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ABSTRACT: Tire-road friction estimation is one of the most popular problems for the tire and
vehicle industry. Accurate estimation of the tire-road friction leads to better performance of the
traction and antilock braking system controllers, which reduces the number of accidents.
Several researchers have worked in the field of friction estimation, and many tire models have
been developed to predict the tire-road friction. In this article, an intelligent tire, which has an
embedded accelerometer placed on the inner liner of the tire, is used to estimate the tire contact
patch length parameter and normal load. To accomplish this, first, an existing tire testing trailer
equipped with a force hub to measure tire forces and moments, a high-accuracy encoder to
measure the angular velocity of the wheel, and VBOX, which is a global positioning system—
based device, to estimate the longitudinal speed of the trailer was used. As a practical
application for the normal load algorithm, a wheeled ground robot, which is equipped with
several sensors, including an accelerometer and a flexible strain sensor inside the tire (used for
terrain identification purposes), was designed and built. A set of algorithms was developed and
used with the test data that were collected with both the trailer and the robot, and the contact
patch length and the normal load were estimated. Also, the friction potential between the tire
and the road was evaluated using a small ground robot.

KEY WORDS: intelligent tire, contact patch, normal load, friction, force estimation, neural
network

Introduction

Routine measurement of normal force at tire-road contact patch has always
been a challenging problem because of technical difficulties of mounting and
implementing accurate sensors in tires. The intelligent tire concept has made it
possible to measure various characteristics of tire-road interaction as well as
estimate other parameters such as contact patch normal load.

Many studies have been done on integrating various types of sensors in tires
[7,2]. The so called “intelligent tire” concept has been used specifically to
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Maohile Tire Test Rig Attached to the Towing Vehicle

FIG. 1 — Trailer setup that is towed by a truck.

estimate tire-road friction in a few studies [3,4] that shows the application of
intelligent tires in terrain/ride characteristics identification [5,6]. On the other
hand, estimation of tire forces has also been investigated in other works [7,8].
Although all of the estimations mentioned above help enhance vehicle/tire
performance, estimation of contact patch length and normal load are the missing
pieces of the puzzle. For instance, in suspension systems, engineers deal only
with the normal loads including normal load at the contact patch. That
information can be quite useful in designing active and semiactive suspensions
where the tire load is considered as an unknown quantity in suspension systems
analysis [9]. Even other tire studies will be able to use the normal force
information such as studies in tire-terrain interaction [10,11].

In this article, a simple approach is introduced to estimate the contact patch
length and normal load on the tire with constant inflation pressure by training an
artificial neural network. A parameter will be introduced that is proportional to
the contact patch length. That parameter along with longitudinal velocity will
be used as inputs to the neural network. Two sets of data will be used to train
and validate the neural network, respectively. The same approach is also used in
the small wheeled ground robot, and the dynamic equations of motion for the
robot have been developed using a single-wheel vehicle dynamic model. A
Kalman filter has been used to estimate longitudinal speed and tire-road friction
coefficient.

Test Setup

A trailer test setup is used for this study that contains a quarter-car model,
which is towed by a truck, as shown in Fig. 1.

The quarter-car model setup has been equipped with various sensors to
monitor the dynamics of the system. A six-degree-of-freedom force hub from
Kistler is used to measure all the forces and moments in longitudinal, lateral,
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FIG. 2 — The quarter car setup and data-collecting and control system.

and vertical directions. An encoder is mounted to the force hub shaft to measure
the angular speed of the wheel. The setup is shown in Fig. 2. VBOX, which is a
global positioning system—based device, is used to measure the longitudinal
speed of the trailer.

An air spring system is used to apply the desired normal load, which uses
the force hub signal as feedback to control the normal force. Also a servo motor
from Parker is used to apply the desired slip angle sweeps (steer angle). Both
normal load and steering system are connected to a laptop through USB-NI
DAQ and controlled by an algorithm written in LabView.

A triaxial accelerometer is mounted inside the tire to monitor the
interaction between the tire and the road. This is shown in Fig. 3.

A data collection routine has been developed in LabView, which uses USB-
NI DAQ to synchronize and collect all the sensor data (acceleration signal from
the sensor inside the tire, longitudinal speed of the trailer, angular speed of the
wheel, and all the tire forces and moments). The sample rate that is used for this
study was 1000 Hz for all the sensors, which is high enough for the purpose of

FIG. 3 — The accelerometer inside the tire.
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FIG. 4 — The schematic of the robot: 1: DC motor, 2: USB- NI DAQ, 3: laptop, 4: signal conditioner
for the accelerometers, 5: motor controller, 6: current sensor, 7: single axis accelerometer, 8: slip
ring, 9: triaxial accelerometer, 10: rotary encoder, 11: 0.248 m pneumatic tire, 12: mechanism to
hold the encoder, 13: 24-V battery.

this study. For accurate estimation of contact patch length, a higher sample rate
should be used to detect the exact edges of the contact patch; however, a very
high sample rate is not practical, and a lower sample rate, like the one that was
used for this study, still leads to an acceptable estimation of contact patch length.

In addition, a small wheeled ground robot was designed and built for this
study; the chassis base was 0.361 m wide X 0.438 m long, which is placed on
0.254 m wheels (diameter). The schematic of the robot is shown in Fig. 4.

The robot has four 24-V brushed DC motors, which are controlled by two
motor controllers. Each of the motor controllers has two channels to control two
DC motors separately. One of the wheels is instrumented with a triaxial
accelerometer; its angular velocity is measured using an accurate encoder,
which is attached to the wheel shaft from the outside, as shown in the schematic
picture (Fig. 4). A torque sensor is used to measure the input torque to the wheel
from the motors (and uses the fact that in DC motors, the input current is
proportional to the output torque). A single axis accelerometer is attached to the
robot’s chassis to measure the longitudinal acceleration. LabView is used to
develop a data-collecting system for the robot, which also uses USB-NI DAQ.
The overall weight of the robot with all equipment is about 29.5 kg. A
schematic view of the data-collecting system is shown in Fig. 5.

Methodology
Based on the literature, when the accelerometer enters and leaves the
contact patch, two peaks are observed in a circumferential direction (as well as
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FIG. 6 — Radial and circumferential component of acceleration.

in a radial direction) of acceleration data, which represent the contact patch
region [4,12]. Circumferential and radial components of the accelerometer are
shown in Fig. 6 for a sample set of data.

A set of tests with three different normal loads and three different
longitudinal speeds (shown in Table 1) is used to train a neural network to
estimate the normal load using the trailer test setup. Each test has been repeated
in both directions (the first test was performed in one direction and the second
one in the opposite direction) to compensate for the effect of road grade, and the
average data are used. Fig. 7 shows the algorithm that is used to estimate the
normal load.

A computer code is developed that uses the encoder signal to extract the
data for every tire revolution and detects the acceleration peaks. Once the time
associated with each peak is detected, it should be multiplied by the trailer

TABLE 1 — Different test conditions.

Trailer speed Normal load (N)
mph km/h
15 24.14 2000 3000 4000
25 40.23 2000 3000 4000

35 56.32 2000 3000 4000
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FIG. 7 — Normal force estimation algorithm.

velocity as follows:
contact patch length parameter = (econd peak — first peak ) Vaverage (1)

A sample set of trailer data is depicted in Fig. 8. Because of the small
fluctuation in normal load data, the average of normal load data for each test is
used as the effective normal load.

The next step is to establish a relationship between the contact patch length
parameter and the normal load. An artificial neural network (ANN)-based
formulation was developed to estimate the tire normal load in terms of tire
rolling speed, inflation pressure, and the contact patch length. A two-layer feed-
forward network with sigmoid hidden neurons and linear output neurons [/3],
which uses 10 neurons in its hidden layer and also is appropriate for a
multidimensional mapping problem, is used to fit the data shown in Fig. 9.

The same approach is used for the robot to estimate the normal load. A
Kalman filter has been used to determine the longitudinal velocity, angular
velocity of the wheel, and friction force of the robot. A linear system can be
modeled as a combination of measurements with a stochastic process [/4]. The
model is shown in Egs. (2) and (3).

X = Axy_1 + Buy + wy

(2)

7k = Hpxp + g (3)

where x; is the state at time k, u, is the input control vector, wy, is process noise,
7 1s the measurement made at time k, v, is additive measurement noise, and H
is the observation matrix. The process noise and measurement noise are
assumed to be mutually independent random variables, spectrally white with
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FIG. 8 — Normal force, longitudinal speed, and encoder signal (raw data).

normal probability distributions:

p(w) = N(0,0)

where process noise covariance () and measurement noise covariance R

matrices are assumed to be constant. The Kalman filter estimates

the state by

minimizing the posteriori estimation error covariance using two stages of

prediction and correction.

AX;_1 + Buy

. =AP AT +Q

Xy
P

prediction

Output

Hidden

FIG. 9 — To-layer feed-forward network, used to fit measured data.
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FIG. 10 — Free body diagram of single wheel model in acceleration mode [15].

Ki=P,H"(HP, H" +R) — 1
correctionq x; = x, + Ky(zx — HX ) (7)

Py =(I-KH)P,
where K is the Kalman gain matrix and [/ is the identity matrix. In this study, a
state estimator is developed for computing the tire forces in addition to wheel
and body speed for the friction estimation algorithm. The dynamics of the robot
have been simplified using a single wheel dynamic model. This assumption is
acceptable for this study since it is assumed that the robot can only go straight
(there is no steer input). Also, since there is no suspension system, load transfer
due to suspension deflection is assumed to be zero (no pitch dynamics). Fig. 10
shows the free body diagram of one wheel model in acceleration mode.

For the mathematical approximation, the longitudinal dynamics of the
robot body are considered, and a random walk model has been assumed for the
longitudinal friction force (according to the random walk model, it is assumed
that F, = F, F, = 0). For braking mode, a linearized set of equations is given
as follows:

= ——F 8

u p— x ( )
R, 1

y —_wp oy o 9

=TT ®)

F.=F, (10)

Fo=0 (11)

where u, , and F, are the body velocity, the individual wheel velocity, and the
corresponding tire longitudinal force, respectively, T is the summation of drive
and brake torque, m,, is one-fourth of the total mass of the robot, and R,, and J,,,
are the radius of the wheel and the second moment of inertia of the wheel,
respectively. For this case A, B, and H matrices of Egs. (2) and (3) are as
follows:



- ~ — 3r

ints

Number of Data Points
o

Number of Data Pol

KHALEGHIAN ET AL. ON ESTIMATION OF TIRE CONTACT 257

PATCH LENGTH AND NORMAL LOAD

1 0015 002 0025 003 0035 004 0045 0 oo 002 003 004 005 006 007 008 009
Error Error

FIG. 11 — Left: Histogram of error percentages for the training data set. Right: Histogram of error
percentages for the validation data set.

00 - o0 0
ny, 1
R, 1 00 — 0
A=10 0 —== 0.B= Jw | H= mp (12)
" 0 01 00
00 0 1 0
00 0 0

Results and Discussion

For the normal load estimation algorithm with the trailer test setup, two sets
of data were collected: one set was used to train the neural network using
MATLAB Neural Network Toolbox, and the second data set was used to
validate the trained neural network. The second set of data was taken with
similar conditions to training data, but because of uncertainty in running the
tests, the validation data points are not exactly equal to those of the training
data.

The left graphic in Fig. 11 shows a histogram of the error percentages
between estimated and measured normal forces for training data points, which
indicates that the maximum percentage error of the trained data set is less than
4%.

The right graphic in Fig. 11 shows the histogram of the error of the
validation data points. As seen in the figure, the maximum percentage of error is
less than 9%. It should be noted that this set of data was not used in the training
process of the neural network and was collected only for validation purpose.

It is normal to see larger error percentages with the validation data set
compared with the training data set. It should be noted that only one data point
of the validation set is close to 9% error, and the rest of the points are
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FIG. 12 — Measured and estimated wheel speed.

concentrated below 5%. That point could be considered as an outlier. The same
situation holds more or less with the training data set. Usually, one or two points
have larger error percentages, but they are relatively far from the region where
the rest of the points are concentrated.

An experiment was designed to validate the proposed estimation algorithm
during a braking maneuver, and the small ground robot was used for this
purpose. The robot starts from rest, and then an angular velocity of 95 rpm
(£5rpm) is reached immediately and remains constant for 2 seconds. The brake
is then applied gradually until the robot comes to a complete stop. The
measured states are the angular velocity of the wheel and the longitudinal
acceleration of the chassis. Also, the control signal is the input torque to the
wheel from the DC motor, which is measured using the available torque sensor.
The outputs of the estimation algorithm are the longitudinal speed, angular
velocity of the wheel, and the friction force.

The estimated and measured wheel speeds and the estimated and measured
longitudinal robot speeds are presented in Figs. 12 and 13, respectively. As
observed in the figure, the estimation algorithm works properly, and the measured
and estimated values of wheel speed (which is the radius X the angular velocity of
the wheel) and robot longitudinal speed are in good agreement.

According to Fig. 13, the maneuver can be divided into three different
parts: the first part is accelerating, the second part is constant speed, and the
third part is braking. The other output of the estimation algorithm is the friction
force. Once the wheel speed, longitudinal speed, and the friction force is
obtained using the Kalman filter, the friction coefficient and slippage value can
be calculated as follows (the normal load was estimated using the same
approach as with the intelligent tire):

R, —V
slip ratio = (DT (14)
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FIG. 13 — Measured and estimated longitudinal robot speed.

where Fy is the normal force, R,, is the radius of the wheel, and V is the robot’s
longitudinal speed.

The friction coefficient versus slippage values for the braking part is plotted
in Figure 14.

The saturated value of the p-slippage curve is in good agreement with the
real value (rubber-wet asphalt), and the algorithm is validated.

Conclusion

Accurate estimation of tire normal load leads to better estimation of friction
force and better performance of traction and antilock braking system
controllers. In this study, a simple intelligent tire base algorithm is introduced
to estimate the tire normal load. Although the sampling rate was not very high,
it was sufficient to find a parameter related to contact patch length and accurate
estimation of the normal load.
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FIG. 14 — The friction coefficient for different slip.
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A set of tests with different applied normal loads was performed with the
trailer test setup at different speeds, and a two-layer feed-forward network
with 10 neurons in its hidden layers was developed to fit the processed data.
To validate the algorithm, it was tested using another set of measured data,
and good agreement was observed between measured and estimated normal
loads. The proposed algorithm can be used easily in the vehicle industry to
estimate the tire normal load; however, for each size of tire, a separate neural
network should be trained and stored as a black box, which estimates the tire
load.

As a practical application for the proposed algorithm, a similar approach is
used for a small ground wheeled robot to estimate the normal load (a separate
neural network was trained and used for this purpose) along with Kalman filter—
based estimation algorithm to estimate the longitudinal velocity of the robot and
the tire-road friction force. Finally, the estimated wheel speed, longitudinal
robot speed, and friction coefficient were compared with the measured values;
good agreement was observed, and the estimation algorithm was validated.
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