

data sets.

Example1: This example is adapted from Fan, Feng and Song[11]. Let g1(x) = x,

g2(x) = (2x − 1)2, g3(x) = sin(2πx)/(2 − sin(2πx)) and g4(x) = 0.1sin(2πx) +

0.2cos(2πx) + 0.3sin(2πx)2 + 0.4cos(2πx)3 + 0.5sin(2πx)3. The data is generated

from the following model:

Y = 5g1(X1) + 3g2(X2) + 4g3(X3) + 6g4(X4) +
√

1.74ε. (2.33)
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The covariates X = (X1, . . . ,XP )T are simulated according to the random-effects

model

Xj =
Wj + tU

1 + t
, j = 1, . . . , p, (2.34)

where W1, . . . ,Wp and U are iid Unif(0, 1), and ε ∼ N(0, 1). When t = 0, the

covariates are all independent, and when t = 1, the pairwise correlation of covariates

is 0.5.

Example2: The settings and model are the same as Example1 except that the

covariates X = (X1, . . . ,XP )T are generated from the multivariate normal distribu-

tion with mean 0 and the covariance matrix Σ = (σ)p×p with σii = 1 and σij = ρ|i−j|

for i 6= j. We considered three cases: ρ = 0.5, ε ∼ N(0, 1); ρ = 0.8, ε ∼ N(0, 1);

ρ = 0.8, ε ∼ t(1).

We used the median number of correctly selected predictors and proportion of

times that the screened predictor set contained the true model to evaluate the perfor-

mances of the procedures. Table 2.7 summarized the simulation results and we can

draw the following conclusions:

1. Generally speaking, the performance of NIS and smoothing splines were the

best.

2. When ρ = 0.8, the performances for all procedures were the best. This may be

because, when the correlation is weak, the signals work against the marginal

effect estimation as accumulated noise, thus masking the relatively weak signals

from X3 and X4 in the example.
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Model t SIS CQC NIS SS

Example1 0 1 3 4 4
0.000 0.074 0.962 0.968

Example1 1 4 4 3 4
0.578 0.336 0.426 0.524

Model ρ& ε SIS CQC NIS SS

Example2 0.5 1 3 4 4
U(0, 1) 0.000 0.120 0.960 0.960

Example2 0.8 0 3 4 4
U(0, 1) 0.000 0.055 0.924 0.854

Table 2.7: Results of simulation with continuous response in Section 2.4.2: Me-
dian numbers (top numbers) of correctly selected variables and proportions (bottom
numbers) of times that the screened predictor set contained the true model for SIS,
CQC-SIS, NIS and smoothing spline with 4 truly active predictors

Discrete Response from Exponential Family

For discrete response from exponential family, we compare the performance of screen-

ing by smoothing spline with NIS([11]), SIRS([71]) and screening with p-value of

Kruskal-Wallis test. We set n = 400 and p = 1000. For NIS, the number of basis is

set to be 5 as suggested by Fan et al.[11]. For smoothing spline, the number of basis

is set to be max(30, 10n2/9) and a = 1.4 in modified GCV as suggested by Kim and

Gu[34]. For each model we simulated 500 data sets.

Example3: Let g1(x) = x2, g2(x) = x3 and g3(x) = exp(x). Y is distributed,

conditional on X = x, as Bin(1, p(x)), with log( p(x)
1−p(x)) = 5g1(X1) + 5g2(X2) +

5g3(X3). The covariates X = (X1, . . . ,XP )T are generated from the multivariate

normal distribution with mean 0 and the covariance matrix Σ = (σ)p×p with σii = 1

and σij = ρ|i−j| for i 6= j. We considered two cases: ρ = 0 and ρ = 0.8.

Example4: Let g1(x) = x2, g2(x) = x3 and g3(x) = exp(x). Y is distributed,
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conditional on X = x, as Poisson(µ(x)), with log(µ(x)) = 5g1(X1) + 5g2(X2) +

5g3(X3). The covariates X = (X1, . . . ,XP )T are generated from the multivariate

normal distribution with mean 0 and the covariance matrix Σ = (σ)p×p with σii = 1

and σij = ρ|i−j| for i 6= j. We considered two cases: ρ = 0 and ρ = 0.8.

We used the median number of correctly selected predictors and proportion of

times that the screened predictor set contained the true model to evaluate the perfor-

mances of the procedures. Table 2.8 summarized the simulation results and we can

draw the following conclusions:

1. Generally speaking, the performance of NIS and smoothing spline are the best.

2. When ρ = 0.8, the performances of all methods are better than when ρ = 0.

This may be because, when ρ = 0, the independent signals work against the

marginal effect estimation as accumulated noise, thus masking the relatively

weak signals.

2.5 Categorical Response, Categorical Predictors

When the predictors and the responses are all categorical, Huang et al.[30] employed

the Pearson χ2 test statistic as a marginal utility for feature screening. We described

the details of this screening procedure in section1.2.6. It seems this procedure is the

best option we have and we have not found a competitive procedure so far.
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Model ρ NIS SIRS K-W SS

Example3 0 4 3 3 4
0.876 0.012 0.018 0.886

Example3 0.5 4 3 3 4
0.774 0.032 0.026 0.868

Example3 0.8 4 3 3 4
0.850 0.000 0.000 0.870

Example4 0 4 3 3 4
0.732 0.062 0.088 0.786

Example4 0.5 4 3 3 4
0.712 0.032 0.048 0.736

Example4 0.8 4 3 3 4
0.748 0.018 0.026 0.728

Table 2.8: Results of simulation with discrete response in Section 2.4.3: Median num-
bers (top numbers) of correctly selected variables and proportions (bottom numbers)
of times that the screened predictor set contained the true model for NIS, SIRS,
Kruskal-Wallis test and smoothing spline with 3 truly active predictors

2.6 Ordinal Response, Continuous Predictors

2.6.1 Screening by Polyserial Correlation

When the response is ordinal variable and the predictors are continuous variables.

We propose to use the Polyserial correlation. Polyserial correlation measures the

correlation between two continuous variables with a bi-variate normal distribution,

where one variable is observed directly, and the other is unobserved. Information

about the unobserved variable is obtained through an observed ordinal variable that

is derived from the unobserved variable by classifying its values into a finite set of

discrete, ordered values[51].

Let Y = (Y1, . . . , Yn) be an n-vector of ordinal response, Yi ∈ 1, . . . , K be the

corresponding class label, X = (X1, . . . ,Xn) be an n × p design matrix and ω =
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(ω1, . . . , ωp)
T be a p-vector each being the marginal Polyserial correlation coefficient

between Y and Xj. We can then sort the magnitudes of all the components of ω in

a decreasing order and select a submodel

Mdn = {1 ≤ k ≤ p : |ωk| is among the first dn largest of all},

where dn is a predefined threshold value. This reduces the full model of size p to a

submodel with the size dn.

2.6.2 Numerical Studies

We used the linear model (1.1) with standard Gaussian predictors and the noise ε

is generated from two different distributions: the standard normal distribution and

the standard t distribution with one degree of freedom. We chose n = 200, p = 1000.

The sizes s of the true models, i.e., the numbers of nonzero coefficients, were chosen

to be 8 and the coefficients of the nonzero components of the p-vectors β were chosen

to be 5. We consider three designs for the covariance matrix of X as follows: (1)

Σ1 = Ip×p; (2) Σ2 = (σij)p×p with σij = ρ|i−j|, ρ = 0.5; (3) Σ3 = (σij)p×p with

σij = ρ|i−j|, ρ = 0.8. We chose d = [n/ log n]. For each model we simulated 500 data

sets.

We compared the performances of four methods: SIS, screening with ANOVA test,

screening with Spearman correlation and screening with Polyserial correlation. For

SIS, we used the original continuous y value. For ANOVA test, Spearman correlation
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and Polyserial correlation: when yi < Q1, yi is labeled as 1; when Q1 ≤ yi < Q2, yi

is labeled as 2; when Q2 ≤ yi < Q3, yi is labeled as 3; when yi > Q3, yi is labeled as

4, where Q1, Q2 and Q3 are the first, second and third quantile of Y .

We used the median number of correctly selected predictors and proportion of

times that the screened predictor set contained the true model to evaluate the perfor-

mances of the procedures. Table 2.9 summarized the simulation results and we can

draw the following conclusions:

1. With standard normal noise, screening with Polyserial correlation performs al-

most as good as SIS.

2. with t distribution noise, screening with Polyserial correlation outperforms the

other three methods.

3. Generally speaking, the performance of Polyserial correlation is the best.
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ρ ε SIS Spearman ANOVA Polyserial

0 N(0, 1) 8 8 8 8
0.988 0.948 0.962 0.982

0 t(1) 7 8 8 8
0.386 0.888 0.928 0.966

0.5 N(0, 1) 8 8 8 8
0.976 0.928 0.946 0.966

0.5 t(1) 6 8 8 8
0.278 0.882 0.890 0.952

0.8 N(0, 1) 8 8 8 8
0.668 0.586 0.616 0.646

0.8 t(1) 6 8 8 8
0.244 0.524 0.556 0.578

Table 2.9: Results of simulation in Section 2.6.2: Median numbers (top numbers)
of correctly selected variables and proportions (bottom numbers) of times that the
screened predictor set contained the true model for SIS, Spearman, ANOVA and
Polyserial
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Chapter 3

Robust Feature Screening for

Mixed Type of Data

3.1 Motivating Examples

Example1: Arrhythmia Data Set

This Arrhythmia data set was contributed by Dr. H. Altay Guvenir to the UC-

Irvine Machine Learning Respository. The data set can be downloaded from https :

//archive.ics.uci.edu/ml/datasets/Arrhythmia. There are 452 patient records and

279 attributes, 206 of which are continuous variables and the rest are nominal. The

aim is to distinguish normal from abnormal heartbeat behavior based on ECG (Elec-

trocardiogram) data. The main challenges in processing this data set are the limited

number of samples compared to the number of attributes and attribute values be-

longing to both continuous and categorical types.
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Example2: Asthma Data Set

The association between SNPs atORMDL3 gene and the risk of childhood asthma

was studied by Miriam F. Moffatt et al.[48]. The data set can be downloaded from the

Gene Expression Omnibus (GEO) database at the website of the National Center for

Biotechnology Information (NCBI) with accession number GSE8052. The data set

consists of 268 cases and 136 controls with both SNP genotype and gene expression

data available. The original genome-wide study reported that the SNPs on chro-

mosome 17q21 where ORMDL3 is located, were strongly associated with childhood

asthma. The authors also found that these SNPs were highly correlated with gene

expression of ORMDL3, which is also associated with asthma. This motivated us to

assess the overall genetic effect of ORMDL3 on the occurrence of childhood asthma,

by jointly analyzing SNP and gene expression data.

The studies for single type of data in Chapter2 prepared us to find a robust

procedure for mixed type of data. The best robust screening procedure for each type

of data has been identified. We will combine these best screening procedures to form

the robust feature screening procedure for mixed type of data.

3.2 Method

Let Y = (Y1, . . . , Yn) be an n-vector response, X = (X1, . . . ,Xp)T be an n× p design

matrix. For each pair of Y and Xj, we want to perform a test and the p-value of the

test indicates the significance of the marginal relationship between the response and
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the predictor.

For continuous response Y: When the predictor Xj is continuous, we can perform

a B-spline fit. Consider the model

Y = fj(Xj) + ε.

fj(x) can be estimated via a B-spline basis Bj(x) = {Bj1(x), . . . ,Bjd(x)}T :

f̂j(x) = β̂Tj Bj(x),

where β̂j = (βj1, . . . , βjd)
T is obtained through the least squares regression:

β̂j = argmin
βj∈Rd

n∑
i=1

(Yi − βTj Bj(Xij)).

Then we can test whether f̂j is a constant function and get a p-value. When the

predictor Xj is discrete, we can treat different values of the predictor as different

groups, then we can perform a One-way ANOVA test or Kruskal-Wallis test. Suppose

we have K groups, let ni(i = 1, . . . , K) represent the sample sizes for each of the K

groups. If we choose one-way ANOVA test, our test statistics would be:

F =

∑K
i=1 ni(Y i· − Y ··)2/(K − 1)∑K

i=1

∑ni
j=1(Yij − Y i·)2/(n−K)

.

This test statistics follows an F distribution with degrees of freedom K−1 and n−K.
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And we can get a p-value from the ANOVA test. If we choose Kruskal-Wallis test,

we need to rank the response, and compute Ri = the sum of the ranks for group i.

Then the Kruskal-Wallis test statistic is:

H =
12

n(n+ 1)

K∑
i=1

R2
i

ni
− 3(n+ 1).

This statistic approximates a χ2 distribution with K − 1 degrees of freedom and we

can get a p-value from the K-W test.

For discrete response Y: When the predictor Xj is continuous, we can treat

different values of the response as different groups, then we can perform a One-way

ANOVA test or Kruskal-Wallis test. Suppose we have K groups, let ni(i = 1, . . . , K)

represent the sample sizes for each of the K groups. If we choose one-way ANOVA

test, our test statistics would be:

F =

∑K
i=1 ni(Xji· −Xj··)

2/(K − 1)∑K
i=1

∑ni
l=1(Xjil −Xji·)2/(n−K)

.

This test statistics follows an F distribution with degrees of freedom K−1 and n−K.

And we can get a p-value from the ANOVA test. If we choose Kruskal-Wallis test,

we need to rank the predictor, and compute Ri = the sum of the ranks for group i.

Then the Kruskal-Wallis test statistic is:

H =
12

n(n+ 1)

K∑
i=1

R2
i

ni
− 3(n+ 1).
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This test statistic approximates a χ2 distribution with K − 1 degrees of freedom and

we can get a p-value from the K-W test. When the predictor Xj is discrete, we can

perform a Chi-square test. Suppose Yi ∈ {1, . . . ,K1} and Xij ∈ {1, . . . ,K2}. Define

P (Yi = k) = πyk, P (Xij = k) = πjk, and P (Yi = k1, Xij = k2) = πyj,k1k2 . Those

quantities can be estimated by π̂yk = n−1
∑

I(Yi = k), π̂jk = n−1
∑

I(Xij = k), and

π̂yj,k1k2 = n−1
∑

I(Yi = k1)I(Xij = k2). Our Chi-square test statistics is:

4̂j =

K1∑
k1=1

K2∑
k2=1

(π̂yk1 π̂jk2 − π̂yj,k1k2)2

π̂yk1 π̂jk2
.

This test statistics follows a χ2 distribution with (K1−1)(K2−1) degrees of freedom

and we can get a p-value from the test.

Let ω = (ω1, . . . , ωp)
T be a p-vector each being the p-value of the selected test.

We can then sort the magnitudes of all the components of ω in an decreasing order

and select a submodel

Mdn = {1 ≤ k ≤ p : ωk is among the first dn smallest of all},

where dn is a predefined threshold value. This reduces the full model of size p to

a submodel with the size dn. Then the regularization methods, such as SCAD and

MCP, can be applied to the reduced feature space.
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3.3 Simulation Studies

Example1: We considered the linear model y = Xβ + ε. Half of the predictors are

generated from standard Gaussian distribution, the other half are Binary predictors.

The noise ε is generated from two different distributions: the standard normal distri-

bution and the t distribution with three degree of freedom. We consider two designs

for the covariance matrix of X as follows: (1) Σ1 = Ip×p; (2) Σ3 = (σij)p×p with

σij = ρ|i−j|, ρ = 0.8. We chose (n, p) = (400, 1000), s = 8, d = [n/ log n] and the

coefficients of the nonzero components of the p-vectors β to be 5. For each model we

simulated 500 data sets.

Example1.1:

Same as Example1 except that y = X2β + ε.

Example1.2:

Same as Example1 except that y = sin(X)β + ε.

Example2: Let g1(x) = x, g2(x) = x2 and g3(x) = sin(x). y = 5g1(X1) +

5g2(X2) + 5g3(X3) + 5g1(X4) + 5g2(X5) + 5g3(X6), where X1,X2,X3 are continuous

predictors and X4,X5,X6 are binary predictors. The other settings are the same with

Example1.

We used the median number of correctly selected predictors and the proportion

of times that the screened predictor set contained the true model to evaluate the

performances of the procedures. Table 3.1 summarized the simulation results and we

can draw the following conclusions:
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1. Both tests perform better with standard normal noise and independent predic-

tors according to higher proportions of predictors containing the true model

selected.

2. Generally speaking, both methods perform well and the performances of the

two methods are comparable.

Model 0 &
N(0, 1)

0 &
t(3)

0.8 &
N(0, 1)

0.8 &
t(3)

Example1 8 8 8 8
ANOV A&NIS 0.984 0.976 0.900 0.894
Example1 8 8 8 8
K-W &NIS 0.982 0.962 0.880 0.876
Example1.1 8 8 8 8
ANOV A&NIS 0.748 0.738 0.636 0.620
Example1.1 8 8 8 8
K-W &NIS 0.882 0.888 0.824 0.820
Example1.2 8 8 8 8
ANOV A&NIS 1.000 0.998 0.996 0.992
Example1.2 8 8 8 8
K-W &NIS 0.998 0.998 0.990 0.990
Example2 6 6 6 6
ANOV A&NIS 0.986 0.978 1.000 1.000
Example2 6 6 6 6
K-W &NIS 0.996 0.996 1.000 1.000

Table 3.1: Results of simulation in Section 3.3: Median numbers (top numbers)
of correctly selected variables and proportions (bottom numbers) of times that the
screened predictor set contained the true model

Example3: Same as Example1 except that (n, p) = (100, 200) and s = 6.

Example3.1:

Same as Example3 except that y = X2β + ε.

Example3.2:

Same as Example3 except that y = sin(X)β + ε.
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Example4: Same as Example2 except that (n, p) = (100, 200).

We used the median number of correctly selected predictors and proportion of

times that the screened predictor set contained the true model to evaluate the perfor-

mances of the procedures. Table 3.2 summarized the simulation results and we can

draw the following conclusions:

1. With the decrease of the sample size, the performance of both methods become

worse.

2. Generally speaking, the performances of K-W test is a little better than ANOVA

test.

Example5: To make the simulation mimic the motivating arrhythmia data set,

we choose (n, p, s) = (450, 250, 6) and Y is distributed, conditional on X = x,

as Bin(1, p(x)), with log( p(x)
1−p(x)) = xTβ + ε. The other settings are the same as

Example1.

Example5.1:

Same as Example5 except that log( p(x)
1−p(x)) = x2β + ε.

Example5.2:

Same as Example5 except that log( p(x)
1−p(x)) = sin(x)β + ε.

Example6: Same as Example2 except that (n, p) = (450, 250) and Y is dis-

tributed, conditional on X = x, as Bin(1, p(x)), with log( p(x)
1−p(x)) = 5g1(X1) +

5g2(X2) + 5g3(X3) + 5g1(X4) + 5g2(X5) + 5g3(X6).

We used the median number of correctly selected predictors and proportion of
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times that the screened predictor set contained the true model to evaluate the perfor-

mances of the procedures. Table 3.3 summarized the simulation results and we can

draw the following conclusions:

1. Both tests perform better with standard normal noise and independent predic-

tors according to higher proportions of predictors containing the true model

selected.

2. Generally speaking, both methods perform well and the performances of the

two methods are comparable.

Model 0 &
N(0, 1)

0 &
t(3)

0.8 &
N(0, 1)

0.8 &
t(3)

Example3 6 6 6 6
ANOV A&NIS 0.946 0.938 0.876 0.876
Example3 6 6 6 6
K-W &NIS 0.938 0.932 0.876 0.872
Example3.1 6 6 6 6
ANOV A&NIS 0.846 0.826 0.756 0.740
Example3.1 6 6 6 6
K-W &NIS 0.822 0.778 0.718 0.684
Example3.2 6 6 6 6
ANOV A&NIS 0.936 0.948 0.902 0.872
Example3.2 6 6 6 6
K-W &NIS 0.952 0.966 0.920 0.900
Example4 6 6 6 6
ANOV A&NIS 0.724 0.696 0.644 0.642
Example4 6 6 6 6
K-W &NIS 0.774 0.726 0.674 0.674

Table 3.2: Results of simulation in Section 3.3: Median numbers (top numbers)
of correctly selected variables and proportions (bottom numbers) of times that the
screened predictor set contained the true model
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Model 0 &
N(0, 1)

0 &
t(3)

0.8 &
N(0, 1)

0.8 &
t(3)

Example5 6 6 6 6
ANOV A&NIS 0.740 0.720 0.530 0.528
Example5 6 6 5 5
K-W &NIS 0.718 0.706 0.484 0.482
Example5.1 5 5 5 5
ANOV A&NIS 0.416 0.406 0.318 0.306
Example5.1 6 6 6 5
K-W &NIS 0.606 0.588 0.506 0.486
Example5.2 6 6 6 6
ANOV A&NIS 0.934 0.914 0.792 0.754
Example5.2 6 6 6 6
K-W &NIS 0.892 0.886 0.748 0.730
Example6 6 6 5 5
ANOV A&NIS 0.586 0.580 0.494 0.404
Example6 6 6 6 5
K-W &NIS 0.692 0.648 0.522 0.468

Table 3.3: Results of simulation in Section 3.3: Median numbers (top numbers)
of correctly selected variables and proportions (bottom numbers) of times that the
screened predictor set contained the true model

3.4 Real Data Analysis

3.4.1 Arrhythmia Data Set

In this section, we applied our screening procedures to the Arrhythmia data set.

There are 452 rows, each representing the medical record of the different patient.

There are 279 attributes, such as age, sex, height, weight and patients’ ECG related

data. The data set is labeled with 16 different classes. Class 1 corresponds to the

normal ECG with no arrhythmia and class 16 refers to unlabeled patient. Class 2

to 15 correspond to different types of arrhythmia. The data set is heavily biased

towards the no arrhythmia case with 245 patients belonging to class 1. The original
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data contains columns with both missing values and single valued columns having

the same value for all the patient records. These columns were deleted from the data

set. The resulting data set contained 452 instances and 257 features.

Because the data set is heavily biased towards the no arrhythmia case, we first

considered labeling the patients into two categories: no arrhythmia and all the other

cases. Then we applied our screening procedure to the data set. To measure the

classification accuracy, we used 10-fold cross validation. For continuous features, we

used ANOVA test. For categorical features, we used Chi-square test. The features are

selected based on the p-value of the selected tests. The number of features selected

is dt = [nt/ log nt], where nt is sample size of the training set. Then we applied the

generalized linear model with SCAD penalty to the reduced feature space and get

estimates for the test set. The classification accuracy can be calculated using the

estimates and the true values of the test set. We repeated the whole procedure 100

times.

From the study by Gupta et al.[26], we know that the performance of Random

Forest is quite well compared with other classification methods. We compared the

performance of our method with random forest on the same data set, the results

are summarized in Table 3.4. From the table, we can see that, with a much smaller

model size and less computation time, the mean classification accuracy of our method

is comparable to the Random Forest.

We also applied our screening procedure to the whole data set. After screening,

the reduced feature space contains 73 features. Then we applied the generalized
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linear model with SCAD penalty to the reduced feature space. We got 12 features in

the final model: QRS duration, DII90, DII91, DII93, DII100, DII103, DII112,

and DI167, DI169, DII199, DII211, DII277. Then we applied the random forest

method to the whole data set. For comparison purpose, we listed the top 12 important

features selected by model accuracy and Gini index below. Mean decrease in model

accuracy: DII224, DII91, DII277, DII93, DII228, DII234, DII199, DII103,

DII179, DII76, QRS duration, and DII250. Mean decrease in Gini index: DII224,

DII277, QRS duration, DII199, DII197, DII91, DII179, DII93, DII228, DI167,

DII177, and DI169. Mitra and Samanta[46] also studied the Arrhythmia data set. In

their study, they got 18 features as reduced feature set as follows: Sex, QRS duration,

DII49, DII76, DII91, DII103, DII112, DI163, DI167, DI169, DII173, DII199,

DII207, DII211, DII261, DII267, DII271, and DII277.

Table 3.5 listed the important features selected by at least two methods mentioned

above. From the table we can see that, 11 out of 12 features selected by our method

were also selected by at least one different method. Only one feature, DII76, was

selected by two other methods and was not selected by our method. Only one feature,

DII100, was selected by our method and was not selected by other methods.

Method Model Size Classification
Accuracy

Time

Screening 13.70 76.47% 19.58
Random Forest 257 80.09% 31.54

Table 3.4: Results of the Arrhythmia data set:Mean values of the model size, classi-
fication accuracy and time (in seconds)
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Attribute Type Screening RF- RF- Neural
+SCAD Gini Accuracy Networks

QRS continuous Y Y Y Y
DII76 discrete N N Y Y
DII90 discrete Y N Y N
DII91 discrete Y Y Y Y
DII93 discrete Y Y Y N
DII103 discrete Y N Y Y
DII112 discrete Y N N Y
DI167 continuous Y Y N Y
DI169 continuous Y Y N Y
DII199 continuous Y Y Y Y
DII211 continuous Y N N Y
DII277 continuous Y Y Y Y

Table 3.5: Features selected by at least two methods

3.4.2 Asthma Data Set

In this section, we applied our screening procedures to the Asthma data set. The

data set consists of 268 cases and 136 controls , indicating whether the child has

the Asthma or not. There are 54675 continuous features, which are gene expression

calculated by RMA Express software, and 160 discrete features, such as family ID,

sex, country and SNP type. The original data contains rows with missing values and

columns with single value. These rows and columns were deleted from the data set.

The resulting data set contained 251 instances and 54802 features.

We applied our screening procedure to the data set. To measure the classification

accuracy, we used 10-fold cross validation. For continuous features, we used ANOVA

test. For categorical features, we used Chi-square test. The features are selected based

on the p-value of the selected tests. The number of features selected is dt = [nt/ log nt],

where nt is sample size of the training set. Then we applied the generalized linear
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model with SCAD penalty to the reduced feature space and get estimates for the test

set. We can calculate the classification accuracy using the estimates and the true

values of the test set. We repeated the whole procedure 100 times. The mean and

median classification accuracy are 74.67% and 74.78%,respectively.

We also applied our screening procedure to the whole data set. After screen-

ing, the reduced feature space contains 45 features. Then we applied the generalized

linear model with SCAD penalty to the reduced feature space. We got 17 features

in the final model: 1559587 at, 1560842 a at, 201017 at, 208359 s at, 208534 s at,

212486 s at, 215649 s at, 227561 at, 231592 at, 232688 at, 233946 at, 236278 at,

237083 at, 238573 at, 239992 at, 241630 at, and 243320 at. And their corresponding

GenBank Accession Numbers are: AL831859, BC042736, BG149698, NM 004981,

NM 006989, N20923, AF217536, W73819, AV 646335, AU144829, AL512690, AV 705309,

H46176, H19488, BF063430, AA742279, and H09564.

Moffatt et al.[47] reported 10 SNPs on chromosome 17q21 that were strongly

associated with childhood asthma as follows: rs9303277, rs11557467, rs8067378,

rs2290400, rs7216389, rs4795405, rs8079416, rs4795408, rs3894194, and rs3859192.

If we only use the SNPs data, after screening, the reduced feature space contains 45

features. And all the 10 SNPs listed above were contained in the reduced feature

space. Then we applied the generalized linear model with SCAD penalty to the re-

duced feature space. We got 7 features in the final model: sex, rs1106769, rs4795369,

rs907092, rs9303277, rs11557467, and rs7211770. We can see that rs9303277 and

rs11557467 are the top two SNPs in their list.
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From the study by Huang et al. [32], we know that the SNPs are highly correlated

with gene expression, which is also associated with childhood asthma. And we can

consider gene expression as the mediator between the SNPs and the disease. This

might be the reason we only select gene expression features in our final model. For

each of the 10 SNPs and each of the gene expression features we selected, we performed

a one-way ANOVA test to see whether there is an association between the SNP and

gene expression. In table 3.6, for each of the 10 SNPs, we listed three gene expression

features with the smallest p-values. From the table, we can see that, for each SNP,

we have at least one gene expression that is highly associated with it.

In our data set, we have 122 SNP features and 54675 gene expression features.

The number of gene expression features is much larger than the number of SNP fea-

tures. This might be another reason we only select gene expression features in our

final model. We want both SNP features and gene expression features in the model,

so we applied our screening procedure to the SNP features and gene expression fea-

tures separately. After screening, we got 45 SNP features and 45 gene expression

features. Then we applied the generalized linear model with SCAD penalty to the

reduced feature space containing those 45 SNP features and 45 gene expression fea-

tures. There are 18 features in the final model: sex, rs1106769, rs9303277, rs7211770,

1559258 a at, 1560842 a at, 208359 s at, 208534 s at, 212486 s at, 215649 s at, 227561 at,

232688 at, 235168 at, 236278 at, 236615 at, 238573 at, 239992 at, and 243320 at.

The three SNP features selected are also selected when we only use the SNPs data.

And rs9303277 is reported by Moffatt et al.[47]. For the gene expression features,
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11 out of 14 features are also selected when we apply our screening procedure to the

whole data set.

rs9303277 243320 at 1559587 at 233946 at
0.0027 0.0101 0.0291

rs11557467 243320 at 212486 s at 215649 s at
0.0026 0.0105 0.0141

rs8067378 243320 at 1559587 at 215649 s at
0.0026 0.0083 0.0174

rs2290400 215649 s at 1559587 at 233946 at
0.0140 0.0164 0.0218

rs7216389 215649 s at 212486 s at 233946 at
0.0145 0.0173 0.0187

rs4795405 208534 s at 243320 at 215649 s at
0.0013 0.0534 0.0592

rs8079416 208534 s at 241630 at 227561 at
0.0002 0.0358 0.0802

rs4795408 208534 s at 241630 at 227561 at
0.0007 0.0471 0.0940

rs3894194 208534 s at 241630 at 212486 s at
0.0007 0.0635 0.1122

rs3859192 241630 at 208534 s at 243320 at
0.0030 0.0882 0.1316

Table 3.6: ANOVA test of association between SNP and gene expression
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